woO 2007/139824 A2 |10 0 00000 O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 December 2007 (06.12.2007)

(10) International Publication Number

WO 2007/139824 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/US2007/012283

(22) International Filing Date: 22 May 2007 (22.05.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/438,176 22 May 2006 (22.05.2006) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: WITRIOL, Daniel, B.; c/o Microsoft Cor-
poration, International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). FERREIRA, Jorge;
c/o Microsoft Corporation, International Patents, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,

FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN,
IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: SYNCHRONIZING STRUCTURED WEB SITE CONTENTS

Computing Array 140

Remoyable Siorage
108
Non-Removable
Storage 110

System
Memary
104

Program(s)
8

Serves Synchranizing

i
]

i

1

|

Il Appligation
I

|

I

{

: Moduie 120
!

Load
Balancer

Computing
Device
122-2

170

Clients

180-1-s

Client
Synchronization
Modu'o 182

Computing
Device
122-3

Computing
Device
122-n

(57) Abstract: Techniques to synchronize structured web site content are described. An apparatus may include a server having
a server synchronization module to identify structured content types shared by the server and a client, and synchronize structured
content corresponding to the structured content types. Other embodiments are described and claimed.



WO 2007/139824 PCT/US2007/012283

1
SYNCHRONIZING STRUCTURED WEB SITE CONTENTS

BACKGROUND -

[0001] Network software applications typically maintain a centralized network
database for application and/or user data. In some cases, a device may download or
replicate a subset of the central database from the network database, and then disconnect
from the network. For example, a wireless handheld device may download calendar and
contact information from a central database such as a web site. If information maintained
by the network database is modified, or the replicated subset of information itself is
modified, a synchronization event may be needed to update such changes in both data
locations. For example, assume a user adds a new appointment to a calendar application.
When the handheld device establishes a connection with the network database, the
calendar information stored by the network database may need to be updated to reflect the
modified data from the handheld device, and vice-versa. As the volume of application
data increases, as well as the number of devices attempting to synchronize with the
network database, however, synchronization events may become increasingly time and
bandwidth intensive. Consequently, improved synchronization techmiques may be needed
to solve these and other problems.

SUMMARY

[0002] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used to limit the scope of the claimed subject matter.

10003 Various embodiments may be generally directed to techniques for
synchronizing structured content between physical or logical entities. More particularly,
various embodiments may be directed to synchronization techniques between a client and
server. In some embodiments, for example, certain structured content types shared
between the server and the client may be identified prior to synchronization operations.
Structured content corresponding to the structured content types may then be synchronized
once identified. In this manner, synchronization may be focused on shared s}mctuxed

content as identified by the structured content types, rather than the entire set of data



WO 2007/139824 PCT/US2007/012283

2
stored by the client and/or server. Accordingly, synchronization time and resources may

be reduced, thereby enhancing overall device operations and network services for a user.
10004} In one embodiment, a client may perform discovery or identification
operations. For example, the server may receive a request for a server content list. The
server may retrieve and send the server content list with structured content values
representing structured content types supported by the server. A client may receive the
server content list, and compare the server content list with a client content list having
structured content values representing structured content types supported by the client.
The client may send a synchronization request and/or a shared content list to synchronize
structured content types supported by the server and the client. The server may receive the
synchronization request and/or shared content list, and perform synchronization operations
accordingly.

[0005] In one embodiment, a server may perform discovery or identification
operations. For example, the server may receive the client content list. The server may
retrieve the server content list, and compare both content lists. The server may generate a
shared content list having structured content values representing structured content types
supported by the client and the server in accordance with the comparison. The server may
send the shared content list to the client. The client may receive the shared content list, -
and send a synchronization request to synchronize structured content types in accordance
with the shared content list. The server may receive the synchronization request and

perform synchronization operations in accordance with the synchronization request. Other
embodiments are described and claimed.

DRAWINGS

[0006] FIG. 1 illustrates an exemplary embodiment of a network.,

[0007} FIG. 2 illustrates an exemplary embodiment of a logic flow.

[0008] FIG. 3 illustrates an exemplary embodiment of a first message flow.
[0009] FIG. 4 illustrates an exemplary embodiment of a second message flow.

DETAILED DESCRIPTION

{0010] FIG. 1 illustrates one exemplary embodiment of a network. FIG. 1 illustrates a
block diagram for a network 100. Network 100 may represent a general network

architecture suitable for implementing various embodiments. Network 100 may comprise



WO 2007/139824 PCT/US2007/012283

3
multiple elements. An element may comprise any physical or logical structure arranged to
perform certain operations. Each element may be implemented as hardware, software, or
‘any combination thereof, as desired for a given set of design parameters or performance
constraints. Examples of hardware elements may include processors, MICrOProcessors,
circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth),
integrated circuits, application specific integrated circuits (ASIC), programmable logic
devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA),
memory units, logic gates, registers, semiconductor device, chips, microchips, chip sets,
and so forth. Examples of software may include any software components, programs,
applications, computer programs, application programs, system programs, machine
programs, operating system software, middleware, firmware, software modules, routines,
subroutines, functions, methods, interfaces, software interfaces, application program
interfaces (API), instruction sets, computing code, computer code, code segments,
computer code segments, words, values, symbols, or any combination thereof. Although
network 100 as shown in FIG. 1 has a limited number of elements in a certain topology, it
may be appreciated that network 100 may include more or less elements in alternate
topologies as desired for a given implementation. The embodiments are not limited in this
context.
{0011} As shown in FIG. 1, for example, network 100 may comprise various elements
such as a computing array 140, a server 150, a network 160, a load balancer 170, and
client devices 180-1-s. In one embodiment, for example, server 150 may be implemented
as a web server. A web server may comprise a computing device capable of accepting
Hypertext Transfer Protocol (HTTP) requests from client devices (e.g., clients 180-1-s
and/or computing devices 122-1-n) to serve web pages. Web pages are typically
documents generated using some form of markup language, such as the Hypertext Markup
Language (HTML), the Extensible Markup Language (XML), Extensible Hypertext
Markup Language (XHTML), MICROSOFT WORD® Markup Language (WordML), and
so forth. Network 160 may comprise a packet network using one or more Internet
Protocols, such as the Transmission Control Protocol and Internet Protocol (TCP/IP).
Load balancer 170 may comprise a device to assign work loads to a set of networked
computer servers (e.g., computing array 140) in such a manner that the computing -
resources are used in an efficient manner. Load balancer 170 may be implemented using,
for example, a computer, a server, a virtual server, a network appliance, and so forth.
[0012] In various embodiments, network 100 may include various computing devices.

