(54) 发明名称
连续长碳纤维增强尼龙的制备方法及其设备

(57) 摘要
本发明提供了一种连续长碳纤维增强尼龙的制备方法及其设备；所述方法包括如下步骤：步骤一，将碳纤维与相容剂加入反应槽，进行接枝反应，得产物A；步骤二，所述产物A进入浸润单元处理，牵出，冷却，烘干，即可。本发明还涉及前述的连续长碳纤维增强尼龙的制备方法的设备，所述设备包括：壳体，反应槽，浸润单元，所述反应与浸润单元相连连接，所述壳体为经过竹碳和氯化处理过的耐磨钢材。本发明设备加设了一个对碳纤维进行预处理的反应槽，增强了尼龙与碳纤维之间的结合力，使得最终制品的性能会非常高。本发明的特点是更低的加工成本，更高的产量，更高的生产稳定性，更高的材料性能。
1. 一种连续长碳纤维增强尼龙的制备方法，其特征在于，所述方法包括如下步骤:
 步骤一，将碳纤维与尼龙相容剂加入反应槽，进行接枝反应，得产物A;
 步骤二，所述产物A进入浸润单元处理，牵引，冷却，烘干，即可。

2. 一种如权利要求1所述的连续长碳纤维增强尼龙的制备方法的设备，其特征在于，所述设备包括：壳体，反应槽，浸润单元，所述反应与浸润单元相连通，所述壳体为经过渗碳和氮化处理过的耐磨钢材。

3. 如权利要求2所述的连续长碳纤维增强尼龙的制备方法的设备，其特征在于，所述反应槽设置有反应槽碳纤维入口和反应槽碳纤维出口。

4. 如权利要求2所述的连续长碳纤维增强尼龙的制备方法的设备，其特征在于，所述浸润单元包括：尼龙导入通道入口、碳纤维入口、碳纤维出口、碳纤维分散辊轮、尼龙通道，所述碳纤维分散辊轮与尼龙通道配合连接，所述碳纤维入口设置在碳纤维分散辊轮上，所述尼龙导入通道入口设置在所述尼龙通道上。

5. 如权利要求3所述的连续长碳纤维增强尼龙的制备方法的设备，其特征在于，所述反应槽碳纤维入口的横切面是长轴为3～8mm，短轴为2～6mm的椭圆。

6. 如权利要求3所述的连续长碳纤维增强尼龙的制备方法的设备，其特征在于，所述反应槽碳纤维入口的横切面是长轴为3～6mm，短轴为2～4mm的椭圆。

7. 如权利要求4所述的连续长碳纤维增强尼龙的制备方法的设备，其特征在于，所述尼龙导入通道入口为一条狭缝，狭缝的间隔为1～4mm。

8. 如权利要求4所述的连续长碳纤维增强尼龙的制备方法的设备，其特征在于，所述碳纤维入口的横切面为长轴为3～6mm，短轴为2～7mm的椭圆。

9. 如权利要求4所述的连续长碳纤维增强尼龙的制备方法的设备，其特征在于，所述碳纤维出口的横切面为长轴为2～8mm，短轴为2～6mm的椭圆。

10. 如权利要求4所述的连续长碳纤维增强尼龙的制备方法的设备，其特征在于，所述碳纤维分散辊轮为带有螺旋状凹槽结构，其中，凹槽底部宽为6～20mm，凹槽的深度为3～10mm。
连续长碳纤维增强尼龙的制备方法及其设备