In one embodiment, for example, computing array 140 may include multiple computing



WO 2007/139824 PCT/US2007/012283

4
devices 122-1-n. Similarly, client devices 180-1-s may also be implemented as various
types of computing devices. Examples of computing devices may include, but are not
necessarily limited to, a computer, a computer system, a computer sub-system, a
workstation, a tenninal; a server, a web server, a virtual server, a personal computer (PC),
a desktop computer, a laptop computer, an ultra-laptop computer, a portable computer, a
handheld computer, a personal digital assistant (PDA), a mobile computing device, a
cellular telephone, a combination cellular telephone/PDA, a digital video device (e.g.,
digital camera, video camera, or camcorder), a digital audio device (e.g., MP3 player), a
one-way pager, a two-way pager, virtual instantiations of any of the previous examples,
and any other electronic, electromechanical, or electrical device. The embodiments are not
limited in this context.
[0013] In one embodiment, for example, computing array 140 may be implemented as
a server farm, wherein computing devices 122-1-n each represent a server, virtual server,
virtual machine, single board computer (SBC), server blade, web server, and so forth. A
server farm is typically a collection of computer servers usually maintained by an
enterprise to accomplish server needs beyond the capability of one machine. Often, server
farms will have both a primary and a backup server allocated to a single task, so that in the
event of the failure of the primary server, a backup server will take over the functions of
the primary server. Server farms are commonly used, for example, to provide web hosting
services. A web hosting service is a type of Internet hosting service that provides
individuals and organizations with online systems for storing information, images, video,
audio, text, animations, movies, pictures, or any other form of web content accessible via
the World Wide Web (WWW or “web™). Web hosts are companies that provide space on
a server they own for use by their clients as well as providing Internet connectivity,
typically in a data center. Web hosts can also provide data center space and connectivity
to the Internet for servers they do not own to be located in their data center.
[0014) FIG. 1 further illustrates a more detailed block diagram of computing device
122-1. Computing device 122-1 may be representative of any computing devices 122-1-n.
Furthermore, computing device 122-1 may also be representative of any client device 180-
1-s. In its most basic configuration 106, computing device 122-1 typically includes at
least one processing unit 102 and memory 104. Memory 104 may be implemented using
any machine-readable or computer-readable media capable of storing data, including both
volatile and non-volatile memory. For example, memory 104 may include read-only

memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-
Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM),



WO 2007/139824 PCT/US2007/012283

5
programmable ROM (PROM), erasable programmable ROM (EPROM), electrically
erasable programmable ROM (EEPROM), flash memory, polymer memory such as
ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory,
silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, or any
other type of media suitable for storing information. As shown in FIG. 1, memory 104
may store various software programs, such as one or more application programs 118, a
server synchronization module 120, and accompanying data.
[0015) Computing device 122-1 may also have additional features and/or functionality
beyond configuration 106. For example, computing device 122-1 may include removable
storage 108 and non-removable storage 110, which may also comprise various types of
machine-readable or computer-readable media as previously described. Computing device
122-1 may also have one or more input devices 114 such as a keyboard, mouse, pen, voice
input device, touch input device, and so forth. One or more output devices 116 such as a
display, speakers, printer, and so forth may also be included in computing device 122-1 as
well. ‘
[0016] Computing device 122-1 may further include one or more communications
connections 112 that allow computing device 122-1 to communicate with other devices.
Communications connections 112 may include various types of standard communication
elements, such as one or more communications interfaces, network interfaces, network
interface cards (NIC), radios, wireless transmitters/receivers (transceivers), wired and/or
wireless communication media, physical connectors, and so forth. Communication media
typically embodies computer readable instructions, data structures, program modules or
other data in a modulated data signal such as a carrier wave or other transport mechanism
and includes any information delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or changed in such a manner as to
encode information in the signal. By way of example, and not limitation, communication
media includes wired communications media and wireless communications media.
Examples of wired communications media may include a wire, cable, metal leads, printed
circuit boards (PCB), backplanes, switch fabrics, semiconductor material, twisted-pair
wire, co-axial cable, fiber optics, a propagated signal, and so forth. Examples of wireless
communications media may include acoustic, radio-frequency (RF) spectrum, infrared and
other wireless media. The terms machine-readable media and computer-readable media as
used herein are meant to include both storage media and communications media.
[0017] Each of computing devices 122-1-n may include multiple databases. As shown
in detail with respect to computing device 122-1, computing device 122-1 may be coupled



WO 2007/139824 PCT/US2007/012283

6
to databases 124, 126. Each database may be arranged to store various types of data for

computing device 122-1, application programs 118, server synchronization module 120,
and so forth. In one embodiment, for example, database 124 may store a client content list
130, a server content list 132, a shared content list 134, and so forth. Client content list
130 may include structured content values representing structured content types supported
by a client, such as one or more clients 180-1-s. Server content list 132 may include
structured content values representing structured content types supported by a server, such
as one or more servers 122-1-n. Shared content list 134 may include structured content
values representing structured content types shared by one or more clients 180-1-s and one
or more servers 122-1-n. Other types of data and databases may be implemented with
computing device 122-1, and the embodiments are not limited in this context.

[0018] In general operation, network 100 may facilitate synchronization operations
between one or more application programs stored or executed by one or more computing
devices 122-1-n of computing array 140, and one or more application programs stored or
executed by one or more client devices 180-1-s. Assume computing device 122-1-n each
implements one or more application programs 118, such as a server-based web application
program. Examples of server-based web application programs may include WINDOWS®
SHAREPOINT® SERVICES (WSS) Version 2.0, Version 3.0, and variants, made by
MICROSOFT® Corporation (collectively referred to herein as “WSS application” or
“SharePoint application”). WSS Version 3.0 is a suite of integrated application programs
that provides basic team services, web portal and intranet functionality for various clients,
such as clients 180-1-s, for example. User data or content data for WSS Version 3.0 may
be stored by databases 124, 126. Furthermore, one or more computing devices 122-1-n
may implement a third party application built on top of WSS Version 3.0, such as
SharePoint Portal Server (SPS) 2003 or Office SharePoint Services (OSS) 2006, for
example. Although some embodiments may be described with reference to a WSS
application program and accompanying third party programs by way of example, it may be
appreciated that any application program executed by a single or multiple computing
devices may be synchronized using the synchronization techniques'described herein. The
embodiments are not limited in this context.

[0019] WSS Version 3.0 provides a platform for multiple users to share data in an
efficient manner. For example, users may be organized into teams, with each team having
a shared calendar, contact list, task list, emails, discussion boards, documents, and so forth.
In an effort to increase usability of such shared data, various elements of network 100 may

be organized as an intermittently synchronized database system (ISDB). An ISDB allows



WO 2007/139824 PCT/US2007/012283

7
various physical or logical client entities to download or replicate portions of the
information from databases 124, 126 to a client device, such as client device 180-1, for
example. Assume client device 180-1 includes an application such as MICROSOFT
OUTLOOK®, made by Microsoft Corporation. Microsoft Outlook may import shared
data from server 122-1 as maintained using WSS Version 3.0. Consequently, a user may
have a portable device such as a handheld computing device executing a local version of
Microsoft Outlook, and download portions of shared data from server 122-1. Client
device 180-1 may modify the locally replicated data without a constant connection to
server 122-1 (e.g., offline), such as by adding appointments, deleting a contact, modifying
a task, generating a note, updating a project timeline, and so forth. Meanwhile, other users
may also modify the locally replicated data from databases 124, 126 as well. To maintain
data integrity, client device 180-1 may need to periodically or intermittently synchronize
with server 122-1 to reflect changes to any structured content or data sets shared between
both devices.
[0020] To perform synchronization operations, each client device 180-1-s may include
a client synchronization module 182, and each server 122-1-n may include a server
synchronization module 120. Synchronization modules 120, 182 may having varying
levels of integration to allow a server 122 and a client device 180, respectively, to
synchronize structured content or data sets supported by both devices. In one
embodiment, for example, a client device 180 may include a Microsoft Outlook client
application integrated at some level with a WSS application as executed by a server 122.
Such integration may include synchronizing data between Microsoft Outlook and the WSS
application. For example, the WSS application may include a shared calendar, contacts,
tasks, email, and discussion boards stored in the WSS application. Various embodiments
may define a user model, drivers, specifications, data schemas, and synchronization
infrastructure for Microsoft Outlook users to interact with WSS application data.
Although some embodiments may be described as synchronizing structured content
between Microsoft Outlook and a WSS application by way of example only, it may be
appreciated that the synchronization of structured content may be implemented for any
application programs and computing platforms as desired for a given set of design
parameters and performance constraints. The embodiments are not limited in this context.
[0021) There are several design considerations when attempting to synchronize two or
more applications and/or devices, such as server 122-1 and client device 180-1. For
example, to use a web site as a central data repository, data should be synchronized to

other applications quickly while generating minimal load on the web site servers. Further,



WO 2007/139824 PCT/US2007/012283

8
users are often only interested in a small scope of the overall data, and therefore users need

easily discoverable places to start synchronization operations for the relevant data of
interest. In addition, different synchronization clients may only be capable of
synchronizing with particular types of data from a server. Similarly, some synchronization
clients may support data types or values not supported by the web site server, while the
web site server may support data types or values not supported by the synchronization
clients. In another example, the web site and synchronization client may be running in
different languages. In yet another example, multiple synchronization clients may
potentially update the same data while not connected to the server, and therefore measures
need to be taken to ensure that data is not lost during synchronization events. In still
another example, users may need to synchronize with the same web site both inside private
networks and a public network, such as the Internet. In yet another example, clients .
synchronizing content from a server cannot accurately predict how often the content will
change resulting in either extra load on the server or stale content on the synchronized
client. Finally, server administrators want to be able to control the load generated on the
server through synchronizing clients.