技术领域
[0001] 本发明涉及一种碳纤维的制备方法及生产设备，尤其是一种连续长碳纤维增强尼龙的制备方法及其设备。

背景技术
[0002] 传统的改性方法生产的碳纤维增强尼龙的碳纤维长度一般小于 0.5mm，平均长度是 2～3mm，其制品的受力破坏主要是碳纤维从基体拔出，碳纤维越短越容易从基体尼龙中拔出，制品的强度就越低。上个世纪末期，国外改性尼龙行业开始涌现出连续长碳纤维增强尼龙（LFT）。与传统的碳纤维增强尼龙相比，LFT 的碳纤维长度明显大于传统方法生产的增强尼龙中碳纤维的长度。由于 LFT 中碳纤维的长度较长，更好地发挥了碳纤维的增强能力，从而赋予制品更高的刚性、机械强度、抗冲击强度、抗蠕变性，同时由于碳纤维的长度较长，在成型的过程中，碳纤维不容易发生取向，所以改善了传统碳纤维增强制品容易翘曲变形的缺陷。与传统的材料相比，LFT 具有明显高的性能优势和制品的尺寸稳定性，所以 LFT 材料很快成为复合材料市场中正在崛起的一类新产品。
[0003] 这类材料作为以塑代钢的最佳解决方案，被大量用于汽车工业，以减轻汽车的重量，节能减排。如用于汽车的保险杠、仪表板减重支架、蓄电池减重板、座椅骨架、发动机罩盖等部件。除了用于汽车领域以外还用于家电、环保机械、建筑、工程、航空、航天等众多领域。
[0004] 目前，LFT 材料的生产以熔融浸润法为主。其工艺过程是碳纤维在牵引力的作用下穿过充满熔态的模腔，碳纤维束在模腔内部有内部装置的作用下分散，然后被尼龙浸润到碳纤维束的内部，和每个碳纤维丝充分接触。然后经过浸润的碳纤维束从浸润装备碳纤维出口牵引，再经冷却、烘干后形成所需长度的连续长碳纤维增强尼龙颗粒。然而该材料生产的关键技术就在于尼龙能否对碳纤维进行充分快速的浸润。关键技术具体表现为：1）碳纤维通过浸润装备过程中，磨损程度较小，因为如果磨损程度严重容易堵塞浸润设备，导致生产不稳定；2）碳纤维在经过浸润装备过程中，要被内部的熔融尼龙充分浸润，甚至尼龙包覆到每根碳纤维单丝，因为浸润效果不好，制品的外观浮纤严重，同时制品的强度不高；3）碳纤维通过浸润装备的线速度太快，LFT 材料的产量越高，单位重量的 LFT 材料的加工成本越低。只有以上三个关键技术都能达到的浸润装备才算得上成功的设备。
[0005] 法国阿托公司 1989 在中国专利 CN1021643C 公开的相关专利, 其特征为一类似正弦曲线的弯曲浸润流程。塑化好的尼龙进入入到模腔内与碳纤维接触，碳纤维束在通过弯曲流动的波峰和波谷时，在张力的作用下散开，然后被熔融尼龙充分浸润。该专利设计的优点是，尼龙对碳纤维的浸润效果较好，但是存在着非常严重的缺陷，即碳纤维丝容易被磨损，尤其是牵引速度太快，碳纤维受到的张力越大，越容易磨损，造成生产不稳定，甚至造成停产。同时我们也查阅和验证了国内其他公司或高校的授权专利。都不同程度上存在着一些缺陷，能够实现上述 3 个关键技术的几乎没有。
发明内容
[0006] 针对现有技术中的缺陷，本发明的目的是提供一种连续长碳纤维增强尼龙的制备方法及其设备。
[0007] 本发明是通过以下技术方案实现的：
[0008] 第一方面，本发明提供一种连续长碳纤维增强尼龙的制备方法，所述方法包括如下步骤：
[0009] 步骤一，将碳纤维与尼龙相容剂加入反应槽，进行接枝反应，得产物 A；
[0010] 步骤二，所述产物 A 进入浸润单元处理，牵出、冷却、烘干，即可。
[0011] 第二方面，本发明还涉及前述的连续长碳纤维增强尼龙的制备方法的设备，所述设备包括：壳体、反应槽，浸润单元，所述反应与浸润单元适配连接，所述壳体为经过渗碳和氮化处理过的耐磨钢材。
[0012] 优选地，所述反应槽设置有反应槽碳纤维入口和反应槽碳纤维出口。
[0013] 优选地，所述浸润单元包括：尼龙导入通道入口、碳纤维入口、碳纤维出口、碳纤维分散辊轮、尼龙通道，所述碳纤维分散辊轮与尼龙通道配合连接，所述碳纤维入口设置在碳纤维分散辊轮上，所述尼龙导入通道入口设置在所述尼龙通道上。
[0014] 优选地，所述反应槽碳纤维入口的横切面是长轴为 3～8mm，短轴为 2～6mm 的椭圆。
[0015] 优选地，所述反应槽碳纤维入口的横切面是长轴为 3～6mm，短轴为 2～4mm 的椭圆。
[0016] 优选地，所述尼龙导入通道入口为一条狭缝，狭缝的间隙为 1～4mm。
[0017] 优选地，所述碳纤维入口的横切面为长轴为 3～6mm，短轴为 2～7mm 的椭圆。
[0018] 优选地，所述碳纤维出口的横切面为长轴为 2～8mm，短轴为 2～6mm 的椭圆。
[0019] 优选地，所述碳纤维分散辊轮为带有螺旋状凹槽结构，其中，凹槽底部宽为 6～20mm，凹槽的深度为 3～10mm。
[0020] 与现有技术相比，本发明具有如下的有益效果：
[0021] （1）碳纤维通过本发明设备过程中，磨损程度较小，如果磨损程度容易堵塞浸润设备，导致停产；
[0022] （2）碳纤维在经过本发明设备过程中，要被内部的熔融尼龙充分浸润，甚至尼龙包覆到每根碳纤维单丝，因为浸润效果不好，制品的外观浮粉严重，同时制品的强度不高；
[0023] （3）碳纤维通过本发明设备的线速度较快，LFT 材料的产量高，同时单位重量的 LFT 材料的加工成本低；
[0024] （4）本发明设备加设了一个对碳纤维进行预处理的设备——反应槽（该反应槽将碳纤维与尼龙的相容剂接枝到碳纤维上），增强了尼龙与碳纤维之间的结合力，使得最终制品的性能会非常高。
[0025] （5）本发明的特点是更低的加工成本，更高的产量，更高的生产稳定性，更高的材料性能。

附图说明
[0026] 通过阅读参照以下附图对非限制性实施例所作的详细描述，本发明的其它特征、
目的和优点将会变得更明显：

图 1 为本发明设备中碳纤维分散浸润轮结构图；
图 2 为本发明设备的结构示意图; 其中 1 为反应槽, 2 为碳纤维导向柱, 3 为碳纤维分散浸润轮, 11 为碳纤维入口, 12 为反应槽出口, 31 为浸润装备纤维入口, 32 为浸润装备纤维出口, 34 为尼龙通，35 为浸润装备通。

具体实施方式

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明，但不以任何形式限制本发明。应当指出的是，对本领域的普通技术人员来说，在不脱离本发明构思的前提下，还可以做出若干变形和改进。这些都属于本发明的保护范围。

实施例 1

实施例涉及一种连续长碳纤维增强尼龙的制备方法，所述方法包括如下步骤：

步骤一，将碳纤维与相容剂加入反应槽，进行接枝反应，得产物 A；

步骤二，所述产物 A 进入浸润单元处理，牵出，冷却、烘干，即可。

实施例还涉及前述的连续长碳纤维增强尼龙的制备方法的设备，所述设备包括：壳体，反应槽，浸润单元，所述反应与浸润单元相通连接，所述壳体为经过渗碳和氮化处理过的耐磨钢材，如图 2 所示。

所述反应槽设置有反应槽碳纤维入口和反应槽碳纤维出口。

所述浸润单元包括：尼龙导入通道入口、碳纤维入口、碳纤维出口、碳纤维分散辊轮，尼龙通道，所述碳纤维分散辊轮与尼龙通道配合连接，所述碳纤维入口设置在碳纤维分散辊轮（见图 1 所示）上，所述尼龙导入通道入口设置在所述尼龙通道上。碳纤维进入浸润单元内部的碳纤维分散辊轮后，沿着碳纤维分散辊轮缠绕在滚轮上，缠绕一周从相邻的碳纤维分散辊轮的轨道离开辊轮，然后引入下一个辊轮的凹槽轨道。

在本实施例中设备中的参数如下：

所述反应槽碳纤维入口的横切面为长轴为 3mm，短轴为 2mm 的椭圆。

所述尼龙导入通道入口为一条狭缝，狭缝的间距为 1mm。

所述碳纤维入口的横切面为长轴为 3mm，短轴为 2mm 的椭圆。

所述碳纤维出口的横切面为长轴为 2mm，短轴为 2mm 的椭圆。

所述碳纤维分散辊轮为带有螺旋状凹槽结构，其中，凹槽底部宽为 6mm，凹槽的深度为 3mm。

实施例 2

本实施例涉及一种连续长碳纤维增强尼龙的制备方法，所述方法包括如下步骤：

步骤一，将碳纤维与相容剂加入反应槽，进行接枝反应，得产物 A；

步骤二，所述产物 A 进入浸润单元处理，牵出，冷却、烘干，即可。

本实施例还涉及前述的连续长碳纤维增强尼龙的制备方法的设备，所述设备包括：壳体，反应槽，浸润单元，所述反应与浸润单元相通连接，所述壳体为经过渗碳和氮化处理过的耐磨钢材，如图 2 所示。

所述反应槽设置有反应槽碳纤维入口和反应槽碳纤维出口。
所述浸润单元包括：尼龙导入通道入口、碳纤维入口、碳纤维出口、碳纤维分散辊轮、尼龙通道、所述碳纤维分散辊轮与尼龙通道配合连接，所述碳纤维入口设置在碳纤维分散辊轮（见图1所示）上，所述尼龙导入通道入口设置在所述尼龙通道上。碳纤维进入浸润单元内部的碳纤维分散辊轮后，沿着碳纤维分散辊轮缠绕在滚轮上，缠绕一周从相邻的碳纤维分散辊轮的轨道离开滚轮，然后引入下一个辊轮的凹槽轨道。