[0022] In an effort to solve these and other problems, server 122 and/or client device
180 may implement improved synchronization techniques utilizing structured content.
Structured content may refer to any type of media content (e.g., text, andio, video, images,
pictures, animation, symbols, characters, numbers, icons, and so forth) having one or more
defined structural parameters, such as width, length, bit size, byte size, syntax, fields,
values, codes, flags, and so forth. The structured content may include application data
and/or user data to support any number of application programs, such as MICROSOFT
OUTLOOK, MICROSOFT ACCESS®, MICROSOFT FRONTPAGE®, MICROSOFT
ONENOTE®, MICROSOFT POWERPOINT®, MICROSOFT WORD, MICROSOFT
VISIO®, a WSS application, a SPS application, and so forth. In one embodiment, for
example, the structured content may include application data and/or user data for
Microsoft Outlook, such as one or more items from a calendar list, a task list, a contact list,
a note or memo list, a mail list, and so forth. Server synchronization module 120 and
client synchronization module 132 may be integrated to identify structured content types
shared between server 122 and client 180. Structured content information corresponding
to the structured content types shared between server 122 and client 180 may then be
synchronized.

[0023] Performing synchronization operations using structured content may provide

several advantages over conventional synchronization techniques. In various



WO 2007/139824 PCT/US2007/012283

9
embodiments, for example, initiating synchronization operations between devices may be

improved in a number of ways. For example, a network address and/or hyperlink may be
generated for a synchronization client to initiate synchronization operations based on
certain content types supported by a server and/or client. Different hyperlinks may be
generated to initiate synchronization operations to different scopes of content. In another
example, synchronization operations may be initiated differently based on the amount of
content being synchronized (e.g. synchronize only headers versus synchronizing entire
content sets). In yet another example, a protocol handler may be used to initiate
synchronization operations from a web browser.

[0024] Once synchronization operations have been initiated, various embodiments
may improve how the content is actually synchronized. For example, a server-side change
log may be used to synchronize only changed content. A token may be passed back and
fori:h to get only new changes made since a previous synchronization event. In another
example, synchrohization operations may only support individually requested or defined
fields in a structured schema. In yet another example, synchronization operations may
support different hierarchical scopes such as those created in folder hierarchies. In still
another example, synchronization views may be generated to display a filtered set of
content determined by various field values. In yet another example, some embodiments
may support synchronization of very large data sets using paging techniques. In another
example, some embodiments may perform conflict detection and automatic resolution
using a version history. In one more example, some embodiments may support
synchronization of attachments using “E-Tags” for conflict resolution. In another
example, some embodiments may support schema mismatches between the synchronizing
web site and the client using a property bag. In a further example, some embodiments
may support server/client language mismatches using field value mapping. In still another
example, some embodiments may support reads and updates using a read/send/refresh
pattern. Finally, some embodiments may provide the client with alternate universal
resource locators (URLs) that it can synchronize with in order to access the web site from
internal private networks or external public networks.

[0025] To further improve synchronization operations, various embodiments may
improve timing issues regarding when to synchronize a client device with a web site. For
example, some embodiments may manage client load and/or server load by providing

- recommended synchronization intervals to the synchronization client (e.g., client
synchronizes every P minutes). The recommended synchronization intervals may

represent a minimum synchronization interval, a maximum synchronization interval, or



WO 2007/139824 PCT/US2007/012283

10
some value in between. The recommended synchronization intervals may be based on

historical content change data stored on the server (e.g., grid synchronization), or based on
results of previous synchronization requests from the client (e.g., exponential decay).
{0026} In order to synchronize structured content with server 122, a client device 180
may use a SharePoint.StssyncHandler ActiveX Control. This control is installed on client
device 180 with Microsoft Qutlook and indicates whether Microsoft Outlook is installed
on client device 180 and able to synchronize a particular type of list. In WSS Version 3.0,
for example, the types of list that may be synchronized include a calendar list, a contact
list, a document list, a task list, discussion list, and others as well.

[0027] Operations for the above embodiments may be further described with reference
to the following figures and accompanying examples. Some of the figures may include a
logic flow. Although such figures presented herein may include a particular logic flow, it
can be appreciated that the logic flow merely provides an example of how the general
functionality as described herein can be implemented. Further, the given logic flow does
not necessarily have to be executed in the order presented unless otherwise indicated. In
addition, the given logic flow may be implemented by a hardware element, a software
element executed by a processor, or any combination thereof. The embodiments are not
limited in this context.

[0028] FIG. 2 illustrates one embodiment of a logic flow. FIG. 2 illustrates a logic
flow 200. Logic flow 200 may be representative of the operations executed by one or
more embodiments described herein, such as network 100, computing devices 122-1-n,
and/or client devices 180-1-s. In some embodiments, for example, certain structured
content types shared between the server and the client may be identified prior to
synchronization operations at block 202. Structured content corresponding to the
structured content types may then be synchronized once identified at block 204. In this
manner, synchronization may be focused on shared structured content as identified by the
structured content types, rather than the entire set of data stored by the client and/or server.
Accordingly, synchronization time and resources may be reduced, thereby enhancing
overall device operations and network services for a user.

[0029] FIG. 3 illustrates one embodiment of a first message flow. FIG. 3 illustrates a
message flow 300 where a client performs identification operations. As shown in FIG. 3,
client device 180 may send a message 302 to server 122, with message 302 comprising a
request for a server content list. Server 122 may receive message 302, and retrieve server
content list 132 from database 124. Server 122 may send a message 304 to client device

180, with message 304 comprising server content list 132 with structured content values



WO 2007/139824 PCT/US2007/012283

11
representing structured content types supported by server 122. Client device 180 may

receive server content list 132, and retrieve a client content list 130. Client content list 130
may include structured content values representing structured content types supported by
the client. Client device 180 may compare server content list 132 with client content list
130 to find matching content types. Client device 180 may generate a shared content list
i34, and send message 306 to server 122. Message 306 may comprise 2 synchronization
request and/or shared content list 134. Server 122 may receive message 306, and server
122 and client device 180 may begin synchronization operations to synchronize structured
content types supported by server 122 and client 180 as indicated by arrow 308.

[0030} FIG. 4 illustrates one embodiment of a second message flow. FIG. 4 illustrates
a message flow 400 where a server performs identification operations. As shown in FIG.
4, server 122 may receive client content list 130 via message 402. Server 122 may retrieve
server content list 132, and compare both content lists. Server 122 may generate shared
content list 134 having structured content values representing structured content types
supported by client device 180 and server 122 in accordance with the comparison. Server
122 may send shared content list 134 to client device 180 via message 404. Client device
180 may receive shared content list 134, and send a synchronization request to
synchronize structured content types in accordance with shared content list 134 via
meséage 406. Server 122 may receive the synchronization request, and server 122 and
client device 180 may perform synchronization operations in accordance with the
synchronization request as indicated by arrow 408.

[0031] In various embodiments, initiating synchronization operationé between devices
may be improved in a number of ways. For example, a network address and/or hyperlink
may be generated for a synchronization client to initiate synchronization operations based
on certain content types supported by a server and/or client. Different hyperlinks may be
generated to initiate synchronization operations to different scopes of content. In one
embodiment, server synchronization module 120 may generate a hyperlink to send the
synchronization request with at least one structured content type. As a result, a user may
selectively synchronize certain structured content types with server 122 in a seamless
manner.

[0032] In various embodiments, synchronization operations may be initiated
differently based on the amount of content being synchronized. In one embodiment, for
example, server synchronization module 120 may determine an amount of structured
content to synchronize. Server synchronization module 120 may set synchronization

parameters based on the determined amount. Server 122-1 may send synchronization



WO 2007/139824 PCT/US2007/012283

12
information to client 180-1 in accordance with the synchronization parameters. For

example, assume the structured content type is email messages. If the determined amount
is a larger volume of email messages to be synchronized between server 122-1 and client
180-1, then server 122-1 may set a synchronization parameter to indicate that only email
headers are to be initially synchronized rather than the entire email contents. Conversely,
if the determined amount is a smaller volume of email messages, then server 122-1 may
set a synchronization parameter to indicate that entire email contents are to be
synchronized with client 180-1. In another example, assume the structured content type is
documents. If the determined amount is a large volume of documents to be synchronized
between server 122-1 and client 180-1, then server 122-1 may set a synchronization
parameter to indicate that only certain portions of each document are to be initially
synchronized rather than the entire body of each document. Conversely, if the determined
amount is a smaller volume of documents, then server 122-1 may set a synchronization
parameter to indicate that the entire contents of each document are to be synchronized with
client 180-1. This same technique may also be applied by examining the overall size of a
document, with a larger document having only a portion sent at a time and a smaller
document being entirely sent in one transaction. These are merely a few examples, and
other characteristics of the structured content type may be used to set the synchrohization
parameter.

[0033] In various embodiments, a protocol handler may be used. to initiate
synchronization operations from a web browser. Once shared structured content types
have been identified, a web browser on client 180-1 may provide one or more URLs to
initiate synchronization operations as previously described. To accomplish this, client
synchronization module 182 may use a protocol handler to send different synchronization
requests to server 122-1. .

{0034] Once synchronization operations have been initiated, various embodiments
may improve how the content is actually synchronized. For example, a server-side change
log may be used to synchronize only changed content. In one embodiment, for example,
server synchronization module 120 may receive a synchronization request to synchronize a
certain structured content type. Server synchronization module 120 may determine
whether the structured content indicated by the structured content type has been modified
using a change log. Server 122-1 may send synchronization information to the client
based on this determination.

[0035] With read/write synchronization, a defined technique is needed for Microsoft
Outlook to synchronize changes from the WSS application. This may be accomplished



WO 2007/139824 PCT/US2007/012283

13
using a change log and accompanying web-service APIs. For example, WSS version 3.0
supports a change log per virtual server, site and list. This will allow Microsoft Outlook
the ability to poll specifically for added, edited, deleted, renamed and moved items. In
addition, a web-service may be implemented to allow Microsoft Qutlook to perform a bulk
“get” of change log items.
[0036] Various embodiments may determine whether multiple versions of structured
content have been independently modified using a version history. Some embodiments
may perform conflict detection and automatic resolution using a version history. Version
history is a mechanism that is used to automatically resolve a particular class of
synchronization conflicts in peer-to-peer environments. In particular, it can automatically
resolve conflicts that are the result of consistent sequential changes to an item.
{0037] By way of example, assume a first user synchronizes an item to a first client
device 180-1, such as a desktop computer used at an office. The first user makes a few
changes to the item, but does not copy those changes back to server 122-1. The first user
synchronizes first client device 180-1 with a second client device 180-2, such as a PDA,
and leaves the office for home. When the first user gets home, the first user synchronizes
the second client device 180-2 with a third client device 180-3, such as a home PC. The
first user makes further changes to the item before synchronizing it from the third client
device 180-3 to server 122-1. The next day the first user goes to work and synchronizes
first client device 180-1 with server 122-1. First client device 180-1 attempts to send the
updated item it has to server 122-1, but server 122-1 detects a change to the item since a
previous synchronization with first client device 180-1, and therefore raises a conflict.
The conflict, however, is not a real conflict since the updated version of the item residing
on server 122-1 already includes the change made on first client device 180-1 when the
first user synchronized the third client device 180-3 with server 122-1. Some
embodiments my use a version history to detect scenarios like this and automatically
resolve the conflict.
[0038] In the above scenario, a single version number on the item may be insufficient
to resolve the conflict. For example, what if the first user had not synchronized with
server 122-1 from third client device 180-3. Rather, assume a second user made an
unrelated change to the item. In this case, there really is a conflict. A single version
number is insufficient to differentiate the two scenarios. The version history technique
stores additional information to help resolve this problem,
[0039] In particular, the version history technique may be used to determine if there

are multiple versions of an item (e.g., version A and version B), and whether one version



WO 2007/139824 PCT/US2007/012283

. 14 ,
include changes made in another version (e.g., does version B include the changes that

were made in version A). In this case, text examination of the item in question may prove
difficult and inaccurate. For example, consider a scenario where version B really did
include changes from version A, however, one of the changes in version B was to remove
a line added in version A.

{0040] The version history technique may be used to record a list of authors and an
incrementing change number for each of them that indicates which change in sequence
that they made. The “authors” in this case are computers represented by global user
identifiers (GUIDs). A version history property may therefore comprise a concatenated
list of GUIDs and change numbers, as follows:

{19944AFA-A573-40CB-BB3C-7A66C0375104:1, 201 B44AEA-A573-40CB-BB3C-
7A66C0375104:2, 185D4AEA-A573-40CB-BB3C-7A66C0375104:3}

Each time a particular computing device edits a given item the appropriate synchronization
module (e.g., synchronization modules 120 and/or 182) takes the last change number,
increments it by one, and then writes it next to its GUID. A conflict is automatically
resolved between version A and version B by comparing the highest change set for each
version. The “highest change set” may comprise the GUID and number pair with the
highest number. If the highest change set for version A is included in version B, and the
highest change set for version B is not included in version A, then version B is newer and
the conflict is resolved so that version B is the winner. If the highest change set for
version A is not included in version B and the highest change set for version B is not
included in version A, however, then version B does not include all edits made in version
A. In this case the user will need to resolve the conflict manually.

[0041] Continuing with our previous example, assume the first user synchronizes an
item down to first client device 180-1. Server synchronization module 120 may maintain a
version history in database 124. Client synchronization module 182 may also maintain a

version history on client device 180-1-s. At this point, the version history may appear as
follows:

Version History: {Server _GUID: 1}

The first user then edits the item on first client device 180-1. The version history may now
appear as follows:



WO 2007/139824 PCT/US2007/012283

15
Version History: {Server_GUID:1, Work_GUID:2}

The first user synchronizes the item to second client device 180-2 and then from second
client device 180-2 to third client device 180-3. Since there are no edits to the item, there
is no corresponding change in the version history. The first user edits the item on third

client device 180-3. The version history is updated as follows:
Version History: {Server_GUID: 1, Work_GUID:2, Home_GUID:3}

The first user synchronizes from third client device 180-3 to server 122-1.
[0042] The first user goes back to work the next day and synchronizes first client

device 180-1 with server 122-1. Client synchronization module 182 on first client device
180-1 may have a version history as follows:

{Server_GUID:1, Work_GUID:2}
Server synchronization module 120 on server 122-1 may have a version history as follows:
{Server_GUID:I, Work_GUID:2, Home_GUID:3}

A comparison of the version histories for version A and version B reveals that the highest
change set in A (Work_GUID:2) is included in version B but the highest change set for
version B (Home_ GUID:3) is not included in version A. Server synchronization module
120 therefore knows that version B includes all edits that were made to version A, but
version A does not include all the changes that were made in version B. Version B is a
superset of version A and hence wins the conflict.