在本实施例中设备中的参数如下：

所述反应槽碳纤维入口的横切面是长轴为8mm，短轴为6mm的椭圆。
所述尼龙导入通道入口为一条狭缝，狭缝的间距为4mm。
所述碳纤维入口的横切面为长轴为6mm，短轴为7mm的椭圆。
所述碳纤维出口的横切面为长轴为8mm，短轴为6mm的椭圆。
所述碳纤维分散辊轮为带有螺旋状凹槽结构，其中，凹槽底部宽为20mm，凹槽的深度为10mm。

实施例3
本实施例涉及一种连续长碳纤维增强尼龙的制备方法，所述方法包括如下步骤：
步骤一，将碳纤维与相容剂加入反应槽，进行接枝反应，得产物A；
步骤二，所述产物A进入浸润单元处理，牵出，冷却，烘干，即可。

本实施例还涉及前述的连续长碳纤维增强尼龙的制备方法的设备，所述设备包括：壳体、反应槽、浸润单元、所述反应与浸润单元相通连接，所述壳体为经过渗碳和氮化处理过的耐磨钢材，如图2所示。

所述反应槽设置有反应槽碳纤维入口和反应槽碳纤维出口。

所述浸润单元包括：尼龙导入通道入口、碳纤维入口、碳纤维出口、碳纤维分散辊轮、尼龙通道，所述碳纤维分散辊轮与尼龙通道配合连接，所述碳纤维入口设置在碳纤维分散辊轮（见图1所示）上，所述尼龙导入通道入口设置在所述尼龙通道上。碳纤维进入浸润单元内部的碳纤维分散辊轮后，沿着碳纤维分散辊轮缠绕在滚轮上，缠绕一周从相邻的碳纤维分散辊轮的轨道离开滚轮，然后引入下一个辊轮的凹槽轨道。

在本实施例中设备中的参数如下：

所述反应槽碳纤维入口的横切面是长轴为6mm，短轴为6mm的椭圆。
所述尼龙导入通道入口为一条狭缝，狭缝的间距为4mm。
所述碳纤维入口的横切面为长轴为6mm，短轴为7mm的椭圆。
所述碳纤维出口的横切面为长轴为8mm，短轴为6mm的椭圆。
所述碳纤维分散辊轮为带有螺旋状凹槽结构，其中，凹槽底部宽为20mm，凹槽的深度为10mm。

本实施例1～3制备的产品的性能测试如表1所示。

<table>
<thead>
<tr>
<th>测试项目</th>
<th>测试方法</th>
<th>单位</th>
<th>测试条件</th>
<th>实施例1</th>
<th>实施例2</th>
<th>实施例3</th>
</tr>
</thead>
<tbody>
<tr>
<td>拉伸强度</td>
<td>ASTM D638</td>
<td>MPa</td>
<td>5mm/min</td>
<td>300</td>
<td>240</td>
<td>250</td>
</tr>
<tr>
<td>性能参数</td>
<td>标准</td>
<td>单位</td>
<td>5mm/min</td>
<td>2.1</td>
<td>1.8</td>
<td>1.5</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>断裂伸长率</td>
<td>ASTM D638</td>
<td>%</td>
<td></td>
<td>2.1</td>
<td>1.8</td>
<td>1.5</td>
</tr>
<tr>
<td>弯曲强度</td>
<td>ASTM D790</td>
<td>MPa</td>
<td>2mm/min</td>
<td>390</td>
<td>380</td>
<td>400</td>
</tr>
<tr>
<td>弯曲模量</td>
<td>ASTM D790</td>
<td>MPa</td>
<td>2mm/min</td>
<td>19000</td>
<td>18000</td>
<td>17000</td>
</tr>
<tr>
<td>缺口冲击强度</td>
<td>ASTM D256</td>
<td>J/m</td>
<td></td>
<td>400</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>无缺口冲击强度</td>
<td>ASTM D256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>洛氏硬度</td>
<td>ASTM D785</td>
<td>R</td>
<td>23°C</td>
<td>120</td>
<td>130</td>
<td>120</td>
</tr>
<tr>
<td>灰份</td>
<td>ASTM D5630</td>
<td>%</td>
<td></td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

【0072】本发明设备的工作原理为：将纤维先通过反应槽与相容剂发生接枝反应，然后经浸润碳纤维入口进入到浸润单元中。熔融尼龙经尼龙导料进入浸润单元模腔。在充满熔体的模腔内碳纤维束在张力牵引下错位绕过浸润辊轮，同时由于浸润辊轮能够使碳纤维充分分散开，促进熔融尼龙浸润到碳纤维束内部，然后被充分浸润的碳纤维束从碳纤维出口牵出。浸润好的碳纤维束经冷却、烘干后切成所需长度的连续长碳纤维增强尼龙颗粒。

【0073】以上对本发明的具体实施例进行了描述。需要理解的是，本发明并不局限于上述特定实施方式，本领域技术人员可以在权利要求的范围内做出各种变形或修改，这并不影响本发明的实质内容。