[0043] Assume the first user never synchronized with server 122-1 from third client
device 180-3, however, but rather the second user made a change to the item residing on
server 122-1. The version history may be used to detect a conflict from this scenario. In

this case, client synchronization module 182 of a fourth client device 180-4 may have the
following version history:

{Server GUID:1, Work_GUID:2}



WO 2007/139824 PCT/US2007/012283

16
Meanwhile, server synchronization module 120 of server 122-1 may have the following

version history:
{Server_GUID:1, User2 Work _GUID:2}

A comparison of the version history for version A and version B now reveals that the
highest change set in version A (Work_GUID:2) is not included in version B, and the
highest change set in version B (User2_Work_GUID:2) is not included in version A.
Therefore version B is not a superset of version A, version A is not a superset of version
B, and setver synchronization module 120 has detected a real conflict that needs to be
resolved. |
{0044} Various embodiments may detect data schema conflicts using a property bag.
Some embodiments may support schema mismatches between a server 122 and a client
180 using a property bag. A property bag may refer to a set of field definitions for various
data schemas used by application programs and/or devices. The property bag may be used
to define fields on an as-needed basis rather than a fixed or hard-coded set of fields. For

' example, a Task schema for Microsoft Outlook as executed by a client device 180 may
need certain fields not available by the WSS application of a server 122, and vice-versa.
The property bag may be used to define fields for various lists or applications that may be
used by both Microsoft Outlook and the WSS application on an ad-hoc basis. In this
manner, schema mismatches between a server 122 and a client 180 may be corrected
without necessarily having to update or modify the actual application programs executed
by both devices.
[0045] Various embodiments may detect lJanguage conflicts using field value mapping.
Some embodiments may support language mismatches between server 122-1 and client
180-1 using field value mapping. This feature may be desirable to support international
scenarios where a client device 180-1 and server 122-1 are not in the same language. For
example, Microsoft Outlook has logic that executes on a task based on the value of a
*Status’ field and a *Priority’ field. Server 122-1 may write different values into these
fields based on the language of the server. For example, in the English language the Status
field can be include expressions such as ‘“Not Started’, ‘Deferred’, ‘Completed’, and so
forth. Microsoft Outlook needs to know how to reliably map these values into values it
understands. In one embodiment, a mapping section may be added to the schema for the

list that Microsoft Outlook can use to map the written values to the values that it
understands.



WO 2007/139824 PCT/US2007/012283

17
[0046] Various embodiments may synchronize structured content types using one or

more paging techniques. Some embodiments may support synchronization of very large
data sets between server 122-1 and client 180-1 using various paging techniques. To
enhance performance for server 122-1 and client 180-1, page requests may be used to get a
set of items that have changed in a list. Rather than returning all items that have changed,
server 122-1 may return only the last Q items (e.g., the last 100 items). This feature is
particularly useful when a client 180-1 may have slower cormmunication connections to
server 122-1, or when server 122-1 has thousands or millions of items in a list. The large
volume of items may create performance bottlenecks, particularly when synchronizing an
Address Book structured content type between Microsoft Outlook on client device 180-1
and server 122-1, for example.

[0047] A given paging technique may be implemented in any number of ways. In one
embodiment, for example, server synchronization module 120 may be arranged to support
a property called ‘rowLimit’ on a GetListChangesSinceToken web service that specifies a
maximum number of items to return. For example ‘rowLimit = 100° will return the first
100 items that have been updated since the value of the change token. If the property is
not specified, all items changed since the change token will be returned.

[0048] ‘When the WSS application of server 122-1 receives a request with an item
limit, delete operations may be excluded from item limits. A parameter may be passed
into a list query to limit the number of items returned to rowLimit. If fewer than this
number of items has changed, the updated change token will be returned along with the
items. If more than this number of items has changed, however, the change token will not
be updated, and the same change token may be returned that was originally passed in. A
value for a ListltemCollectionPositionNext may also be returned. Upon receiving a value
for ListltemCollectionPositionNext, client device 180-1 should re-query server 122-1
while sending both the change token and this value. Server 122-1 will run a new query to
return the next rowLimit number of items from the start of ListltemCollectionPositionNext.
This “If’ block may then be re-executed as needed.

[0049] It is worthy to note that client 180-1 will need to be sure to process deletions
before processing updates. In the event that client 180-1 receives a deletion for an item
that it has already deleted, it should suppress the error and move on. In the event that
client 180-1 attempts an update for an item that had been deleted on server 122-1, client
180-1 should suppress the error and continue operations.

[0050] Various embodiments may provide client 180-1 with alternate URLs that it can

use to synchronize with server 122-1 via an internal private network or external public



WO 2007/139824 PCT/US2007/012283

18
network (e.g., the public Internet). In one embodiment, for example, server
synchronization module 120 may generate a first network address to send the
synchronization request with at least one structured content type from an internal private
network, and a second network address to send the synchronization request with at least
one structured content type from an external public network. The first and second
addresses may comprise URLs implemented using a hyperlink, for example.
[0051] By way of example, server synchronization module 120 may be arranged to
" pass alternate domain mappings with the returned data in response to a synchronization
request. This allows for a scenario where a user navigates to a list inside a private network
(e.g., an enterprise intranet) and synchronizes the list to a local application such as
Microsoft Outlook. The user then goes home, connects to mail using a remote procedure
call (RPC) over the Hypertext Transfer Protocol (HTTP), and expects their SharePoint lists
to synchronize as well. If server 122-1 (e.g., a SharePoint site) is also exposed on a public
network (e.g., an extranet such as the Internet), then a user could synchronize the lists even
if the domain for the URL is different.
[0052] The alternate domain mappings may be implemented any number of ways. In

one embodiment, for example, alternate domains may be returned in the following order:

[Intranet], [Default], (Extranet], [Internet], [Custom]

These mappings may be returned in the ‘AlternateUrls’ attribute on a “listitems’ tag. If a

mapping does not exist, the same order may be returned with a comma inserted for the
missing domain as follows:

(http:/fintranet, https://default, hitps://extranet.com,, hitp://custom)
These five alternate domain mappings may all be defined in a central administration. The
domain may include just the first portion of the URL, “http://www.microsoft.com” or
http://msw, for example. The client application (e.g., Microsoft Outlook) would be
responsible for parsing these domains and determining which ones to use based on a state
for client device 180-1-s. Generally, client 180-1 should start with the first domain and
iterate through the remaining domains in order.
{0053} To further improve synchronization operations, various embodiments may
improve timing issues regarding when to synchronize a client device with a web site. For
example, some embodiments may manage client load by providing recommended

synchronization intervals to the synchronization client (e.g., client synchronizes every R



WO 2007/139824 PCT/US2007/012283

19
minutes). The recommended synchronization intervals may represent a minimum

synchronization interval, a maximum synchronization interval, or some value in between.
In one embodiment, for example, server synchronization module 120 may generate a
synchronization interval parameter. Server synchronization module 120 may send the
synchronization interval parameter to client 180-1. Server 122-1 may receive
synchronization requests from client 180-1 in accordance with the synchronization interval
parameter.

[0054] Using recommended synchronization intervals may provide several advantages.
The use of recommended synchronization intervals may improve scale so that a large
aumber of Microsoft Outlook clients (e.g., 100,000) would not render a SharePoint server
farm (e.g., computing array 140) unusable. For example, assume Microsoft Qutlook has a
default synchronization interval that causes a client device 180-1 to synchronize each
structured content list every 60 minutes. Assuming each user will eventually add up to 10
synchronized lists, the total number of hits against server 122-1 may reach 10%+24*100,000
each day, which works out to approximately 278 hits per-second 24 hours a day. Really
Simple Synchronization (RSS) feeds which synchronize approximately every 60 minutes
may further exacerbate this problem.

[0055] Various techniques may be used to reduce the work load on a given server 122~
1-n. In one embodiment, for example, modified times for a cache list and/or site may be
implemented on the front end. If a request comes to server 122-1 asking for changes since
the last cached list or site modified time, server 122-1 will know that there have been no
changes and can avoid querying databases 124, 126 at all. The cache may need to be
expired at some regular interval, such as approximately every 5 minutes, for example. The
number of lists or sites that are cached may need to be limited to accommeodate memory
resources, such as approximately 100 list and/or sites, for example.

[0056] Another technique to reduce work load on a given server 122-1-n may be to
implement a date/time adaptive synchronization technique. Server synchronization
module 120 may reduce a number of synchronization requests made by a given Microsoft
Outlook client by sending client device 180-1 a synchronization interval parameter that
changes based on an estimation of the probability of the next list change time utilizing
historical list change data factoring in date/time information such as work hours, evening
hours, and weekends.

[0057] In various embodiments, the recommended synchronization intervals may be
based on historical content change data stored on the server. In one embodiment, for

example, server synchronization module 120 may generate a synchronization interval



WO 2007/139824 PCT/US2007/012283

20 .
parameter for client 180-1 based on historical content change data stored by server 122-1.

Server synchronization module 120 may send the synchronization interval parameter to
client 180-1. .

[0058] One example of a technique based on historical content change data may be
referred to as a grid-based adaptive synchronization (“grid synchronization’). Each list on
a SharePoint server has different use characteristics. A number of factors may affect list
usage and hence update frequency. Examples of such factors may include a list type, site
type, size of list, amount of list customization, number of site users, geographic location
and distribution of users, total number of visits to site, time of day, the current place in the
cycle of the site’s project (e.g., beginning, middle, end, or archive), and so forth. A
number of these factors are configuration based, and estimates about usage patterns may
be made based on this data. A number of these factors, however, are also time-based.
Time-based factors may have significant impact on usage patterns. Sites are typically
cyclical in nature, and a web site is rarely used at the same rate in perpetuity.

Furthermore, people tend to work on schedules. Therefore, the amount of work that
happens from 10 pm to 6 am is usually less than the amount that happens between 9 am
and 5 pm, even though each time period comprises 8 hours. People also tend to not work
on weekends. It is worthy to note that the nature of the work and the geographic
distribution of the work can influence these factors, and therefore it may be important to
adapt to usage patterns rather than trying to hardcode them in advance. Proposals that will
have the most dramatic impact on reducing the number of requests to the server while still
meeting user expectations need to involve time-based algorithms, and need to be sensitive
to the way in which people work and thereby use a given site.

[0059] From this perspective, one design consideration is to provide client device 180-
1 with a recommended time that it should next perform synchronization operations. Client
device 180-1 should only synchronize with server 122-1 when there has been a change on
either client device 180-1 or server 122-1. Consequently, a probability analysis may be
used to determine an ideal synchronization interval. An administrator can adjust the
behavior of network 100 in an intelligent way by adjusting the threshold of probability at
which they want client devices 180-1-s to re-synchronize. For example, the server
administrator could adjust the probability threshold to cause a client device 180-1 to
synchronize when there is a 10% chance of the content being updated. If that generates
too much server load, the administrator could adjust the threshold to a 50% probability
threshold. The.administrator may continue refining this process until network
performance is within acceptable parameters.



WO 2007/139824 PCT/US2007/012283

21
[0060) In some cases, a probability threshold for future list usage may be based on

historical usage data. A list may comprise, for example, a collection of data or items of
one or more structured content types. Usage often follows patterns. People are naturally
creatures of habit, and structured work environments often encourage this further as it
creates predictability. To represent past usage, time may be divided into a grid. Assuming
a time period of a week, a y-axis may have the days of the week, while an Xx-axis may have
hours per day. In each cell of the grid, a Boolean value may be set indicating whether or
not the list was updated during that time period, where a ‘1’ value represents that the list
was modified during this period and a ‘0’ value represents that the list was not modified
during this time period. For example, looking at the Monday row, and the 9:30 am —9:40
am cell, if the value in the cell is ‘1’ then the list was modified on Monday sometime
between 9:30 am and 9:40 am. The next ‘1’ might not be till Monday from 3:10 pm - 3:20
pm. Moving ahead, monitoring site usage for a week provides a completed grid. The grid
will have more 1 values if a list was updated more frequently, and more 0 values if a list
was updated less frequently. Assume a client device 180-1 synchronizes with server 122-1
on Monday at 9:05 am. After running a query to see if anything changed, server 122-1
now needs to make a recommendation to client device 180-1 as to when it should perform
its next synchronization event. Analyzing the historical data, it appears that an update
occurred on Monday between 9:30 am - 9:40 am. Based on this historical data, server
122-1 may instruct client device 180-1 to perform its next synchronization between 9:30
am - 9:40 am. Algorithmically this may be achieved by traversing the grid until a 1 value
is reached. For each cell passed, the cell time size may be added to the recommended time
‘between synchronizations. In this example, the 9:00 - 9:10 cell, the 9:10 - 9:20 cell, and
the 9:20 - 9:30 cell were passed. Server 122-1 may therefore return a recommended
synchronization interval of 30 minutes.

[0061] At this point, the 9:30 - 9:40 am recommendation is merely a starting point.
Longer periods of time will refine the recommendation. Continuing with the previous

" example, assume that the list was updated at 9:22 am the second week. During the third
week, client device 180-1 once again performs synchronization with server 122-1 at 9:05
am and server 122-1 needs to make an updated recommendation. Traversing the grid,
there is a 1 value in the 9:20 - 9:30 am cell, and a 1 value in the 9:30- 9:40 am cell. The
grid algorithm begins at the current cell and adds 10 minutes with each cell pass until a
cell that has a 1 value is reached. The 9:00 — 9:10 am cell is passed, and the 9:10 -9:20 am
cell is passed. Server 122-1 may now return a value of 20 minutes to client 180-1. Based

on historical evidence, however, a probability may be generated to indicate whether the list



WO 2007/139824 PCT/US2007/012283

22
would have been updated in 20 minutes. In two possible Mondays from a starting time of

9:05 am to a finishing time of 9:30 am, the list was updated only on one Monday. Based
on this historical data, the probability may be calculated as 1/2 or 50%. Ten minutes may
be added to the recommended synchronization interval, and the probability analysis may
be executed again. With two Mondays of data from a starting time of 9:05 am to a
finishing time of 9:40 am, the list was updated two times. The probability for 30 minutes
is therefore 1/2 + 1/2 = 2/2 or 100%. Using more data results in refined recommendatiomns.
It now becomes an informed decision of how often the server administrator is comfortable
with client devices 180-1-s requesting information from servers 122-1-n versus how
important it is that users immediately have the most up-to-date data. If the server
administrator sets the threshold at 50% or less, for example, then server 122-1 would
return a synchronization interval of 20 minutes. If the threshold was set between 50-
100%, however, then the server would return a synchronization interval of 30 minutes.

{0062] A generalized algorithm to generate a synchronization interval may be
illustrated as follows:

P is probability

T is user defined threshold

S is the time span of each cell, in the example above this is 10 minutes
C is the current cell count,

G/] is the grid, assume G[0] represents value at current time

M is the max value for the cell in the grid, in the example above this is number
of weeks

P=0;
For(C=0,P<I;C++)
P =P+ G[C]/M;

return C* 8

It is worthy to note that the return value does not have to be recalculated with each client
request. Rather, it can be cached for a period of time and is considered valid until the next
time interval starts. In the above example that would be up to 10 minutes.

[0063] To build the actual grid, each time an item is modified, the last modified time
of the list is checked. If the last modified time of the list occurs in the same time span as

the current time, then no change needs to be written. For example, two changes that



WO 2007/139824 PCT/US2007/012283

23 ,
happen in the same time period between 9:00 am and 9:10 am only require 1 update. This

keeps the number of writes to a minimum, helping with lock contention and scale. If the
last modified time of the list occurred in a different time span than the current time, the
value in the current time span cell may be incremented by “1.” In some cases, the
modified time for the list needs to be updated as well, although WSS Version 3.0 already
handles this.

[0064] The grid algorithm is scalable in many dimensions based on how much data
can be stored, and what trends are common in usage of a particular application. Inthe x
direction, the time span of each cell could be reduced to a minute, or lengthened to an hour
or more. In the y dimension, the grid could be expanded to include a different row for
each day of a month, or the grid could be collapsed to just one row representing one day.
In fact it can be collapsed in a slightly more intelligent fashion by having two days, where
one represents a weekday and the other represents a weekend-day. If the grid is
representing 12 hour shift work, the grid may have y rows, each representing a 12 hour
shift from start to end.

[0065] As previously mentioned, site usage typicaily follows predictable cycles. These
cyclic periods often change slowly over several months. To refine the grid algorithm,
recent data may be a better indicator than older data. For example, a list update that
happened on a Monday 6 months ago typically has less value than one that happened
yesterday. Consequently, the grid algorithm may be refined by maintaining larger sets of
data and applying functions to weight data within the larger set differently based on time.
Alternatively, memory resources may be used more effectively by expiring old data. For
example, assume the grid is reset every 8 weeks. In the grid defined in the previous
example above, the maximum value in each cell would be 8. Each cell may therefore be
represented with just 3 bits. .
[0066] Resetting the grid, however, also removes data which may affect the grid
algorithm results. This problem can be mitigated by creating two grids that are offset from
each other by a period of time. For example, a first grid may start recording data at Week
1, while a second grid may start recording data at Week 4. At this point, server
synchronization module 120 may use the first grid for the probability calculations. At
Week 8, the first grid may be reset, and server synchronization module 120 may switch to
use the second grid to perform the probability calculations. Server synchronization
module 120 may begin recording in the first grid again. In this way, server
synchronization module 120 can continually rotate from one grid to the next, never having

to start from scratch. In this case, the discontinuity in dataflow occurs in 4 week intervals.



WO 2007/139824 PCT/US2007/012283

24
Depending on the importance of smoothness, this could be reduced by adding more grids.

For example, 8 grids would result in more minor discontinuities of 1-week each. Note that
this system could also be used to give more power to more recent events by using multiple
grids to generate the probability.

[0067] To further improve performance of the grid algorithm, a maximum and
minimum synchronization interval may be set. The minimum synchronization interval
should likely be defaulted to the size of a cell span, which in the example above would be
10 minutes. The size of the maximum interval depends on a confidence level in the
system. Both should be configurable by the administrator along with the threshold. These
values can be adjusted to refine the system during use, although it could be cumbersome to
change the grid structure (e.g., the representation of time on the x-axis and y-axis) after it
is already in use. A default time should be set for initial synchronizations until the grid is
populated to a minimum usable state.

[0068] This approach is applicable to other synchronization protocols such as RSS. It
is also applicable to areas such as search crawlers, indexers, and proxy servers that cache
content. While the grid algorithm can be implemented on a client, the accuracy would
most likely be reduced since a client would be unaware of all changes made on the server.
The grid algorithm can also be used in client-to-client synchronizations. It can also be
used in conjunction with notification based synchronization approaches, where
notifications handle rarely changing content, and this system handles more frequently
changing content.

[0069] The grid approach may have varying affects on memory resources depending

upon a given implementation. Estimations of data storage may be made as follows:

20 minute spans
7 distinct days

8 weeks per-table
2 tables

= 378 bytes

10 minute spans

2 rows (weekday/weekend)
6 weeks per-table

2 tables

= 288 bytes



WO 2007/139824 PCT/US2007/012283

. 25
[0070] In addition to generating recommended synchronization intervals based on

historical data, the recommended synchronization intervals may also be based on results of
previous synchronization requests from the client. In one embodiment, for example,
server synchronization module 120 may generate a synchronization interval parameter for
a client based on previous synchronization results from previous synchronization requests
by client 180-1. Server synchronization module 120 may send the synchronization
interval parameter to client 180-1.

[0071] By way of example, server synchronization module 120 may perform function-
based adaptive synchronization to generate a synchronization interval parameter. The
number of synchronization requests made by a given Microsoft Outlook client may be
generated using some form of exponential decay/growth function. For example, take the
last synchronization interval. If a change has occurred, decrease the time interval by an
exponential function. If a change has not occurred, however, increase the time interval by
an exponential function.

[0072] Other techniques may also be used to generate a synchronization interval
parameter. For example, a last modified adaptive synchronization technique may be used.
This technique reduces the number of synchronization requests made by a Microsoft
Qutlook client by sending client 180-1 a synchronization interval that changes strictly
based on the last modified time for a list. For example, if the list was modified within the
last hour, synchronize again in 20 minutes. If the list was modified more than an hour ago
but less than a day ago, synchronize again in 2 hours. If the list was modified more than a
day ago, synchronize again in one day. In another example, a single-query for multiﬁle
lists technique may also be used. This technique reduces the number of synchronization
requests made by a Microsoft Outlook client by allowing a client 180-1 to make one
request that passes all the list GUIDs of interest at one time. The last modified times may
be batched checked for all these lists, and then server synchronization module 120 may
inform client device 180-1 as to which lists to explicitly synchronize. In yet another
example, an e-mail notification-based synchronization technique may be used. Current
synchronization techniques may use various polling techniques, where a client polls a
server on a regular or semi-regular basis. In one embodiment, server 122-1 may notify a
client 180-1 that a synchronization event is needed by sending a “hidden e-mail alert.”
This would leverage on existing alerts infrastructure. The alert would not necessarily be
seen by the user, and it would automatically be created in SharePoint at the time the user

chooses to perform synchronization operations. This may be particularly effective for



WO 2007/139824 PCT/US2007/012283

26
infrequently changing lists. Client device 180-1, however, would need to support the

receipt of incoming mail requests in order to implement this particular technique.

[0073] Numerous specific details have been set forth herein to provide a thorough
understanding of the embodiments. It will be understood by those skilled in the art,
however, that the embodiments may be practiced without these specific details. In other
instances, well-known operations, components and circuits have not been described in
detail so as not to obscure the embodiments. It can be appreciated that the specific
structural and functional details disclosed herein may be representative and do not
necessarily limit the scope of the embodiments.

[0074] It is also worthy to note that any reference to “one embodiment” or “an
embodiment” means that a particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one embodiment. The appearances
of the phrase “in one embodiment” in various places in the specification are not
necessarily all referring to the same embodiment.

{0075] Some embodiments may be described using the expression "coupled” and
"connected" along with their derivatives. It should be understood that these terms are not
intended as synonyms for each other. For example, some embodiments may be described
using the term “connected” to indicate that two or more elements are in direct physical or
electrical contact with each other. In another example, some embodiments may be
described using the term "coupled” to indicate that two or more elements are in direct
physical or electrical contact. The term "coupled,” however, may also mean that two or
more elements are not in direct contact with each other, but yet still co-operate or interact
with each other. The embodiments are not limited in this context.

[0076) Some embodiments may be implemented, for example, using a machine-
readable medium or article which may store an instruction or a set of instructions that, if
executed by a machine, may cause the machine to perform a method and/or operations in
accordance with the embodiments. Such a machine may include, for example, any
suitable processing platform, computing platform, computin g device, computing device,
computing system, processing system, computer, processor, or the like, and may be
implemented using any suitable combination of hardware and/or software. The machine-
readable medium or article may include, for example, any suitable type of memory unit,
memory device, memory article, memory medium, storage device, storage article, storage
medium and/or storage unit, for example, memory, removable or non-removable media,
erasable or non-erasable media, writeable or re-writeable media, digital or analog media,
hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk



WO 2007/139824 PCT/US2007/012283

27
Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media,
magneto-optical media, removable memory cards or disks, various types of Digital
Versatile Disk (DVD), a tape, a cassette, or the like.
[0077] Although the subject matter has been described in language specific to -
structural features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or acts

described above. Rather, the specific features and acts described above are disclosed as

example forms of implementing the claims.



WO 2007/139824 PCT/US2007/012283

28
CLAIMS

1. An article comprising a machine-readable storage medium containing instructions
that if executed enable a system to identify (202) structured content types shared by a
server and a client, and synchronize (204) structured content corresponding to said

structured content types.

2. The article of claim 1, further comprising instructions that if executed enable the
system to receive a request for a server content list, send said server content list with
structured content values representing structured content types supported by said server,
and receive a synchronization request to synchronize structured content types supported by

said server and said client.

3. The article of claim 1, further comprising instructions that if executed enable the
system to receive a client content list with structured content values representing
structured content types supported by said client, retrieve a server content list with
structured content values representing structured content ty;pes supported by said server,
compare said server content list with said client content list, send a shared content list with
structured content values representing structured content types supported by said client and
said server, and receive a synchronization request to synchronize structured content types

in accordance with said shared content list.

4, The article of claim 1, further comprising instructions that if executed enable the
system to generate different hyperlinks to send said synchronization request for different
structured content types.

5. The article of claim 1, further comprising instructions that if executed enable the
system to determine an amount of structured content to synchronize, set synchronization
parameters based on said amount, and send synchronization information to said client in

accordance with said synchronization parameters.

6. The article of claim 1, further comprising instructions that if executed enable the

system to send said synchronization request from a web browser using a protocol handler.



WO 2007/139824 PCT/US2007/012283

29
7. The article of claim 1, further comprising instructions that if executed enable the
system to receive said synchronization request with said structured content type, determine
whether structured content indicated by said structured content type has been modified
using a change log, and send synchronization information to said client based on said

determination.

8. The article of claim 1, further comprising instructions that if executed enable the
system to determine whether multiple versions of structured content have been

independently modified using a version history.

9. The article of claim 1, further comprising instructions that if executed enable the

system to detect data schema conflicts using a property bag.

10. The article of claim 1, further comprising instructions that if executed enable the
system to detect language conflicts using field value mapping.

11.  The article of claim 1, further comprising instructions that if executed enable the
- system to generate a synchronization interval parameter, send said synchronization interval
parameter to said client, and receive synchronization requests from said client in

accordance with said synchronization interval parameter.

12. The article of claim 1, further comprising instructions that if executed enable the
system to generate a synchronization interval parameter for a client based on historical
content change data stored by said server or previous synchronization results from

previous synchronization requests, and send said synchronization interval parameter to

said client.

13. The article of claim 1, further comprising instructions that if executed enable the

system to synchronize said structured content types using paging operations.

14. The article of claim 1, further comprising instructions that if executed enable the
system to generate a first network address to send said synchronization request with at
least one structured content type from an intermnal private network, and a second network

address to send said synchronization request with at least one structured content type from
an external public network.



WO 2007/139824 PCT/US2007/012283

30

15. A method, comprising;:
identifying (202) structured content types shared by a server and a client; and
synchronizing (204) structured content corresponding to said structured content

types.

16. The method of claim 1, comprising:

receiving a request for a server content list;

sending said server content list with structured content values representing
structured content types supported by said server; and

receiving a synchronization request to synchronize structured content types

supported by said server and said client.

17. The method of claim 1, comprising:

receiving a client content list with structured content values representing structured
content types supported by said client;

retrieving a server’ content list with structured content values representing
structured content types supported by said server;

comparing said server content list with said client content list;

sending a shared content list with structured content values representing structured
content types supported by said client and said server; and

receiving a synchronization request to synchronize structured content types in
accordance with said shared content list.

18. An apparatus comprising a server (122) having a server synchronization module
(120) to identify structured content types (134) shared by said server and a client (180),
and synchronize structured content corresponding to said structured content types.

19. The apparatus of claim 19, comprising said client having a client syhchronization
module to send a synchronization request to synchronize structured content types
supported by said server and said client.



WO 2007/139824 PCT/US2007/012283

31

20. The apparatus of claim 19, said server synchronization module to receive a chient
content list with client structured content types, compare said client structured content
types to server structured content types, send a shared content list with matching structured
content types, and receive a synchronization request to synchronize structured content
types in accordance with said shared content list.



PCT/US2007/012283

WO 2007/139824

1/4

—— e ——— i e e s o ———

u-gel

20i1As(
Buindwo?)
L 'Old
g-2¢l
=]
pEL el 0El mcwwmmsw
JOHS 108 100 1} )
; _ m 0Ll
S lemo A 1soueleg
I
peo
_ z-zel
201ne(
aseqeleq osegejeq mc_u:n_EOO
) )
llllllllllllllllllllllllll — -
Pmmmmm e —— e 1
Z41 (sluonsauus) | L
UONEINUNWLIOYD ( g
! mcﬁccmhwﬂfwowtmm 1
914 (s)eainaq ndin0 " “ “
| i L
pLL (s)aatmag indu] " gwmwm.w% f mhwmwhm “ “ll.lnl
{ t
Bei015 I I
m_mhoﬂa%woz | bw_wwi “ i /
| washs 1
py 1 o0l uopenByuo) I
ef2i0iS ejqenoway L e O ovl Aeny Bugndwo)
) |

Zat sinpoR
UoiEZUOIYBUAS
wend

S-1-084
SjusiD

09l
YIOMISN

0GlL
JETIEIS

asm

o
et



PCT/US2007/012283

WO 2007/139824

2/4

(=
™N

¢ 'Old

an3

¥02
5ad4} JULJU0D PAINIONNS oY
0} SuTpuodsariod JusIod paImonns FuZiuomnouAs

A

[4V4
U919 ¥ pue

10A105 & £q poeys sadA) Jusjuoo parmonas Ajnuap!

A

( Lyvis )




PCT/US2007/012283

WO 2007/139824

3/4

¢ 'Ol

80¢E
suojjesadQ UOIEZIUOIYOUAS

—90¢

14015

ecl
1aneg

|

o
Q
o

¢0¢

08t
9013 WSND



PCT/US2007/012283

WO 2007/139824

4/4

v "Old

80b

suoferadQ uoiezZIwoIOUAS

9

)4

1%

7

OF

cel
Janeg

b=
o
<t

4

oy

08}
9oiA8( Bl



	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings

