(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2017/024025 A1

(43) International Publication Date 9 February 2017 (09.02.2017)

(51) International Patent Classification:

A61K 31/437 (2006.01) C07D 471/04 (2006.01)

A61K 31/444 (2006.01)

(21) International Application Number:

PCT/US2016/045332

(22) International Filing Date:

3 August 2016 (03.08.2016)

(25) Filing Language:

English

(26) Publication Language:

English

US

US

(30) Priority Data:

(30) Priority Data

62/200,259 3 August 2015 (03.08.2015) 62/354,014 23 June 2016 (23.06.2016)

(72) Inventor; and

- (71) Applicant: KC, Sunil Kumar [US/US]; 10504 Clasico Court, San Diego, California 92127 (US).
- (72) Inventors: WALLACE, David Mark; 6448 Peinado Way, San Diego, California 92121 (US). CAO, Jianguo; 9898 Avenger Court, San Diego, California 92126 (US). CHIRUTA, Chandramouli; 4158 Decoro Street, Apt. #61, San Diego, California 92122 (US). HOOD, John; 5124 Seagrove Court, San Diego, California 92130 (US).
- (74) Agents: DORIGO, Andrea et al.; Fish & Richardson P.C., P.O. Box 1022, Minneapolis, Minnesota 55440-1022 (US).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: 3-(1H-PYRROLO[2,3-C]PYRIDIN-2-YL)-1H-PYRAZOLO[4,3-B]PYRIDINES AND THERAPEUTIC USES THERE-OF

(57) Abstract: 4-Azaindazole compounds for treating various diseases and pathologies are disclosed. More particularly, the present disclosure concerns the use of a 4-azaindazole compound or analogs thereof, in the treatment of disorders characterized by the activation of Wnt pathway signaling (e.g., cancer, abnormal cellular proliferation, angiogenesis, fibrotic disorders, bone or cartilage diseases, and osteoarthritis), the modulation of cellular events mediated by Wnt pathway signaling, as well as genetic diseases and neurological conditions/disorders/diseases due to mutations or dysregulation of the Wnt pathway and/or of one or more of Wnt signaling components. Also provided are methods for treating Wnt-related disease states.

3-(1H-PYRROLO[2,3-C]PYRIDIN-2-YL)-1H-PYRAZOLO[4,3-B]PYRIDINES AND THERAPEUTIC USES THEREOF

RELATED APPLICATIONS

[001] This application claims the benefit of U.S. Provisional Application Nos. 62/200,259, filed August 3, 2015, and 62/354,014, filed June 23, 2016, which are incorporated herein by reference in their entirety.

BACKGROUND

Technical Field

[002] This disclosure relates to inhibitors of one or more proteins in the Wnt pathway, including inhibitors of one or more Wnt proteins, and compositions comprising the same. More particularly, it concerns the use of a 4-azaindazole compound or salts or analogs thereof, in the treatment of disorders characterized by the activation of Wnt pathway signaling (e.g., cancer, abnormal cellular proliferation, angiogenesis, fibrotic disorders, bone or cartilage diseases, and osteoarthritis), the modulation of cellular events mediated by Wnt pathway signaling, as well as genetic diseases and neurological conditions/disorders/diseases due to mutations or dysregulation of the Wnt pathway and/or of one or more of Wnt signaling components. Also provided are methods for treating Wnt-related disease states.

Background

[003] The Wnt growth factor family includes more than 10 genes identified in the mouse and at least 19 genes identified in the human. Members of the Wnt family of signaling molecules mediate many short-and long-range patterning processes during invertebrate and vertebrate development. The Wnt signaling pathway is known for its role in the inductive interactions that regulate growth and differentiation, and it also plays roles in the homeostatic maintenance of post-embryonic tissue integrity. Wnt stabilizes cytoplasmic β-catenin, which stimulates the expression of genes including c-myc, c jun, fra-l, and cyclin Dl. In addition, misregulation of Wnt signaling can cause developmental defects and is implicated in the genesis of several human cancers. The Wnt pathway has also been implicated in the maintenance of stem or progenitor cells in a growing list of adult tissues including skin, blood, gut, prostate, muscle, and the nervous system.

SUMMARY

[004] The present disclosure provides methods and reagents, involving contacting a cell with an agent, such as a 4-azaindazole compound, in a sufficient amount to antagonize a Wnt activity, e.g., to reverse or control an aberrant growth state or correct a genetic disorder due to mutations in Wnt signaling components.

[005] Some embodiments disclosed herein include Wnt inhibitors containing a 4-azaindazole core. Other embodiments disclosed herein include pharmaceutical compositions and methods of treatment using these compounds.

[006] One embodiment disclosed herein includes a compound having the structure of Formula I:

as well as prodrugs and pharmaceutically acceptable salts thereof.

[007] In some embodiments of Formula (I):

R¹ and R² are independently selected from the group consisting of H and halide;

 R^3 is selected from the group consisting of –heteroaryl optionally substituted with 1-4 R^6 and –heterocyclyl optionally substituted with 1-10 R^7 ;

R⁵ is selected from the group consisting of H, –heteroaryl optionally substituted with 1-4 R⁸, –heterocyclyl optionally substituted with 1-10 R⁹, and –aryl optionally substituted with 1-5 R¹⁰; each R⁶ is independently selected from the group consisting of halide, –(C₁₋₆ alkyl), –(C₂₋₆ alkenyl), –(C₁₋₄ alkylene)_pheterocyclyl optionally substituted with 1-10 R¹¹, –(C₂₋₄ alkenylene)_pheterocyclyl optionally substituted with 1-10 R¹¹, –(C₂₋₄ alkynylene)_pheterocyclyl optionally substituted with 1-10 R¹¹, –(C₁₋₄ alkylene)_pcarbocyclyl optionally substituted with 1-12 R¹², –(C₂₋₄ alkenylene)_pcarbocyclyl optionally substituted with 1-12 R¹², –(C₁₋₄ alkylene)_paryl optionally substituted with 1-5 R¹³, –(C₂₋₄ alkenylene)_paryl optionally substituted with 1-5 R¹³, –(C₂₋₄ alkynylene)_paryl optionally substituted with 1-5 R¹³, –(C₁₋₆ alkynylene)_paryl optionally substituted with 1-5 R¹³, –(C₁₋₆ alkynylene)_paryl optionally substituted with 1-5 R¹³, –NHC(=O)R¹⁴, –NR¹⁵R¹⁶, –(C₁₋₆ alkynylene)_paryl optionally substituted with 1-5 R¹³, –NHC(=O)R¹⁴, –NR¹⁵R¹⁶, –(C₁₋₆ alkynylene)_paryl optionally substituted with 1-5 R¹³, –NHC(=O)R¹⁴, –NR¹⁵R¹⁶, –(C₁₋₆ alkynylene)_paryl optionally substituted with 1-5 R¹³, –NHC(=O)R¹⁴, –NR¹⁵R¹⁶, –(C₁₋₆ alkynylene)_paryl optionally substituted with 1-5 R¹³, –NHC(=O)R¹⁴, –NR¹⁵R¹⁶, –(C₁₋₆ alkynylene)_paryl optionally substituted with 1-5 R¹³, –NHC(=O)R¹⁴, –NR¹⁵R¹⁶, –(C₁₋₆ alkynylene)_paryl optionally substituted with 1-5 R¹³, –NHC(=O)R¹⁴, –NR¹⁵R¹⁶, –(C₁₋₆ alkynylene)_paryl optionally substituted with 1-5 R¹³, –NHC(=O)R¹⁴, –NR¹⁵R¹⁶, –(C₁₋₆ alkynylene)_paryl optionally substituted with 1-5 R¹³, –NHC(=O)R¹⁴, –NHC(=O)R¹⁴, –NHC(=O)R¹⁴

alkylene) $NR^{17}R^{18}$, $-(C_{2-6}$ alkenylene) $NR^{17}R^{18}$, $-(C_{2-6}$ alkynylene) $NR^{17}R^{18}$, and $-(C_{1-4}$ alkylene) $_pOR^{24}$;

each R^7 is independently selected from the group consisting of $-(C_{1-4}$ alkyl), $-(C_{2-4}$ alkenyl), $-(C_{2-4}$ alkynyl), halide, $-CF_3$, and -CN;

each R^8 is independently selected from the group consisting of $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), $-(C_{2-6}$ alkynyl), halide, $-CF_3$, $-OCH_3$, -CN, and $-C(=O)R^{19}$;

each R^9 is independently selected from the group consisting of $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), $-(C_{2-6}$ alkynyl), halide, $-CF_3$, -CN, and $-OCH_3$;

each R^{10} is independently selected from the group consisting of $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$, halide, $-CF_3$, $-CN_2$, $-(C_{1-6} \text{ alkylene})_p NHSO_2 R^{19}$, $-(C_{2-6} \text{ alkynylene})_p NHSO_2 R^{19}$, $-(C_{2-6} \text{ alkynylene})_p NHSO_2 R^{19}$, $-NR^{15}(C_{1-6} \text{ alkylene}) NR^{15} R^{16}$, $-NR^{15}(C_{2-6} \text{ alkynylene}) NR^{15} R^{16}$, $-(C_{1-6} \text{ alkylene})_p NR^{15} R^{16}$, $-(C_{2-6} \text{ alkynylene})_p NR^{15} R^{16}$, and $-OR^{27}$;

each R^{11} is independently selected from the group consisting of amino, $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{12} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{13} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{14} is independently selected from the group consisting of $-(C_{1-9} \text{ alkyl})$, $-(C_{1-4} \text{ haloalkyl})$, $-(C_{2-9} \text{ alkenyl})$, $-(C_{2-9} \text{ alkynyl})$, -heteroaryl optionally substituted with 1-4 R^{20} , -aryl optionally substituted with 1-5 R^{21} , $-\text{CH}_2$ aryl optionally substituted with 1-12 R^{22} , $-\text{CH}_2$ carbocyclyl optionally substituted with 1-12 R^{22} , $-(C_{1-4} \text{ alkylene})_pNR^{25}R^{26}$, $-(C_{2-4} \text{ alkenylene})_pNR^{25}R^{26}$, -heterocyclyl optionally substituted with 1-10 R^{23} , and $-\text{CH}_2$ heterocyclyl optionally substituted with 1-10 R^{23} ;

each R^{15} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$; and $-(C_{2-6} \text{ alkynyl})$;

each R^{16} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$, $-(C_{2-6} \text{ alkynyl})$, $-CH_2$ aryl optionally substituted with 1-5 R^{21} , and $-CH_2$ carbocyclyl optionally substituted with 1-12 R^{22} ;

each R^{17} is independently selected from the group consisting of H, $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), and $-(C_{2-6}$ alkynyl);

each R^{18} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$, $-(C_{2-6} \text{ alkynyl})$, $-CH_2$ aryl optionally substituted with 1-5 R^{21} and $-CH_2$ carbocyclyl optionally substituted with 1-12 R^{22} ;

each R^{19} is independently selected from the group consisting of $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkenyl})$, and $-(C_{2-6} \text{ alkynyl})$;

each R^{20} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{21} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{22} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{23} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

 R^{24} is selected from the group consisting of H, $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), $-(C_{2-6}$ alkynyl), $-(C_{1-4}$ alkylene)_pheterocyclyl optionally substituted with 1-10 R^{23} , $-(C_{2-4}$ alkenylene)_pheterocyclyl optionally substituted with 1-10 R^{23} , $-(C_{1-4}$ alkylene)_pcarbocyclyl optionally substituted with 1-12 R^{22} , $-(C_{2-4}$ alkenylene)_pcarbocyclyl optionally substituted with 1-12 R^{22} , $-(C_{2-4}$ alkynylene)_pcarbocyclyl optionally substituted with 1-12 R^{22} , $-(C_{2-4}$ alkynylene)_pcarbocyclyl optionally substituted with 1-12 R^{22} , $-(C_{1-4}$ alkylene)_paryl optionally substituted with 1-5 R^{21} , $-(C_{2-4}$ alkynylene)_paryl optionally substituted with 1-5 R^{21} , $-(C_{1-6}$ alkylene)_pNR²⁵R²⁶, $-(C_{2-4}$ alkenylene)_pNR²⁵R²⁶, and $-(C_{2-4}$ alkynylene)_pNR²⁵R²⁶;

each R^{25} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$;

each R^{26} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$; and $-(C_{2-6} \text{ alkynyl})$;

 R^{27} is selected from the group consisting of H, $-(C_{1\text{-}6} \, \text{alkyl})$, $-(C_{2\text{-}6} \, \text{alkenyl})$, $-(C_{2\text{-}6} \, \text{alkynyl})$, $-(C_{1\text{-}4} \, \text{alkylene})_p \text{heterocyclyl}$ optionally substituted with 1-10 R^{23} , $-(C_{2\text{-}4} \, \text{alkynylene})_p \text{heterocyclyl}$ optionally substituted with 1-10 R^{23} , $-(C_{2\text{-}4} \, \text{alkynylene})_p \text{heterocyclyl}$ optionally substituted with 1-10 R^{23} , $-(C_{1\text{-}6} \, \text{alkylene})_p N R^{25} R^{26}$, and $-(C_{2\text{-}6} \, \text{alkynylene})_p N R^{25} R^{26}$; and each p is independently an integer of 0 or 1.

[008] In some embodiments of Formula (I):

R¹ and R² are independently selected from the group consisting of H and halide;

 R^3 is selected from the group consisting of –heteroaryl optionally substituted with 1-4 R^6 and –heterocyclyl optionally substituted with 1-10 R^7 ;

 R^5 is selected from the group consisting of H, –heteroaryl optionally substituted with 1-4 R^8 , –heterocyclyl optionally substituted with 1-10 R^9 , and –aryl optionally substituted with 1-5 R^{10} ;

each R^6 is independently selected from the group consisting of halide, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$, $-(C_{1-4} \text{ alkylene})_p$ heterocyclyl optionally substituted with 1-10 R^{11} , $-(C_{2-4} \text{ alkynylene})_p$ heterocyclyl optionally substituted with 1-10 R^{11} , $-(C_{2-4} \text{ alkynylene})_p$ heterocyclyl optionally substituted with 1-10 R^{11} , $-(C_{1-4} \text{ alkylene})_p$ carbocyclyl optionally substituted with 1-12 R^{12} , $-(C_{2-4} \text{ alkenylene})_p$ carbocyclyl optionally substituted with 1-12 R^{12} , $-(C_{2-4} \text{ alkynylene})_p$ aryl optionally substituted with 1-12 R^{12} , $-(C_{1-4} \text{ alkylene})_p$ aryl optionally substituted with 1-5 R^{13} , $-(C_{2-4} \text{ alkenylene})_p$ aryl optionally substituted with 1-5 R^{13} , $-(C_{2-4} \text{ alkenylene})_p$ aryl optionally substituted with 1-5 R^{13} , $-NHC(=O)R^{14}$, $-NR^{15}R^{16}$, $-(C_{1-6} \text{ alkylene})NR^{17}R^{18}$, $-(C_{2-6} \text{ alkenylene})NR^{17}R^{18}$, $-(C_{2-6} \text{ alkynylene})NR^{17}R^{18}$, $-(C_{2-6} \text{ alkenylene})NR^{17}R^{18}$, $-(C_{2-6} \text{ alkenylene})NR^{1$

each R^7 is independently selected from the group consisting of $-(C_{1-4}$ alkyl), $-(C_{2-4}$ alkenyl), $-(C_{2-4}$ alkynyl), halide, $-CF_3$, and -CN;

each R^8 is independently selected from the group consisting of $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), $-(C_{2-6}$ alkynyl), halide, $-CF_3$, $-OCH_3$, -CN, and $-C(=O)R^{19}$;

each R^9 is independently selected from the group consisting of $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), $-(C_{2-6}$ alkynyl), halide, $-CF_3$, -CN, and $-OCH_3$;

each R^{10} is independently selected from the group consisting of $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkenyl})$, $-(C_{2-6} \text{ alkynyl})$, halide, $-CF_3$, $-CN_2$, $-(C_{1-6} \text{ alkylene})_p NHSO_2 R^{19}$, $-(C_{2-6} \text{ alkynylene})_p NHSO_2 R^{19}$, $-NR^{15}(C_{1-6} \text{ alkylene}) NR^{15}R^{16}$, $-NR^{15}(C_{2-6} \text{ alkynylene}) NR^{15}R^{16}$, $-(C_{1-6} \text{ alkylene})_p NR^{15}R^{16}$, $-(C_{2-6} \text{ alkynylene})_p NR^{15}R^{16}$, and $-OR^{27}$;

each R^{11} is independently selected from the group consisting of amino, $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{12} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{13} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{14} is independently selected from the group consisting of $-(C_{1-9} \text{ alkyl})$, $-(C_{2-9} \text{ alkynyl})$, $-(C_{2-9} \text{ alkynyl})$, $-heteroaryl optionally substituted with 1-4 <math>R^{20}$, -aryl optionally substituted with 1-5 R^{21} , $-CH_2$ aryl optionally substituted with 1-5 R^{21} , -carbocyclyl optionally substituted with 1-12 R^{22} , $-(C_{1-4} \text{ alkynyl})$

alkylene) $_pNR^{25}R^{26}$, $-(C_{2-4} \text{ alkenylene})_pNR^{25}R^{26}$, $-(C_{2-4} \text{ alkynylene})_pNR^{25}R^{26}$, -heterocyclyl optionally substituted with 1-10 R^{23} , and $-CH_2$ heterocyclyl optionally substituted with 1-10 R^{23} ;

each R^{15} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$;

each R^{16} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$, $-(C_{2-6} \text{ alkynyl})$, $-CH_2$ aryl optionally substituted with 1-5 R^{21} , and $-CH_2$ carbocyclyl optionally substituted with 1-12 R^{22} ;

each R^{17} is independently selected from the group consisting of H, $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), and $-(C_{2-6}$ alkynyl);

each R^{18} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$, $-(C_{2-6} \text{ alkynyl})$, $-CH_2$ aryl optionally substituted with 1-5 R^{21} and $-CH_2$ carbocyclyl optionally substituted with 1-12 R^{22} ;

each R^{19} is independently selected from the group consisting of $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkenyl})$, and $-(C_{2-6} \text{ alkynyl})$;

each R^{20} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{21} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{22} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{23} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

 R^{24} is selected from the group consisting of H, $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), $-(C_{2-6}$ alkynyl), $-(C_{1-4}$ alkylene)_pheterocyclyl optionally substituted with 1-10 R^{23} , $-(C_{2-4}$ alkenylene)_pheterocyclyl optionally substituted with 1-10 R^{23} , $-(C_{2-4}$ alkynylene)_pheterocyclyl optionally substituted with 1-12 R^{22} , $-(C_{2-4}$ alkylene)_pcarbocyclyl optionally substituted with 1-12 R^{22} , $-(C_{2-4}$ alkynylene)_pcarbocyclyl optionally substituted with 1-12 R^{22} , $-(C_{2-4}$ alkynylene)_pcarbocyclyl optionally substituted with 1-12 R^{22} , $-(C_{1-4}$ alkylene)_paryl optionally substituted with 1-5 R^{21} , $-(C_{2-4}$ alkynylene)_paryl optionally substituted with 1-5 R^{21} , $-(C_{2-4}$ alkynylene)_pNR²⁵R²⁶, and $-(C_{2-4}$ alkynylene)_pNR²⁵R²⁶;

each R^{25} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkenyl})$, and $-(C_{2-6} \text{ alkynyl})$;

each R^{26} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$; and $-(C_{2-6} \text{ alkynyl})$;

 R^{27} is selected from the group consisting of H, $-(C_{1-6} \, alkyl)$, $-(C_{2-6} \, alkenyl)$, $-(C_{2-6} \, alkynyl)$, $-(C_{1-4} \, alkylene)_p heterocyclyl$ optionally substituted with 1-10 R^{23} , $-(C_{2-4} \, alkenylene)_p heterocyclyl$ optionally substituted with 1-10 R^{23} , $-(C_{2-4} \, alkynylene)_p heterocyclyl optionally substituted with 1-10 <math>R^{23}$, $-(C_{1-6} \, alkylene)_p NR^{25} R^{26}$, $-(C_{2-6} \, alkenylene)_p NR^{25} R^{26}$, and $-(C_{2-6} \, alkynylene)_p NR^{25} R^{26}$; and each p is independently an integer of 0 or 1.

- [009] Some embodiments include stereoisomers and pharmaceutically acceptable salts of a compound of Formula (I).
 - [010] Some embodiments include pro-drugs of a compound of Formula (I).
- [011] Some embodiments of the present disclosure include pharmaceutical compositions comprising a compound of Formula (I) and a pharmaceutically acceptable carrier, diluent, or excipient.
- [012] Other embodiments disclosed herein include methods of inhibiting one or more members of the Wnt pathway, including one or more Wnt proteins by administering to a patient affected by a disorder or disease in which aberrant Wnt signaling is implicated, such as cancer and other diseases associated with abnormal angiogenesis, cellular proliferation, cell cycling and mutations in Wnt signaling components, a compound according to Formula (I). Accordingly, the compounds and compositions provided herein can be used to treat cancer, to reduce or inhibit angiogenesis, to reduce or inhibit cellular proliferation and correct a genetic disorder due to mutations in Wnt signaling components.
- [013] Non-limiting examples of diseases which can be treated with the compounds and compositions provided herein include a variety of cancers, diabetic retinopathy, pulmonary fibrosis, rheumatoid arthritis, sepsis, ankylosing spondylitis, psoriasis, scleroderma, mycotic and viral infections, osteochondrodysplasia, Alzheimer's disease, lung disease, bone/osteoporotic (wrist, spine, shoulder and hip) fractures, articular cartilage (chondral) defects, degenerative disc disease (or intervertebral disc degeneration), polyposis coli, osteoporosis-pseudoglioma syndrome, familial exudative vitreoretinopathy, retinal angiogenesis, early coronary disease, tetra-amelia syndrome, Müllerian-duct regression and virilization, SERKAL syndrome, diabetes mellitus type 2, Fuhrmann syndrome, Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome, odonto-onycho-dermal dysplasia, obesity, split-hand/foot malformation, caudal duplication syndrome, tooth agenesis, Wilms tumor, skeletal dysplasia, focal dermal hypoplasia, autosomal recessive anonychia, neural tube defects, alpha-thalassemia (ATRX) syndrome, fragile X syndrome, ICF

syndrome, Angelman syndrome, Prader-Willi syndrome, Beckwith-Wiedemann Syndrome, Norrie disease, and Rett syndrome.

[014] Some embodiments of the present disclosure include methods to prepare compounds of Formula (I).

[015] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the disclosure, as claimed.

DETAILED DESCRIPTION

- [016] Provided herein are compositions and methods for inhibiting one or more members of the Wnt pathway, including one or more Wnt proteins. Other Wnt inhibitors and methods for using the same are disclosed in U.S. Application Ser. Nos. 12/852,706; 12/968,505; 13/552,188; 13/800,963; 13/855,874; 13/887,177 13/938,691; 13/938,692; 14/019,103; 14/019,147; 14/019,940; 14/149,948; 14/178,749; 14/331,427; 14/334,005; and 14/664,517 and U.S. Provisional Application Ser. Nos. 61/232,603;61/288,544; 61/305,459; 61/620,107; 61/642,915; 61/750,221; 61/968,350; 62/047,324; 62/047,371; 62/047,395; 62/047,401; 62/047,406; 62/047,438; 62/047,509; 62/047,575; 62/047,567, all of which are incorporated by reference in their entirety herein.
- [017] Some embodiments provided herein relate to a method for treating a disease or disorder including, but not limited to, cancers, diabetic retinopathy, pulmonary fibrosis, rheumatoid arthritis, sepsis, ankylosing spondylitis, psoriasis, scleroderma, mycotic and viral infections, bone and cartilage diseases, Alzheimer's disease, lung disease, osteoarthritis, bone/osteoporotic (wrist, spine, shoulder and hip) fractures, articular cartilage (chondral) defects, degenerative disc disease (or intervertebral disc degeneration), polyposis coli, bone density and vascular defects in the eye (Osteoporosis-pseudoglioma Syndrome, OPPG), familial exudative vitreoretinopathy, retinal angiogenesis, early coronary disease, tetra-amelia, Müllerian-duct regression and virilization, SERKAL syndrome, type II diabetes, Fuhrmann syndrome, Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome, odonto-onycho-dermal dysplasia, obesity, split-hand/foot malformation, caudal duplication, tooth agenesis, Wilms tumor, skeletal dysplasia, focal dermal hypoplasia, autosomal recessive anonychia, neural tube defects, alphathalassemia (ATRX) syndrome, fragile X syndrome, ICF syndrome, Angelman syndrome, Prader-Willi syndrome, Beckwith-Wiedemann Syndrome, Norrie disease, and Rett syndrome.
- [018] In some embodiments, non-limiting examples of bone and cartilage diseases which can be treated with the compounds and compositions provided herein include bone spur

(osteophytes), craniosynostosis, fibrodysplasia ossificans progressiva, fibrous dysplasia, giant cell tumor of bone, hip labral tear, meniscal tears, bone/osteoporotic (wrist, spine, shoulder and hip) fractures, articular cartilage (chondral) defects, degenerative disc disease (or intervertebral disc degeneration), osteochondritis dissecans, osteochondroma (bone tumor), osteopetrosis, relapsing polychondritis, and Salter-Harris fractures.

[019] In some embodiments, pharmaceutical compositions are provided that are effective for treatment of a disease of an animal, e.g., a mammal, caused by the pathological activation or mutations of the Wnt pathway. The composition includes a pharmaceutically acceptable carrier and a compound as described herein.

Definitions

- [020] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this disclosure belongs. All patents, applications, published applications, and other publications are incorporated by reference in their entirety. In the event that there is a plurality of definitions for a term herein, those in this section prevail unless stated otherwise.
- [021] As used herein, "alkyl" means a branched, or straight chain chemical group containing only carbon and hydrogen, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, sec-pentyl and neo-pentyl. Alkyl groups can either be unsubstituted or substituted with one or more substituents. In some embodiments, alkyl groups include 1 to 9 carbon atoms (for example, 1 to 6 carbon atoms, 1 to 4 carbon atoms, or 1 to 2 carbon atoms).
- [022] As used herein, "alkenyl" means a straight or branched chain chemical group containing only carbon and hydrogen and containing at least one carbon-carbon double bond, such as ethenyl, 1-propenyl, 2-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, and the like. In various embodiments, alkenyl groups can either be unsubstituted or substituted with one or more substituents. Typically, alkenyl groups will comprise 2 to 9 carbon atoms (for example, 2 to 6 carbon atoms, 2 to 4 carbon atoms, or 2 carbon atoms).
- [023] "Exocyclic double bond" means a carbon-carbon double bond connected to and hence external to, a ring structure.
- [024] As used herein, "alkynyl" means a straight or branched chain chemical group containing only carbon and hydrogen and containing at least one carbon-carbon triple bond, such as ethynyl, 1-propynyl, 1-butynyl, 2-butynyl, and the like. In various embodiments, alkynyl groups can either be unsubstituted or substituted with one or more substituents. Typically, alkynyl groups

will comprise 2 to 9 carbon atoms (for example, 2 to 6 carbon atoms, 2 to 4 carbon atoms, or 2 carbon atoms).

- [025] As used herein, "alkylene" means a bivalent branched, or straight chain chemical group containing only carbon and hydrogen, such as methylene, ethylene, n-propylene, iso-propylene, n-butylene, iso-butylene, sec-butylene, tert-butylene, n-pentylene, iso-pentylene, sec-pentylene and neo-pentylene. Alkylene groups can either be unsubstituted or substituted with one or more substituents. Alkylene groups can be saturated or unsaturated (e.g., containing -C=C- or -C=C- subunits), at one or several positions. In some embodiments, alkylene groups include 1 to 9 carbon atoms (for example, 1 to 6 carbon atoms, 1 to 4 carbon atoms, or 1 to 2 carbon atoms).
- [026] As used herein, "alkenylene" means a bivalent branched, or straight chain chemical group containing only carbon and hydrogen and containing at least one carbon-carbon double bond, such as ethenylene, 1-propenylene, 2-propenylene, 2-methyl-1-propenylene, 1-butenylene, 2-butenylene, and the like. In various embodiments, alkenylene groups can either be unsubstituted or substituted with one or more substituents. Typically, alkenylene groups will comprise 2 to 9 carbon atoms (for example, 2 to 6 carbon atoms, 2 to 4 carbon atoms, or 2 carbon atoms).
- [027] As used herein, "alkynylene" means a bivalent branched, or straight chain chemical group containing only carbon and hydrogen and containing at least one carbon-carbon triple bond, such as ethynylene, 1-propynylene, 1-butynylene, 2-butynylene, and the like. In various embodiments, alkynylene groups can either be unsubstituted or substituted with one or more substituents. Typically, alkynylene groups will comprise 2 to 9 carbon atoms (for example, 2 to 6 carbon atoms, 2 to 4 carbon atoms, or 2 carbon atoms).
- [028] As used herein, "carbocyclyl" means a cyclic ring system containing only carbon atoms in the ring system backbone, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cyclohexenyl. Carbocyclyls may include multiple fused rings. Carbocyclyls may have any degree of saturation provided that at least one ring in the ring system is not aromatic. Carbocyclyl groups can either be unsubstituted or substituted with one or more substituents. In some embodiments, carbocyclyl groups include 3 to 10 carbon atoms, for example, 3 to 6 carbon atoms.
- [029] As used herein, "aryl" means a mono-, bi-, tri- or polycyclic group with only carbon atoms present in the ring backbone having 5 to 14 ring atoms, alternatively 5, 6, 9, or 10 ring atoms; and having 6, 10, or 14 pi electrons shared in a cyclic array; wherein at least one ring in the system is aromatic. Aryl groups can either be unsubstituted or substituted with one or more

substituents. Examples of aryl include phenyl, naphthyl, tetrahydronaphthyl, 2,3-dihydro-1H-indenyl, and others. In some embodiments, the aryl is phenyl.

- [030] As used herein, "arylalkylene" means an aryl-alkylene-group in which the aryl and alkylene moieties are as previously described. In some embodiments, arylalkylene groups contain a C₁₋₄alkylene moiety. Exemplary arylalkylene groups include benzyl and 2-phenethyl.
- [031] As used herein, the term "heteroaryl" means a mono-, bi-, tri- or polycyclic group having 5 to 14 ring atoms, alternatively 5, 6, 9, or 10 ring atoms; and having 6, 10, or 14 pi electrons shared in a cyclic array; wherein at least one ring in the system is aromatic, and at least one ring in the system contains one or more heteroatoms independently selected from the group consisting of N, O, and S. Heteroaryl groups can either be unsubstituted or substituted with one or more substituents. Examples of heteroaryl include thienyl, pyridinyl, furyl, oxazolyl, oxadiazolyl, pyrrolyl, imidazolyl, triazolyl, thiodiazolyl, pyrazolyl, isoxazolyl, thiadiazolyl, pyrazyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, thiazolyl benzothienyl, benzoxadiazolyl, benzofuranyl, benzimidazolyl, benzotriazolyl, cinnolinyl, indazolyl, indolyl, isoquinolinyl, isothiazolyl, naphthyridinyl, purinyl, thienopyridinyl, pyrido[2,3-d]pyrimidinyl, pyrrolo[2,3-b]pyridinyl, thieno[2,3-c]pyridinyl, pyrazolo[3,4-b]pyridinyl, pyrazolo[3,4quinazolinyl, quinolinyl, c]pyridinyl, pyrazolo[4,3-c]pyridine, pyrazolo[4,3-b]pyridinyl, tetrazolyl, chromane, 2,3dihydrobenzo[b][1,4]dioxine, benzo[d][1,3]dioxole, 2,3-dihydrobenzofuran, tetrahydroquinoline,2,3-dihydrobenzo[b][1,4]oxathiine, and others. In some embodiments, the heteroaryl is selected from thienyl, pyridinyl, furyl, pyrazolyl, imidazolyl, pyranyl, pyrazinyl, and pyrimidinyl.
- [032] As used herein, "halo", "halide" or "halogen" is a chloro, bromo, fluoro, or iodo atom radical. In some embodiments, a halo is a chloro, bromo or fluoro. For example, a halide can be fluoro.
- [033] As used herein, "haloalkyl" means a hydrocarbon substituent, which is a linear or branched, alkyl, alkenyl or alkynyl substituted with one or more chloro, bromo, fluoro, and/or iodo atom(s). In some embodiments, a haloalkyl is a fluoroalkyls, wherein one or more of the hydrogen atoms have been substituted by fluoro. In some embodiments, haloalkyls are of 1 to about 3 carbons in length (e.g., 1 to about 2 carbons in length or 1 carbon in length). The term "haloalkylene" means a diradical variant of haloalkyl, and such diradicals may act as spacers between radicals, other atoms, or between a ring and another functional group.
- [034] As used herein, "heterocyclyl" means a nonaromatic cyclic ring system comprising at least one heteroatom in the ring system backbone. Heterocyclyls may include multiple fused rings. Heterocyclyls may be substituted or unsubstituted with one or more substituents. In some embodiments, heterocycles have 5-7 members. In six membered monocyclic

heterocycles, the heteroatom(s) are selected from one to three of O, N or S, and wherein when the heterocycle is five membered, it can have one or two heteroatoms selected from O, N, or S. Examples of heterocyclyl include azirinyl, aziridinyl, azetidinyl, oxetanyl, thietanyl, 1,4,2-dithiazolyl, dihydropyridinyl, 1,3-dioxanyl, 1,4-dioxanyl, 1,3-dioxolanyl, morpholinyl, thiomorpholinyl, piperazinyl, pyranyl, pyrrolidinyl, tetrahydrofuryl, tetrahydropyridinyl, oxazinyl, thiazinyl, thiazolidinyl, isothiazolidinyl, oxazolidinyl, isoxazolidinyl, piperidinyl, pyrazolidinyl imidazolidinyl, thiomorpholinyl, and others. In some embodiments, the heterocyclyl is selected from azetidinyl, morpholinyl, piperazinyl, pyrrolidinyl, and tetrahydropyridinyl.

[035] As used herein, "monocyclic heterocyclyl" means a single nonaromatic cyclic ring comprising at least one heteroatom in the ring system backbone. Heterocyclyls may be substituted or unsubstituted with one or more substituents. In some embodiments, heterocycles have 5-7 members. In six membered monocyclic heterocycles, the heteroatom(s) are selected from one to three of O, N or S, and wherein when the heterocycle is five membered, it can have one or two heteroatoms selected from O, N, or S. Examples of heterocyclyl include azirinyl, aziridinyl, azetidinyl, oxetanyl, thietanyl, 1,4,2-dithiazolyl, dihydropyridinyl, 1,3-dioxanyl, 1,4-dioxanyl, 1,3-dioxolanyl, morpholinyl, thiomorpholinyl, piperazinyl, pyranyl, pyrrolidinyl, tetrahydrofuryl, tetrahydropyridinyl, oxazinyl, thiazinyl, thiinyl, thiazolidinyl, isothiazolidinyl, oxazolidinyl, isoxazolidinyl, piperidinyl, pyrazolidinyl imidazolidinyl, thiomorpholinyl, and others.

The term "substituted" refers to moieties having substituents replacing a [036] hydrogen on one or more non-hydrogen atoms of the molecule. It will be understood that "substitution" or "substituted with" includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. Substituents can include, for example, $-(C_{1-9} \text{ alkyl})$ optionally substituted with one or more of hydroxyl, $-NH_2$, $-NH(C_{1-3} \text{ or } -C_{1-9} \text{ or } -C_{1$ alkyl), and $-N(C_{1-3} \text{ alkyl})_2$; $-(C_{1-9} \text{ haloalkyl})$; a halide; a hydroxyl; a carbonyl [such as -C(O)OR, and -C(O)R; a thiocarbonyl [such as -C(S)OR, -C(O)SR, and -C(S)R]; $-(C_{1-9} \text{ alkoxyl})$ optionally substituted with one or more of halide, hydroxyl, -NH2, -NH(C1-3 alkyl), and -N(C1-3 alkyl)2; -OPO(OH)₂; a phosphonate [such as -PO(OH)₂ and -PO(OR')₂]; -OPO(OR')R"; -NRR'; -C(O)NRR': -C(NR)NR'R": -C(NR')R": a cyano; a nitro; an azido; -SH; -S-R; -OSO₂(OR); a sulfonate [such as -SO₂(OH) and -SO₂(OR)]; -SO₂NR'R"; and -SO₂R; in which each occurrence of R, R' and R" are independently selected from H; $-(C_{1-9} \text{ alkyl})$; C_{6-10} aryl optionally substituted with from 1-3R'"; 5-10 membered heteroaryl having from 1-4 heteroatoms independently selected from N, O, and S and optionally substituted with from 1-3 R"; C₃₋₇ carbocyclyl optionally substituted

with from 1-3 R'''; and 3-8 membered heterocyclyl having from 1-4 heteroatoms independently selected from N, O, and S and optionally substituted with from 1-3 R'''; wherein each R''' is independently selected from $-(C_{1-6} \text{ alkyl})$, $-(C_{1-6} \text{ haloalkyl})$, a halide (e.g., F), a hydroxyl, -C(O)OR, -C(O)R, $-(C_{1-6} \text{ alkoxyl})$, -NRR', -C(O)NRR', and a cyano, in which each occurrence of R and R' is independently selected from H and $-(C_{1-6} \text{ alkyl})$. In some embodiments, the substituent is selected from $-(C_{1-6} \text{ alkyl})$, $-(C_{1-6} \text{ haloalkyl})$, a halide (e.g., F), a hydroxyl, -C(O)OR, $-(C_{1-6} \text{ alkoxyl})$, -NRR', -C(O)NRR', and a cyano, in which each occurrence of R and R' is independently selected from H and $-(C_{1-6} \text{ alkyl})$.

- [037] As used herein, when two groups are indicated to be "linked" or "bonded" to form a "ring", it is to be understood that a bond is formed between the two groups and may involve replacement of a hydrogen atom on one or both groups with the bond, thereby forming a carbocyclyl, heterocyclyl, aryl, or heteroaryl ring. The skilled artisan will recognize that such rings can and are readily formed by routine chemical reactions. In some embodiments, such rings have from 3-7 members, for example, 5 or 6 members.
- [038] The skilled artisan will recognize that some structures described herein may be resonance forms or tautomers of compounds that may be fairly represented by other chemical structures, even when kinetically, the artisan recognizes that such structures are only a very small portion of a sample of such compound(s). Such compounds are clearly contemplated within the scope of this disclosure, though such resonance forms or tautomers are not represented herein.
- [039] The compounds provided herein may encompass various stereochemical forms. The compounds also encompass diastereomers as well as optical isomers, e.g., mixtures of enantiomers including racemic mixtures, as well as individual enantiomers and diastereomers, which arise as a consequence of structural asymmetry in certain compounds. Separation of the individual isomers or selective synthesis of the individual isomers is accomplished by application of various methods which are well known to practitioners in the art. Unless otherwise indicated, when a disclosed compound is named or depicted by a structure without specifying the stereochemistry and has one or more chiral centers, it is understood to represent all possible stereoisomers of the compound.
- **[040]** The term "administration" or "administering" refers to a method of providing a dosage of a compound or pharmaceutical composition to a vertebrate or invertebrate, including a mammal, a bird, a fish, or an amphibian, where the method is, e.g., orally, subcutaneously, intravenously, intralymphatic, intranasally, topically, transdermally, intraperitoneally, intramuscularly, intrapulmonarilly, vaginally, rectally, ontologically, neuro-otologically, intraocularly, subconjuctivally, via anterior eye chamber injection, intravitreally, intraperitoneally,

intrathecally, intracystically, intrapleurally, via wound irrigation, intrabuccally, intra-abdominally, intra-articularly, intra-aurally, intrabronchially, intracapsularly, intrameningeally, via inhalation, via endotracheal or endobronchial instillation, via direct instillation into pulmonary cavities, intraspinally, intrasynovially, intrathoracically, via thoracostomy irrigation, epidurally, intratympanically, intracisternally, intravascularly, intraventricularly, intraosseously, via irrigation of infected bone, or via application as part of any admixture with a prosthetic device. The method of administration can vary depending on various factors, e.g., the components of the pharmaceutical composition, the site of the disease, the disease involved, and the severity of the disease.

- [041] A "diagnostic" as used herein is a compound, method, system, or device that assists in the identification or characterization of a health or disease state. The diagnostic can be used in standard assays as is known in the art.
- [042] The term "mammal" is used in its usual biological sense. Thus, it specifically includes humans, cattle, horses, monkeys, dogs, cats, mice, rats, cows, sheep, pigs, goats, and non-human primates, but also includes many other species.
- [043] The term "pharmaceutically acceptable carrier", "pharmaceutically acceptable diluent" or "pharmaceutically acceptable excipient" includes any and all solvents, co-solvents, complexing agents, dispersion media, coatings, isotonic and absorption delaying agents and the like which are not biologically or otherwise undesirable. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions. In addition, various adjuvants such as are commonly used in the art may be included. These and other such compounds are described in the literature, e.g., in the Merck Index, Merck & Company, Rahway, NJ. Considerations for the inclusion of various components in pharmaceutical compositions are described, e.g., in Gilman et al. (Eds.) (2010); Goodman and Gilman's: The Pharmacological Basis of Therapeutics, 12th Ed., The McGraw-Hill Companies.
- [044] The term "pharmaceutically acceptable salt" refers to salts that retain the biological effectiveness and properties of the compounds provided herein and, which are not biologically or otherwise undesirable. In many cases, the compounds provided herein are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto. Many such salts are known in the art, for example, as described in WO 87/05297. Pharmaceutically acceptable acid addition salts can be formed with inorganic acids and organic acids. Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like. Organic acids from

which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like. Pharmaceutically acceptable base addition salts can be formed with inorganic and organic bases. Inorganic bases from which salts can be derived include, for example, sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum, and the like; particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like, specifically such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.

- [045] "Solvate" refers to the compound formed by the interaction of a solvent and a compound as provided herein or a salt thereof. Suitable solvates are pharmaceutically acceptable solvates including hydrates.
- [046] "Patient" as used herein, means a human or a non-human mammal, e.g., a dog, a cat, a mouse, a rat, a cow, a sheep, a pig, a goat, a non-human primate, or a bird, e.g., a chicken, as well as any other vertebrate or invertebrate. In some embodiments, the patient is a human.
- which is sufficient to achieve the desired physiological effect and may vary according to the nature and severity of the disease condition, and the potency of the compound. "Therapeutically effective amount" is also intended to include one or more of the compounds of Formula I in combination with one or more other agents that are effective to treat the diseases and/or conditions described herein. The combination of compounds can be a synergistic combination. Synergy, as described, for example, by Chou and Talalay, *Advances in Enzyme Regulation* (1984), 22, 27-55, occurs when the effect of the compounds when administered in combination is greater than the additive effect of the compounds when administered alone as a single agent. In general, a synergistic effect is most clearly demonstrated at sub-optimal concentrations of the compounds. It will be appreciated that different concentrations may be employed for prophylaxis than for treatment of an active disease. This amount can further depend upon the patient's height, weight, sex, age and medical history.
- [048] A therapeutic effect relieves, to some extent, one or more of the symptoms of the disease.
- [049] "Treat," "treatment," or "treating," as used herein refers to administering a compound or pharmaceutical composition as provided herein for therapeutic purposes. The term "therapeutic treatment" refers to administering treatment to a patient already suffering from a

disease thus causing a therapeutically beneficial effect, such as ameliorating existing symptoms, ameliorating the underlying metabolic causes of symptoms, postponing or preventing the further development of a disorder, and/or reducing the severity of symptoms that will or are expected to develop.

- [050] "Drug-eluting" and/or controlled release as used herein refers to any and all mechanisms, e.g., diffusion, migration, permeation, and/or desorption by which the drug(s) incorporated in the drug-eluting material pass therefrom over time into the surrounding body tissue.
- [051] "Drug-eluting material" and/or controlled release material as used herein refers to any natural, synthetic or semi-synthetic material capable of acquiring and retaining a desired shape or configuration and into which one or more drugs can be incorporated and from which incorporated drug(s) are capable of eluting over time.
- [052] "Elutable drug" as used herein refers to any drug or combination of drugs having the ability to pass over time from the drug-eluting material in which it is incorporated into the surrounding areas of the body.

Compounds

[053] The compounds and compositions described herein can be used as anti-proliferative agents, e.g., anti-cancer and anti-angiogenesis agents, and/or as inhibitors of the Wnt signaling pathway, e.g., for treating diseases or disorders associated with aberrant Wnt signaling. In addition, the compounds can be used as inhibitors of one or more kinases, kinase receptors, or kinase complexes. Such compounds and compositions are also useful for controlling cellular proliferation, differentiation, and/or apoptosis.

[054] Some embodiments of the present disclosure include compounds of Formula I:

or salts, pharmaceutically acceptable salts, or prodrugs thereof.

[055] In some embodiments, R¹ and R² are independently selected from the group consisting of H and halide (e.g., F, Cl, Br, I).

- [056] In some embodiments, R^1 is H, and R^2 is F.
- [057] In some embodiments, R^1 is F, and R^2 is H.
- [058] In some embodiments, R^1 and R^2 are both H.
- [059] In some embodiments, R^1 and R^2 are both F.
- **[060]** In some embodiments, R³ is selected from the group consisting of –heteroaryl optionally substituted with 1-4 (e.g., 1-3, 1-2, 1) R⁶ and –heterocyclyl optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R⁷.
- [061] In some embodiments, R^3 is selected from the group consisting of –heteroaryl optionally substituted with 1-2 (e.g., 1) R^6 and –heterocyclyl optionally substituted with 1-2 (e.g., 1) R^7 .
- [062] In some embodiments, the heteroaryl of R³ is selected from the group consisting of -pyridinyl, -pyrimidinyl, -pyrazolyl, -imidazolyl, -thiazolyl, and -oxazolyl.
- **[063]** In some embodiments, the heteroaryl of R³ is selected from the group consisting of –pyridin-3-yl, –pyrimidin-5-yl, –pyrazol-4-yl, –imidazol-5-yl, –thiazol-2-yl, thiazol-5-yl, –oxazol-2-yl, and –oxazol-5-yl.
- [064] In some embodiments, the -heterocyclyl of R^3 is selected from the group consisting of -tetrahydropyridinyl and -piperidinyl.
- **[065]** In some embodiments, the –heterocyclyl of R^3 is selected from the group consisting of –1,2,3,6-tetrahydropyridinyl and –piperidin-4-yl.
 - [066] In some embodiments, R³ is –pyridinyl optionally substituted with 1 R⁶.
 - [067] In some embodiments, R³ is –pyridin-3-yl optionally substituted with 1 R⁶.
 - [068] In some embodiments, R³ is –pyrimidinyl optionally substituted with 1 R⁶.
 - [069] In some embodiments, R³ is –pyrimidin-5-yl optionally substituted with 1 R⁶.
 - [070] In some embodiments, R³ is -pyrazolyl optionally substituted with 1 R⁶.
 - [071] In some embodiments, R³ is –pyrazolyl substituted with 1 R⁶.
 - [072] In some embodiments, R³ is –pyrazolyl substituted with 1 methyl.
 - [073] In some embodiments, R³ is –pyrazolyl optionally substituted with 2 R⁶.
 - [074] In some embodiments, R^3 is -pyrazolyl substituted with 2 R^6 .
- [075] In some embodiments, R^3 is -pyrazolyl substituted with 1 methyl and 1 CH_2OH .
 - [076] In some embodiments, R³ is -pyrazol-4-yl optionally substituted with 1 R⁶.
 - [077] In some embodiments, R³ is -pyrazol-4-yl substituted with 1 R⁶.

[078] In some embodiments, R³ is -pyrazol-4-yl substituted with 1 methyl.

[079] In some embodiments, R³ is –pyrazol-4-yl optionally substituted with 2 R⁶.

[080] In some embodiments, R^3 is -pyrazol-4-yl substituted with 2 R^6 .

[081] In some embodiments, R³ is –pyrazol-4-yl substituted with 1 methyl and 1 – CH₂OH.

[082] In some embodiments, R³ is –imidazolyl optionally substituted with 1-2 R⁶.

[083] In some embodiments, R³ is –imidazolyl substituted with 1-2 R⁶.

[084] In some embodiments, R³ is –imidazolyl substituted with 1-2 methyls.

[085] In some embodiments, R³ is –imidazolyl substituted with 1 methyl.

[086] In some embodiments, R³ is –imidazolyl substituted with 2 methyls.

[087] In some embodiments, R³ is –imidazol-5-yl optionally substituted with 1-2 R⁶.

[088] In some embodiments, R³ is –imidazol-5-yl substituted with 1-2 R⁶.

[089] In some embodiments, R³ is –imidazol-5-yl substituted with 1-2 methyls.

[090] In some embodiments, R³ is –imidazol-5-yl substituted with 1 methyl.

[091] In some embodiments, R³ is –imidazol-5-yl substituted with 2 methyls.

[092] In some embodiments, R³ is –thiazolyl optionally substituted with 1 R⁶.

[093] In some embodiments, R³ is –thiazol-2-yl optionally substituted with 1 R⁶.

[094] In some embodiments, R³ is thiazol-5-yl optionally substituted with 1 R⁶.

[095] In some embodiments, R³ is –oxazolyl optionally substituted with 1 R⁶.

[096] In some embodiments, R³ is -oxazol-2-yl optionally substituted with 1 R⁶.

[097] In some embodiments, R³ is -oxazol-5-yl optionally substituted with 1 R⁶.

[098] In some embodiments, R^5 is selected from the group consisting of H, – heteroaryl optionally substituted with 1-4 (e.g., 1-3, 1-2, 1) R^8 , –heterocyclyl optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^9 , and –aryl optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) R^{10} .

[099] In some embodiments, R^5 is selected from the group consisting of H, – heteroaryl optionally substituted with 1-2 (e.g., 1) R^8 , –heterocyclyl optionally substituted with 1-2 (e.g., 1) R^9 , and –phenyl optionally substituted with 1-2 (e.g., 1) R^{10} .

[0100] In some embodiments, R⁵ is H.

[0101] In some embodiments, R^5 is –heteroaryl optionally substituted with 1-2 (e.g., 1) R^8 .

[0102] In some embodiments, R^5 is –heterocyclyl optionally substituted with 1-2 (e.g., 1) R^9 .

	[0103]	In some embodiments, R ⁵ is –piperidinyl optionally substituted with 1-2 (e.g.,
1) R ⁹ .		
	[0104]	In some embodiments, R ⁵ is –piperazinyl optionally substituted with 1-2 (e.g.,
1) R ⁹ .		
	[0105]	In some embodiments, R^5 is –aryl optionally substituted with 1-2 (e.g., 1) R^{10} .
	[0106]	In some embodiments, R ⁵ is -phenyl optionally substituted with 1-2 (e.g., 1)
\mathbb{R}^{10} .		
	[0107]	In some embodiments, R ⁵ is -pyridinyl optionally substituted with 1-2 (e.g.,
1) R ⁸ .		
	[0108]	In some embodiments, R ⁵ is –pyridin-3-yl optionally substituted with 1-2 (e.g.,
1) R ⁸ .		
	[0109]	In some embodiments, R ⁵ is –pyridin-4-yl optionally substituted with 1-2 (e.g.,
1) R ⁸ .		
	[0110]	In some embodiments, R ⁵ is –pyridin-5-yl optionally substituted with 1-2 (e.g.,
1) R ⁸ .		
	[0111]	In some embodiments, R ⁵ is –imidazolyl optionally substituted with 1-2 (e.g.,
1) R ⁸ .		
1) 1.		
1) 10	[0112]	In some embodiments, R^5 is –imidazolyl substituted with 1-2 (e.g., 1) R^8 .
1) 10 .	[0112] [0113]	In some embodiments, R^5 is –imidazolyl substituted with 1-2 (e.g., 1) R^8 . In some embodiments, R^5 is –imidazolyl substituted with 1 R^8 .
1) 10.	-	
1,10.	[0113]	In some embodiments, R^5 is –imidazolyl substituted with 1 R^8 .
(e.g., 1	[0113] [0114] [0115]	In some embodiments, R^5 is –imidazolyl substituted with 1 R^8 . In some embodiments, R^5 is –imidazolyl substituted with 1 methyl.
	[0113] [0114] [0115]	In some embodiments, R^5 is –imidazolyl substituted with 1 R^8 . In some embodiments, R^5 is –imidazolyl substituted with 1 methyl.
	[0113] [0114] [0115] (1) R ⁸ .	In some embodiments, R^5 is –imidazolyl substituted with 1 R^8 . In some embodiments, R^5 is –imidazolyl substituted with 1 methyl. In some embodiments, R^5 is –imidazol-1-yl optionally substituted with 1-2
	[0113] [0114] [0115] [0116]	In some embodiments, R^5 is -imidazolyl substituted with 1 R^8 . In some embodiments, R^5 is -imidazolyl substituted with 1 methyl. In some embodiments, R^5 is -imidazol-1-yl optionally substituted with 1-2 In some embodiments, R^5 is -imidazol-1-yl substituted with 1-2 (e.g., 1) R^8 .
	[0113] [0114] [0115] [0115] [0116] [0117]	In some embodiments, R^5 is -imidazolyl substituted with 1 R^8 . In some embodiments, R^5 is -imidazolyl substituted with 1 methyl. In some embodiments, R^5 is -imidazol-1-yl optionally substituted with 1-2 In some embodiments, R^5 is -imidazol-1-yl substituted with 1-2 (e.g., 1) R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 R^8 .
	[0113] [0114] [0115] [0115] [0116] [0117] [0118]	In some embodiments, R^5 is -imidazolyl substituted with 1 R^8 . In some embodiments, R^5 is -imidazolyl substituted with 1 methyl. In some embodiments, R^5 is -imidazol-1-yl optionally substituted with 1-2 In some embodiments, R^5 is -imidazol-1-yl substituted with 1-2 (e.g., 1) R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 methyl.
(e.g., 1	[0113] [0114] [0115] [0115] [0116] [0117] [0118]	In some embodiments, R^5 is -imidazolyl substituted with 1 R^8 . In some embodiments, R^5 is -imidazolyl substituted with 1 methyl. In some embodiments, R^5 is -imidazol-1-yl optionally substituted with 1-2 In some embodiments, R^5 is -imidazol-1-yl substituted with 1-2 (e.g., 1) R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 methyl.
(e.g., 1	[0113] [0114] [0115] [0115] [0116] [0117] [0118] [0119]	In some embodiments, R^5 is -imidazolyl substituted with 1 R^8 . In some embodiments, R^5 is -imidazolyl substituted with 1 methyl. In some embodiments, R^5 is -imidazol-1-yl optionally substituted with 1-2 (e.g., 1) R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 methyl. In some embodiments, R^5 is -furanyl optionally substituted with 1-2 (e.g., 1)
(e.g., 1) R ⁸ .	[0113] [0114] [0115] [0115] [0116] [0117] [0118] [0119]	In some embodiments, R^5 is -imidazolyl substituted with 1 R^8 . In some embodiments, R^5 is -imidazolyl substituted with 1 methyl. In some embodiments, R^5 is -imidazol-1-yl optionally substituted with 1-2 (e.g., 1) R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 methyl. In some embodiments, R^5 is -furanyl optionally substituted with 1-2 (e.g., 1)
(e.g., 1) R ⁸ .	[0113] [0114] [0115] [0115] [0116] [0117] [0118] [0119]	In some embodiments, R^5 is -imidazolyl substituted with 1 R^8 . In some embodiments, R^5 is -imidazol-1-yl optionally substituted with 1-2 In some embodiments, R^5 is -imidazol-1-yl substituted with 1-2 (e.g., 1) R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 methyl. In some embodiments, R^5 is -furanyl optionally substituted with 1-2 (e.g., 1) In some embodiments, R^5 is -furanyl optionally substituted with 1-2 (e.g., 1)
(e.g., 1) R ⁸ .	[0113] [0114] [0115] [0115] [0116] [0117] [0118] [0119]	In some embodiments, R^5 is -imidazolyl substituted with 1 R^8 . In some embodiments, R^5 is -imidazol-1-yl optionally substituted with 1-2 In some embodiments, R^5 is -imidazol-1-yl substituted with 1-2 (e.g., 1) R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 R^8 . In some embodiments, R^5 is -imidazol-1-yl substituted with 1 methyl. In some embodiments, R^5 is -furanyl optionally substituted with 1-2 (e.g., 1) In some embodiments, R^5 is -furanyl optionally substituted with 1-2 (e.g., 1)

[0123] In some embodiments, R^5 is -thiophen-2-yl optionally substituted with 1-2 (e.g., 1) R^8 .

- [0124] In some embodiments, R^5 is -thiophen-2-yl optionally substituted with 1-2 (e.g., 1) R^8 , and each R^8 is independently halide.
- [0125] In some embodiments, R^5 is –thiophen-2-yl optionally substituted with 1-2 (e.g., 1) F.
- [0126] In some embodiments, R^5 is -thiophen-2-yl optionally substituted with 1-2 (e.g., 1) Cl.
- [0127] In some embodiments, R^5 is -thiophen-2-yl optionally substituted with 1-2 (e.g., 1) R^8 , and each R^8 is independently -(C_{1-6} alkyl).
- **[0128]** In some embodiments, R^5 is -thiophen-2-yl optionally substituted with 1-2 (e.g., 1) R^8 , and each R^8 is independently -(C_{1-2} alkyl).
- [0129] In some embodiments, R^5 is -thiophen-2-yl optionally substituted with 1-2 (e.g., 1) methyls.
- [0130] In some embodiments, R^5 is –thiophen-2-yl optionally substituted with 1-2 (e.g., 1) –CF₃.
- [0131] In some embodiments, R^5 is -thiophen-2-yl optionally substituted with 1-2 (e.g., 1) -CN.
- [0132] In some embodiments, R^5 is -thiophen-2-yl optionally substituted with $1 C(=O)R^{19}$.
- **[0133]** In some embodiments, R^5 is -thiophen-2-yl optionally substituted with $1 C(=0)R^{19}$, and R^{19} is $-(C_{1-6}$ alkyl).
- **[0134]** In some embodiments, R^5 is –thiophen-2-yl optionally substituted with 1 $C(=O)R^{19}$, and R^{19} is – $(C_{1-4}$ alkyl).
- **[0135]** In some embodiments, R^5 is –thiophen-2-yl optionally substituted with 1 $C(=O)R^{19}$, and R^{19} is –(C_{1-2} alkyl).
- **[0136]** In some embodiments, R^5 is –thiophen-2-yl optionally substituted with 1 $C(=O)R^{19}$, and R^{19} is methyl.
- [0137] In some embodiments, R^5 is –thiophen-3-yl optionally substituted with 1-2 (e.g., 1) R^8 .
- [0138] In some embodiments, R^5 is -thiophen-3-yl optionally substituted with 1-2 (e.g., 1) R^8 and each R^8 is independently halide.
- [0139] In some embodiments, R^5 is -thiophen-3-yl optionally substituted with 1-2 (e.g., 1) F.

[0140] In some embodiments, R^5 is -thiophen-3-yl optionally substituted with 1-2 (e.g., 1) Cl.

[0141] In some embodiments, R^5 is -thiophen-3-yl optionally substituted with 1-2 (e.g., 1) R^8 , and each R^8 is independently -(C_{1-6} alkyl).

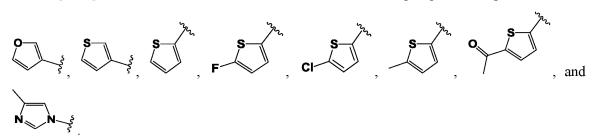
[0142] In some embodiments, R^5 is -thiophen-3-yl optionally substituted with 1-2 (e.g., 1) R^8 , and each R^8 is independently -(C_{1-2} alkyl).

[0143] In some embodiments, R^5 is -thiophen-3-yl optionally substituted with 1-2 (e.g., 1) methyls.

[0144] In some embodiments, R^5 is –thiophen-3-yl optionally substituted with 1-2 (e.g., 1) –CF₃.

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

[0146] In some embodiments, R^5 is -thiophen-3-yl optionally substituted with $1 - C(=O)R^{19}$.


[0147] In some embodiments, R^5 is –thiophen-3-yl optionally substituted with 1 – $C(=O)R^{19}$, and R^{19} is –(C_{1-6} alkyl).

[0148] In some embodiments, R^5 is -thiophen-3-yl optionally substituted with $1 - C(=O)R^{19}$, and R^{19} is $-(C_{1-4}$ alkyl).

[0149] In some embodiments, R^5 is -thiophen-3-yl optionally substituted with $1 - C(=O)R^{19}$, and R^{19} is $-(C_{1-2}$ alkyl).

[0150] In some embodiments, R^5 is –thiophen-3-yl optionally substituted with 1 – $C(=0)R^{19}$, and R^{19} is methyl.

[0151] In some embodiments, R⁵ is selected from the group consisting of:

[0152] In some embodiments, R^5 is –phenyl optionally substituted with 1-2 (e.g., 1) R^{10} , and each R^{10} is independently halide.

[0153] In some embodiments, R^5 is -phenyl optionally substituted with 1-2 (e.g., 1) F.

[0154] In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –(C_{1-6} alkylene)NHSO₂ R^{19} .

[0155] In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –(C_{1-4} alkylene)NHSO₂ R^{19} .

- **[0156]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –(C_{1-2} alkylene)NHSO₂ R^{19} .
- [0157] In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –CH₂NHSO₂ R^{19} .
- **[0158]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –CH₂NHSO₂ R^{19} , R^{19} is –(C₁₋₄ alkyl).
- **[0159]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –CH₂NHSO₂ R^{19} , R^{19} is –(C₁₋₂ alkyl).
- **[0160]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –CH₂NHSO₂ R^{19} , R^{19} is methyl.
- **[0161]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is F and the other R^{10} is –CH₂NHSO₂ R^{19} , R^{19} is –(C₁₋₂ alkyl).
- **[0162]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is F and the other R^{10} is –CH₂NHSO₂ R^{19} , R^{19} is methyl.
- **[0163]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –NR¹⁵(C₁₋₆ alkylene)NR¹⁵R¹⁶.
- **[0164]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is $-NR^{15}(C_{1-5}$ alkylene) $NR^{15}R^{16}$.
- **[0165]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is $-NR^{15}(C_{1-4}$ alkylene) $NR^{15}R^{16}$.
- **[0166]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –NR¹⁵(C_{1-3} alkylene)NR¹⁵R¹⁶.
- **[0167]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is $-NR^{15}CH_2CH_2NR^{15}R^{16}$.
- **[0168]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –NHCH₂CH₂NR¹⁵R¹⁶.
- **[0169]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –NHCH₂CH₂NR¹⁵R¹⁶, and R^{15} and R^{16} are independently selected from –(C₁₋₆ alkyl).
- **[0170]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –NHCH₂CH₂NR¹⁵R¹⁶, and R^{15} and R^{16} are independently selected from –(C₁₋₄ alkyl).

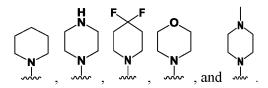
[0171] In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –NHCH₂CH₂NR¹⁵R¹⁶, and R^{15} and R^{16} are independently selected from –(C₁₋₂ alkyl).

- **[0172]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –NHCH₂CH₂NR¹⁵R¹⁶, and both R^{15} and R^{16} are methyls.
- **[0173]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is F and the other R^{10} is –NHCH₂CH₂NR¹⁵R¹⁶, and R^{15} and R^{16} are independently selected from (C_{1-2} alkyl).
- **[0174]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is F and the other R^{10} is –NHCH₂CH₂NR¹⁵R¹⁶, and both R^{15} and R^{16} are methyls.
- [0175] In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is $-OR^{27}$.
- [0176] In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is $-OCH_2CH_2NR^{25}R^{26}$.
- **[0177]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –OCH₂CH₂NR²⁵R²⁶, and R^{25} and R^{26} are independently –(C_{1-2} alkyl).
- **[0178]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –OCH₂CH₂NR²⁵R²⁶, and R^{25} and R^{26} are both methyl.
- **[0179]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is F and the other R^{10} is –OCH₂CH₂NR²⁵R²⁶, and R^{25} and R^{26} are both methyl.
- **[0180]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –OCH₂CH₂heterocyclyl optionally substituted with 1-2 (e.g., 1) R^{23} .
- **[0181]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is F and the other R^{10} is –OCH₂CH₂heterocyclyl optionally substituted with 1-2 (e.g., 1) R^{23} .
- **[0182]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –OH.
- **[0183]** In some embodiments, R^5 is –phenyl optionally substituted with 2 R^{10} , one R^{10} is halide and the other R^{10} is –OMe.
 - [0184] In some embodiments, R⁵ is -phenyl optionally substituted with 1 -OMe.
 - [0185] In some embodiments, R⁵ is selected from the group consisting of:

[0186] In some embodiments, R^5 is -piperidin-1-yl optionally substituted with 1-2 (e.g., 1) R^9 .

[0187] In some embodiments, R^5 is -piperidin-1-yl optionally substituted with 1-2 (e.g., 1) R^9 , and each R^9 is independently halide.

[0188] In some embodiments, R^5 is -piperazin-1-yl optionally substituted with 1-2 (e.g., 1) R^9 .


[0189] In some embodiments, R^5 is –piperazin-1-yl optionally substituted with 1 $C_{1\text{--}3}$ alkyl.

[0190] In some embodiments, R^5 is -piperazin-1-yl optionally substituted with 1 methyl.

[0191] In some embodiments, R^5 is –morpholinyl optionally substituted with 1-2 (e.g., 1) R^9 .

[0192] In some embodiments, R^5 is –morpholin-1-yl optionally substituted with 1-2 (e.g., 1) R^9 .

[0193] In some embodiments, R⁵ is selected from the group consisting of:

[0194] In some embodiments, each R^6 is independently selected from the group consisting of halide, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkenyl})$, $-(C_{2-6} \text{ alkynyl})$, $-(C_{1-4} \text{ alkylene})_p \text{heterocyclyl}$ optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{11} , $-(C_{2-4} \text{ alkenylene})_p \text{heterocyclyl}$ optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{11} , $-(C_{2-4} \text{ alkynylene})_p \text{heterocyclyl}$ optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6,

1-5, 1-4, 1-3, 1-2, 1) R^{11} , $-(C_{1-4} \text{ alkylene})_p \text{carbocyclyl optionally substituted with 1-12 (e.g., 1-11, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) <math>R^{12}$, $-(C_{2-4} \text{ alkenylene})_p \text{carbocyclyl optionally substituted with 1-12 (e.g., 1-11, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) <math>R^{12}$, $-(C_{2-4} \text{ alkynylene})_p \text{carbocyclyl optionally substituted with 1-12 (e.g., 1-11, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) <math>R^{12}$, $-(C_{1-4} \text{ alkylene})_p \text{aryl optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) } R^{13}$, $-(C_{2-4} \text{ alkenylene})_p \text{aryl optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) } R^{13}$, $-(C_{2-4} \text{ alkynylene})_p \text{ aryl optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) } R^{13}$, $-(C_{2-4} \text{ alkynylene})_p \text{ aryl optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) } R^{13}$, $-(C_{2-6} \text{ alkynylene}) R^{17} R^{18}$, $-(C_{2-6} \text{ alkynylene}) R^{17} R^$

[0195] In some embodiments, each R^6 is independently selected from the group consisting of halide, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkenyl})$, $-(C_{2-6} \text{ alkynyl})$, $-(C_{1-4} \text{ alkylene})_p \text{heterocyclyl}$ optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{11} , $-(C_{2-4} \text{ alkenylene})_p \text{heterocyclyl}$ optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{11} , $-(C_{2-4} \text{ alkynylene})_p \text{heterocyclyl}$ optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{11} , $-(C_{1-4} \text{ alkylene})_p \text{carbocyclyl}$ optionally substituted with 1-12 (e.g., 1-11, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{12} , $-(C_{2-4} \text{ alkenylene})_p \text{carbocyclyl}$ optionally substituted with 1-12 (e.g., 1-11, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{12} , $-(C_{2-4} \text{ alkynylene})_p \text{carbocyclyl}$ optionally substituted with 1-12 (e.g., 1-11, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{12} , $-(C_{1-4} \text{ alkylene})_p \text{aryl}$ optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) R^{13} , $-(C_{2-4} \text{ alkenylene})_p \text{aryl}$ optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) R^{13} , $-(C_{2-4} \text{ alkynylene})_p \text{aryl}$ optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) R^{13} , $-(C_{2-4} \text{ alkynylene})_p \text{aryl}$ optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) R^{13} , $-(C_{2-4} \text{ alkynylene})_p \text{aryl}$ optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) R^{13} , $-(C_{2-4} \text{ alkynylene})_p \text{aryl}$ optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) R^{13} , $-(C_{2-6} \text{ alkynylene})_p \text{OR}^{17} R^{18}$, $-(C_{2-6} \text{ alkynylene})_p \text{OR}^{24}$.

[0196] In some embodiments, each R^6 is independently selected from the group consisting of F, Cl, $-(C_{1-3} \text{ alkyl})$, -heterocyclyl optionally substituted with 1-2 (e.g., 1) R^{11} , $-\text{CH}_2$ heterocyclyl optionally substituted with with 1-2 (e.g., 1) R^{11} , -carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{12} , $-\text{CH}_2$ carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{12} , -aryl optionally substituted with 1-2 (e.g., 1) R^{13} , $-\text{CH}_2$ aryl optionally substituted with 1-2 (e.g., 1) R^{13} , $-\text{NHC}(=0)R^{14}$, $-\text{NR}^{15}R^{16}$, $-\text{CH}_2\text{NR}^{17}R^{18}$, and $-\text{OR}^{24}$.

[0197] In some embodiments, each R^6 is independently selected from the group consisting of F, Cl, $-(C_{1-3} \text{ alkyl})$, -heterocyclyl optionally substituted with 1-2 (e.g., 1) R^{11} , -carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{11} , -carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{12} , $-\text{CH}_2$ carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{12} , -

aryl optionally substituted with 1-2 (e.g., 1) R^{13} , $-CH_2$ aryl optionally substituted with 1-2 (e.g., 1) R^{13} , $-NHC(=O)R^{14}$, $-NR^{15}R^{16}$, $-CH_2NR^{17}R^{18}$, $-CH_2OR^{24}$, and $-OR^{24}$.

[0198] In some embodiments, each R⁶ is independently selected from the group consisting of F, –Me, –heterocyclyl optionally substituted with 1-2 (e.g., 1) halides, –heterocyclyl optionally substituted with 1-2 (e.g., 1) methyls, –CH₂heterocyclyl optionally substituted with with 1-2 (e.g., 1) halides, –CH₂heterocyclyl optionally substituted with 1-2 (e.g., 1) methyls, – carbocyclyl optionally substituted with 1-2 (e.g., 1) halides, –CH₂carbocyclyl optionally substituted with 1-2 (e.g., 1) halides, –aryl optionally substituted with 1-2 (e.g., 1) halides, –CH₂aryl optionally substituted with 1-2 (e.g., 1) halides, –NHC(=O)R¹⁴, –NH₂, –NHMe, –NHEt, –NHPr, –NMe₂, – CH₂NMe₂, –CH₂NHMe, –CH₂NHEt, –CH₂NHCH₂phenyl, –CH₂NHCH₂carbocylyl, –CH₂OH, and –OR²⁴.

[0199] In some embodiments, R^6 is selected from the group consisting of $-(C_{1-3}$ alkyl), $-CH_2$ heterocyclyl optionally substituted with 1-2 R^{11} , $-NHC(=O)R^{14}$, $-NR^{15}R^{16}$, $-CH_2NR^{17}R^{18}$, $-CH_2OH$, and $-OR^{24}$.

[0200] In some embodiments, at least one R^6 is $-(C_{1-3}$ alkyl).

[0201] In some embodiments, at least one R^6 is $-(C_{1-2}$ alkyl).

[0202] In some embodiments, at least one R^6 is -Me.

[0203] In some embodiments, at least one R^6 is halide.

[0204] In some embodiments, at least one R^6 is F.

[0205] In some embodiments, at least one R^6 is –(C_{1-4} alkylene)heterocyclyl optionally substituted with 1-2 R^{11} .

[0206] In some embodiments, at least one R^6 is $-(C_{1-3}$ alkylene)heterocyclyl optionally substituted with 1-2 R^{11} .

[0207] In some embodiments, at least one R^6 is $-(C_{1-2}$ alkylene)heterocyclyl optionally substituted with 1-2 R^{11} .

[0208] In some embodiments, at least one R^6 is $-CH_2$ pyrrolidinyl optionally substituted with 1-2 R^{11} .

[0209] In some embodiments, R^6 is $-CH_2$ pyrrolidinyl optionally substituted with 1-2 R^{11} .

[0210] In some embodiments, R^6 is $-CH_2$ pyrrolidinyl optionally substituted with 1-2 R^{11} , and each R^{11} is independently halide.

 $\label{eq:continuous} \mbox{ [0211]} \qquad \mbox{In some embodiments, } R^6 \mbox{ is } -CH_2 \mbox{pyrrolidinyl optionally substituted with 1-2} \\ \mbox{ F.}$

[0212] In some embodiments, R⁶ is -CH₂pyrrolidinyl substituted with 1-2 F.

- [0213] In some embodiments, R⁶ is -CH₂pyrrolidinyl substituted with 2 F.
- [0214] In some embodiments, at least one R^6 is $-CH_2$ piperidinyl optionally substituted with 1-2 R^{11} .
- [0215] In some embodiments, R^6 is $-CH_2$ piperidinyl optionally substituted with 1-2 R^{11} .
- **[0216]** In some embodiments, R^6 is $-CH_2$ piperidinyl optionally substituted with 1-2 R^{11} , and each R^{11} is independently halide.
- [0217] In some embodiments, R^6 is $-CH_2$ piperidinyl optionally substituted with 1-2 F.

- [0218] In some embodiments, R⁶ is
- **[0219]** In some embodiments, at least one R^6 is $-(C_{1-4}$ alkylene)carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{12} .
- **[0220]** In some embodiments, at least one R^6 is $-(C_{1-3}$ alkylene)carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{12} .
- **[0221]** In some embodiments, at least one R^6 is $-(C_{1-2}$ alkylene)carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{12} .
- **[0222]** In some embodiments, at least one R^6 is $-CH_2$ carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{12} .
- [0223] In some embodiments, R^6 is $-CH_2$ carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{12} .
- [0224] In some embodiments, at least one R^6 is $-CH_2$ aryl optionally substituted with 1-2 (e.g., 1) R^{13} ,
- [0225] In some embodiments, at least one R^6 is $-CH_2$ phenyl optionally substituted with 1-2 (e.g., 1) R^{13} ,
- [0226] In some embodiments, R^6 is $-CH_2$ phenyl optionally substituted with 1-2 (e.g., 1) R^{13} ,
 - [0227] In some embodiments, at least one R^6 is $-NHC(=0)R^{14}$.
 - [0228] In some embodiments, R^6 is $-NHC(=O)R^{14}$.
 - [0229] In some embodiments, at least one R^6 is $-NHC(=O)R^{14}$ and R^{14} is $-(C_{1-9}$ alkyl).
 - [0230] In some embodiments, at least one R^6 is $-NHC(=0)R^{14}$ and R^{14} is $-(C_{1-8}$ alkyl).
 - [0231] In some embodiments, at least one R^6 is $-NHC(=O)R^{14}$ and R^{14} is $-(C_{1-7}$ alkyl).

- [0232] In some embodiments, at least one R^6 is $-NHC(=O)R^{14}$ and R^{14} is $-(C_{1-6}$ alkyl).
- [0233] In some embodiments, at least one R^6 is $-NHC(=0)R^{14}$ and R^{14} is $-(C_{1-5}$ alkyl).
- [0234] In some embodiments, R^6 is $-NHC(=O)R^{14}$ and R^{14} is $-(C_{1-5}$ alkyl).
- [0235] In some embodiments, at least one R^6 is $-NHC(=0)R^{14}$ and R^{14} is $-(C_{1-4}$ alkyl).
- [0236] In some embodiments, R^6 is $-NHC(=O)R^{14}$ and R^{14} is $-(C_{1-4}$ alkyl).
- [0237] In some embodiments, at least one R^6 is $-NHC(=O)R^{14}$ and R^{14} is $-(C_{1-3}$ alkyl).
- [0238] In some embodiments, R^6 is $-NHC(=O)R^{14}$ and R^{14} is $-(C_{1-3}$ alkyl).
- [0239] In some embodiments, at least one R^6 is $-NHC(=0)R^{14}$ and R^{14} is $-(C_{1-2}$ alkyl).
- [0240] In some embodiments, R^6 is $-NHC(=O)R^{14}$ and R^{14} is $-(C_{1-2}$ alkyl).
- [0241] In some embodiments, R^6 is $-NHC(=O)R^{14}$ and R^{14} is $-CF_3$.
- [0242] In some embodiments, at least one R^6 is $-NHC(=0)R^{14}$ and R^{14} is $-(C_{2-5}$ alkyl).
- [0243] In some embodiments, R^6 is $-NHC(=O)R^{14}$ and R^{14} is $-(C_{2-5}$ alkyl).
- [0244] In some embodiments, at least one R^6 is $-NHC(=0)R^{14}$ and R^{14} is $-(C_{3-4}$ alkyl).
- [0245] In some embodiments, at least one R^6 is $-NHC(=0)R^{14}$, R^{14} is -aryl optionally substituted with 1-2 (e.g., 1) R^{21} .
- [0246] In some embodiments, at least one R^6 is $-NHC(=0)R^{14}$, R^{14} is -phenyl optionally substituted with 1-2 (e.g., 1) R^{21} .
- [0247] In some embodiments, at least one R^6 is $-NHC(=0)R^{14}$, R^{14} is $-CH_2$ aryl optionally substituted with 1-2 (e.g., 1) R^{21} .
- **[0248]** In some embodiments, at least one R^6 is $-NHC(=O)R^{14}$, R^{14} is $-CH_2$ phenyl optionally substituted with 1-2 (e.g., 1) R^{21} .
- [0249] In some embodiments, at least one R^6 is $-NHC(=O)R^{14}$, R^{14} is -heteroaryl optionally substituted with 1-2 (e.g., 1) R^{20} .
- **[0250]** In some embodiments, at least one R^6 is $-NHC(=O)R^{14}$, R^{14} is -carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- **[0251]** In some embodiments, at least one R^6 is $-NHC(=O)R^{14}$, R^{14} is -cyclopropyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- [0252] In some embodiments, at least one R^6 is $-NHC(=O)R^{14}$, R^{14} is -cyclobutyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- [0253] In some embodiments, at least one R^6 is $-NHC(=0)R^{14}$, R^{14} is -cyclopentyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- [0254] In some embodiments, at least one R^6 is $-NHC(=0)R^{14}$, R^{14} is -cyclohexyl optionally substituted with 1-2 (e.g., 1) R^{22} .

[0255] In some embodiments, at least one R^6 is $-NHC(=0)R^{14}$, R^{14} is $-CH_2$ carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{22} .

- [0256] In some embodiments, at least one R^6 is $-NHC(=O)R^{14}$, R^{14} is $-CH_2$ cyclopropyl optionally substituted with 1-2 (e.g., 1) R^{22} .
 - [0257] In some embodiments, at least one R^6 is $-NR^{15}R^{16}$.
- [0258] In some embodiments, at least one R^6 is $-NR^{15}R^{16}$, and R^{15} and R^{16} are independently selected from the group consisting of H and $-(C_{1-6}$ alkyl).
- [0259] In some embodiments, at least one R^6 is $-NR^{15}R^{16}$, and R^{15} and R^{16} are independently selected from the group consisting of H and $-(C_{1-5} \text{ alkyl})$.
- **[0260]** In some embodiments, at least one R^6 is $-NR^{15}R^{16}$, and R^{15} and R^{16} are independently selected from the group consisting of H and $-(C_{14}$ alkyl).
- [0261] In some embodiments, at least one R^6 is $-NR^{15}R^{16}$, and R^{15} and R^{16} are independently selected from the group consisting of H and $-(C_{1-3} \text{ alkyl})$.
- **[0262]** In some embodiments, at least one R^6 is $-NR^{15}R^{16}$, and R^{15} and R^{16} are independently selected from the group consisting of H and $-(C_{1-2}$ alkyl).
- [0263] In some embodiments, at least one R^6 is $-NR^{15}R^{16}$, and R^{15} and R^{16} are independently selected from the group consisting of H and methyl.
 - [0264] In some embodiments, at least one R^6 is $-NH_2$.
 - [0265] In some embodiments, R^6 is $-NH_2$.
 - [0266] In some embodiments, at least one R^6 is $-NHR^{16}$ and R^{16} is $-(C_{1-4}$ alkyl).
 - [0267] In some embodiments, at least one R^6 is $-NHR^{16}$ and R^{16} is $-(C_{1-3}$ alkyl).
 - **[0268]** In some embodiments, at least one R^6 is $-NHR^{16}$ and R^{16} is $-(C_{1-2}$ alkyl).
 - [0269] In some embodiments, R^6 is $-NHR^{16}$ and R^{16} is $-(C_{1-2}$ alkyl).
- **[0270]** In some embodiments, at least one R^6 is $-NHR^{16}$ and R^{16} is $-CH_2$ aryl optionally substituted with 1-2 (e.g., 1) R^{21} .
- **[0271]** In some embodiments, at least one R^6 is $-NHR^{16}$ and R^{16} is $-CH_2$ phenyl optionally substituted with 1-2 (e.g., 1) R^{21} .
- **[0272]** In some embodiments, at least one R^6 is $-NHR^{16}$ and R^{16} is $-CH_2$ carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- [0273] In some embodiments, at least one R^6 is $-NHR^{16}$ and R^{16} is $-CH_2$ cyclopropyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- [0274] In some embodiments, at least one R^6 is $-NHR^{16}$ and R^{16} is $-CH_2$ cyclobutyl optionally substituted with 1-2 (e.g., 1) R^{22} .

[0275] In some embodiments, at least one R^6 is $-NHR^{16}$ and R^{16} is $-CH_2$ cyclopentyl optionally substituted with 1-2 (e.g., 1) R^{22} .

- **[0276]** In some embodiments, at least one R^6 is $-NHR^{16}$ and R^{16} is $-CH_2$ cyclohexyl optionally substituted with 1-2 (e.g., 1) R^{22} .
 - [0277] In some embodiments, at least one R^6 is $-(C_{1-6}$ alkylene) $NR^{17}R^{18}$.
 - [0278] In some embodiments, at least one R^6 is $-(C_{1-5}$ alkylene) $NR^{17}R^{18}$.
 - [0279] In some embodiments, at least one R^6 is $-(C_{1-4}$ alkylene) $NR^{17}R^{18}$.
 - **[0280]** In some embodiments, at least one R^6 is $-(C_{1-3}$ alkylene) $NR^{17}R^{18}$.
 - [0281] In some embodiments, at least one R^6 is $-(C_{1-2} \text{ alkylene})NR^{17}R^{18}$.
 - [0282] In some embodiments, at least one R^6 is $-CH_2NR^{17}R^{18}$.
 - [0283] In some embodiments, R^6 is $-CH_2NR^{17}R^{18}$.
- [0284] In some embodiments, at least one R^6 is $-CH_2NR^{17}R^{18}$, and R^{17} and R^{18} are independently selected from the group consisting of H and $-(C_{1-6}$ alkyl).
- **[0285]** In some embodiments, at least one R^6 is $-CH_2NR^{17}R^{18}$, and R^{17} and R^{18} are independently selected from the group consisting of H and $-(C_{1-5}$ alkyl).
- **[0286]** In some embodiments, at least one R^6 is $-CH_2NR^{17}R^{18}$, and R^{17} and R^{18} are independently selected from the group consisting of H and $-(C_{1-4} \text{ alkyl})$.
- **[0287]** In some embodiments, at least one R^6 is $-CH_2NR^{17}R^{18}$, and R^{17} and R^{18} are independently selected from the group consisting of H and $-(C_{1-3}$ alkyl).
- **[0288]** In some embodiments, at least one R^6 is $-CH_2NR^{17}R^{18}$, and R^{17} and R^{18} are independently selected from the group consisting of H and $-(C_{1-2}$ alkyl).
- **[0289]** In some embodiments, at least one R^6 is $-CH_2NR^{17}R^{18}$, and R^{17} and R^{18} are independently selected from the group consisting of H and methyl.
- **[0290]** In some embodiments, R^6 is $-CH_2NR^{17}R^{18}$, and R^{17} and R^{18} are independently selected from the group consisting of H and methyl.
 - [0291] In some embodiments, at least one R^6 is $-CH_2NH_2$.
 - [0292] In some embodiments, R^6 is $-CH_2NH_2$.
 - [0293] In some embodiments, at least one R^6 is $-CH_2NMe_2$.
 - [0294] In some embodiments, R^6 is $-CH_2NMe_2$.
 - [0295] In some embodiments, at least one R^6 is $-CH_2NHR^{18}$ and R^{18} is $-(C_{1-4}$ alkyl).
 - [0296] In some embodiments, at least one R^6 is $-CH_2NHR^{18}$ and R^{18} is $-(C_{1-3}$ alkyl).
 - [0297] In some embodiments, at least one R^6 is $-CH_2NHR^{18}$ and R^{18} is $-(C_{1-2}$ alkyl).
 - [0298] In some embodiments, R^6 is $-CH_2NHR^{18}$ and R^{18} is $-(C_{1-2}$ alkyl).

[0299] In some embodiments, at least one R^6 is $-CH_2NHR^{18}$ and R^{18} is $-CH_2$ aryl optionally substituted with 1-2 (e.g., 1) R^{21} .

- **[0300]** In some embodiments, at least one R^6 is $-CH_2NHR^{18}$ and R^{18} is $-CH_2$ phenyl optionally substituted with 1-2 (e.g., 1) R^{21} .
- **[0301]** In some embodiments, R^6 is $-CH_2NHR^{18}$ and R^{18} is $-CH_2$ phenyl optionally substituted with 1-2 (e.g., 1) R^{21} .
- **[0302]** In some embodiments, at least one R^6 is $-CH_2NHR^{18}$ and R^{18} is $-CH_2$ carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- [0303] In some embodiments, at least one R^6 is $-CH_2NHR^{18}$ and R^{18} is $-CH_2$ cyclopropyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- **[0304]** In some embodiments, R^6 is $-CH_2NHR^{18}$ and R^{18} is $-CH_2$ cyclopropyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- [0305] In some embodiments, at least one R^6 is $-CH_2NHR^{18}$ and R^{18} is $-CH_2$ cyclobutyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- [0306] In some embodiments, R^6 is $-CH_2NHR^{18}$ and R^{18} is $-CH_2$ cyclobutyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- [0307] In some embodiments, at least one R^6 is $-CH_2NHR^{18}$ and R^{18} is $-CH_2$ cyclopentyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- [0308] In some embodiments, R^6 is $-CH_2NHR^{18}$ and R^{18} is $-CH_2$ cyclopentyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- [0309] In some embodiments, at least one R^6 is $-CH_2NHR^{18}$ and R^{18} is $-CH_2$ cyclohexyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- [0310] In some embodiments, R^6 is $-CH_2NHR^{18}$ and R^{18} is $-CH_2$ cyclohexyl optionally substituted with 1-2 (e.g., 1) R^{22} .
 - [0311] In some embodiments, at least one R^6 is $-OR^{24}$.
 - [0312] In some embodiments, at least one R^6 is -OH.
 - [0313] In some embodiments, R^6 is -OH.
 - [0314] In some embodiments, at least one R^6 is $-(C_{1-4}$ alkylene) OR^{24} .
 - [0315] In some embodiments, R^6 is $-(C_{1-4}$ alkylene) OR^{24} .
 - [0316] In some embodiments, R^6 is $-(C_{1-3}$ alkylene) OR^{24} .
 - [0317] In some embodiments, R^6 is $-(C_{1-2}$ alkylene) OR^{24} .
 - [0318] In some embodiments, R^6 is $-CH_2OR^{24}$.
 - [0319] In some embodiments, R⁶ is -CH₂OH.
 - [0320] In some embodiments, at least one R^6 is $-OR^{24}$ and R^{24} is $-(C_{1-3}$ alkyl).

- [0321] In some embodiments, at least one R^6 is $-OR^{24}$ and R^{24} is $-(C_{1-2}$ alkyl).
- [0322] In some embodiments, at least one R^6 is -OMe.
- [0323] In some embodiments, R^6 is -OMe.
- [0324] In some embodiments, at least one R^6 is $-OR^{24}$ and R^{24} is -heterocyclyl optionally substituted with 1-2 (e.g., 1) R^{23} .
- [0325] In some embodiments, R^6 is $-OR^{24}$ and R^{24} is -heterocyclyl optionally substituted with 1-2 (e.g., 1) R^{23} .
- [0326] In some embodiments, at least one R^6 is $-OR^{24}$ and R^{24} is -carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- [0327] In some embodiments, R^6 is $-OR^{24}$ and R^{24} is -carbocyclyl optionally substituted with 1-2 (e.g., 1) R^{22} .
- [0328] In some embodiments, at least one R^6 is $-OR^{24}$ and R^{24} is $-(C_{1-4}$ alkylene)heterocyclyl optionally substituted with 1-2 (e.g., 1) R^{23} .
- [0329] In some embodiments, at least one R^6 is $-OR^{24}$ and R^{24} is $-(CH_2CH_2)$ heterocyclyl optionally substituted with 1-2 (e.g., 1) R^{23} .
- [0330] In some embodiments, R^6 is $-OR^{24}$ and R^{24} is $-(CH_2CH_2)$ heterocyclyl optionally substituted with 1-2 (e.g., 1) R^{23} .
- [0331] In some embodiments, at least one R^6 is $-OR^{24}$ and R^{24} is $-(C_{1-4}$ alkylene)NR²⁵R²⁶ and R²⁵ and R²⁶ are independently $-(C_{1-4}$ alkyl).
- [0332] In some embodiments, at least one R^6 is $-OR^{24}$ and R^{24} is $-(CH_2CH_2)NR^{25}R^{26}$ and R^{25} and R^{26} are independently $-(C_{1-2}$ alkyl).
 - [0333] In some embodiments, at least one R^6 is $-OR^{24}$ and R^{24} is $-(CH_2CH_2)NMe_2$.
 - [0334] In some embodiments, R^6 is $-OR^{24}$ and R^{24} is $-(CH_2CH_2)NMe_2$.
- [0335] In some embodiments, at least one R^6 is $-OR^{24}$ and R^{24} is $-(C_{1-4}$ alkylene)aryl optionally substituted with 1-2 (e.g., 1) R^{21} , and each R^{21} is independently halide.
- [0336] In some embodiments, at least one R^6 is $-OR^{24}$ and R^{24} is $-(CH_2CH_2)$ phenyl optionally substituted with 1-2 (e.g., 1) R^{21} , and each R^{21} is independently halide.
- **[0337]** In some embodiments, R^6 is $-OR^{24}$ and R^{24} is $-(CH_2CH_2)$ phenyl optionally substituted with 1-2 (e.g., 1) R^{21} , and each R^{21} is independently halide.
- [0338] In some embodiments, at least one R^6 is $-OR^{24}$ and R^{24} is $-(CH_2)$ phenyl optionally substituted with 1-2 (e.g., 1) R^{21} , and each R^{21} is independently halide.
- **[0339]** In some embodiments, R^6 is $-OR^{24}$ and R^{24} is $-(CH_2)$ phenyl optionally substituted with 1-2 (e.g., 1) R^{21} , and each R^{21} is independently halide.

[0340] In some embodiments, each R^7 is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkenyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN.

[0341] In some embodiments, each R^7 is independently selected from the group consisting of methyl, F, Cl, $-CF_3$, and -CN.

- [0342] In some embodiments, at least one R^7 is $-(C_{1-4} \text{ alkyl})$.
- [0343] In some embodiments, at least one R^7 is $-(C_{1-3}$ alkyl).
- [0344] In some embodiments, at least one R^7 is $-(C_{1-2} \text{ alkyl})$.
- [0345] In some embodiments, at least one \mathbb{R}^7 is methyl.
- [0346] In some embodiments, at least one \mathbb{R}^7 is halide.
- [0347] In some embodiments, at least one \mathbb{R}^7 is F.

[0348] In some embodiments, each R^8 is independently selected from the group consisting of $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkenyl})$, $-(C_{2-6} \text{ alkynyl})$, halide, $-CF_3$, $-OCH_3$, -CN, and $-C(=O)R^{19}$.

[0349] In some embodiments, each R^8 is independently selected from the group consisting of methyl, F, Cl, $-CF_3$, $-OCH_3$, -CN, and -C(=O)Me.

- [0350] In some embodiments, at least one \mathbb{R}^8 is halide.
- [0351] In some embodiments, at least one R^8 is F.
- [0352] In some embodiments, at least one R^8 is $-(C_{1-4}$ alkyl).
- [0353] In some embodiments, at least one R^8 is $-(C_{1-3}$ alkyl).
- [0354] In some embodiments, at least one R^8 is $-(C_{1-2}$ alkyl).
- [0355] In some embodiments, at least one \mathbb{R}^8 is methyl.
- [0356] In some embodiments, R⁸ is methyl.
- [0357] In some embodiments, at least one R^8 is $-C(=O)(C_{1-3}$ alkyl).
- [0358] In some embodiments, at least one R^8 is -C(=O)Me.
- [0359] In some embodiments, R^8 is -C(=O)Me.

[0360] In some embodiments, each R^9 is independently selected from the group consisting of $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), $-(C_{2-6}$ alkynyl), halide, $-CF_3$, -CN, and $-OCH_3$.

[0361] In some embodiments, each R⁹ is independently selected from the group consisting of methyl, F, Cl, -CF₃, -CN, and -OCH₃.

[0362] In some embodiments, each R^{10} is independently selected from the group consisting of $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), $-(C_{2-6}$ alkynyl), halide, $-CF_3$, -CN, $-(C_{1-6}$ alkylene) $_pNHSO_2R^{19}$, $-(C_{2-6}$ alkenylene) $_pNHSO_2R^{19}$, $-(C_{2-6}$ alkynylene) $_pNHSO_2R^{19}$, $-NR^{15}(C_{1-6}$ alkylene) $_pNR^{15}R^{16}$, $-NR^{15}(C_{2-6}$ alkenylene) $_pNR^{15}R^{16}$, $-(C_{1-6}$ alkylene) $_pNR^{15}R^{16}$, $-(C_{2-6}$ alkenylene) $_pNR^{15}R^{16}$, and $-OR^{27}$.

[0363] In some embodiments, each R^{11} is independently selected from the group consisting of amino, $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkenyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN.

- [0364] In some embodiments, each R¹¹ is independently selected from the group consisting of amino, methyl, F, Cl, -CF₃, and -CN.
- [0365] In some embodiments, each R^{12} is independently selected from the group consisting of $-(C_{1-4}$ alkyl), $-(C_{2-4}$ alkenyl), $-(C_{2-4}$ alkynyl), halide, $-CF_3$, and -CN.
- [0366] In some embodiments, each R^{12} is independently selected from the group consisting of methyl, F, Cl, $-CF_3$, and -CN.
- [0367] In some embodiments, each R^{13} is independently selected from the group consisting of $-(C_{1-4}$ alkyl), $-(C_{2-4}$ alkenyl), $-(C_{2-4}$ alkynyl), halide, $-CF_3$, and -CN.
- [0368] In some embodiments, each R^{13} is independently selected from the group consisting of methyl, F, Cl, $-CF_3$, and -CN.
- [0369] In some embodiments, each R^{14} is independently selected from the group consisting of $-(C_{1\cdot9} \text{ alkyl})$, $-(C_{1\cdot4} \text{ haloalkyl})$, $-(C_{2\cdot9} \text{ alkenyl})$, $-(C_{2\cdot9} \text{ alkynyl})$, -heteroaryl optionally substituted with 1-4 (e.g., 1-3, 1-2, 1) R^{20} , -aryl optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) R^{21} , -Carbocyclyl optionally substituted with 1-12 (e.g., 1-11, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{22} , $-\text{CH}_2\text{carbocyclyl}$ optionally substituted with 1-12 (e.g., 1-11, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{22} , $-(C_{1\cdot4} \text{ alkylene})_p NR^{25}R^{26}$, $-(C_{2\cdot4} \text{ alkenylene})_p NR^{25}R^{26}$, $-(C_{2\cdot4} \text{ alkenylene})_p NR^{25}R^{26}$, $-(C_{2\cdot4} \text{ alkynylene})_p NR^{25}R^{26}$, -heterocyclyl optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{23} , and $-CH_2$ heterocyclyl optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{23} .
- [0370] In some embodiments, each R^{15} is independently selected from the group consisting of H, $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), and $-(C_{2-6}$ alkynyl).
- **[0371]** In some embodiments, each R^{16} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkenyl})$, $-(C_{2-6} \text{ alkynyl})$, $-CH_2$ aryl optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) R^{21} , and $-CH_2$ carbocyclyl optionally substituted with 1-12 (e.g., 1-11, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{22} .
- **[0372]** In some embodiments, each R^{17} is independently selected from the group consisting of H, $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), and $-(C_{2-6}$ alkynyl).
- **[0373]** In some embodiments, each R^{18} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkenyl})$, $-(C_{2-6} \text{ alkynyl})$, $-CH_2$ aryl optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) R^{21} and $-CH_2$ carbocyclyl optionally substituted with 1-12 (e.g., 1-11, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{22} .

[0374] In some embodiments, each R^{19} is independently selected from the group consisting of $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), and $-(C_{2-6}$ alkynyl).

- [0375] In some embodiments, each R^{20} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkenyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN.
- [0376] In some embodiments, each R^{20} is independently selected from the group consisting of methyl, F, Cl, $-CF_3$, and -CN.
- [0377] In some embodiments, each R^{21} is independently selected from the group consisting of $-(C_{1-4}$ alkyl), $-(C_{2-4}$ alkenyl), $-(C_{2-4}$ alkynyl), halide, $-CF_3$, and -CN.
- [0378] In some embodiments, each R^{21} is independently selected from the group consisting of methyl, F, Cl, $-CF_3$, and -CN.
- [0379] In some embodiments, each R^{22} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkenyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN.
- [0380] In some embodiments, each R^{22} is independently selected from the group consisting of methyl, F, Cl, $-CF_3$, and -CN.
- [0381] In some embodiments, each R^{23} is independently selected from the group consisting of $-(C_{1-4}$ alkyl), $-(C_{2-4}$ alkenyl), $-(C_{2-4}$ alkynyl), halide, $-CF_3$, and -CN.
- [0382] In some embodiments, each R^{23} is independently selected from the group consisting of methyl, F, Cl, $-CF_3$, and -CN.
- [0383] In some embodiments, R^{24} is selected from the group consisting of H, $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), $-(C_{2-6}$ alkynyl), $-(C_{1-4}$ alkylene)_pheterocyclyl optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{23} , $-(C_{2-4}$ alkenylene)_pheterocyclyl optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{23} , $-(C_{2-4}$ alkynylene)_pheterocyclyl optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{23} , $-(C_{1-4}$ alkylene)_pcarbocyclyl optionally substituted with 1-12 (e.g., 1-11, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{22} , $-(C_{2-4}$ alkenylene)_pcarbocyclyl optionally substituted with 1-12 (e.g., 1-11, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{22} , $-(C_{1-4}$ alkylene)_pcarbocyclyl optionally substituted with 1-12 (e.g., 1-11, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{22} , $-(C_{1-4}$ alkylene)_paryl optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) R^{21} , $-(C_{2-4}$ alkenylene)_paryl optionally substituted with 1-5 (e.g., 1-4, 1-3, 1-2, 1) R^{21} , $-(C_{1-6}$ alkylene)_pNR²⁵R²⁶, $-(C_{2-4}$ alkenylene)_pNR²⁵R²⁶, and $-(C_{2-4}$ alkynylene)_pNR²⁵R²⁶.
- [0384] In some embodiments, each R^{25} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkenyl})$, and $-(C_{2-6} \text{ alkynyl})$.

[0385] In some embodiments, each R^{26} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkenyl})$, and $-(C_{2-6} \text{ alkynyl})$.

[0386] In some embodiments, R^{27} is selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkenyl})$, $-(C_{2-6} \text{ alkynyl})$, $-(C_{1-4} \text{ alkylene})_p$ heterocyclyl optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{23} , $-(C_{2-4} \text{ alkenylene})_p$ heterocyclyl optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{23} , $-(C_{2-4} \text{ alkynylene})_p$ heterocyclyl optionally substituted with 1-10 (e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1) R^{23} , $-(C_{1-6} \text{ alkylene})_p NR^{25} R^{26}$, $-(C_{2-6} \text{ alkenylene})_p NR^{25} R^{26}$, and $-(C_{2-6} \text{ alkynylene})_p NR^{25} R^{26}$.

[0387] In some embodiments, each p is independently an integer of 0 or 1.

[0388] In some embodiments, p is 0.

[0389] In some embodiments, p is 1.

[0390] Illustrative compounds of Formula (I) are shown in Table 1.

Table 1.

1	O NH	2	NH N	3	NH ₂ NH N N N N N N N N N N N N N N N N N N
4	N N N N N N N N N N N N N N N N N N N	5	Z H Z ZH	6	7
7	N N N N N N N N N N N N N N N N N N N	8	NH NH N NH N N N N N N N N N N N N N N	9	NH NH NH NH
10	NH NH NH NH	11		12	NH N

13	N N N N N N N N N N N N N N N N N N N	14	E N N N N N N N N N N N N N N N N N N N	15	N N N N N N N N N N N N N N N N N N N
16	NH N N N N N N N N N N N N N N N N N N	17	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	18	E Z Z H
19	NH N N N N N N N N N N N N N N N N N N	20	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	21	NH Z H
22	NH N	23		24	HN N N N N N N N N N N N N N N N N N N
25	HN N N N N N N N N N N N N N N N N N N	26	E Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	27	Z H
28	E NH	29	F NH Z ZH	30	O NH NH N N N N N N N N N N N N N N N N
31	NH ₂ NH	32	E E E E E E E E E E E E E E E E E E E	33	N N N N N N N N N N N N N N N N N N N

34	HN NH NH	35	N N N N N N N N N N N N N N N N N N N	36	O NH NH NH NH H
37	O NH	38	O NH	39	O NH NH NH NH H
40	NH NH NH NH	41	F N NH N	42	THE PART OF THE PA
43	N N N N N N N N N N N N N N N N N N N	44	O NH NH NH N N N N N N N N N N N N N N N	45	O NH NH NH NH NH
46	N N N N N N N N N N N N N N N N N N N	47	O NH	48	O NH NH NH H
49	NH N	50	P NH	51	O NH
52	H N N N N N N N N N N N N N N N N N N N	53	HN N N N N N N N N N N N N N N N N N N	54	E E N N N N N N N N N N N N N N N N N N

55	F N NH NH NH N N N N N N N N N N N N N N	56	F NH NH NH	57	O NH NH NH NH NH
58	NH N	59	N N N N N N N N N N N N N N N N N N N	60	TE Z H
61	F NH	62	L L L L L L L L L L L L L L L L L L L	63	Z
64	O NH NH NH	65		66	O NH NH NH
67	P NH N NH N NH	68	NH NH NH	69	L Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
70	F N N N N N N N N N N N N N N N N N N N	71	N N N N N N N N N N N N N N N N N N N	72	
73	o NH NH NH NH NH H	74	H Z H	75	N H N N N N N N N N N N N N N N N N N N

76	O NH	77	O NH NH NH NH NH	78	O NH NH NH NH NH
79	NH NH NH	80	HN Z TH	81	HN N N N N N N N N N N N N N N N N N N
82	F N N N N N N N N N N N N N N N N N N N	83	E ZH	84	P NH
85	N N N N N N N N N N N N N N N N N N N	86	NH N	87	NH ₂
88	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	89	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	90	T T T T T T T T T T T T T T T T T T T
91	Z H Z H	92	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	93	NH Z H
94	O NH	95	N N N N N N N N N N N N N N N N N N N	96	NH N

97	N N N N N N N N N N N N N N N N N N N	98	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	99	N N N N N N N N N N N N N N N N N N N
100	NH N	101	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	102	HZ Z HZ Z HZ Z Z HZ Z Z Z Z Z Z Z Z Z Z
103	NH N	104	N N N N N N N N N N N N N N N N N N N	105	O NH NH NH
106	O NH NH NH	107		108	HN N N N N N N N N N N N N N N N N N N
109	HN N N N N N N N N N N N N N N N N N N	110	E E E E E E E E E E E E E E E E E E E	111	N N N N N N N N N N N N N N N N N N N
112	H A A A A A A A A A A A A A A A A A A A	113	Z H Z ZH	114	N N N N N N N N N N N N N N N N N N N
115	NH2 NH	116	H N N N N N N N N N N N N N N N N N N N	117	N N N N N N N N N N N N N N N N N N N

118	HN N N N N N N N N N N N N N N N N N N	119	T T T T T T T T T T T T T T T T T T T	120	O NH
121	O NH NH NH N N N N N N N N N N N N N N N	122	O NH	123	O NH
124	NH N	125	NH Z Z H	126	H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
127	N N N N N N N N N N N N N N N N N N N	128	O NH	129	O NH
130	H Z H Z H Z H Z H Z H Z H Z H Z H Z H Z	131	O NH N N N N N N N N N N N N N N N N N N	132	N N N N N N N N N N N N N N N N N N N
133	O NH	134	N N N N N N N N N N N N N N N N N N N	135	O NH
136	HN NH NH NH NH H	137	HN N N N N N N N N N N N N N N N N N N	138	E F N N N N N N N N N N N N N N N N N N

139	N N N N N N N N N N N N N N N N N N N	140	THE TOTAL PROPERTY OF THE PROP	141	O NH N N N N N N N N N N N N N N N N N N
142	O NH	143	NH ₂	144	N N N N N N N N N N N N N N N N N N N
145	N N N N N N N N N N N N N N N N N N N	146	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	147	N N N N N N N N N N N N N N N N N N N
148	O NH	149	N N N N N N N N N N N N N N N N N N N	150	O NH
151	N H N N N N N N N N N N N N N N N N N N	152	Z	153	
154	N N N N N N N N N N N N N N N N N N N	155	Z NH Z ZH	156	O NH NH NH NH H
157	O NH	158	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	159	N N N N N N N N N N N N N N N N N N N

160	O NH	161	O NH	162	O NH
163	Z H Z ZH	164	N N N N N N N N N N N N N N N N N N N	165	HN N N N N N N N N N N N N N N N N N N
166	N N N N N N N N N N N N N N N N N N N	167	T T T T T T T T T T T T T T T T T T T	168	N N N N N N N N N N N N N N N N N N N
169	NH N	170	NH NH N NH N NH N NH N NH NH NH NH NH NH	171	NH ₂ NH NH NH NH
172	N N N N N N N N N N N N N N N N N N N	173	N N N N N N N N N N N N N N N N N N N	174	HN N N N N N N N N N N N N N N N N N N
175	N N N N N N N N N N N N N N N N N N N	176	O NH	177	O NH NH NH
178	O NH	179	NH N	180	NH N

181	N N N N N N N N N N N N N N N N N N N	182	N N N N N N N N N N N N N N N N N N N	183	N N N N N N N N N N N N N N N N N N N
184	NH N	185	O NH NH NH NH	186	N N N N N N N N N N N N N N N N N N N
187	O NH NH N NH N NH NH NH NH NH NH NH NH NH	188	O NH	189	O NH
190	O NH	191	O NH N N N N N N N N N N N N N N N N N N	192	HN Z H
193	HN N N N N N N N N N N N N N N N N N N	194	F F N N N N N N N N N N N N N N N N N N	195	N N N N N N N N N N N N N N N N N N N
196	N N N N N N N N N N N N N N N N N N N	197	O NH	198	N N N N N N N N N N N N N N N N N N N
199	NH ₂ NH NH NH	200	N N N N N N N N N N N N N N N N N N N	201	N N N N N N N N N N N N N N N N N N N

202	HN N N N N N N N N N N N N N N N N N N	203	N N N N N N N N N N N N N N N N N N N	204	O NH
205	O NH	206	O NH	207	O NH
208	NH NH NH	209	N N N N N N N N N N N N N N N N N N N	210	H Z Z H Z Z H Z Z Z Z Z Z Z Z Z Z Z Z Z
211	N N N N N N N N N N N N N N N N N N N	212	O NH	213	O NH
214	N N N N N N N N N N N N N N N N N N N	215	O NH NH NH	216	O NH
217	O NH	218	O NH	219	O NH N N N N N N N N N N N N N N N N N N
220	HN N N N N N N N N N N N N N N N N N N	221	HN N N N N N N N N N N N N N N N N N N	222	F F N N N N N N N N N N N N N N N N N N

223	N N N N N N N N N N N N N N N N N N N	224	N N N N N N N N N N N N N N N N N N N	225	O NH
226	O NH	227	NH ₂	228	N N N N N N N N N N N N N N N N N N N
229	N N N N N N N N N N N N N N N N N N N	230	HN N N N N N N N N N N N N N N N N N N	231	
232	O NH NH NH NH N N N N N N N N N N N N N	233	O NH	234	N N N N N N N N N N N N N N N N N N N
235	NH N N N N N N N N N N N N N N N N N N	236	Z H Z Z H	237	N N N N N N N N N N N N N N N N N N N
238	N N N N N N N N N N N N N N N N N N N	239	N N N N N N N N N N N N N N N N N N N	240	N N N N N N N N N N N N N N N N N N N
241	O NH	242	N N N N N N N N N N N N N N N N N N N	243	O NH

244	O NH N N N N N N N N N N N N N N N N N N	245	O NH	246	O NH NH NH
247	NH N	248	HN N N N N N N N N N N N N N N N N N N	249	HN NH NH
250	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	251	N N N N N N N N N N N N N N N N N N N	252	T T T T T T T T T T T T T T T T T T T
253	NH Z Z H	254	O NH	255	NH ₂
256	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	257	N N N N N N N N N N N N N N N N N N N	258	HN N N N N N N N N N N N N N N N N N N
259	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	260	O NH NH NH NH NH	261	O NH NH NH NH H
262	H A A A A A A A A A A A A A A A A A A A	263	O NH	264	NH N

265	N N N N N N N N N N N N N N N N N N N	266	N N N N N N N N N N N N N N N N N N N	267	N N N N N N N N N N N N N N N N N N N
268	H	269	O NH NH N N H	270	HZ Z H
271	NH Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	272	NH N	273	O NH NH NH NH NH
274	O NH NH NH	275	O D D D D D D D D D D D D D D D D D D D	276	H N N N N N N N N N N N N N N N N N N N
277	P P P P P P P P P P P P P P P P P P P	278	P Z Z Z	279	N N N N N N N N N N N N N N N N N N N
280	N NH	281	S NH N N N N N N N N N N N N N N N N N N	282	O NH
283	NH ₂ NH	284	N N N N N N N N N N N N N N N N N N N	285	S NH

286	HN NH NH	287	S N N N N N N N N N N N N N N N N N N N	288	S N N N N N N N N N N N N N N N N N N N
289	O NH N N H	290	NH N N N N N N N N N N N N N N N N N N	291	O NH NH NA
292	NH NH NA NH	293	TE E E	294	S N N N N N N N N N N N N N N N N N N N
295	S N N N N N N N N N N N N N N N N N N N	296	NH N N N N N N N N N N N N N N N N N N	297	O NH NH NH NH H
298	S NH	299	O NH NH N N N N N N N N N N N N N N N N	300	S N N N N N N N N N N N N N N N N N N N
301	O NH NH NH NH NH NH	302	NH N	303	O NH NH NH
304	HN NH NH	305	HN N N N N N N N N N N N N N N N N N N	306	F F S N N N N N N N N N N N N N N N N N

307	S N N N N N N N N N N N N N N N N N N N	308	S N N N N N N N N N N N N N N N N N N N	309	O NH
310	N N N N N N N N N N N N N N N N N N N	311	NH ₂ NH NH H	312	N N N N N N N N N N N N N N N N N N N
313	Z H Z Z H	314	HN NH NH	315	Z H Z ZH
316	NH N NH N NH	317	NH N	318	O NH NH N N N N N N N N N N N N N N N N
319	NH N	320	NH NH NH	321	N N N N N N N N N N N N N N N N N N N
322	N N N N N N N N N N N N N N N N N N N	323	N N N N N N N N N N N N N N N N N N N	324	O NH
325	NH Z H	326	H H	327	N N N N N N N N N N N N N N N N N N N

328	O NH NH NH NH NH	329	O NH	330	O NH NH NH NH
331	O NH	332	HN N N N N N N N N N N N N N N N N N N	333	2 H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
334	F F N N N N N N N N N N N N N N N N N N	335	N N N N N N N N N N N N N N N N N N N	336	N N N N N N N N N N N N N N N N N N N
337	O NH NH NH N H	338	O NH	339	NH ₂ NH N N N N N N N N N N N N N N N N N N
340	S NH NN NN H	341	S NH NH NH NH	342	HN N N N N N N N N N N N N N N N N N N
343	S N N N N N N N N N N N N N N N N N N N	344	NH NH NH NH NH NH	345	O NH NH NH NH
346	O NH NH N N H	347	O NH NH NH NH H	348	NH N

349	S NH	350	S N N N N N N N N N N N N N N N N N N N	351	S N NH N
352	NH N	353	O NH NH NH NH	354	N N N N N N N N N N N N N N N N N N N
355	NH N	356	O NH NH NH NH N H	357	O NH NH NH NH NH NH
358	O NH	359	NH N NH N NH	360	HN Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
361	HN N N N N N N N N N N N N N N N N N N	362	F F S N H N N H	363	S N N N N N N N N N N N N N N N N N N N
364	S NH NH NH	365	O NH NH NH H	366	O NH
367	P S NH NH NH NH	368	F S NH	369	P N N N N N N N N N N N N N N N N N N N

370	HN F S NH NH NH NH NH	371	S S NH N N N N N N N N N N N N N N N N N	372	O NH NH NH
373	O NH NH N N N H	374	P S NH	375	O NH NH NH N H
376	NH N	377	N N N N N N N N N N N N N N N N N N N	378	N N N N N N N N N N N N N N N N N N N
379	N N N N N N N N N N N N N N N N N N N	380	O NH NH N NH	381	O NH NH NH N N N N N N N N N N N N N N N
382	E S H	383	O NH NH NH NH NH	384	O NH
385	S NH NH N NH	386	P S N N N N N N N N N N N N N N N N N N	387	O NH
388	N N N N N N N N N N N N N N N N N N N	389	HN S NH	390	F F S NH

391	P S NH NH NH N N N N N N N N N N N N N N	392	N N N N N N N N N N N N N N N N N N N	393	O NH NH NH NH NH H
394	O NH	395	NH ₂ NH	396	S NH
397	N N N N N N N N N N N N N N N N N N N	398	HN S N N N N N N N N N N N N N N N N N N	399	S N N N N N N N N N N N N N N N N N N N
400	N N N N N N N N N N N N N N N N N N N	401	O NH NH NH N H	402	O NH S NH
403	O NH NH NH N NH NH NH NH NH NH NH NH NH N	404	NH NH NH	405	S N N N N N N N N N N N N N N N N N N N
406	N N N N N N N N N N N N N N N N N N N	407	N S N N N N N N N N N N N N N N N N N N	408	NH N
409	O NH NH NH NH H	410	N N N N N N N N N N N N N N N N N N N	411	S NH

412	O NH S NH NH NH NH NH	413	O NH	414	O NH
415	O NH NH NH	416	HN S NH NH NH NH	417	HN S NH NH NH H
418	S N N N N N N N N N N N N N N N N N N N	419	N N N N N N N N N N N N N N N N N N N	420	S N N N N N N N N N N N N N N N N N N N
421	S NH	422	O NH	423	NH ₂ NH
424	O S N N N N N N N N N N N N N N N N N N	425	O S N N N N N N N N N N N N N N N N N N	426	O S HN N N N N N N N N N N N N N N N N N
427	O S Z Z H Z Z H	428	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	429	
430	S N N N N N N N N N N N N N N N N N N N	431	O NH	432	NH NH N N N N N N N N N N N N N N N N N

433	O S N N N N N N N N N N N N N N N N N N	434	O S N N N N N N N N N N N N N N N N N N	435	O Z Z H
436	S NH NH NH N NH	437	O NH NH NH NH	438	
439	o s NH	440	O NH NH NH	441	O NH NH NH NH NH
442	O NH	443	O NH	444	N H N N N N N N N N N N N N N N N N N N
445	S N N N N N N N N N N N N N N N N N N N	446	S NH	447	S N N N N N N N N N N N N N N N N N N N
448	O N N N N N N N N N N N N N N N N N N N	449	O NH F NH	450	HN N N N N N N N N N N N N N N N N N N

451	HA Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	452	HN N N N N N N N N N N N N N N N N N N	453	HN N N N N N N N N N N N N N N N N N N
454	HN PH PT	455	HN N N N N N N N N N N N N N N N N N N	456	HN N N N N N N N N N N N N N N N N N N
457	Z H Z Z H Z	458	HN N N N N N N N N N N N N N N N N N N	459	O NH F NH N N N N N N N N N N N N N N N N
460	NH F NH	461	HN N N N N N N N N N N N N N N N N N N	462	HN N N N N N N N N N N N N N N N N N N
463	HN N N N N N N N N N N N N N N N N N N	464	O NH F NH NH N N N N N N N N N N N N N N	465	O NH F NH NH NH NH

466	HN N N N N N N N N N N N N N N N N N N	467	HN N N N N N N N N N N N N N N N N N N	468	O NH F NH
469	O NH F NH	470	O NH F NH	471	O NH F N N N N N N N N N N N N N N N N N
472	HN NH NH NH NH NH	473	HN F NH	474	HN N N N N N N N N N N N N N N N N N N
475	HN NH N	476	HN NH NA NH	477	HZ O N N N N N N N N N N N N N N N N N N
478	H S O N N N N N N N N N N N N N N N N N N	479	H ₂ N F N H	480	HN O NH
481	HZ O Z ZH	482	HZ O ZH	483	D Z H Z H

484	HN S O NH F NH	485	O NH F NH	486	O NH F NH
487	TE O Z Z I	488	H S O N N N N N N N N N N N N N N N N N N	489	The second secon
490	N H N N N N N N N N N N N N N N N N N N	491	H S O N N N N N N N N N N N N N N N N N N	492	NH F NH NH
493	THE STATE OF THE S	494	H S O Z H Z H Z H	495	H S O NH P NH
496	DE SO SE	497	D NH F NH N NH	498	HA O NH A NH
499	O NH F NH NH	500	HN F N N H	501	HN F NH NH NH NH

502	F F NH NH NH NH	503	E Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	504	F NH
505	HN NH NH	506	HN NH N NH N NH N NH NH NH NH NH NH NH N	507	HN N N N N N N N N N N N N N N N N N N
508	N N N N N N N N N N N N N N N N N N N	509		510	NH ₂
511	N N N N N N N N N N N N N N N N N N N	512	H N N N N N N N N N N N N N N N N N N N	513	HN O NH NH NH
514	N NH	515	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	516	N N N N N N N N N N N N N N N N N N N
517	OH NH	518	2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	519	O NH NH NH NH NH
520	N N N N N N N N N N N N N N N N N N N	521	HN NH	522	HN NH N

	. ^		- ^		~ 7
523	N N N N N N N N N N N N N N N N N N N	524	N N N N N N N N N N N N N N N N N N N	525	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
526	H ₂ N N N N N N N N N N N N N N N N N N N	527	F N N N N N N N N N N N N N N N N N N N	528	HN NH NH NH
529	E NH ZZI	530	N N N N N N N N N N N N N N N N N N N	531	12
532	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	533	OH NH	534	
535	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	536	N N N N N N N N N N N N N N N N N N N	537	HZ H
538	H Z ZI	539	HN NH N N N N N N N N N N N N N N N N N	540	E Z H
541	T T T T T T T T T T T T T T T T T T T	542	NH ₂ F N	543	L Z Z H

	, F				-
544	HN O NH NH	545	HN O NH NH NH	546	F N N N N N N N N N N N N N N N N N N N
547	F N N N N N N N N N N N N N N N N N N N	548	2 H 2 Z H	549	OH NH NH NH NH
550	N N N N N N N N N N N N N N N N N N N	551	O NH NH NH NH NH NH	552	N NH
553	HN NH NH	554	HN NH NH	555	HN N N N N N N N N N N N N N N N N N N
556	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	557		558	NH ₂ NH
559		560	HAZ Z Z H	561	HN O NH
562	N N N N N N N N N N N N N N N N N N N	563	N N N N N N N N N N N N N N N N N N N	564	HZ Z H

	,N_		.N		
565	OH NH	566	NH Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	567	O NH NH NH
568	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	569	HZ Z HZ Z H	570	HN NH N
571	H Z Z H	572	HAZ THE TANK	573	N N N N N N N N N N N N N N N N N N N
574	NH ₂ N N N N N N N N N N N N N N N N N N N	575	TT Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	576	HN N N N N N N N N N N N N N N N N N N
577	HN O NH	578	N N N N N N N N N N N N N N N N N N N	579	THE STATE OF THE S
580	2 H 2 Z 2 Z 2 Z 2 Z 2 Z 2 Z 2 Z 2 Z 2 Z	581	OH Z Z H	582	N N N N N N N N N N N N N N N N N N N
583	O NH	584	N N N N N N N N N N N N N N N N N N N	585	HN NH

586	HN NH NH	587	HA A A A A A A A A A A A A A A A A A A	588	N N N N N N N N N N N N N N N N N N N
589	N N N N N N N N N N N N N N N N N N N	590	NH2	591	N N N N N N N N N N N N N N N N N N N
592	HN N N N N N N N N N N N N N N N N N N	593	HN NH Z ZH	594	N N N N N N N N N N N N N N N N N N N
595	N N N N N N N N N N N N N N N N N N N	596	2 H Z Z H	597	OH NH
598	N N N N N N N N N N N N N N N N N N N	599	ZH ZH ZH	600	T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
601	HN N N N N N N N N N N N N N N N N N N	602	HN Z Z Z Z	603	HZ Z H
604	N N N N N N N N N N N N N N N N N N N	605	N NH	606	NH ₂

607	N N N N N N N N N N N N N N N N N N N	608	HN N N N N N N N N N N N N N N N N N N	609	HN O NH
610	N N N N N N N N N N N N N N N N N N N	611	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	612	N N N N N N N N N N N N N N N N N N N
613	OH Z ZH	614		615	O NH Z Z Z
616	N N N N N N N N N N N N N N N N N N N	617	HA Z Z H	618	HN N N N N N N N N N N N N N N N N N N
619	HN N N N N N N N N N N N N N N N N N N	620	N N N N N N N N N N N N N N N N N N N	621	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
622	NH ₂ N N N N N N N N N N N N N N N N N N N	623	N H N N N N N N N N N N N N N N N N N N	624	HN N N N N N N N N N N N N N N N N N N
625	HN O NH NH NH NH NH NH	626	N N N N N N N N N N N N N N N N N N N	627	N N N N N N N N N N N N N N N N N N N

628	N N N N N N N N N N N N N N N N N N N	629	OH NH NH NT NH NT NH NT NH NT NH NT NH	630	N N N N N N N N N N N N N N N N N N N
631	O NH	632	N N N N N N N N N N N N N N N N N N N	633	HN N N N N N N N N N N N N N N N N N N
634	HN NH N	635	HN N N N N N N N N N N N N N N N N N N	636	N N N N N N N N N N N N N N N N N N N
637	N N N N N N N N N N N N N N N N N N N	638	H ₂ N N N N N N N N N N N N N N N N N N N	639	The state of the s
640	HN N N N N N N N N N N N N N N N N N N	641	HN N N N N N N N N N N N N N N N N N N	642	
643	N N N N N N N N N N N N N N N N N N N	644	N N N N N N N N N N N N N N N N N N N	645	OH N N N N N N N N N N N N N N N N N N N
646	N N N N N N N N N N N N N N N N N N N	647	NH N	648	T Z Z I

649	HN NH	650	HN	651	HN NH N
652	H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	653	N N N N N N N N N N N N N N N N N N N	654	H ₂ N
655	O NH	656	HAZ H	657	HN O NH NH NH NH
658	N N N N N N N N N N N N N N N N N N N	659	N N N N N N N N N N N N N N N N N N N	660	O N N N N N N N N N N N N N N N N N N N
661	OH NH NH	662	N N N N N N N N N N N N N N N N N N N	663	O NH
664	HAN THE PART OF TH	665	HN NH	666	HN NH
667	HN NH NH NH NH NH	668	S NH	669	N N N N N N N N N N N N N N N N N N N

670	NH ₂ S NH	671	S N N N H	672	HN S N N N N N N N N N N N N N N N N N N
673	HN O S NH NH NH NH N N N N N N N N N N N N N	674	N N N N N N N N N N N N N N N N N N N	675	N N N N N N N N N N N N N N N N N N N
676	S NH NH	677	OH NH	678	S NH NH NH
679	O S NH NH NH NH NH NH	680	S N N N N N N N N N N N N N N N N N N N	681	HN NH NH
682	HN NH	683	HN N N N N N N N N N N N N N N N N N N	684	N N N N N N N N N N N N N N N N N N N
685	N N N N N N N N N N N N N N N N N N N	686	NH ₂ N N N N N N N N N N N N N N N N N N N	687	H Z Z H Z Z H
688	HN O NH NH NH NH	689	HN O O NH NH NH NH NH	690	N N N N N N N N N N N N N N N N N N N

691	N O N N N N N N N N N N N N N N N N N N	692	N N N N N N N N N N N N N N N N N N N	693	OH NH
694	N N N N N N N N N N N N N N N N N N N	695	O NH N N N N N N N N N N N N N N N N N N	696	NH NA
697	S N N N N N N N N N N N N N N N N N N N	698	S N N N N N N N N N N N N N N N N N N N	699	HN N N N N N N N N N N N N N N N N N N
700	N N N N N N N N N N N N N N N N N N N	701	N N N N N N N N N N N N N N N N N N N	702	NH ₂ S N N N N N N N N N N N N N N N N N N
703	S N N N N N N N N N N N N N N N N N N N	704	HN N N N N N N N N N N N N N N N N N N	705	HN O NH
706	S N N N N N N N N N N N N N N N N N N N	707	S N N N N N N N N N N N N N N N N N N N	708	S N N N N N N N N N N N N N N N N N N N
709	0 0 2 2 2 2 2 2 2 3 3 4	710	S N N N N N N N N N N N N N N N N N N N	711	O NH

712	S Z Z Z H	713	HN NH	714	F S N N N N N N N N N N N N N N N N N N
715	HZ Z H	716	0 H Z Z T	717	S N N N N N N N N N N N N N N N N N N N
718	NH ₂ S NH NH NH	719	2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 2	720	F S N N N N N N N N N N N N N N N N N N
721	HN O NH NH NH N N N N N N N N N N N N N	722	W Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	723	F S NH NH Z NH
724	S N N N N N N N N N N N N N N N N N N N	725	D Z Z I	726	F S N N N N N N N N N N N N N N N N N N
727	S N N N N N N N N N N N N N N N N N N N	728	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	729	HN NH NH

730	HN NH	731	HN N N N N N N N N N N N N N N N N N N	732	S N N NH NH N N N N N N N N N N N N N N
733	N NH NH	734	2 H 2 Z Z I	735	S N N N N N N N N N N N N N N N N N N N
736	HN NH NH NH NH NH	737	NH N NH N NH	738	S N N N N N N N N N N N N N N N N N N N
739	S N N N N N N N N N N N N N N N N N N N	740	2 ± 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =	741	OH NH NH
742	ZH D ZH	743	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	744	S N N N N N N N N N N N N N N N N N N N
745	S N N N N N N N N N N N N N N N N N N N	746	O N N N N N N N N N N N N N N N N N N N	747	S N N N N N N N N N N N N N N N N N N N

748	O S N N N N N N N N N N N N N N N N N N	749	O Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	750	H ₂ N N N N N N N N N N N N N N N N N N N
751	O NH	752	N N N N N N N N N N N N N N N N N N N	753	HN O NH NH N NH
754	S N N N N N N N N N N N N N N N N N N N	755	N N N N N N N N N N N N N N N N N N N	756	O Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
757	OH NH NH NH NH	758	S NH Z ZH	759	O NH
760	O N N N N N N N N N N N N N N N N N N N	761	O H N N N N N N N N N N N N N N N N N N	762	O S O N N N N N N N N N N N N N N N N N

763	O D H Z Z H	764	O T T T T T T T T T T T T T T T T T T T	765	O D D D D D D D D D D D D D D D D D D D
766	2 H 2 Z H 2	767	2 H 2 ZH	768	HZ H Z ZH
769	O S O HN N N N N N N N N N N N N N N N N N	770	O W H Z ZH	771	O N H N N N N N N N N N N N N N N N N N
772	2 H Z ZH	773	O S H S T H	774	O SI HIN Z H
775	O D H P Z H	776	0 % H Z Z H	777	NH N

778	NH N	779	HZ Z HZ	780	Z H Z Z H Z Z H Z Z H Z Z H Z Z H Z Z H Z Z H Z Z H Z Z H Z Z H Z Z Z H Z Z Z H Z
781	NH N	782	NH NH Z II	783	NH N
784	HN NH NH N NH N NH	785	HN NH F ZH	786	N N N N N N N N N N N N N N N N N N N
787	NH N N N N N N N N N N N N N N N N N N	788	2 H 2 Z I	789	OH F NH N N N N N N N N N N N N N N N N N
790	NH N	791	NH F NH Z H	792	NH NH N N N N N N N N N N N N N N N N N

793	O NH F NH	794	N N N N N N N N N N N N N N N N N N N	795	H ₂ N F NH NH NH NH NH NH
796	N N N N N N N N N N N N N N N N N N N	797	N N N N N N N N N N N N N N N N N N N	798	HN N N N N N N N N N N N N N N N N N N
799	N N N N N N N N N N N N N N N N N N N	800	O NH F NH	801	NH F NH
802	O NH F NH NH NH NH NH	803	O NH F NH	804	NH F NH
805	N N N N N N N N N N N N N N N N N N N	806	N N N N N N N N N N N N N N N N N N N	807	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

808	NH F NH NZ H	809	NH F NH	810	O NH F N N N N N N N N N N N N N N N N N
811	NH F NH	812	NH F Z ZH	813	NH F NH NH
814	NH F NH	815	N N N N N N N N N N N N N N N N N N N	816	HN F N N N N N N N N N N N N N N N N N N
817	E F N N N N N N N N N N N N N N N N N N	818	THE	819	Z Z Z H
820	HN NH	821	N N N N N N N N N N N N N N N N N N N	822	N N N N N N N N N N N N N N N N N N N

823	N N N N N N N N N N N N N N N N N N N	824	N N N N N N N N N N N N N N N N N N N	825	NH ₂ N F N N N N N N N N N N N N N N N N N N
826	N N N N N N N N N N N N N N N N N N N	827	HN P NH P	828	HN O NH F NH NH
829	N N N N N N N N N N N N N N N N N N N	830	N N N N N N N N N N N N N N N N N N N	831	N N N N N N N N N N N N N N N N N N N
832	OH F NH	833	N N N N N N N N N N N N N N N N N N N	834	O NH F NH
835	N N N N N N N N N N N N N N N N N N N	836	N N N N N N N N N N N N N N N N N N N	837	O NH F NH

838	O NH F NH	839	H ₂ N F N N N N N N N N N N N N N N N N N N	840	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
841	N N N N N N N N N N N N N N N N N N N	842	HN N N N N N N N N N N N N N N N N N N	843	Z H Z H Z H Z H Z H
844	N N N N N N N N N N N N N N N N N N N	845	O NH F NH	846	N N N N N N N N N N N N N N N N N N N
847	N H N N N N N N N N N N N N N N N N N N	848	NH F NH	849	N N N N N N N N N N N N N N N N N N N
850	N N N N N N N N N N N N N N N N N N N	851	N N N N N N N N N N N N N N N N N N N	852	NH F NH

853	O NH F NH NH NH NH NH	854	O NH F NH	855	O NH F NH
856	O NH F NH N NH N NH N NH N NH N NH N NH	857	Z T T T T T T T T T T T T T T T T T T T	858	O NH F NH
859	N N N N N N N N N N N N N N N N N N N	860	N N N N N N N N N N N N N N N N N N N	861	E E Z Z H Z Z H
862	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	863	Z H Z Z H	864	HN PH
865	HN NH NH NH NH NH	866	N N N N N N N N N N N N N N N N N N N	867	N N N N N N N N N N N N N N N N N N N

868		869	NH ₂ NH ₂ N NH N NH N NH	870	D D D D D D D D D D D D D D D D D D D
871	HN OF NH NH	872	HN O NH F NH NH NH	873	N N N N N N N N N N N N N N N N N N N
874	N N N N N N N N N N N N N N N N N N N	875	N N N N N N N N N N N N N N N N N N N	876	OH F NH
877	N N N N N N N N N N N N N N N N N N N	878	O NH F NH NH NH NH	879	N N N N N N N N N N N N N N N N N N N
880	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	881	HO NH NH NH NY H	882	HO NH F NH NH

883	H ₂ N F NH NH	884	HO NH	885	HO N N N N N N N N N N N N N N N N N N N
886	HO N N N N N N N N N N N N N N N N N N N	887	HO N N N N N N N N N N N N N N N N N N N	888	HO NH F NH NH
889	HO NH F NH NH N N N N N N N N N N N N N N	890	HO NH F NH N N N N N N N N N N N N N N N N	891	HO NH F NH
892	HO N N N N N N N N N N N N N N N N N N N	893	HO N N N N N N N N N N N N N N N N N N N	894	HO N N N N N N N N N N N N N N N N N N N
895	HO N N N N N N N N N N N N N N N N N N N	896	HO NH F NH	897	HO NH F NH
898	O NH F NH NH H	899	HO N N N N N N N N N N N N N N N N N N N	900	HO NH

901	HO NH	902	HO NH	903	HN F NH NH NH NH
904	P	905	P	906	HO N N N N N N N N N N N N N N N N N N N
907	HO NH	908	HO NH	909	HO NH
910	P ZH	911	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	912	HO N N N N N N N N N N N N N N N N N N N
913	HO NH	914	HO NEW YORK THE TENT OF THE TE	915	HO N N N N N N N N N N N N N N N N N N N
916	HO NH F NH N NH	917	HO NH NH NZH	918	HO N N N N N N N N N N N N N N N N N N N

919	HO N N N N N N N N N N N N N N N N N N N	920	OH F NH NH N N N N N N N N N N N N N N N	921	HO F NH NH NH NH
922	HO NH F NH NH NH NH	923	HZZH NHZZH	924	H Z Z H
925	O NH F NH	926	MeO NH P NH	927	MeO N N N N N N N N N
928	MeO N N N N N N N N N N N N N N N N N N N	929	MeO N N N N N N N N N N N N N N N N N N N	930	MeO HN F NH
931	MeO N N N N N N N N N N N N N N N N N N N	932	MeO NH F NH NH NH	933	MeO NH F NH
934	MeO O NH F NH	935	MeO ONH F NH NH NH NH NH	936	MeO NH F NH NH

	MeQ				MeQ
937	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	938	MeO N N N N N N N N N N N N N N N N N N N	939	N F NH NH
940	MeO NH F NH NH H	941	O NH F NH NH	942	O NH F NH NH NH H
943	MeO NH NH N ZH	944	MeO O NH F NH NH	945	MeO NH F NH
946	MeO NH F NH	947	MeO HN F N N N N N N N N N N N N	948	MeO HN F NH
949	Me P P P P P P P P P P P P P P P P P P P	950	MeO N N N N N N N N N N N N N N N N N N N	951	MeO N N N N N N N N N N N N N N N N N N N
952	MeO F HN N N H	953	MeO F HN N N H	954	MeO F HN N N H

955	MeO N N N N N N	956	MeO N N N N N N N N N N N N N N N N N N N	957	MeO NH ₂ N F N NH N NH
958	MeO N N N N N N N N N N N N N N N N N N N	959	MeO N N N N N N N N N N N N N N N N N N N	960	HN O NH NH NH
961	MeO N N N N N N N N N N N N N N N N N N N	962	MeO N N N N N N N N N N N N N N N N N N N	963	MeO N N N N N N N N N N N N N N N N N N N
	MeO		MeQ		MeQ
964	OH F NH	965	O F NH	966	O NH F NH
964	N NH	965	O F NH	966	O NH F NH

973	NH NH NH	974	N N N N N N N N N N N N N N N N N N N	975	O NH NH NH NH
976	O NH	977	N NH N N N N N N N N N N N N N N N N N	978	NH N
979	O NH NH NH NH NH	980	O NH NH N N N N N N N N N N N N N N N N	981	S NH
982	NH NH NH NH	983	NH N	984	O NH
985	O O O N N N N N N N N N N N N N N N N N	986	NH N	987	NH F Z ZH
988	NH N	989	HO NH F NH	990	MeO NH F NH NH NH NH NH NH NH NH NH NH

Administration and Pharmaceutical Compositions

[0391] Some embodiments include pharmaceutical compositions comprising: (a) a therapeutically effective amount of a compound provided herein, or its corresponding enantiomer, diastereoisomer or tautomer, or pharmaceutically acceptable salt; and (b) a pharmaceutically acceptable carrier.

[0392] The compounds provided herein may also be useful in combination (administered together or sequentially) with other known agents.

[0393] Non-limiting examples of diseases which can be treated with a combination of a compound of Formula (I) and other known agents are colorectal cancer, ovarian cancer, retinitis pigmentosa, macular degeneration, diabetic retinopathy, idiopathic pulmonary fibrosis/pulmonary fibrosis, and osteoarthritis.

[0394] In some embodiments, colorectal cancer can be treated with a combination of a compound of Formula (I) and one or more of the following drugs: 5-Fluorouracil (5-FU), which can be administered with the vitamin-like drug leucovorin (also called folinic acid); capecitabine (XELODA®), irinotecan (CAMPOSTAR®), oxaliplatin (ELOXATIN®). Examples of combinations of these drugs which could be further combined with a compound of Formula (I) are FOLFOX (5-FU, leucovorin, and oxaliplatin), FOLFIRI (5-FU, leucovorin, and irinotecan), FOLFOXIRI (leucovorin, 5-FU, oxaliplatin, and irinotecan) and CapeOx (Capecitabine and oxaliplatin). For rectal cancer, chemo with 5-FU or capecitabine combined with radiation may be given before surgery (neoadjuvant treatment).

[0395] In some embodiments, ovarian cancer can be treated with a combination of a compound of Formula (I) and one or more of the following drugs: Topotecan, Liposomal doxorubicin (DOXIL®), Gemcitabine (GEMZAR®), Cyclophosphamide (CYTOXAN®), Vinorelbine (NAVELBINE®), Ifosfamide (IFEX®), Etoposide (VP-16), Altretamine (HEXALEN®), Capecitabine (XELODA®), Irinotecan (CPT-11, CAMPTOSAR®), Melphalan, Pemetrexed (ALIMTA®) and Albumin bound paclitaxel (nab-paclitaxel, ABRAXANE®). Examples of combinations of these drugs which could be further combined with a compound of Formula (I) are TIP (paclitaxel [Taxol], ifosfamide, and cisplatin), VeIP (vinblastine, ifosfamide, and cisplatin) and VIP (etoposide [VP-16], ifosfamide, and cisplatin).

[0396] In some embodiments, a compound of Formula (I) can be used to treat cancer in combination with any of the following methods: (a) Hormone therapy such as aromatase inhibitors, LHRH [luteinizing hormone-releasing hormone] analogs and inhibitors, and others; (b) Ablation or embolization procedures such as radiofrequency ablation (RFA), ethanol (alcohol) ablation, microwave thermotherapy and cryosurgery (cryotherapy); (c) Chemotherapy using

alkylating agents such as cisplatin and carboplatin, oxaliplatin, mechlorethamine, cyclophosphamide, chlorambucil and ifosfamide; (d) Chemotherapy using anti-metabolites such as azathioprine and mercaptopurine; (e) Chemotherapy using plant alkaloids and terpenoids such as vinca alkaloids (i.e. Vincristine, Vinblastine, Vinorelbine and Vindesine) and taxanes; (f) Chemotherapy using podophyllotoxin, etoposide, teniposide and docetaxel; (g) Chemotherapy using topoisomerase inhibitors such as irinotecan, topotecan, amsacrine, etoposide, etoposide phosphate, and teniposide; (h) Chemotherapy using cytotoxic antibiotics such as actinomycin, anthracyclines, doxorubicin, daunorubicin, valrubicin, idarubicin, epirubicin, bleomycin, plicamycin and mitomycin; (i) Chemotherapy using tyrosine-kinase inhibitors such as Imatinib mesylate (GLEEVEC®, also known as STI-571), Gefitinib (Iressa, also known as ZD1839), Erlotinib (marketed as TARCEVA®), Bortezomib (VELCADE®), tamoxifen, tofacitinib, crizotinib, Bcl-2 inhibitors (e.g. obatoclax in clinical trials, ABT-263, and Gossypol), PARP inhibitors (e.g. Iniparib, Olaparib in clinical trials), PI3K inhibitors (e.g. perifosine in a phase III trial), VEGF Receptor 2 inhibitors (e.g. Apatinib), AN-152, (AEZS-108), Braf inhibitors (e.g. vemurafenib, dabrafenib and LGX818), MEK inhibitors (e.g. trametinib and MEK162), CDK inhibitors, (e.g. PD-0332991), salinomycin and Sorafenib; (j) Chemotherapy using monoclonal antibodies such as Rituximab (marketed as MABTHERA® or RITUXAN®), Trastuzumab (Herceptin also known as ErbB2), Cetuximab (marketed as ERBITUX®), and Bevacizumab (marketed as AVASTIN®); and (k) radiation therapy.

[0397] In some embodiments, diabetic retinopathy can be treated with a combination of a compound of Formula (I) and one or more of the following natural supplements: Bilberry, Butcher's broom, Ginkgo, Grape seed extract, and Pycnogenol (Pine bark).

[0398] In some embodiments, idiopathic pulmonary fibrosis/pulmonary fibrosis can be treated with a combination of a compound of Formula (I) and one or more of the following drugs: pirfenidone (pirfenidone was approved for use in 2011 in Europe under the brand name Esbriet®), prednisone, azathioprine, N-acetylcysteine, interferon-γ 1b, bosentan (bosentan is currently being studied in patients with IPF, [*The American Journal of Respiratory and Critical Care Medicine* (2011), 184(1), 92-9]), Nintedanib (BIBF 1120 and Vargatef), QAX576 [*British Journal of Pharmacology* (2011), 163(1), 141–172], and anti-inflammatory agents such as corticosteroids.

[0399] In some embodiments, a compound of Formula (I) can be used to treat idiopathic pulmonary fibrosis/pulmonary fibrosis in combination with any of the following methods: oxygen therapy, pulmonary rehabilitation and surgery.

[0400] In some embodiments, a compound of Formula (I) can be used to treat osteoarthritis in combination with any of the following methods: (a) Nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, naproxen, aspirin and acetaminophen; (b) physical therapy; (c) injections of corticosteroid medications; (d) injections of hyaluronic acid derivatives (e.g. Hyalgan, Synvisc); (e) narcotics, like codeine; (f) in combination with braces and/or shoe inserts or any device that can immobilize or support your joint to help you keep pressure off it (e.g., splints, braces, shoe inserts or other medical devices); (g) realigning bones (osteotomy); (h) joint replacement (arthroplasty); and (i) in combination with a chronic pain class.

[0401] In some embodiments, macular degeneration can be treated with a combination of a compound of Formula (I) and one or more of the following drugs: Bevacizumab (Avastin®), Ranibizumab (Lucentis®), Pegaptanib (Macugen), Aflibercept (Eylea®), verteporfin (Visudyne®) in combination with photodynamic therapy (PDT) or with any of the following methods: (a) in combination with laser to destroy abnormal blood vessels (photocoagulation); and (b) in combination with increased vitamin intake of antioxidant vitamins and zinc.

[0402] In some embodiments, retinitis pigmentosa can be treated with a combination of a compound of Formula (I) and one or more of the following drugs: UF-021 (OcusevaTM), vitamin A palmitate and pikachurin or with any of the following methods: (a) with the Argus[®] II retinal implant; and (b) with stem cell and/or gene therapy.

[0403] Administration of the compounds disclosed herein or the pharmaceutically acceptable salts thereof can be via any of the accepted modes of administration, including, but not limited to, orally, subcutaneously, intravenously, intranasally, topically, transdermally, intraperitoneally, intramuscularly, intrapulmonarilly, vaginally, rectally, ontologically, neurootologically, intraocularly, subconjuctivally, via anterior eye chamber injection, intravitreally, intraperitoneally, intrathecally, intracystically, intrapleurally, via wound irrigation, intrabuccally, intra-abdominally, intra-articularly, intra-aurally, intrabronchially, intracapsularly, intrameningeally, via inhalation, via endotracheal or endobronchial instillation, via direct instillation into pulmonary cavities, intraspinally, intrasynovially, intrathoracically, via thoracostomy irrigation, epidurally, intratympanically, intracisternally, intravascularly, intraventricularly, intraosseously, via irrigation of infected bone, or via application as part of any admixture with a prosthetic devices. In some embodiments, the administration method includes oral or parenteral administration.

[0404] Compounds provided herein intended for pharmaceutical use may be administered as crystalline or amorphous products. Pharmaceutically acceptable compositions may include solid, semi-solid, liquid, solutions, colloidal, liposomes, emulsions, suspensions,

complexes, coacervates and aerosols. Dosage forms, such as, *e.g.*, tablets, capsules, powders, liquids, suspensions, suppositories, aerosols, implants, controlled release or the like. They may be obtained, for example, as solid plugs, powders, or films by methods such as precipitation, crystallization, milling, grinding, supercritical fluid processing, coacervation, complex coacervation, encapsulation, emulsification, complexation, freeze drying, spray drying, or evaporative drying. Microwave or radio frequency drying may be used for this purpose. The compounds can also be administered in sustained or controlled release dosage forms, including depot injections, osmotic pumps, pills (tablets and or capsules), transdermal (including electrotransport) patches, implants and the like, for prolonged and/or timed, pulsed administration at a predetermined rate.

[0405] The compounds can be administered either alone or in combination with a conventional pharmaceutical carrier, excipient or the like. Pharmaceutically acceptable excipients include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, selfemulsifying drug delivery systems (SEDDS) such as d-α-tocopherol polyethylene glycol 1000 succinate, surfactants used in pharmaceutical dosage forms such as Tweens, poloxamers or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, tris, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium-chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethyl cellulose, polyacrylates, waxes, polyethylenepolyoxypropylene-block polymers, and wool fat. Cyclodextrins such as α -, β , and γ -cyclodextrin, or chemically modified derivatives such as hydroxyalkylcyclodextrins, including 2- and 3hydroxypropyl-β-cyclodextrins, or other solubilized derivatives can also be used to enhance delivery of compounds described herein. Dosage forms or compositions containing a compound as described herein in the range of 0.005% to 100% with the balance made up from non-toxic carrier may be prepared. The contemplated compositions may contain 0.001%-100% of a compound provided herein, in one embodiment 0.1-95%, in another embodiment 75-85%, in a further embodiment 20-80%. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington: The Science and Practice of Pharmacy, 22nd Edition (Pharmaceutical Press, London, UK. 2012).

[0406] In one embodiment, the compositions will take the form of a unit dosage form such as a pill or tablet and thus the composition may contain, along with a compound provided herein, a diluent such as lactose, sucrose, dicalcium phosphate, or the like; a lubricant such as

magnesium stearate or the like; and a binder such as starch, gum acacia, polyvinylpyrrolidine, gelatin, cellulose, cellulose derivatives or the like. In another solid dosage form, a powder, marume, solution or suspension (*e.g.*, in propylene carbonate, vegetable oils, PEG's, poloxamer 124 or triglycerides) is encapsulated in a capsule (gelatin or cellulose base capsule). Unit dosage forms in which one or more compounds provided herein or additional active agents are physically separated are also contemplated; *e.g.*, capsules with granules (or tablets in a capsule) of each drug; two-layer tablets; two-compartment gel caps, etc. Enteric coated or delayed release oral dosage forms are also contemplated.

- [0407] Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, etc. a compound provided herein and optional pharmaceutical adjuvants in a carrier (e.g., water, saline, aqueous dextrose, glycerol, glycols, ethanol or the like) to form a solution, colloid, liposome, emulsion, complexes, coacervate or suspension. If desired, the pharmaceutical composition can also contain minor amounts of nontoxic auxiliary substances such as wetting agents, emulsifying agents, co-solvents, solubilizing agents, pH buffering agents and the like (e.g., sodium acetate, sodium citrate, cyclodextrin derivatives, sorbitan monolaurate, triethanolamine acetate, triethanolamine oleate, and the like).
- [0408] In some embodiments, the unit dosage of compounds of Formula (I) is about 0.25 mg/Kg to about 50 mg/Kg in humans.
- [0409] In some embodiments, the unit dosage of compounds of Formula (I) is about 0.25 mg/Kg to about 20 mg/Kg in humans.
- [0410] In some embodiments, the unit dosage of compounds of Formula (I) is about 0.50 mg/Kg to about 19 mg/Kg in humans.
- [0411] In some embodiments, the unit dosage of compounds of Formula (I) is about 0.75 mg/Kg to about 18 mg/Kg in humans.
- [0412] In some embodiments, the unit dosage of compounds of Formula (I) is about 1.0 mg/Kg to about 17 mg/Kg in humans.
- [0413] In some embodiments, the unit dosage of compounds of Formula (I) is about 1.25 mg/Kg to about 16 mg/Kg in humans.
- [0414] In some embodiments, the unit dosage of compounds of Formula (I) is about 1.50 mg/Kg to about 15 mg/Kg in humans.
- [0415] In some embodiments, the unit dosage of compounds of Formula (I) is about 1.75 mg/Kg to about 14 mg/Kg in humans.
- [0416] In some embodiments, the unit dosage of compounds of Formula (I) is about 2.0 mg/Kg to about 13 mg/Kg in humans.

[0417] In some embodiments, the unit dosage of compounds of Formula (I) is about 3.0 mg/Kg to about 12 mg/Kg in humans.

- [0418] In some embodiments, the unit dosage of compounds of Formula (I) is about 4.0 mg/Kg to about 11 mg/Kg in humans.
- [0419] In some embodiments, the unit dosage of compounds of Formula (I) is about 5.0 mg/Kg to about 10 mg/Kg in humans.
- [0420] In some embodiments, the compositions are provided in unit dosage forms suitable for single administration.
- [0421] In some embodiments, the compositions are provided in unit dosage forms suitable for twice a day administration.
- [0422] In some embodiments, the compositions are provided in unit dosage forms suitable for three times a day administration.
- [0423] Injectables can be prepared in conventional forms, either as liquid solutions, colloid, liposomes, complexes, coacervate or suspensions, as emulsions, or in solid forms suitable for reconstitution in liquid prior to injection. The percentage of a compound provided herein contained in such parenteral compositions is highly dependent on the specific nature thereof, as well as the activity of the compound and the needs of the patient. However, percentages of active ingredient of 0.01% to 10% in solution are employable, and could be higher if the composition is a solid or suspension, which could be subsequently diluted to the above percentages.
- **[0424]** In some embodiments, the composition will comprise about 0.1-10% of the active agent in solution.
- **[0425]** In some embodiments, the composition will comprise about 0.1-5% of the active agent in solution.
- **[0426]** In some embodiments, the composition will comprise about 0.1-4% of the active agent in solution.
- **[0427]** In some embodiments, the composition will comprise about 0.15-3% of the active agent in solution.
- **[0428]** In some embodiments, the composition will comprise about 0.2-2% of the active agent in solution.
- **[0429]** In some embodiments, the compositions are provided in dosage forms suitable for continuous dosage by intravenous infusion over a period of about 1-96 hours.
- **[0430]** In some embodiments, the compositions are provided in dosage forms suitable for continuous dosage by intravenous infusion over a period of about 1-72 hours.

[0431] In some embodiments, the compositions are provided in dosage forms suitable for continuous dosage by intravenous infusion over a period of about 1-48 hours.

- **[0432]** In some embodiments, the compositions are provided in dosage forms suitable for continuous dosage by intravenous infusion over a period of about 1-24 hours.
- **[0433]** In some embodiments, the compositions are provided in dosage forms suitable for continuous dosage by intravenous infusion over a period of about 1-12 hours.
- [0434] In some embodiments, the compositions are provided in dosage forms suitable for continuous dosage by intravenous infusion over a period of about 1-6 hours.
- [0435] In some embodiments, these compositions can be administered by intravenous infusion to humans at doses of about 5 mg/m² to about 300 mg/m².
- [0436] In some embodiments, these compositions can be administered by intravenous infusion to humans at doses of about 5 mg/m² to about 200 mg/m².
- [0437] In some embodiments, these compositions can be administered by intravenous infusion to humans at doses of about 5 mg/m² to about 100 mg/m².
- **[0438]** In some embodiments, these compositions can be administered by intravenous infusion to humans at doses of about 10 mg/m² to about 50 mg/m².
- [0439] In some embodiments, these compositions can be administered by intravenous infusion to humans at doses of about 50 mg/m² to about 200 mg/m².
- **[0440]** In some embodiments, these compositions can be administered by intravenous infusion to humans at doses of about 75 mg/m² to about 175 mg/m².
- [0441] In some embodiments, these compositions can be administered by intravenous infusion to humans at doses of about 100 mg/m² to about 150 mg/m².
- [0442] It is to be noted that concentrations and dosage values may also vary depending on the specific compound and the severity of the condition to be alleviated. It is to be further understood that for any particular patient, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed compositions.
- **[0443]** In one embodiment, the compositions can be administered to the respiratory tract (including nasal and pulmonary) e.g., through a nebulizer, metered-dose inhalers, atomizer, mister, aerosol, dry powder inhaler, insufflator, liquid instillation or other suitable device or technique.

[0444] In some embodiments, aerosols intended for delivery to the nasal mucosa are provided for inhalation through the nose. For optimal delivery to the nasal cavities, inhaled particle sizes of about 5 to about 100 microns are useful, with particle sizes of about 10 to about 60 microns being preferred. For nasal delivery, a larger inhaled particle size may be desired to maximize impaction on the nasal mucosa and to minimize or prevent pulmonary deposition of the administered formulation. In some embodiments, aerosols intended for delivery to the lung are provided for inhalation through the nose or the mouth. For delivery to the lung, inhaled aerodynamic particle sizes of about less than 10 μm are useful (e.g., about 1 to about 10 microns). Inhaled particles may be defined as liquid droplets containing dissolved drug, liquid droplets containing suspended drug particles (in cases where the drug is insoluble in the suspending medium), dry particles of pure drug substance, drug substance incorporated with excipients, liposomes, emulsions, colloidal systems, coacervates, aggregates of drug nanoparticles, or dry particles of a diluent which contain embedded drug nanoparticles.

[0445] In some embodiments, compounds of Formula (I) disclosed herein intended for respiratory delivery (either systemic or local) can be administered as aqueous formulations, as non-aqueous solutions or suspensions, as suspensions or solutions in halogenated hydrocarbon propellants with or without alcohol, as a colloidal system, as emulsions, coacervates, or as dry powders. Aqueous formulations may be aerosolized by liquid nebulizers employing either hydraulic or ultrasonic atomization or by modified micropump systems (like the soft mist inhalers, the Aerodose® or the AERx® systems). Propellant-based systems may use suitable pressurized metered-dose inhalers (pMDIs). Dry powders may use dry powder inhaler devices (DPIs), which are capable of dispersing the drug substance effectively. A desired particle size and distribution may be obtained by choosing an appropriate device.

[0446] In some embodiments, the compositions of Formula (I) disclosed herein can be administered to the ear by various methods. For example, a round window catheter (e.g., U.S. Pat. Nos. 6,440,102 and 6,648,873) can be used.

[0447] Alternatively, formulations can be incorporated into a wick for use between the outer and middle ear (e.g., U.S. Pat. No. 6,120,484) or absorbed to collagen sponge or other solid support (e.g., U.S. Pat. No. 4,164,559).

[0448] If desired, formulations of the disclosure can be incorporated into a gel formulation (e.g., U.S. Pat. Nos. 4,474,752 and 6,911,211).

[0449] In some embodiments, compounds of Formula (I) disclosed herein intended for delivery to the ear can be administered via an implanted pump and delivery system through a needle directly into the middle or inner ear (cochlea) or through a cochlear implant stylet electrode

channel or alternative prepared drug delivery channel such as but not limited to a needle through temporal bone into the cochlea.

[0450] Other options include delivery via a pump through a thin film coated onto a multichannel electrode or electrode with a specially imbedded drug delivery channel (pathways) carved into the thin film for this purpose. In other embodiments the acidic or basic solid compound of Formula (I) can be delivered from the reservoir of an external or internal implanted pumping system.

[0451] Formulations of the disclosure also can be administered to the ear by intratympanic injection into the middle ear, inner ear, or cochlea (e.g., U.S. Pat. No. 6,377,849 and Ser. No. 11/337,815).

[0452] Intratympanic injection of therapeutic agents is the technique of injecting a therapeutic agent behind the tympanic membrane into the middle and/or inner ear. In one embodiment, the formulations described herein are administered directly onto the round window membrane via transtympanic injection. In another embodiment, the ion channel modulating agent auris-acceptable formulations described herein are administered onto the round window membrane via a non-transtympanic approach to the inner ear. In additional embodiments, the formulation described herein is administered onto the round window membrane via a surgical approach to the round window membrane comprising modification of the crista fenestrae cochleae.

[0453] In some embodiments, the compounds of Formula (I) are formulated in rectal compositions such as enemas, rectal gels, rectal foams, rectal aerosols, suppositories, jelly suppositories, or retention enemas, containing conventional suppository bases such as cocoa butter or other glycerides, as well as synthetic polymers such as polyvinylpyrrolidone, PEG (like PEG ointments), and the like.

[0454] Suppositories for rectal administration of the drug (either as a solution, colloid, suspension or a complex) can be prepared by mixing a compound provided herein with a suitable non-irritating excipient that is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt or erode/dissolve in the rectum and release the compound. Such materials include cocoa butter, glycerinated gelatin, hydrogenated vegetable oils, poloxamers, mixtures of polyethylene glycols of various molecular weights and fatty acid esters of polyethylene glycol. In suppository forms of the compositions, a low-melting wax such as, but not limited to, a mixture of fatty acid glycerides, optionally in combination with cocoa butter, is first melted.

[0455] Solid compositions can be provided in various different types of dosage forms, depending on the physicochemical properties of the compound provided herein, the desired dissolution rate, cost considerations, and other criteria. In one of the embodiments, the solid

composition is a single unit. This implies that one unit dose of the compound is comprised in a single, physically shaped solid form or article. In other words, the solid composition is coherent, which is in contrast to a multiple unit dosage form, in which the units are incoherent.

[0456] Examples of single units which may be used as dosage forms for the solid composition include tablets, such as compressed tablets, film-like units, foil-like units, wafers, lyophilized matrix units, and the like. In one embodiment, the solid composition is a highly porous lyophilized form. Such lyophilizates, sometimes also called wafers or lyophilized tablets, are particularly useful for their rapid disintegration, which also enables the rapid dissolution of the compound.

[0457] On the other hand, for some applications the solid composition may also be formed as a multiple unit dosage form as defined above. Examples of multiple units are powders, granules, microparticles, pellets, mini-tablets, beads, lyophilized powders, and the like. In one embodiment, the solid composition is a lyophilized powder. Such a dispersed lyophilized system comprises a multitude of powder particles, and due to the lyophilization process used in the formation of the powder, each particle has an irregular, porous microstructure through which the powder is capable of absorbing water very rapidly, resulting in quick dissolution. Effervescent compositions are also contemplated to aid the quick dispersion and absorption of the compound.

[0458] Another type of multiparticulate system which is also capable of achieving rapid drug dissolution is that of powders, granules, or pellets from water-soluble excipients which are coated with a compound provided herein so that the compound is located at the outer surface of the individual particles. In this type of system, the water-soluble low molecular weight excipient may be useful for preparing the cores of such coated particles, which can be subsequently coated with a coating composition comprising the compound and, for example, one or more additional excipients, such as a binder, a pore former, a saccharide, a sugar alcohol, a film-forming polymer, a plasticizer, or other excipients used in pharmaceutical coating compositions.

[0459] Also provided herein are kits. Typically, a kit includes one or more compounds or compositions as described herein. In certain embodiments, a kit can include one or more delivery systems, e.g., for delivering or administering a compound as provided herein, and directions for use of the kit (e.g., instructions for treating a patient). In another embodiment, the kit can include a compound or composition as described herein and a label that indicates that the contents are to be administered to a patient with cancer. In another embodiment, the kit can include a compound or composition as described herein and a label that indicates that the contents are to be administered to a patient with one or more of hepatocellular carcinoma, colon cancer, leukemia, lymphoma, sarcoma, ovarian cancer, diabetic retinopathy, pulmonary fibrosis, rheumatoid arthritis, sepsis,

ankylosing spondylitis, psoriasis, scleroderma, mycotic and viral infections, bone and cartilage diseases, Alzheimer's disease, lung disease, bone/osteoporotic (wrist, spine, shoulder and hip) fractures, articular cartilage (chondral) defects, degenerative disc disease (or intervertebral disc degeneration), polyposis coli, bone density and vascular defects in the eye (Osteoporosis-pseudoglioma Syndrome, OPPG), familial exudative vitreoretinopathy, retinal angiogenesis, early coronary disease, tetra-amelia, Müllerian-duct regression and virilization, SERKAL syndrome, type II diabetes, Fuhrmann syndrome, Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome, odonto-onycho-dermal dysplasia, obesity, split-hand/foot malformation, caudal duplication, tooth agenesis, Wilms tumor, skeletal dysplasia, focal dermal hypoplasia, autosomal recessive anonychia, neural tube defects, alpha-thalassemia (ATRX) syndrome, fragile X syndrome, ICF syndrome, Angelman syndrome, Prader-Willi syndrome, Beckwith-Wiedemann Syndrome, Norrie disease, and Rett syndrome.

Methods of Treatment

[0460] The compounds and compositions provided herein can be used as inhibitors and/or modulators of one or more components of the Wnt pathway, which may include one or more Wnt proteins, and thus can be used to treat a variety of disorders and diseases in which aberrant Wnt signaling is implicated, such as cancer and other diseases associated with abnormal angiogenesis, cellular proliferation, and cell cycling. Accordingly, the compounds and compositions provided herein can be used to treat cancer, to reduce or inhibit angiogenesis, to reduce or inhibit cellular proliferation, to correct a genetic disorder, and/or to treat a neurological condition/disorder/disease due to mutations or dysregulation of the Wnt pathway and/or of one or more of Wnt signaling components. Non-limiting examples of diseases which can be treated with the compounds and compositions provided herein include a variety of cancers, diabetic retinopathy, pulmonary fibrosis, rheumatoid arthritis, scleroderma, mycotic and viral infections, bone and cartilage diseases, neurological conditions/diseases such as Alzheimer's disease, amyotrophic lateral sclerosis (ALS), motor neuron disease, multiple sclerosis or autism, lung disease, bone/osteoporotic (wrist, spine, shoulder and hip) fractures, polyposis coli, bone density and vascular defects in the eye (Osteoporosis-pseudoglioma Syndrome, OPPG), familial exudative vitreoretinopathy, retinal angiogenesis, early coronary disease, tetra-amelia, Müllerian-duct regression and virilization, SERKAL syndrome, type II diabetes, Fuhrmann syndrome, Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome, odonto-onycho-dermal dysplasia, obesity, split-hand/foot malformation, caudal duplication, tooth agenesis, Wilms tumor, skeletal dysplasia, focal dermal hypoplasia, autosomal recessive anonychia, neural tube defects, alpha-

thalassemia (ATRX) syndrome, fragile X syndrome, ICF syndrome, Angelman syndrome, Prader-Willi syndrome, Beckwith-Wiedemann Syndrome, Norrie disease and Rett syndrome.

[0461] The compounds and compositions described herein can be used to treat tendinopathy includes all tendon pathologies (tendinitis, tendinosis and paratenonitis) localized in and around the tendons and is characterized by pain, swelling and impaired performance due to the degeneration of the tendon's collagen in response tendon overuse, often referred to as tendinosis. Tendinopathy may be categorized into two histopathologic entities – tendonitis, which results from acute injury to the tendon accompanied by intratendinous inflammation, and more commonly, tendinosis, which is a degenerative response to repetitive microtrauma resulting from overuse. Tendinosis may be accompanied by paratenonitis, an inflammatory condition of the lining of the tendon.

[0462] With respect to cancer, the Wnt pathway is known to be constitutively activated in a variety of cancers including, for example, colon cancer, hepatocellular carcinoma, lung cancer, ovarian cancer, prostate cancer, pancreatic cancer and leukemias such as CML, CLL and T-ALL. Accordingly, the compounds and compositions described herein may be used to treat these cancers in which the Wnt pathway is constitutively activated. In certain embodiments, the cancer is chosen from hepatocellular carcinoma, colon cancer, leukemia, lymphoma, sarcoma and ovarian cancer.

[0463] Other cancers can also be treated with the compounds and compositions described herein.

[0464] More particularly, cancers that may be treated by the compounds, compositions and methods described herein include, but are not limited to, the following:

[0465] 1) Breast cancers, including, for example ER⁺ breast cancer, ER⁻ breast cancer, her2⁻ breast cancer, stromal tumors such as fibroadenomas, phyllodes tumors, and sarcomas, and epithelial tumors such as large duct papillomas; carcinomas of the breast including *in situ* (noninvasive) carcinoma that includes ductal carcinoma *in situ* (including Paget's disease) and lobular carcinoma *in situ*, and invasive (infiltrating) carcinoma including, but not limited to, invasive ductal carcinoma, invasive lobular carcinoma, medullary carcinoma, colloid (mucinous) carcinoma, tubular carcinoma, and invasive papillary carcinoma; and miscellaneous malignant neoplasms. Further examples of breast cancers can include luminal A, luminal B, basal A, basal B, and triple negative breast cancer, which is estrogen receptor negative (ER⁻), progesterone receptor negative, and her2 negative (her2⁻). In some embodiments, the breast cancer may have a high risk Oncotype score.

[0466] 2) Cardiac cancers, including, for example sarcoma, e.g., angiosarcoma, fibrosarcoma, rhabdomyosarcoma, and liposarcoma; myxoma; rhabdomyoma; fibroma; lipoma and teratoma.

- [0467] 3) Lung cancers, including, for example, bronchogenic carcinoma, e.g., squamous cell, undifferentiated small cell, undifferentiated large cell, and adenocarcinoma; alveolar and bronchiolar carcinoma; bronchial adenoma; sarcoma; lymphoma; chondromatous hamartoma; and mesothelioma.
- [0468] 4) Gastrointestinal cancer, including, for example, cancers of the esophagus, e.g., squamous cell carcinoma, adenocarcinoma, leiomyosarcoma, and lymphoma; cancers of the stomach, e.g., carcinoma, lymphoma, and leiomyosarcoma; cancers of the pancreas, e.g., ductal adenocarcinoma, insulinoma, glucagonoma, gastrinoma, carcinoid tumors, and vipoma; cancers of the small bowel, e.g., adenocarcinoma, lymphoma, carcinoid tumors, Kaposi's sarcoma, leiomyoma, hemangioma, lipoma, neurofibroma, and fibroma; cancers of the large bowel, e.g., adenocarcinoma, tubular adenoma, villous adenoma, hamartoma, and leiomyoma.
- [0469] 5) Genitourinary tract cancers, including, for example, cancers of the kidney, e.g., adenocarcinoma, Wilm's tumor (nephroblastoma), lymphoma, and leukemia; cancers of the bladder and urethra, e.g., squamous cell carcinoma, transitional cell carcinoma, and adenocarcinoma; cancers of the prostate, e.g., adenocarcinoma, and sarcoma; cancer of the testis, e.g., seminoma, teratoma, embryonal carcinoma, teratocarcinoma, choriocarcinoma, sarcoma, interstitial cell carcinoma, fibroma, fibroadenoma, adenomatoid tumors, and lipoma.
- [0470] 6) Liver cancers, including, for example, hepatoma, e.g., hepatocellular carcinoma; cholangiocarcinoma; hepatoblastoma; angiosarcoma; hepatocellular adenoma; and hemangioma.
- [0471] 7) Bone cancers, including, for example, osteogenic sarcoma (osteosarcoma), fibrosarcoma, malignant fibrous histiocytoma, chondrosarcoma, Ewing's sarcoma, malignant lymphoma (reticulum cell sarcoma), multiple myeloma, malignant giant cell tumor chordoma, osteochrondroma (osteocartilaginous exostoses), benign chondroma, chondroblastoma, chondromyxofibroma, osteoid osteoma and giant cell tumors.
- [0472] 8) Nervous system cancers, including, for example, cancers of the skull, e.g., osteoma, hemangioma, granuloma, xanthoma, and osteitis deformans; cancers of the meninges, e.g., meningioma, meningiosarcoma, and gliomatosis; cancers of the brain, e.g., astrocytoma, medulloblastoma, glioma, ependymoma, germinoma (pinealoma), glioblastoma multiform, oligodendroglioma, schwannoma, retinoblastoma, and congenital tumors; and cancers of the spinal cord, e.g., neurofibroma, meningioma, glioma, and sarcoma.

[0473] 9) Gynecological cancers, including, for example, cancers of the uterus, e.g., endometrial carcinoma; cancers of the cervix, e.g., cervical carcinoma, and pre tumor cervical dysplasia; cancers of the ovaries, e.g., ovarian carcinoma, including serous cystadenocarcinoma, mucinous cystadenocarcinoma, unclassified carcinoma, granulosa theca cell tumors, Sertoli Leydig cell tumors, dysgerminoma, and malignant teratoma; cancers of the vulva, e.g., squamous cell carcinoma, intraepithelial carcinoma, adenocarcinoma, fibrosarcoma, and melanoma; cancers of the vagina, e.g., clear cell carcinoma, squamous cell carcinoma, botryoid sarcoma, and embryonal rhabdomyosarcoma; and cancers of the fallopian tubes, e.g., carcinoma.

- [0474] 10) Hematologic cancers, including, for example, cancers of the blood, e.g., acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, chronic lymphocytic leukemia, myeloproliferative diseases, multiple myeloma, and myelodysplastic syndrome, Hodgkin's lymphoma, non-Hodgkin's lymphoma (malignant lymphoma) and Waldenström's macroglobulinemia.
- [0475] 11) Skin cancers and skin disorders, including, for example, malignant melanoma and metastatic melanoma, basal cell carcinoma, squamous cell carcinoma, Kaposi's sarcoma, moles dysplastic nevi, lipoma, angioma, dermatofibroma, keloids, and scleroderma.
 - [0476] 12) Adrenal gland cancers, including, for example, neuroblastoma.
- [0477] Cancers may be solid tumors that may or may not be metastatic. Cancers may also occur, as in leukemia, as a diffuse tissue. Thus, the term "tumor cell," as provided herein, includes a cell afflicted by any one of the above identified disorders.
- **[0478]** A method of treating cancer using a compound or composition as described herein may be combined with existing methods of treating cancers, for example by chemotherapy, irradiation, or surgery (e.g., oophorectomy). In some embodiments, a compound or composition can be administered before, during, or after another anticancer agent or treatment.
- **[0479]** The compounds and compositions described herein can be used as anti-angiogenesis agents and as agents for modulating and/or inhibiting the activity of protein kinases, thus providing treatments for cancer and other diseases associated with cellular proliferation mediated by protein kinases. For example, the compounds described herein can inhibit the activity of one or more kinases. Accordingly, provided herein is a method of treating cancer or preventing or reducing angiogenesis through kinase inhibition.
- [0480] In addition, and including treatment of cancer, the compounds and compositions described herein can function as cell-cycle control agents for treating proliferative disorders in a patient. Disorders associated with excessive proliferation include, for example, cancers, scleroderma, immunological disorders involving undesired proliferation of leukocytes,

and restenosis and other smooth muscle disorders. Furthermore, such compounds may be used to prevent de-differentiation of post-mitotic tissue and/or cells.

[0481] Diseases or disorders associated with uncontrolled or abnormal cellular proliferation include, but are not limited to, the following:

- a variety of cancers, including, but not limited to, carcinoma, hematopoietic tumors
 of lymphoid lineage, hematopoietic tumors of myeloid lineage, tumors of
 mesenchymal origin, tumors of the central and peripheral nervous system and other
 tumors including melanoma, seminoma and Kaposi's sarcoma.
- a disease process which features abnormal cellular proliferation, e.g., benign prostatic hyperplasia, familial adenomatosis polyposis, neurofibromatosis, atherosclerosis, arthritis, glomerulonephritis, restenosis following angioplasty or vascular surgery, inflammatory bowel disease, transplantation rejection, endotoxic shock, and fungal infections. Fibrotic disorders such as skin fibrosis; scleroderma; progressive systemic fibrosis; lung fibrosis; muscle fibrosis; kidney fibrosis; glomerulosclerosis; glomerulonephritis; hypertrophic scar formation; uterine fibrosis; renal fibrosis; cirrhosis of the liver, liver fibrosis; fatty liver disease (FLD); adhesions, such as those occurring in the abdomen, pelvis, spine or tendons; chronic obstructive pulmonary disease; fibrosis following myocardial infarction; pulmonary fibrosis; fibrosis and scarring associated with diffuse/interstitial lung disease; central nervous system fibrosis, such as fibrosis following stroke; fibrosis associated with neuro-degenerative disorders such as Alzheimer's Disease or multiple sclerosis; fibrosis associated with proliferative vitreoretinopathy (PVR); restenosis; endometriosis; ischemic disease and radiation fibrosis.
- defective apoptosis-associated conditions, such as cancers (including but not limited to those types mentioned herein), viral infections (including but not limited to herpesvirus, poxvirus, Epstein-Barr virus, Sindbis virus and adenovirus), prevention of AIDS development in HIV-infected individuals, autoimmune diseases (including but not limited to systemic lupus erythematosus, rheumatoid arthritis, sepsis, ankylosing spondylitis, psoriasis, scleroderma, autoimmune mediated glomerulonephritis, inflammatory bowel disease and autoimmune diabetes mellitus), neuro-degenerative disorders (including but not limited to Alzheimer's disease, lung disease, amyotrophic lateral sclerosis, retinitis pigmentosa, Parkinson's disease, AIDS-related dementia, spinal muscular atrophy and cerebellar degeneration), myelodysplastic syndromes, aplastic anemia, ischemic injury

associated with myocardial infarctions, stroke and reperfusion injury, arrhythmia, atherosclerosis, toxin-induced or alcohol related liver diseases, hematological diseases (including but not limited to chronic anemia and aplastic anemia), degenerative diseases of the musculoskeletal system (including but not limited to osteoporosis and arthritis), tendinopathies such as tendinitis and tendinosis, aspirinsensitive rhinosinusitis, cystic fibrosis, multiple sclerosis, kidney diseases and cancer pain.

genetic diseases due to mutations in Wnt signaling components, such as polyposis coli, bone density and vascular defects in the eye (Osteoporosis-pseudoglioma Syndrome, OPPG), familial exudative vitreoretinopathy, retinal angiogenesis, early coronary disease, tetra-amelia, Müllerian-duct regression and virilization, SERKAL syndrome, II diabetes, Fuhrmann Al-Awadi/Raastype syndrome. Rothschild/Schinzel phocomelia syndrome, odonto-onycho-dermal dysplasia, obesity, split-hand/foot malformation, caudal duplication, tooth agenesis, Wilms tumor, skeletal dysplasia, focal dermal hypoplasia, autosomal recessive anonychia, neural tube defects, alpha-thalassemia (ATRX) syndrome, fragile X syndrome, ICF syndrome, Angelman syndrome, Prader-Willi syndrome, Beckwith-Wiedemann Syndrome, Norrie disease and Rett syndrome.

[0482] The compounds and compositions described herein can be used to treat neurological conditions, disorders and/or diseases caused by dysfunction in the Wnt signaling pathway. Nonlimiting examples of neurological conditions/disorders/diseases which can be treated with the compounds and compositions provided herein include Alzheimer's disease, aphasia, apraxia, arachnoiditis, ataxia telangiectasia, attention deficit hyperactivity disorder, auditory processing disorder, autism, alcoholism, Bell's palsy, bipolar disorder, brachial plexus injury, Canavan disease, carpal tunnel syndrome, causalgia, central pain syndrome, central pontine myelinolysis, centronuclear myopathy, cephalic disorder, cerebral aneurysm, cerebral arteriosclerosis, cerebral atrophy, cerebral gigantism, cerebral palsy, cerebral vasculitis, cervical spinal stenosis, Charcot-Marie-Tooth disease, Chiari malformation, chronic fatigue syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), chronic pain, Coffin-Lowry syndrome, complex regional pain syndrome, compression neuropathy, congenital facial diplegia, corticobasal degeneration, cranial arteritis, craniosynostosis, Creutzfeldt-Jakob disease, cumulative trauma disorder, Cushing's syndrome, cytomegalic inclusion body disease (CIBD), Dandy-Walker syndrome, Dawson disease, de Morsier's syndrome, Dejerine-Klumpke palsy, Dejerine-Sottas disease, delayed sleep phase syndrome, dementia, dermatomyositis, developmental dyspraxia, diabetic

neuropathy, diffuse sclerosis, Dravet syndrome, dysautonomia, dyscalculia, dysgraphia, dyslexia, dystonia, empty sella syndrome, encephalitis, encephalocele, encephalotrigeminal angiomatosis, encopresis, epilepsy, Erb's palsy, erythromelalgia, essential tremor, Fabry's disease, Fahr's syndrome, familial spastic paralysis, febrile seizure, Fisher syndrome, Friedreich's ataxia, fibromyalgia, Foville's syndrome, Gaucher's disease, Gerstmann's syndrome, giant cell arteritis, giant cell inclusion disease, globoid cell leukodystrophy, gray matter heterotopia, Guillain-Barré syndrome, HTLV-1 associated myelopathy, Hallervorden-Spatz disease, hemifacial spasm, hereditary spastic paraplegia, heredopathia atactica polyneuritiformis, herpes zoster oticus, herpes zoster, Hirayama syndrome, holoprosencephaly, Huntington's disease, hydranencephaly, hydrocephalus, hypercortisolism, hypoxia, immune-mediated encephalomyelitis, inclusion body myositis, incontinentia pigmenti, infantile phytanic acid storage disease, infantile Refsum disease, infantile spasms, inflammatory myopathy, intracranial cyst, intracranial hypertension, Joubert syndrome, Karak syndrome, Kearns-Sayre syndrome, Kennedy disease, Kinsbourne syndrome, Klippel Feil syndrome, Krabbe disease, Kugelberg-Welander disease, kuru, Lafora disease, Lambert-Eaton myasthenic syndrome, Landau-Kleffner syndrome, lateral medullary (Wallenberg) syndrome, Leigh's disease, Lennox-Gastaut syndrome, Lesch-Nyhan syndrome, leukodystrophy, Lewy body dementia, lissencephaly, locked-in syndrome, Lou Gehrig's disease, lumbar disc disease, lumbar spinal stenosis, Lyme disease, Machado-Joseph disease (Spinocerebellar ataxia type 3), macrencephaly, macropsia, megalencephaly, Melkersson-Rosenthal syndrome, Meniere's disease, meningitis, Menkes disease, metachromatic leukodystrophy, microcephaly, micropsia, Miller Fisher syndrome, misophonia, mitochondrial myopathy, Mobius syndrome, monomelic amyotrophy, motor neuron disease, motor skills disorder, Moyamoya mucopolysaccharidoses, multi-infarct dementia, multifocal motor neuropathy, multiple sclerosis, multiple system atrophy, muscular dystrophy, myalgic encephalomyelitis, myasthenia gravis, myelinoclastic diffuse sclerosis, myoclonic Encephalopathy of infants, myoclonus, myopathy, myotubular myopathy, myotonia congenital, narcolepsy, neurofibromatosis, neuroleptic malignant syndrome, lupus erythematosus, neuromyotonia, neuronal ceroid lipofuscinosis, Niemann-Pick disease, O'Sullivan-McLeod syndrome, occipital Neuralgia, occult Spinal Dysraphism Sequence, Ohtahara syndrome, olivopontocerebellar atrophy, opsoclonus myoclonus syndrome, optic neuritis, orthostatic hypotension, palinopsia, paresthesia, Parkinson's disease, paramyotonia congenita, paraneoplastic diseases, paroxysmal attacks, Parry-Romberg syndrome, Pelizaeus-Merzbacher disease, periodic paralyses, peripheral neuropathy, photic sneeze reflex, phytanic acid storage disease, Pick's disease, polymicrogyria (PMG), polymyositis, porencephaly, post-polio syndrome, postherpetic neuralgia (PHN), postural hypotension, Prader-Willi syndrome, primary lateral

hemifacial sclerosis. prion diseases. progressive atrophy, progressive multifocal leukoencephalopathy, progressive supranuclear palsy, pseudotumor cerebri, Ramsay Hunt syndrome type I, Ramsay Hunt syndrome type II, Ramsay Hunt syndrome type III, Rasmussen's encephalitis, reflex neurovascular dystrophy, Refsum disease, restless legs syndrome, retrovirusassociated myelopathy, Rett syndrome, Reye's syndrome, rhythmic movement disorder, Romberg syndrome, Saint Vitus dance, Sandhoff disease, schizophrenia, Schilder's disease, schizencephaly, sensory integration dysfunction, septo-optic dysplasia, Shy-Drager syndrome, Sjögren's syndrome, snatiation, Sotos syndrome, spasticity, spina bifida, spinal cord tumors, spinal muscular atrophy, spinocerebellar ataxia, Steele-Richardson-Olszewski syndrome, Stiff-person syndrome, stroke, Sturge-Weber syndrome, subacute sclerosing panencephalitis, subcortical arteriosclerotic encephalopathy, superficial siderosis, Sydenham's chorea, syncope, synesthesia, syringomyelia, tarsal tunnel syndrome, tardive dyskinesia, tardive dysphrenia, Tarlov cyst, Tay-Sachs disease, temporal arteritis, tetanus, tethered spinal cord syndrome, Thomsen disease, thoracic outlet syndrome, tic douloureux, Todd's paralysis, Tourette syndrome, toxic encephalopathy, transient ischemic attack, transmissible spongiform encephalopathies, transverse myelitis, tremor, trigeminal neuralgia, tropical spastic paraparesis, trypanosomiasis, tuberous sclerosis, ubisiosis, Von Hippel-Lindau disease (VHL), Viliuisk Encephalomyelitis (VE), Wallenberg's syndrome, Werdnig, Hoffman disease, west syndrome, Williams syndrome, Wilson's disease and Zellweger syndrome.

[0483] The compounds and compositions may also be useful in the inhibition of the development of invasive cancer, tumor angiogenesis and metastasis.

[0484] In some embodiments, the disclosure provides a method for treating a disease or disorder associated with aberrant cellular proliferation by administering to a patient in need of such treatment an effective amount of one or more of the compounds of Formula (I), in combination (simultaneously or sequentially) with at least one other agent.

[0485] In some embodiments, the disclosure provides a method of treating or ameliorating in a patient a disorder or disease selected from the group consisting of: cancer, pulmonary fibrosis, idiopathic pulmonary fibrosis (IPF), degenerative disc disease, bone/osteoporotic fractures, bone or cartilage disease, and osteoarthritis, the method comprising administering to the patient a therapeutically effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt thereof.

[0486] In some embodiments, the pharmaceutical composition comprises a therapeutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient.

[0487] In some embodiments, the method of treats a disorder or disease in which aberrant Wnt signaling is implicated in a patient, the method comprises administering to the patient a therapeutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.

	[0488]	In some embodiments, the disorder or disease is cancer.
	[0489]	In some embodiments, the disorder or disease is systemic inflammation.
	[0490]	In some embodiments, the disorder or disease is metastatic melanoma.
	[0491]	In some embodiments, the disorder or disease is fatty liver disease.
	[0492]	In some embodiments, the disorder or disease is liver fibrosis.
	[0493]	In some embodiments, the disorder or disease is tendon regeneration.
	[0494]	In some embodiments, the disorder or disease is diabetes.
	[0495]	In some embodiments, the disorder or disease is degenerative disc disease.
	[0496]	In some embodiments, the disorder or disease is osteoarthritis.
	[0497]	In some embodiments, the disorder or disease is diabetic retinopathy.
	[0498]	In some embodiments, the disorder or disease is pulmonary fibrosis.
	[0499]	In some embodiments, the disorder or disease is idiopathic pulmonary fibrosis
(IPF).		
	[0500]	In some embodiments, the disorder or disease is degenerative disc disease.
	[0501]	In some embodiments, the disorder or disease is rheumatoid arthritis.
	[0502]	In some embodiments, the disorder or disease is scleroderma.
	[0503]	In some embodiments, the disorder or disease is a mycotic or viral infection.
	[0504]	In some embodiments, the disorder or disease is a bone or cartilage disease.
	[0505]	In some embodiments, the disorder or disease is Alzheimer's disease.
	[0506]	In some embodiments, the disorder or disease is osteoarthritis.
	[0507]	In some embodiments, the disorder or disease is lung disease.
	[0508]	In some embodiments, the disorder or disease is tendinitis.
	[0509]	In some embodiments, the disorder or disease is tendinosis.
	[0510]	In some embodiments, the disorder or disease is paratenonitis.
	[0511]	In some embodiments, the disorder or disease is degeneration of the tendon's
collage	n.	
	[0512]	In some embodiments, the disorder or disease is tendinopathy.

In some embodiments, the disorder or disease is tendinopathy. [0512]

[0513] In some embodiments, the disorder or disease is a genetic disease caused by mutations in Wnt signaling components, wherein the genetic disease is selected from: polyposis coli, osteoporosis-pseudoglioma syndrome, familial exudative vitreoretinopathy, retinal

angiogenesis, early coronary disease, tetra-amelia syndrome, Müllerian-duct regression and virilization, SERKAL syndrome, diabetes mellitus type 2, Fuhrmann syndrome, Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome, odonto-onycho-dermal dysplasia, obesity, split-hand/foot malformation, caudal duplication syndrome, tooth agenesis, Wilms tumor, skeletal dysplasia, focal dermal hypoplasia, autosomal recessive anonychia, neural tube defects, alphathalassemia (ATRX) syndrome, fragile X syndrome, ICF syndrome, Angelman syndrome, Prader-Willi syndrome, Beckwith-Wiedemann Syndrome, Norrie disease and Rett syndrome.

[0514] In some embodiments, the patient is a human.

[0515] In some embodiments, the cancer is chosen from: hepatocellular carcinoma, colon cancer, breast cancer, pancreatic cancer, chronic myeloid leukemia (CML), chronic myelomonocytic leukemia, chronic lymphocytic leukemia (CLL), acute myeloid leukemia, acute lymphocytic leukemia, Hodgkin lymphoma, lymphoma, sarcoma and ovarian cancer.

[0516] In some embodiments, the cancer is chosen from: lung cancer - non-small cell, lung cancer - small cell, multiple myeloma, nasopharyngeal cancer, neuroblastoma, osteosarcoma, penile cancer, pituitary tumors, prostate cancer, retinoblastoma, rhabdomyosarcoma, salivary gland cancer, skin cancer - basal and squamous cell, skin cancer - melanoma, small intestine cancer, stomach (gastric) cancers, testicular cancer, thymus cancer, thyroid cancer, uterine sarcoma, vaginal cancer, vulvar cancer, laryngeal or hypopharyngeal cancer, kidney cancer, Kaposi sarcoma, gestational trophoblastic disease, gastrointestinal stromal tumor, gastrointestinal carcinoid tumor, gallbladder cancer, eye cancer (melanoma and lymphoma), Ewing tumor, esophagus cancer, endometrial cancer, colorectal cancer, cervical cancer, brain or spinal cord tumor, bone metastasis, bone cancer, bladder cancer, bile duct cancer, anal cancer and adrenal cortical cancer.

[0517]	In some em	ibodiments, the	cancer is hepatocel	lular carcinoma.
--------	------------	-----------------	---------------------	------------------

[0518] In some embodiments, the cancer is colon cancer.

[0519] In some embodiments, the cancer is colorectal cancer.

[0520] In some embodiments, the cancer is breast cancer.

[0521] In some embodiments, the cancer is pancreatic cancer.

[0522] In some embodiments, the cancer is chronic myeloid leukemia (CML).

[0523] In some embodiments, the cancer is chronic myelomonocytic leukemia.

[0524] In some embodiments, the cancer is chronic lymphocytic leukemia (CLL).

[0525] In some embodiments, the cancer is acute myeloid leukemia.

[0526] In some embodiments, the cancer is acute lymphocytic leukemia.

[0527] In some embodiments, the cancer is Hodgkin lymphoma.

[0528] In some embodiments, the cancer is lymphoma.

[0529]	In some embodiments, the cancer is sarcoma.
[0530]	In some embodiments, the cancer is ovarian cancer.
[0531]	In some embodiments, the cancer is lung cancer - non-small cell.
[0532]	In some embodiments, the cancer is lung cancer - small cell.
[0533]	In some embodiments, the cancer is multiple myeloma.
[0534]	In some embodiments, the cancer is nasopharyngeal cancer.
[0535]	In some embodiments, the cancer is neuroblastoma.
[0536]	In some embodiments, the cancer is osteosarcoma.
[0537]	In some embodiments, the cancer is penile cancer.
[0538]	In some embodiments, the cancer is pituitary tumors.
[0539]	In some embodiments, the cancer is prostate cancer.
[0540]	In some embodiments, the cancer is retinoblastoma.
[0541]	In some embodiments, the cancer is rhabdomyosarcoma.
[0542]	In some embodiments, the cancer is salivary gland cancer.
[0543]	In some embodiments, the cancer is skin cancer - basal and squamous cell.
[0544]	In some embodiments, the cancer is skin cancer – melanoma.
[0545]	In some embodiments, the cancer is small intestine cancer.
[0546]	In some embodiments, the cancer is stomach (gastric) cancers.
[0547]	In some embodiments, the cancer is testicular cancer.
[0548]	In some embodiments, the cancer is thymus cancer.
[0549]	In some embodiments, the cancer is thyroid cancer.
[0550]	In some embodiments, the cancer is uterine sarcoma.
[0551]	In some embodiments, the cancer is vaginal cancer.
[0552]	In some embodiments, the cancer is vulvar cancer.
[0553]	In some embodiments, the cancer is Wilms tumor.
[0554]	In some embodiments, the cancer is laryngeal or hypopharyngeal cancer.
[0555]	In some embodiments, the cancer is kidney cancer.
[0556]	In some embodiments, the cancer is Kaposi sarcoma.
[0557]	In some embodiments, the cancer is gestational trophoblastic disease.
[0558]	In some embodiments, the cancer is gastrointestinal stromal tumor.
[0559]	In some embodiments, the cancer is gastrointestinal carcinoid tumor.
[0560]	In some embodiments, the cancer is gallbladder cancer.
[0561]	In some embodiments, the cancer is eye cancer (melanoma and lymphoma).
[0562]	In some embodiments, the cancer is Ewing tumor.

[0563]	In some embodiments, the cancer is esophagus cancer.
[0564]	In some embodiments, the cancer is endometrial cancer.
[0565]	In some embodiments, the cancer is colorectal cancer.
[0566]	In some embodiments, the cancer is cervical cancer.
[0567]	In some embodiments, the cancer is brain or spinal cord tumor.
[0568]	In some embodiments, the cancer is bone metastasis.
[0569]	In some embodiments, the cancer is bone cancer.
[0570]	In some embodiments, the cancer is bladder cancer.
[0571]	In some embodiments, the cancer is bile duct cancer.
[0572]	In some embodiments, the cancer is anal cancer.

[0573]

[0574] In some embodiments, the disorder or disease is a neurological condition, disorder or disease, wherein the neurological condition/disorder/disease is selected from: Alzheimer's disease, frontotemporal dementias, dementia with lewy bodies, prion diseases, Parkinson's disease, Huntington's disease, progressive supranuclear palsy, corticobasal degeneration, multiple system atrophy, amyotrophic lateral sclerosis (ALS), inclusion body myositis, autism, degenerative myopathies, diabetic neuropathy, other metabolic neuropathies, endocrine neuropathies, orthostatic hypotension, multiple sclerosis and Charcot-Marie-Tooth disease.

In some embodiments, the cancer is adrenal cortical cancer.

[0575] In some embodiments, the compound of Formula (I) inhibits one or more proteins in the Wnt pathway.

[0576] In some embodiments, the compound of Formula (I) inhibits signaling induced by one or more Wnt proteins.

[0577] In some embodiments, the Wnt proteins are chosen from: WNT1, WNT2, WNT2B, WNT3, WNT3A, WNT4. WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, WNT10A, WNT10B, WNT11, and WNT16.

[0578] In some embodiments, the compound of Formula (I) inhibits a kinase activity.

[0579] In some embodiments, the method treats a disease or disorder mediated by the Wnt pathway in a patient, the method comprises administering to the patient a therapeutically effective amount of a compound (or compounds) of Formula (I), or a pharmaceutically acceptable salt thereof.

[0580] In some embodiments, the compound of Formula (I) inhibits one or more Wnt proteins.

[0581] In some embodiments, the method treats a disease or disorder mediated by kinase activity in a patient, the method comprises administering to the patient a therapeutically effective amount of a compound (or compounds) of Formula (I), or a pharmaceutically acceptable salt thereof.

[0582] In some embodiments, the disease or disorder comprises tumor growth, cell proliferation, or angiogenesis.

[0583] In some embodiments, the method inhibits the activity of a protein kinase receptor, the method comprises contacting the receptor with an effective amount of a compound (or compounds) of Formula (I), or a pharmaceutically acceptable salt thereof.

[0584] In some embodiments, the method treats a disease or disorder associated with aberrant cellular proliferation in a patient; the method comprises administering to the patient a therapeutically effective amount of a compound (or compounds) of Formula (I), or a pharmaceutically acceptable salt thereof.

[0585] In some embodiments, the method prevents or reduces angiogenesis in a patient; the method comprises administering to the patient a therapeutically effective amount of a compound (or compounds) of Formula (I), or a pharmaceutically acceptable salt thereof.

[0586] In some embodiments, the method prevents or reduces abnormal cellular proliferation in a patient; the method comprises administering to the patient a therapeutically effective amount of a compound (or compounds) of Formula (I), or a pharmaceutically acceptable salt thereof.

[0587] In some embodiments, the method treats a disease or disorder associated with aberrant cellular proliferation in a patient, the method comprises administering to the patient a pharmaceutical composition comprising one or more of the compounds of claim 1 in combination with a pharmaceutically acceptable carrier and one or more other agents.

[0588] Moreover, the compounds and compositions, for example, as inhibitors of the cyclin-dependent kinases (CDKs), can modulate the level of cellular RNA and DNA synthesis and therefore are expected to be useful in the treatment of viral infections such as HIV, human papilloma virus, herpes virus, Epstein-Barr virus, adenovirus, Sindbis virus, pox virus and the like.

[0589] Compounds and compositions described herein can inhibit the kinase activity of, for example, CDK/cyclin complexes, such as those active in the G_0 or $G_{.1}$ stage of the cell cycle, e.g., CDK2, CDK4, and/or CDK6 complexes.

Evaluation of Biological Activity

[0590] The biological activity of the compounds described herein can be tested using any suitable assay known to those of skill in the art, see, e.g., WO 2001/053268 and WO 2005/009997. For example, the activity of a compound may be tested using one or more of the test methods outlined below.

[0591] In one example, tumor cells may be screened for Wnt independent growth. In such a method, tumor cells of interest are contacted with a compound (i.e. inhibitor) of interest, and the proliferation of the cells, e.g. by uptake of tritiated thymidine, is monitored. In some embodiments, tumor cells may be isolated from a candidate patient who has been screened for the presence of a cancer that is associated with a mutation in the Wnt signaling pathway. Candidate cancers include, without limitation, those listed above.

[0592] In another example, one may utilize *in vitro* assays for Wnt biological activity, e.g. stabilization of β -catenin and promoting growth of stem cells. Assays for biological activity of Wnt include stabilization of β -catenin, which can be measured, for example, by serial dilutions of a candidate inhibitor composition. An exemplary assay for Wnt biological activity contacts a candidate inhibitor with cells containing constitutively active Wnt/ β -catenin signaling. The cells are cultured for a period of time sufficient to stabilize β -catenin, usually at least about 1 hour, and lysed. The cell lysate is resolved by SDS PAGE, then transferred to nitrocellulose and probed with antibodies specific for β -catenin.

[0593] In a further example, the activity of a candidate compound can be measured in a Xenopus secondary axis bioassay (Leyns, L. et al. Cell (1997), 88(6), 747-756).

[0594] To further illustrate this disclosure, the following examples are included. The examples should not, of course, be construed as specifically limiting the disclosure. Variations of these examples within the scope of the claims are within the purview of one skilled in the art and are considered to fall within the scope of the disclosure as described, and claimed herein. The reader will recognize that the skilled artisan, armed with the present disclosure, and skill in the art is able to prepare and use the disclosure without exhaustive examples.

EXAMPLES

Compound preparation

[0595] The starting materials used in preparing the compounds of the disclosure are known, made by known methods, or are commercially available. It will be apparent to the skilled artisan that methods for preparing precursors and functionality related to the compounds claimed

herein are generally described in the literature. The skilled artisan given the literature and this disclosure is well equipped to prepare any of the compounds.

[0596] It is recognized that the skilled artisan in the art of organic chemistry can readily carry out manipulations without further direction, that is, it is well within the scope and practice of the skilled artisan to carry out these manipulations. These include reduction of carbonyl compounds to their corresponding alcohols, oxidations, acylations, aromatic substitutions, both electrophilic and nucleophilic, etherifications, esterification and saponification and the like. These manipulations are discussed in standard texts such as *March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure* 7th Ed., John Wiley & Sons (2013), Carey and Sundberg, *Advanced Organic Chemistry* 5th Ed., Springer (2007), *Comprehensive Organic Transformations: A Guide to Functional Group Transformations*, 2nd Ed., John Wiley & Sons (1999) (incorporated herein by reference in its entirety) and the like.

[0597] The skilled artisan will readily appreciate that certain reactions are best carried out when other functionality is masked or protected in the molecule, thus avoiding any undesirable side reactions and/or increasing the yield of the reaction. Often the skilled artisan utilizes protecting groups to accomplish such increased yields or to avoid the undesired reactions. These reactions are found in the literature and are also well within the scope of the skilled artisan. Examples of many of these manipulations can be found for example in T. Greene and P. Wuts *Protective Groups in Organic Synthesis*, 4th Ed., John Wiley & Sons (2007), incorporated herein by reference in its entirety.

[0598] Trademarks used herein are examples only and reflect illustrative materials used at the time of the disclosure. The skilled artisan will recognize that variations in lot, manufacturing processes, and the like, are expected. Hence the examples, and the trademarks used in them are non-limiting, and they are not intended to be limiting, but are merely an illustration of how a skilled artisan may choose to perform one or more of the embodiments of the disclosure.

[0599] (¹H) nuclear magnetic resonance spectra (NMR) were measured in the indicated solvents on a Bruker NMR spectrometer (Avance TM DRX300, 300 MHz for ¹H or Avance TM DRX500, 500 MHz for ¹H) or Varian NMR spectrometer (Mercury 400BB, 400 MHz for ¹H). Peak positions are expressed in parts per million (ppm) downfield from tetramethylsilane. The peak multiplicities are denoted as follows, s, singlet; d, doublet; t, triplet; q, quartet; ABq, AB quartet; quin, quintet; sex, sextet; sep, septet; non, nonet; dd, doublet of doublets; ddd, doublet of doublets; d/ABq, doublet of AB quartet; dt, doublet of triplets; td, triplet of doublets; dq, doublet of quartets; m, multiplet.

[0600] The following abbreviations have the indicated meanings:

 $Ac_2O = acetic anhydride$

 BH_3 - Me_2S = borane dimethyl sulfide complex

 $B(i-PrO)_3 = triisopropyl borate$

 $(Boc)_2O = di$ -tert-butyl dicarbonate

brine = saturated aqueous sodium chloride

 $CDCl_3$ = deuterated chloroform

 $CD_3OD = deuterated methanol$

 $Cy_3P = tricyclohexylphosphine$

DCAD = di-(4-chlorobenzyl)azodicarboxylate

DCE = dichloroethane

DCM= dichloromethane

DEAD = diethyl azodicarboxylate

DHP = dihydropyran

DIPEA - diisopropylethylamine

DMAP = 4-dimethylaminopyridine

DMF= N,N-dimethylformamide

 $DMSO-d_6 = deuterated dimethylsulfoxide$

ESIMS = electron spray mass spectrometry

EtOAc = ethyl acetate

EtOH = ethanol

HCl = hydrochloric acid

HOAc = acetic acid

 K_2CO_3 = potassium carbonate

KOAc = potassium acetate

LC/MS = liquid chromatography-mass spectrometry

LDA = lithium diisopropylamide

MeOH = methanol

 $MgSO_4 = magnesium sulfate$

MPLC = Medium pressure liquid chromatography

MsCl = methanesulfonyl chloride or mesyl chloride

 $NaBH_4 = sodium borohydride$

 $NaBH(OAc)_3 = sodium triacetoxyborohydride$

NaCNBH₃ = sodium cyanoborohydride

 $NaHCO_3 = sodium bicarbonate$

 $NaH_2PO_4 = monosodium phosphate$

 $Na_2HPO_4 = disodium phosphate$

 $NaIO_4 = sodium periodate$

NaOH = sodium hydroxide

 $Na_2SO_4 = sodium sulfate$

NMR = nuclear magnetic resonance

ON = overnight

 $Pd_2(dba)_3 = tris(dibenzylideneacetone)dipalladium(0)$

Pd(dppf)Cl₂ = 1,1'-bis(diphenylphosphino)ferrocene]palladium(II) chloride

 $Pd(PPh_3)_4 = tetrakis(triphenylphosphine)palladium(0)$

PE = petroleum ether

 $Pin_2B_2 = bis(pinacolato)diboron$

 $PPh_3 = triphenylphosphine$

prep-HPLC = preparative High-performance liquid chromatography

r.t = room temperature

SEM-Cl = 2-(trimethylsilyl)ethoxymethyl chloride

TEA = triethylamine

TFA = trifluoroacetic acid

THF = tetrahydrofuran

THP = tetrahydropyran

TLC = thin layer chromatography

p-TsOH = p-toluenesulfonic acid

XPhos = 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl

[0601] The following example schemes are provided for the guidance of the reader, and collectively represent an example method for making the compounds provided herein. Furthermore, other methods for preparing compounds of the disclosure will be readily apparent to the person of ordinary skill in the art in light of the following reaction schemes and examples. The skilled artisan is thoroughly equipped to prepare these compounds by those methods given the literature and this disclosure. The compound numberings used in the synthetic schemes depicted below are meant for those specific schemes only, and should not be construed as or confused with same numberings in other sections of the application. Unless otherwise indicated, all variables are as defined above.

General procedure

[0602] Compounds of Formula (I) of the present disclosure can be prepared as depicted in Scheme 1a.

(X= Br, -B(OH)2, or boronate ester)

Conditions A (R* = R⁵): 1) Suzuki coupling; 2) deprotection

Conditions B (R* = Br or Cl): 1) Suzuki coupling; 2) R^5 -Y' (VII, Y' = -B(OH)₂ or boronate ester), Suzuki coupling; 3) deprotection

Scheme 1a

[0603] Compound I, wherein PG is a protecting group such as THP, undergoes Suzuki coupling with Compound II to provide Compound III. In certain embodiments, Compound I (X = Br) undergoes Suzuki coupling with Compound II ($Y = -B(OH)_2$ or boronate ester) to provide Compound III after removal of the protecting group. In other embodiments, Compound I (X = Br) is first converted to the corresponding boronic acid or boronate ester (not shown), which in turn undergoes Suzuki coupling with Compound II (Y = Br) to provide Compound III after removal of the protecting group. Treatment of Compound III with KOH and I_2 followed by Boc_2O affords the protected iodide IV.

[0604] In certain embodiments, when R* is R⁵ (e.g., a six-membered ring), Suzuki coupling between iodide (IV) and boronic acid (V) followed by removal of the protecting groups affords the desired bi-heteroaryl product VI (see, for example, conditions A above).

[0605] In other embodiments, when R^* is Br or Cl, the resultant Suzuki product can further undergo a second Suzuki coupling to install the R^5 substituent. In some cases, this procedure is useful when the R^5 substituent is a five-membered ring. In these embodiments, removal of the

protecting groups affords the desired bi-heteroaryl product VI. See, for example, conditions B above.

[0606] Compounds of Formula (I) of the present disclosure can be prepared as depicted in Scheme 1.

[0607] Scheme 1 describes a method for preparation of 3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine compounds (IX) by either converting the 1H-pyrazolo[4,3-b]pyridine (I) to the tributylstannane (II) followed by Migita-Kosugi-Stille coupling to form (III) with various bromo compounds or by reacting (I) directly with various boronic acids (VIII) using Suzuki coupling to produce compound (III) analogs. Compounds (III) are then deprotected before iodination of (IV) with iodine and sodium periodate to produce compound (V) analogs. The 3-iodo-1H-pyrazolo[4,3-b]pyridine (V) nitrogen is then protected with Boc followed by Suzuki coupling with the Boc protected (1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (VII) to form the protected 3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine compounds (VIII). Final deprotection of the pyrazole nitrogen yields the desired substituted 3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine compounds (IX).

[0608] Alternatively, compounds of Formula (I) of the present disclosure can be prepared as depicted in Scheme 2.

Scheme 2

[0609] Scheme 2 describes an alternative method for preparation of 3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine compounds (XIII) by reacting Boc protected 3-iodo-1H-pyrazolo[4,3-b]pyridine (VI) with the Boc protected (4-bromo-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (X) by Suzuki coupling. A second Suzuki coupling with various boronic acids yields the protected 3-(1H-pyrrolo[3,2-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine (XIII). Final deprotection of the pyrazole nitrogen yields the desired substituted 3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine (XIII).

<u>Illustrative Compound Examples</u>

[0610] Preparation of intermediates (XVII) and (XVIII) are depicted below in Scheme 3.

Scheme 3

Step 1

[0611] A suspension of 6-bromo-2-methyl-3-nitropyridine (XIV) (250 g, 1.15 mol, 1.00 eq) and NH₄Cl (300 g, 5.61 mol, 4.88 eq) in EtOH (3.50 L) and water (150 mL) was heated with stirring to 65°C. To this mixture was added Fe (130 g, 2.33 mol, 2.02 eq) and HCl (15.3 g, 419 mmol, 0.36 eq). The suspension was then heated to 80°C for another 3 h. The reaction was cooled to 25°C and filtered through a plug of Celite. The filtrate was concentrated under reduced pressure to yield a residue that was taken up in EtOAc (1 L x 3) and washed with brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure to give 6-bromo-2-methylpyridin-3-amine (XV) as brown solid (373 g, 1.99 mol, 86.7% yield) which was used for the next step without any purification. ¹H NMR (DMSO- d_6 , 400 MHz) δ ppm 6.01 (dd, J = 2.3, 7.9 Hz, 2H), 7.03 (d, J = 8.2 Hz, 1H); ESIMS found for C₆H₇BrN₂ m/z 186.8 (M+H).

Step 2

[0612] To a suspension 6-bromo-2-methylpyridin-3-amine (XV) (186 g, 994 mmol, 1.00 eq) and KOAc (115 g, 1.17 mol, 1.18 eq) in CHCl₃ (3.50 L) was added Ac₂O (405 g, 3.97 mol, 3.99 eq) and the suspension was stirred at 25°C for 1 h and then heated at 60-70°C to reflux for an additional 2 h. After cooling the suspension to 25°C, isopentyl nitrate (233 g, 1.99 mol, 2.00 eq) and 18-crown-6 (21 g, 79.5 mmol, 0.08 eq) was added and the suspension heated to reflux for 12 h. After cooling to 25°C, the suspension was filtered and the filtrate was concentrated under reduced pressure to yield a residue that was treated with a suspension of potassium carbonate (450 g) in a solution of methanol and water (450 mL) at 0°C for 3 h. The suspension was concentrated under reduced pressure to yield a residue that was extracted with EtOAc (1000 mL x 3) and washed with brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure to give 5-bromo-1H-pyrazolo[4,3-b]pyridine (XVI) (405 g, crude) as yellow solid. The crude product was used for the next step without any purification. ¹H NMR (DMSO-d₆, 400 MHz) δ ppm 7.49 (d, *J*=8.8Hz, 1H), 8.00 (d, *J*=8.8Hz, 1H), 8.27 (s, 1H); ESIMS found for C₆H₄BrN₃ *m/z* 198.1 (M+H).

Step 3

[0613] To a solution of 5-bromo-1H-pyrazolo[4,3-b]pyridine (XVI) (200 g, 1.01 mol, 1.00 eq) in DCM (1.60 L), THF (1.60 L) and DMF (100 mL) at 25°C was added p-TsOH (19.2 g, 101 mmol, 0.10 eq). The reaction solution was stirred at 25°C for 6 h. The solvent was removed under vacuum. 10% NaHCO₃ (1.5 L) and EtOAc (1.5 L) was added to the residue and the residue was washed with EtOAc (500 mL x 3). The layers were separated and the organic layer was dried

over sodium sulfate, filtered and concentrated under reduced pressure to give 5-bromo-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazolo[4,3-b]pyridine (XVII) (347 g, crude) as yellow oil. The crude product was used for the next step without any purification. ESIMS found for $C_{11}H_{12}BrN_3O$ m/z 281.7 (M+H).

Step 4

[0614] To a suspension of 5-bromo-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazolo[4,3-b]pyridine (XVII) (260 g, 923 mmol, 1.00 eq) in 1,4-dioxane (3.0 L) was added LiCl (235 g, 5.54 mol, 6.0 eq), Cy₃P (25.9 g, 92.3 mmol, 0.10 eq), bis(tributyltin) (643 g, 1.11 mol, 1.2 eq)and $Pd_2(dba)_3$ (42.3 g, 46.2 mmol, 0.05 eq) under Nitrogen. The resulting suspension was sealed in a pressure tube and heated at 100°C for 4 hrs. The suspension was filtered through Celite[®]. The filter cake was washed with EtOAc (200 mL x 3). The crude product was purified by column chromatography (PE/EtOAc = 4/1) to obtain the 1-tetrahydro-2H-pyran-2-yl)-5-(tributylstannyl)-1H-pyrazolo[4,3-b]pyridine (XVIII) (306 g, 621 mmol, 67.3% yield) as a yellow oil. ESIMS found for $C_{23}H_{39}N_3OSn$ m/z 494.2 (M+H).

[0615] Preparation of intermediate N-(5-bromopyridin-3-yl)pivalamide (XXI) is depicted below in Scheme 4.

Scheme 4

Step 1

[0616] To a solution of 3-amino-5-bromo pyridine (XIX) (1.0 g, 5.78 mmol) in dry pyridine (10 mL) was added pivaloyl chloride (XX) (769 mg, 6.38 mmol). The reaction mixture was stirred at room temperature for 3 h. The reaction was poured into an ice water/saturated aqueous NaHCO₃ mixture and stirred for 30 min. The precipitate was filtered, washed with cold water and dried at room temperature to yield N-(5-bromopyridin-3-yl)pivalamide (XXI) as an off-white solid (1.082 g, 4.22 mmol, 73.1% yield). ¹H NMR (DMSO- d_6 , 500 MHz) δ ppm 1.23 (s, 9H), 8.37 (d, J=2Hz, 1H), 8.39 (t, J=2Hz, 1H), 8.80 (d, J=2Hz, 1H), 9.58 (brs, 1H); ESIMS found $C_{10}H_{13}BrN_2O$ m/z 258.9 (Br⁸¹M+H).

[0617] The following intermediates were prepared in accordance with the procedure described in the above Scheme 4.

XXII

[0618] N-(5-Bromopyridin-3-yl)isobutyramide (XXII): Off-white solid, (71% yield). 1 H NMR (CDCl₃) δ ppm 8.55-8.35 (m, 3H), 7.32 (s, 1H), 2.59-2.48 (m, 1H), 1.28-1.27 (d, 6H); ESIMS found $C_{9}H_{11}BrN_{2}O$ m/z 242.9 (Br⁷⁹M+H).

XXIII

[0619] N-(5-Bromopyridin-3-yl)propionamide (XXIII): Off white solid (92% yield). 1 H NMR (DMSO-d₆) δ ppm 1.09 (t, J=7.54 Hz, 3H), 2.36 (q, J=7.54 Hz, 2H), 8.36 (m, 2H), 8.65 (d, J=2.07 Hz, 1H), 10.26 (s, 1H); ESIMS found C₈H₉BrN₂O m/z 231.1 (Br⁸¹M+H).

XXIV

[0620] N-(5-Bromopyridin-3-yl)butyramide (XXIV): Yellow solid (2.1 g, 8.64 mmol, 88.8% yield). 1 H NMR (CD₃OD, 400 MHz) δ ppm 1.02 (t, J=7.2Hz, 3H), 1.74 (sxt, J=7.2Hz, 2H), 2.40 (t, J=7.2Hz, 2H), 8.35 (d, J=2Hz, 1H), 8.46 (t, J=2Hz, 1H), 8.63 (d, J=2Hz, 1H); ESIMS found C_{9} H₁₁BrN₂O m/z 243.1 (Br⁷⁹M+H).

XXV

[0621] N-(5-Bromopyridin-3-yl)pentanamide (XXV): Yellow solid (2.0 g, 7.78 mmol, 85.3% yield). 1 H NMR (CD₃OD, 400 MHz) δ ppm 0.98 (t, J=7.4Hz, 3H), 1.43 (sxt, J=7.4Hz, 2H), 1.70 (quin, J=7.4Hz, 2H), 2.43 (t, J=7.6Hz, 2H), 8.35 (s, 1H), 8.45 (d, J=2Hz, 1H), 8.64 (d, J=2Hz, 1H); ESIMS found C₁₀H₁₃BrN₂O m/z 256.9 (Br⁷⁹M+H).

XXVI

[0622] N-(5-Bromopyridin-3-yl)-3-methylbutanamide (XXVI): Off white solid, (67% yield), 1 H NMR (CDCl₃, 500 MHz) δ ppm 8.55-8.42 (m, 3H), 7.62 (s, 1H), 2.31-2.18 (m, 3H), 1.02-1.01 (d, J = 6Hz, 6H); ESIMS found C_{10} H₁₃BrN₂O m/z 258.9 (Br⁸¹M+H).

XXVII

[0623] N-(5-Bromopyridin-3-yl)-3,3-dimethylbutanamide (XXVII): Yellow solid (1.7 g, 6.27 mmol, 78.6% yield). 1 H NMR (CD₃OD, 400 MHz) δ ppm 1.10 (s, 9H), 2.29 (s, 2H), 8.36 (d, J=1.6Hz, 1H), 8.46 (d, J=2.0Hz, 1H), 8.64 (d, J=2.0Hz, 1H); ESIMS found C₁₁H₁₅BrN₂O m/z 273.1 ((Br⁸¹M+H).

XXVIII

[0624] N-(5-Bromopyridin-3-yl)-2-phenylacetamide (XXVIII): White solid (2.5 g, 8.59 mmol, 77.9% yield). 1 H NMR (CDCl₃, 400 MHz) δ ppm 3.76 (s, 2H), 7.26-7.45 (m, 5H), 7.57 (brs, 1H), 8.33 (s, 1H), 8.37 (s, 2H); ESIMS found $C_{13}H_{11}BrN_{2}O$ m/z 292.8 (Br⁸¹M+H).

XXIX

[0625] N-(5-Bromopyridin-3-yl)benzamide (XXIX): White solid (2.7 g, 9.74 mmol, 60% yield). 1 H NMR (CDCl₃, 400 MHz) δ ppm 7.40-7.52 (m, 2H), 7.52-7.62 (m, 1H), 7.86 (d, J=7.2Hz, 2H), 8.39 (d, J=1.6Hz, 1H), 8.46 (s, 1H), 8.55 (d, J=1.6Hz, 1H), 8.57 (d, J=2.0Hz, 1H); ESIMS found $C_{12}H_{9}BrN_{2}O$ m/z 278.8 (Br⁸¹M+H).

XXX

[0626] N-(5-Bromopyridin-3-yl)cyclopropanecarboxamide (XXX): Off-white solid, (83% yield), ¹H NMR (CDCl₃, 500 MHz) δ ppm 8.46-8.39 (m, 3H), 7.54 (bs, 1H), 1.56-1.50 (m, 1H), 1.13-1.07 (m, 2H), 0.96-0.90 (m, 2H); ESIMS found for C₉H₉BrN₂O *m/z* 240.9 (Br⁷⁹M+H).

[0627] N-(5-Bromopyridin-3-yl)cyclobutanecarboxamide (XXXI): Yellow solid (2.1 g, 6.27 mmol, 86.6% yield). 1 H NMR (CD₃OD, 400 MHz) δ ppm 1.80-1.99 (m, 1H), 1.99-2.15 (m, 1H), 2.16-2.30 (m, 2H), 2.30-2.45 (m, 2H), 3.25-3.35 (m, 1H), 8.34 (d, J=2.0Hz, 1H), 8.47 (s, 1H), 8.64 (d, J=2.0Hz, 1H); ESIMS found C₁₀H₁₁BrN₂O m/z 257.1 (Br⁸¹M+H).

XXXII

[0628] N-(5-Bromopyridin-3-yl)cyclopentanecarboxamide (XXXII): Yellow solid (1.9 g, 7.06 mmol, 80.2% yield). 1 H NMR (CD₃OD, 400 MHz) δ ppm 1.57-1.74 (m, 2H), 1.74-1.91 (m, 4H), 1.91-2.07 (m, 2H), 2.77-2.92 (m, 1H), 8.34 (d, J=1.6Hz, 1H), 8.45 (s, 1H), 8.65 (d, J=2.0Hz, 1H); ESIMS found C₁₁H₁₃BrN₂O m/z 271.1 (Br⁸¹M+H).

XXXIII

[0629] N-(5-Bromopyridin-3-yl)cyclohexanecarboxamide (XXXIII): Yellow solid (2.0 g, 7.06 mmol, 84.3% yield). 1 H NMR (CD₃OD, 400 MHz) δ ppm 1.19-1.46 (m, 3H), 1.46-1.63 (m, 2H), 1.74 (d, J=11.6Hz, 1H), 1.88 (t, J=14.0Hz, 4H), 2.40 (tt, J=11.6Hz, J=3.6Hz, 1H), 8.34 (d, J=2.0Hz, 1H), 8.44 (t, J=2.0Hz, 1H), 8.64 (d, J=2.0Hz, 1H); ESIMS found $C_{12}H_{15}BrN_{2}O$ m/z 285.1 (Br⁸¹M+H).

XXXIV

[0630] N-(5-Bromopyridin-3-yl)-2-cyclohexylacetamide (XXXIV): Yellow solid (261 mg, 0.878 mmol, 84.4% yield). ESIMS found $C_{13}H_{17}BrN_2O$ m/z 297.1 (Br⁸¹M+H).

[0631] Preparation of intermediate 5-bromo-N,N-dimethylpyridin-3-amine (XXXVI) is depicted below in Scheme 5.

Scheme 5

Step 1

[0632] To a solution of 3,5-dibromopyridine (XXXV) (2.37 g, 10.0 mmol) in dry DMF (20.0 mL) was added K₂CO₃ (4.5 g, 33 mmol) and dimethylamino hydrochloride (1.79 g, 22 mmol). The mixture was heated overnight at 200°C in a sealed tube. The solution was cooled to room temperature and excess DMF was removed under vacuum. The residue was partitioned between EtOAc and water. The organic phase was separated. The aqueous phase was washed with EtOAc and the combined organic phases were dried over MgSO₄, and concentrated to afford 5-bromo-N,N-dimethylpyridin-3-amine (XXXVI) as an off-white solid (1.78g, 8.85 mmol, 88% yield). ¹H NMR (DMSO-d₆, 500 MHz) δ ppm 2.94 (s, 6H), 7.25 (t, *J*=2Hz, 1H), 7.91 (d, *J*=2Hz, 1H), 8.07 (d, *J*=2Hz, 1H); ESIMS found C₇H₉BrN₂ m/z 201.1 (M+H).

[0633] Preparation of intermediate 5-bromo-N-isopropylpyridin-3-amine (XXXVII) is depicted below in Scheme 6.

Scheme 6

Steps 1

[0634] To a solution of 5-bromopyridin-3-amine (XIX) (535 mg, 3.09 mmol) in MeOH (62 mL) was added acetone (296 μ L, 4.02 mL). The pH was adjusted to 4 using HOAc and stirred for 30 min. NaCNBH₃ (272 mg, 4.33 mmol) was added and stirred at room temperature overnight. The MeOH was removed under vacuum and the residue was partitioned between EtOAc and saturated aqueous NaHCO₃. The organic layer was dried over MgSO₄ and evaporated under vacuum. The crude product was purified on a silica gel column (100% hexanes \rightarrow 90:10 hexanes:EtOAc) to produce 5-bromo-N-isopropylpyridin-3-amine (XXXVII) as an oil which slowly solidified into an off-white solid (309 mg, 1.44 mmol, 47% yield). ¹H NMR (DMSO-d₆,

500 MHz) δ ppm 1.12 (d, J=6.3Hz, 6H), 3.55-3.59 (m, 1H), 6.03 (d, J=7.9Hz, 1H), 7.05-7.06 (m, 1H), 7.75 (d, J=2Hz, 1H), 7.90 (d, J=2Hz, 1H); ESIMS found C₈H₁₁BrN₂ m/z 215.1 (M+H).

[0635] Preparation of intermediate 1-(5-bromopyridin-3-yl)-N,N-dimethylmethanamine (XXXIX) is depicted below in Scheme 7.

Scheme 7

Steps 1

[0636] Preparation of 1-(5-bromopyridin-3-yl)-N,N-dimethylmethanamine (XXXIX) was performed following the procedure listed in Scheme 6, Step 1. Brown oil (1.20 g, 5.59 mmol, 45% yield). 1 H NMR (DMSO- d_{6} , 500 MHz) δ ppm 2.15 (s, 6H), 3.43 (s, 2H), 7.94 (s, 1H), 8.47 (d, J=1.1Hz, 1H), 8.59 (d, J=2.2Hz, 1H); ESIMS found $C_{8}H_{11}BrN_{2}$ m/z 215 (M^{Br79} +H) and 217 (M^{Br81} +H).

[0637] Preparation of intermediate 3-bromo-5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridine (XL) is depicted below in Scheme 8.

Scheme 8

Steps 1

[0638] To a mixture of 5-bromopyridine-3-carbaldehyde (XXXVIII) (6.00 g, 32.26 mmol, 1.0 eq), 3,3-difluoropyrrolidine (5.56 g, 38.71 mmol, 1.20 eq) and TEA (5.39 mL, 38.71 mmol, 1.2 eq) in DCE (200 mL) was stirred at room temperature for 30 min, then added sodium triacetoxyborohydride (10.25 g, 48.38 mmol, 1.50 eq) in one portion at room temperature under N₂. The mixture was stirred at room temperature for 6 h. TLC showed the reaction was complete. The reaction was quenched with 1N NaOH (100 mL), extracted with DCE (100 mL x 2). The combined organic layers were washed with brine (100 mL), dried and concentrated. The residue

was purified by silica gel chromatography (column height: 50 mm, diameter: 50 mm, 300-400 mesh silica gel, DCM/MeOH=30/1 \rightarrow 20/1) to give 3-bromo-5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridine (**XL**): Yellow oil (8.00 g, 28.9 mmol, 89.5% yield). ¹H NMR (CDCl₃, 400 MHz) δ ppm 2.30 (spt, J=7.2Hz. 2H), 2.75 (t, J=6.8Hz, 2H), 2.91 (t, J=13.2Hz, 2H), 7.85 (s, 1H), 8.45 (s, 1H), 8.59 (d, J=2Hz, 1H); ESIMS found for C₁₀H₁₁BrF₂N₂ m/z 277.0 (M+H).

[0639] The following intermediates were prepared in accordance with the procedure described in the above Schemes 6-8.

XLI

[0640] 3-Bromo-5-(pyrrolidin-1-ylmethyl)pyridine (XLI): Golden liquid (1.35 g, 97% yield). 1 H NMR (DMSO- d_{6}) δ ppm 1.68-1.71 (m, 4H), 2.42-2.44 (m, 4H), 3.60 (s, 2H), 7.96 (s, 1H), 8.48 (d, J=2Hz, 1H), 8.58 (d, J=3Hz, 1H); ESIMS found for $C_{10}H_{13}BrN_{2}$ m/z 242.2 (M+H).

XLII

[0641] 3-Bromo-5-(piperidin-1-ylmethyl)pyridine (XLII): Brown liquid (13.1 g, 94% yield). 1 H NMR (DMSO- d_{δ}) δ ppm 1.36-1.39 (m, 2H), 1.46-1.51 (m, 4H), 2.31-2.32 (m, 4H), 3.46 (s, 2H), 7.94 (s, 1H), 8.47 (d, J=2Hz, 1H), 8.58 (d, J=3Hz, 1H); ESIMS found for $C_{11}H_{15}BrN_{2}$ m/z 257.0 (M+H).

XLIII

[0642] N-((5-Bromopyridin-3-yl)methyl)ethanamine (XLIII): Golden liquid (1.29 g, 6.00 mmol, 60% yield). 1 H NMR (CDCl₃, 400 MHz) δ ppm 1.14 (t, J=7.2Hz, 3H), 2.67 (q, J=7.2Hz, 2H), 3.79 (s, 2H), 7.85 (t, J=2Hz, 1H), 8.46 (d, J=1.6Hz, 1H), 8.56 (d, J=2.4Hz, 1H); ESIMS found for C_8H_{11} BrN₂ m/z 215.1 (M+H).

XLIV

[0643] N-Benzyl-1-(5-bromopyridin-3-yl)methanamine (**XLIV**): Yellow oil (8.0 g, 28.9 mmol, 89.5% yield). ¹H NMR (DMSO-*d*₆, 400 MHz) δ ppm 3.71 (s, 2H), 3.74 (s, 2H), 7.18-

7.28 (m, 1H), 7.28-7.40 (m, 4H), 8.04 (s, 1H), 8.52 (s, 1H), 8.58 (s, 1H); ESIMS found for $C_{13}H_{13}BrN_2 \ m/z \ 277.1 \ (M+H)$.

[0644] Preparation of intermediate *tert*-butyl (5-bromopyridin-3-yl)methyl (cyclopentylmethyl)carbamate (XLIX) is depicted below in Scheme 9.

Step 1

[0645] To a solution of 5-bromonicotinal dehyde (XXXVIII) (2.0 g, 10.8 mmol, 1 eq) in MeOH (20 mL) was added NaBH₄ (2.4 g, 64.9 mmol, 6 eq) and the reaction mixture was stirred at room temperature for 3 h. The mixture was concentrated in vacuo and the residue was diluted in water (15 mL), the aqueous phase was extracted with DCM (10 mL x 3). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo to afford (5-bromopyridin-3-yl)methanol (XLV) (1.8 g, 9.57 mmol, 90.0% yield) as a colorless oil. ¹H NMR (CDCl₃, 500 MHz) δ ppm 4.73 (s, 2H), 7.90 (s, 1H), 8.47 (s, 1H), 8.57 (s, 1H). ESIMS found for C₆H₆BrNO *m/z* 188.0 (M+H).

Step 2

[0646] To a stirred solution of (5-bromopyridin-3-yl)methanol (XLV) (1.60 g, 8.5 mmol, 1 eq), phthalimide (1.24 g, 8.5 mmol, 1 eq) and PPh₃ (3.33 g, 12.75 mmol, 1.5 eq) in anhydrous THF (15 mL) was added DEAD (2.21 g, 12.75 mmol, 1.5 eq) dropwise at 0°C under N₂. Then the reaction mixture was stirred at room temperature for 6 h. The mixture was washed with saturated NaHCO₃ solution (15 mL), water (15 mL) and brine (15 mL) subsequently. The organic layers were dried over MgSO₄, concentrated under reduced pressure, the resultant residue was purified by flash chromatography on silica gel (PE:EtOAc = 4:1) to give 2-((5-bromopyridin-3-

yl)methyl)isoindoline-1,3-dione (**XLVI**) (2.5 g, 7.88 mmol, 82.3% yield) as a white solid. ESIMS found for $C_{14}H_9BrN_2O_2$ m/z 317.1 (M+H).

Step 3

[0647] A solution of 2-((5-bromopyridin-3-yl)methyl)isoindoline-1,3-dione (XLVI) (1.9 g, 6.0 mmol, 1 eq) and hydrazine hydrate (2.0 g, 40 mmol, 6 eq) in EtOH (20 mL) was heated at 70°C for 3 h. The mixture was filtered through a Celite® pad and the filtrate was concentrated in vacuo, the crude product was dissolved in 1N HCl solution (15 mL) and concentrated to dryness, then it was washed with acetone (10 mL x 3), the precipitate was collected by filtration, dried in vacuo to give (5-bromopyridin-3-yl)methanamine (XLVII) (1.3 g, 6.95 mmol, 97.7% yield) as a white solid. ¹H NMR (D₂O, 500 MHz) δ ppm 4.34 (s, 2H), 8.56 (s, 1H), 8.75 (d, *J*=1.2Hz, 1H), 8.91 (d, *J*=1.6Hz, 1H). ESIMS found for C₆H₇BrN₂ m/z 187.0 (M+H).

Step 4

[0648] A solution of (5-bromopyridin-3-yl)methanamine (**XLVII**) (1.30 g, 5.8 mmol, 1.0 eq), cyclopentanecarbaldehyde (0.57 g, 5.8 mmol, 1.0 eq) and TEA (0.60 g, 5.8 mmol, 1.0 eq) in MeOH (15 mL) was stirred at room temperature for 2 h. Then NaBH₃CN (1.98 g, 34.6 mmol, 6.0 eq) was added and the mixture was stirred at the same temperature for another 3 h. The solvent was removed under reduced pressure and the residue was diluted in water (20 mL) and extracted with DCM (10 mL x 3), combined organic layers were dried over MgSO₄ and concentrated in vacuo to give 1-(5-bromopyridin-3-yl)-N-(cyclopentylmethyl)methanamine (**XLVIII**) (1.23 g, 4.57 mmol, 79.3% yield) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ ppm 1.07-1.23 (m, 2H), 1.47-1.67 (m, 4H), 1.70-1.84 (m, 2H), 2.02 (spt, *J*=7.6Hz. 1H), 2.53 (d, *J*=7.2Hz, 2H), 3.80 (s, 2H), 7.86 (s, 1H), 8.47 (s, 1H), 8.56 (d, *J*=2.0Hz, 1H); ESIMS found for C₁₂H₁₇BrN₂ *m/z* 269.1 (M+H).

Step 5

[0649] To a solution of 1-(5-bromopyridin-3-yl)-N-(cyclopentylmethyl) methanamine (XLVIII) (1.00 g, 3.7 mmol, 1 eq) and TEA (0.93 g, 9.2 mmol, 2.5 eq) in DCM (20 mL) was added portion wise Boc₂O (0.85 g, 4.0 mmol, 1.1 eq) at 0°C, the reaction mixture was stirred at room temperature for 1 h. The mixture was washed with water (10 mL), brine (10 mL), the organic layer was separated, dried over MgSO₄ and concentrated in vacuo to give *tert*-butyl (5-bromopyridin-3-yl)methyl(cyclopentylmethyl) carbamate (XLIX) (1.25 g, 3.38 mmol, 91.9% yield) as a white solid. ESIMS found for C₁₇H₂₅BrN₂O₂ *m/z* 369.1 (M+H).

[0650] Preparation of intermediate 3-bromo-5-(cyclohexyloxy)pyridine (LII) is depicted below in Scheme 10.

Scheme 10

Step 1

[0651] To a solution of 5-bromopyridin-3-ol (L) (523 mg, 3.01 mmol) in THF (30 mL) cooled to 0°C were added triphenylphosphine (867 mg, 3.31 mmol) and cyclohexanol (LI) (331 mg, 3.31 mmol) followed by (*E*)-bis(4-chlorobenzyl) diazene-1,2-dicarboxylate (1.21 g, 3.31 mmol), added portion wise. The reaction mixture was then stirred at 25°C overnight. The reaction was worked-up with an EtOAc-NaHCO₃ extraction and the solid filtered off. The solvent was removed and the residue was purified by ISCO (20% EtOAc-hexanes) to give 3-bromo-5-(cyclohexyloxy)pyridine (LII) (209 mg, 0.82 mmol, 27.2% yield) as a yellow oil. 1 H NMR (DMSO- d_6 , 500 MHz) δ ppm 1.21 - 1.31 (m, 1 H) 1.34 - 1.48 (m, 4 H) 1.49 - 1.57 (m, 1 H) 1.70 (br dd, J=9.74, 4.25 Hz, 2 H) 1.88 - 1.96 (m, 2 H) 2.50 (dt, J=3.70, 1.72 Hz, 5 H) 4.46 - 4.54 (m, 1 H) 7.72 (t, J=2.20 Hz, 1 H) 8.24 (d, J=1.92 Hz, 1 H) 8.27 (d, J=2.47 Hz, 1 H).

[0652] The following intermediate was prepared in accordance with the procedure described in the above Scheme 10.

[0653] *tert*-Butyl 4-((5-bromopyridin-3-yl)oxy)piperidine-1-carboxylate (LIII): Yellow oil (244 mg, 0.683 mmol, 23.2% yield). ESIMS found for C₁₅H₂₁BrN₂O₃ *m/z* 358.3 (M+H).

[0654] Preparation of intermediate 3-(benzyloxy)-5-bromopyridine (LV) is depicted below in Scheme 11.

HO Br

$$K_2CO_3$$
, DMF, $90^{\circ}C$

LV

Scheme 11

Step 1

[0655] To a solution of 5-bromopyridin-3-ol (L) (174 mg, 1.0 mmol) in DMF (3 mL) was added potassium carbonate (415 mg, 3.0 mmol). The slurry was heated at 90°C for 1 h and then cooled to 25°C. The (bromomethyl)benzene (LIV) (171 mg, 1.0 mmol) was added and the mixture was stirred at 25°C overnight. The reaction was worked-up using a saturated sodium bicarbonate and EtOAc extraction. The product was purified by ISCO column (40-100% EtOAchexanes). The 3-(benzyloxy)-5-bromopyridine (LV) (105 mg, 0.398 mmol, 39.8 % yield) was obtained as yellow oil. ESIMS found for C₁₂H₁₀BrNO *m/z* 266.1 (M+H).

[0656] The following intermediates were prepared in accordance with the procedure described in the above Scheme 11.

LVI

[0657] 3-Bromo-5-(2-(pyrrolidin-1-yl)ethoxy)pyridine (LVI): Yellow oil (97 mg, 0.358 mmol, 15.56% yield). ESIMS found for $C_{11}H_{15}BrN_2O$ m/z 272.2 (M+H).

LVII

[0658] 2-((5-Bromopyridin-3-yl)oxy)-N,N-dimethylethan-1-amine (LVII): Yellow oil (97 mg, 0.396 mmol, 28.9% yield). ESIMS found for $C_9H_{13}BrN_2O$ m/z 245.1 (M+H).

LVIII

[0659] 1-(2-(3-Bromo-5-fluorophenoxy)ethyl)pyrrolidine (LVIII): Yellow oil (370 mg, 1.284 mmol, 85.8% yield). ESIMS found for $C_{12}H_{15}BrFNO$ m/z 289.0 (M+H).

[0660] 2-(3-Bromo-5-fluorophenoxy)-N,N-dimethylethan-1-amine (LIX): Yellow oil (364 mg, 1.389 mmol, 50.2 % yield). ESIMS found for C₁₀H₁₃BrFNO *m/z* 263.9 (M+H).

[0661] Preparation of intermediate *tert*-butyl 4-(2-((5-bromopyridin-3-yl)amino)-2-oxoethyl)piperidine-1-carboxylate (**LXI**) is depicted below in Scheme 12.

Scheme 12

Step 1

[0662] To a solution of 2-(1-(*tert*-butoxycarbonyl)piperidin-4-yl)acetic acid (LX) (3.4 g, 13.97 mmol) in DCM (10 mL) was added DMF (1 mL). The solution was cooled in icewater to 0°C. Oxalyl chloride (1.835 mL, 20.96 mmol) was then added dropwise. The mixture was stirred for 1 h at 25°C. The organic volatile was then removed under vacuum. The residue was dissolved in DCM (10 mL). DMAP (0.171 g, 1.397 mmol) and 5-bromopyridin-3-amine (XIX) (2.418 g, 13.97 mmol) were added to the solution and cooled to 0°C. DIPEA (4.88 ml, 27.9 mmol) was then added dropwise and the mixture was stirred for 2 h at 25°C. The reaction was worked-up with DCM and saturated NaHCO₃. The product was purified by ISCO (0-100% EtOAc-hexanes). The *tert*-butyl 4-(2-((5-bromopyridin-3-yl)amino)-2-oxoethyl)piperidine-1-carboxylate (LXI) (2.82 g, 7.08 mmol, 50.7 % yield) was obtained as a yellow oil. ESIMS found for C₁₇H₂₄BrN₃O₃ *m/z* 343.1 (M-56).

[0663] The following intermediate was prepared in accordance with the procedure described in the above Scheme 12.

130

[0664] N-(5-Bromopyridin-3-yl)-2-(dimethylamino)acetamide (LXII): Yellow oil (528 mg, 2.05 mmol, 19.0% yield). ESIMS found for C₉H₁₂BrN₃O *m/z* 259.3 (M+H).

[0665] Preparation of intermediate *tert*-butyl (1-(6-chloropyrazin-2-yl)azetidin-3-yl)carbamate (LXV) is depicted below in Scheme 13.

Scheme 13

Step 1

[0666] To a solution of *tert*-butyl azetidin-3-ylcarbamate hydrochloride (**LXIII**) (2 g, 9.58 mmol) in dry DMF (19.2 mL) was added DIPEA (8.37 ml, 47.9 mmol). To this mixture was added 2,6-dichloropyrazine (**LXIV**) (1.428 g, 9.58 mmol) and the reaction was stirred at 95°C for 3 h. The reaction was quenched with water (20 mL) and extracted with EtOAc. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by silica gel column chromatography (40 g) (100% hexanes→hexanes:EtOAc 1:1) to yield *tert*-butyl (1-(6-chloropyrazin-2-yl)azetidin-3-yl)carbamate (**LXV**) (2.2882 g, 8.04 mmol, 84 % yield) as a white solid. ESIMS found for C₁₂H₁₇ClN₄O₂ *m/z* 285.1 (M+H).

[0667] Preparation of intermediate N-(3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl) methanesulfonamide (LXIX) is depicted below in Scheme 14.

Scheme 14

Step 1

[0668] A solution of 3-bromo-5-fluorobenzonitrile (LXVI) (44.0 g, 220.0 mmol, 1.0 eq) was dissolved in THF (30 mL). BH₃-Me₂S (33.43 g, 440.0 mmol, 2.0 eq) was added to the solution at 20°C. Then it was stirred at 80°C for 2 h, HCl (6 N, 100 mL) was added to the mixture

slowly at 20°C. The mixture was stirred at 80°C for 1 h, then it was washed with EtOAc (300 mL). The water phase was basified with 50% aqueous NaOH and it was extracted with EtOAc (300 mL x 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo to produce (3-bromo-5-fluoro-phenyl)methanamine (**LXVII**) (24.0 g, 117.62 mmol, 53.5% yield). ¹H NMR (CDCl₃, 300 MHz) ppm 3.86 (s, 2H), 7.01 (d, *J*=8Hz, 1H), 7.12 (d, *J*=8Hz, 1H), 7.28 (s, 1H); ESIMS found C₇H₇BrFN *m/z* 203.9 (Br⁷⁹M+H).

Step 2

[0669] A solution of (3-bromo-5-fluoro-phenyl)methanamine (LXVII) (23.0 g, 112.7 mmol, 1.0 eq) was dissolved in DCM (15 mL), TEA (34.22 g, 338.2 mmol, 3.0 eq) was added to the mixture. Then MsCl (13.44 g, 117.3 mmol, 1.04 eq) was added slowly to the solution at 0°C. It was stirred at 0-30°C for 2 h. The reaction was washed with water and extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to give N-(3-bromo-5-fluorobenzyl)methanesulfonamide (LXVIII) (34.0 g, 102.44 mmol, 90.9% yield, 85% purity) as an oil. ¹H NMR (CDCl₃, 300 MHz) ppm 2.88 (s, 3H), 4.24 (d, *J*=4.5Hz, 2H), 6.99 (d, *J*=9Hz, 1H), 7.13 (dt, *J*=8.1Hz, *J*=2Hz, 1H), 7.25 (s, 1H); ESIMS found C₈H₉BrFNO₂S *m/z* 282.0 (Br⁷⁹M+H).

Step 3

[0670] A solution of N-(3-bromo-5-fluorobenzyl)methanesulfonamide (LXVIII) (34.0 g, 102.4 mmol, 1.0 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (52.02 g, 204.9 mmol, 2.0 eq) , KOAc (20.11 g, 204.9 mmol, 2.0 eq) was dissolved in dioxane (20 mL). Then Pd(dppf)Cl₂ (7.60 g, 10.2 mmol, 0.1 eq) was added to the mixture. It was stirred at 90°C for 2 h. Then the solvent was removed to get the residue which was purified by silica gel column (PE:EtOAc = $10:1\rightarrow100\%$ EtOAc) to get N-(3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)methanesulfonamide (LXIX) (30.0 g, crude). 1 H NMR (CDCl₃, 400 MHz) δ ppm 1.37 (s, 12H), 2.92 (s, 3H), 4.34 (d, J=6.3Hz, 2H), 7.19 (dt, J=9.3Hz, J=2.1Hz, 1H), 7.44 (dd, J=8.7Hz, J=2.4Hz, 1H), 7.54 (s, 1H); ESIMS found $C_{14}H_{21}BFNO_{4}S$ m/z 330.1 (M+H).

[0671] Preparation of intermediate N-(3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl) methanesulfonamide (LXXIII) is depicted below in Scheme 15.

Scheme 15

Step 1

[0672] To mixture of 1,3-dibromo-5-fluorobenzene (LXX) (100 g, 393 mmol) and N',N'-dimethylethane-1,2-diamine (173 g, 1.97 mol, 214 mL) was added t-BuOK (88 g, 787 mmol) in one portion at 25°C under N_2 . The mixture was stirred at 25°C for 30 min, then heated to 110°C and stirred for 11.5 h. The mixture was cooled to 25°C and concentrated in reduced pressure at 45°C. The residue was purified by silica gel chromatography (column height: 250 mm, diameter: 100 mm, 100-200 mesh silica gel, PE/EtOAc = 2:1, Rf = 0.6) to give N^1 -(3-bromo-5-fluorophenyl)- N^2 , N^2 -dimethylethane-1,2-diamine (LXXI) (30 g, 114.9 mmol, 29.2% yield) as a yellow oil. ESIMS found for $C_{10}H_{14}BrFN_2$ m/z 261.1 (M+H).

Step 2

[0673] To a mixture of N¹-(3-bromo-5-fluorophenyl)-N²,N²-dimethylethane-1,2-diamine (LXXI) (30 g, 114 mmol) in DCM (200 mL) was added (Boc)₂O (37.6 g, 172 mmol), TEA (34.8 g, 344 mmol) and DMAP (7 g, 57.4 mmol) in one portion at 25°C under N₂. The mixture was stirred at 25°C for 12 h. The mixture was concentrated in reduced pressure at 45°C. The residue was purified by silica gel chromatography (column height: 250 mm, diameter: 100 mm, 100-200 mesh silica gel, PE/EtOAc = 2:1, $R_f = 0.43$) to give *tert*-butyl (3-bromo-5-fluorophenyl)(2-(dimethylamino)ethyl)carbamate (LXXII) (20 g, 55.4 mmol, 48.2% yield) as yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ ppm 1.43 (s, 9H), 2.21 (s, 6H), 2.41 (t, *J*=7Hz, 2H), 3.67 (t, *J*=7.2Hz, 2H), 6.96 (d, *J*=9.6Hz, 1H), 7.06 (d, *J*=6Hz, 1H), 7.22 (s, 1H); ESIMS found for $C_{15}H_{22}BrFN_2O_2$ *m/z* 361.0 (M+H).

Step 3

[0674] To a mixture of *tert*-butyl (3-bromo-5-fluorophenyl)(2-(dimethylamino) ethyl)carbamate (LXXII) (19 g, 52.6 mmol) and bis(pinacolato)diboron (20 g, 78.9 mmol) in dioxane (60 mL) was added Pd(dppf)Cl₂ (3.8 g, 5.26 mmol) and KOAc (30.9 g, 315.6 mmol) in one portion at 25°C under N₂. The mixture was stirred at 25°C for 30 min, then heated to 110°C and stirred for 11.5 h. The mixture was cooled to 25°C and concentrated in reduced pressure

at 45°C. The residue was purified by silica gel chromatography (column height: 250 mm, diameter: 100 mm, 100-200 mesh silica gel, PE/EtOAc = 1:1, Rf = 0.24) to give *tert*-butyl (2-(dimethylamino)ethyl)(3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)carbamate (LXXIII) (15 g, 36.7 mmol, 69.8% yield) as yellow oil. ESIMS found for $C_{21}H_{34}BFN_2O_4$ m/z 327.2 (M+H as the boronic acid).

[0675] Preparation of intermediate (1-(*tert*-butoxycarbonyl)-4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (**LXXVIII**) is depicted below in Scheme 16

Scheme 16

Step 1

[0676] To a solution of 4-bromo-1H-pyrrolo[2,3-c]pyridine (LXXIV) (10 g, 50.8 mmol, 1 eq.), DMAP (622 mg, 5.1 mmol, 0.1 eq.) and TEA (10.6 mL, 76.1 mmol, 3 eq.) in DCM (200 mL) was added Boc₂O (14.4 mL, 61 mmol, 1.2 eq.) at 0°C. The reaction was warmed to room temperature and stirred for 2 h. Water (200 mL) was added and extracted with DCM (x 2). Removal solvents gave *tert*-butyl 4-bromo-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (LXXV) as white solid (11.4 g, 38.4 mmol, 76.5% yield). ESIMS found for C₁₂H₁₃BrN₂O₂ m/z 297.1 (M+H).

Step 2

[0677] To a solution of *tert*-butyl 4-bromo-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (LXXV) (9.0 g, 30.2 mmol, 1.0 eq) and (3-fluorophenyl)boronic acid (LXXVI) (4.66 g, 33.3 mmol, 1.1 eq) in a mixture solvent of dioxane (90 mL) and water (30 mL) was added K₃PO₄ (1.6 g, 75.7 mmol, 2.5 eq). The suspension was purged with nitrogen (x 3) followed by addition of Pd(dppf)Cl₂ (2.2 g, 3.03 mmol, 0.1 eq). The reaction was stirred at 80°C for 12 h. The suspension was poured into water (100 mL) and extracted with EtOAc (100 mL x 2). The combined organic layer was washed with brine (50 mL), dried over Na₂SO₄ and concentrated under reduced pressure. Then the crude product was purified by column chromatography on silica gel to afford *tert*-butyl 4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (XLXXVII) as a yellow solid (8.0 g, 25.6 mmol, 84.6% yield). ESIMS found for C₁₈H₁₇FN₂O₂ *m/z* 313.1 (M+H).

Step 3

[0678] To a solution of *tert*-butyl 4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (LXXVII) (3.83 g, 12.3 mmol, 1.0 eq) and triisopropyl borate (3.7 g, 19.6 mmol, 1.6 eq) in THF (100 mL), was added dropwise LDA (2 M, 12.3 mL, 24.5 mmol, 2.0 eq) at -30°C under N₂. The reaction was stirred at this temperature for 30 min. The reaction was quenched at -30°C with buffer (pH=7, NaH₂PO₄/Na₂HPO₄) and then poured into water (100 mL). The light yellow aqueous phase was extracted with EtOAc (200 mL x 3). The combined organic phase was washed with saturated brine (500 mL), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to afford light yellow solid. Then the solid was washed with methyl tertiary butyl ether to give (1-(*tert*-butoxycarbonyl)-4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (LXXVIII) as a white solid (4.0 g, 11.2 mmol, 91.6% yield). ¹H NMR (MeOD 400 MHz) δ ppm 1.73 (s, 9H), 6.87 (s, 1H), 7.21 (t, *J*=8Hz, 1H), 7.40 (d, *J*=11.2Hz, 1H), 7.48 (d, *J*=7.6Hz, 1H), 7.54 – 7.60 (m, 1H), 8.38 (s, 1H), 9.35 (s, 1H); ESIMS found for C₁₈H₁₈BFN₂O₄ *m/z* 357.0 (M+H).

[0679] The following intermediates were prepared in accordance with the procedure described in the above Scheme 16.

LXXIX

[0680] (1-(*tert*-Butoxycarbonyl)-4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (LXXIX): Yellow solid (1.5 g, 4.2 mmol, 14.6% yield). 1 H NMR (MeOD, 400 MHz) δ ppm 1.72 (s, 9H), 6.84 (s, 1H), 7.28 (t, J=8.8Hz, 1H), 7.66 (dd, J=5.6Hz, J=14Hz, 2H), 8.34 (s, 2H), 9.31 (s, 1H); ESIMS found for $C_{18}H_{18}BFN_{2}O_{4}$ m/z 357.0 (M+H).

LXXX

[0681] (1-(*tert*-Butoxycarbonyl)-4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (LXXX): White solid (6.0 g, 16. mmol, 87.7% yield). 1 H NMR (MeOD, 400 MHz) δ ppm 1.73 (s, 9H), 6.64 (d, J=2Hz, 1H), 7.77 – 7.92 (m, 2H), 7.47 – 7.63 (m, 2H), 8.35 (s, 1H), 9.35 (s, 1H); ESIMS found for $C_{18}H_{18}BFN_{2}O_{4}$ m/z 357.0 (M+H).

LXXXI

[0682] (1-(*tert*-Butoxycarbonyl)-4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (LXXXI): Yellow solid (5.3 g, 15.6 mmol, 57.6% yield). ¹H NMR (MeOD, 400 MHz) δ ppm 1.73 (s, 9H), 6.87 (s, 1H), 7.63 (t, *J*=6Hz, 1H), 8.16 (d, *J*=6Hz, 1H), 8.42 (s, 1H), 8.64 (d, *J*=3.6Hz, 1H), 8.84 (s, 1H), 9.38 (s, 1H); ESIMS found C₁₇H₁₈BN₃O₄ *m/z* 340.0 (M+H).

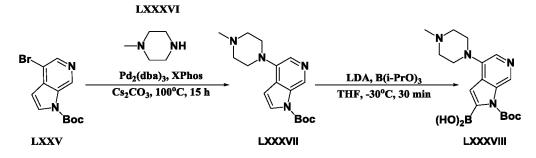
LXXXII

[0683] (1-(*tert*-Butoxycarbonyl)-4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (LXXXII): White solid (5.5 g, 16.2 mmol, 65.6% yield). 1 H NMR (MeOD, 400 MHz) δ ppm 1.74 (s, 9H), 6.97 (s, 1H), 7.78 (d, J=6.4Hz, 2H), 8.50 (s, 1H), 8.71 (d, J=6.4Hz, 2H), 9.42 (s, 1H); ESIMS found C_{17} H₁₈BN₃O₄ m/z 339.9 (M+H).

LXXXIII

[0684] (1-(*tert*-Butoxycarbonyl)-4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (LXXXIII): Off-white solid (3.0 g, 6.47 mmol, 45.3% yield). ¹H NMR (MeOD, 400 MHz) δ ppm 1.72 (s, 9H), 2.95 (s 3H), 4.36 (s, 2H), 6.91 (s, 1H),

7.24 (d, J=9.2Hz, 1H), 7.32 (d, J=8.8Hz, 1H), 7.51 (s, 1H), 8.38 (s, 1H), 9.33 (s, 1H); ESIMS found $C_{20}H_{23}BFN_3O_6S$ m/z 464.0 (M+H).


LXXXIV

[0685] (1-(*tert*-Butoxycarbonyl)-4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (**LXXXIV**): Yellow solid (2.5 g, 7.6 mmol, 43.3% yield). ESIMS found for $C_{16}H_{17}BN_2O_5$ m/z 362.1 (M+H +MeOH).

LXXXV

[0686] (1-(tert-Butoxycarbonyl)-4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (LXXXV): Yellow solid (1.1 g, 3.2 mmol, 96.0% yield). ESIMS found for C₁₆H₁₇BN₂O₄S *m/z* 378.1 (M+H+MeOH).

[0687] Preparation of intermediate (1-(*tert*-butoxycarbonyl)-4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (LXXXVIII) is depicted below in Scheme 17

Scheme 17

Step 1

[0688] To a solution of *tert*-butyl 4-bromo-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (LXXV) (7.0 g, 23.6 mmol, 1.0 eq), XPhos (1.1 g, 2.36 mmol, 0.1 eq), Cs_2CO_3 (2.0 eq) and 1-

methylpiperazine (LXXXVI) (2.36 g, 23.6 mmol, 1.0 eq) in anhydrous toluene (150 mL) was added Pd₂(dba)₃ (2.2 g, 2.36 mmol, 0.1 eq). The reaction mixture was stirred at 100°C for 15 h under N₂. The mixture was filtered through a Celite[®] pad, and the filtrate was concentrated to give crude product. The crude product was purified by silica gel chromatography to give *tert*-butyl 4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (LXXXVII) as a yellow solid (2.0 g, 6.32 mmol, 26.8% yield). ESIMS found for C₁₇H₂₄N₄O₂ *m/z* 317.0 (M+H).

Step 2

[0689] To a mixture of *tert*-butyl 4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (LXXXVII) (2.0 g, 6.32 mmol, 1.0 eq) and isopropyl borate (3.6 g, 19.0 mmol, 3.0 eq) in anhydrous THF (50 mL) cooled to -30°C was added dropwise LDA (2M, 9.5 mL, 19.0 mmol, 3.0 eq). The reaction was stirred at -30°C for 0.5 h under N₂. The reaction was added to aq. NH₄Cl (250 mL). The combined aqueous layers were extracted with EtOAc (100 mL×3) to remove neutral impurities. The combined organic layers were dried over Na₂SO₄ and concentrated to give crude product. EtOAc (80 mL) was added to the crude product. The mixture was stirred at 20°C for 15 mins. The mixture was filtered and filter cake was washed by EtOAc (50 mL) and dried to give (1-(*tert*-butoxycarbonyl)-4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (LXXXVIII) (1.0 g, 2.78 mmol, 43.9% yield) as white solid. ESIMS found for C₁₇H₂₅BN₄O₄ *m/z* 394.2 (M+H+MeOH).

[0690] The following intermediate was prepared in accordance with the procedure described in the above Scheme 17.

LXXXIX

[0691] (1-(*tert*-Butoxycarbonyl)-4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (LXXXIX): White solid (2.2 g, 6.3 mmol, crude). 1 H NMR (MeOD, 400 MHz) δ ppm 1.67 (s, 9H), 1.59 – 1.70 (m, 2H), 1.74 – 1.83 (m, 4H), 3.13 – 3.22 (m, 4H), 6.73 (s, 1H), 7.83 (s, 1H), 8.93 (s, 1H); ESIMS found $C_{17}H_{24}BN_3O_4$ m/z 346.2 (M+H).

Example 1.

[0692] Preparation of 1-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine (69) is depicted below in Scheme 18.

Scheme 18

Steps 1

[0693] A mixture of 1-(tetrahydro-2H-pyran-2-yl)-5-(tributylstannyl)-1H-pyrazolo[4,3-b]pyridine (XVIII) (25 g, 50.8 mmol, 1.0 eq), 1-(5-bromopyridin-3-yl)-N,N-dimethylmethanamine (XXXIX) (12.0 g, 55.9 mmol, 1.10 eq) and Pd(PPh₃)₄ (2.35 g, 2.03 mmol, 0.04 eq) in dioxane (150 mL) was degassed and purged with N₂ (3 x), and then the mixture was stirred at 105°C for 16 h under N₂ atmosphere. The reaction mixture was concentrated and the residue was purified by column chromatography (SiO₂, PE/EtOAc) to give N,N-dimethyl-1-(5-(1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine (XC) as a yellow oil (4.2 g, 12.4 mmol, 24.5% yield). ESIMS found for C₁₉H₂₃N₅O *m/z* 338.2 (M+H).

Step 2

[0694] To a solution of N,N-dimethyl-1-(5-(1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine (**XC**) (4.6 g, 13.6 mmol, 1.0 eq) in EtOAc (10 mL) was added HCl/EtOAc (4 M, 100 mL) and the mixture was stirred at 10°C for 16 h. The reaction mixture was concentrated to yield crude 1-(5-(1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine (**XCI**) as a yellow solid (4.0 g, crude) which was used for next step without further purification. ESIMS found for $C_{14}H_{15}N_5$ m/z 254.0 (M+H).

Steps 3

[0695] To a solution of 1-(5-(1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine (**XCI**) (4.8 g, 18.9 mmol, 1.0 eq) and KOH (5.3 g, 94.7 mmol, 5.0 eq) in DMF (50 mL) was added I₂ (3.6 g, 28.4 mmol, 1.5 eq) and the mixture was stirred at 15°C for 4 h. The reaction mixture was quenched by addition saturated aqueous Na₂S₂O₃ (50 mL), and acidified with 1 N HCl to pH=6. The suspension was filtered and the filtrate cake was dried under reduced pressure to give 1-(5-(3-iodo-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine (**XCII**) as a yellow solid (3.2 g, 8.44 mmol, 44.5% yield) which was used for next step without further purification. ESIMS found for C₁₄H₁₄IN₅ m/z 380.0 (M+H).

Steps 4

[0696] To a solution of 1-(5-(3-iodo-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine (**XCII**) (4.5 g, 11.9 mmol, 1.0 eq), Boc₂O (2.85 g, 13.1 mmol, 1.1 eq) and TEA (3.3 mL, 23.7 mmol, 2.0 eq) in DCM (100 mL) was added DMAP (145 mg, 1.19 mmol, 0.1 eq) and the mixture was stirred at 15°C for 4 h. The reaction was concentrated and the residue was purified by column chromatography (SiO₂, PE/EtOAc) to give *tert*-butyl 5-(5-((dimethylamino)methyl) pyridin-3-yl)-3-iodo-1H-pyrazolo[4,3-b]pyridine-1-carboxylate (**XCIII**) as a yellow solid (560 mg, 1.17 mmol, 9.8% yield). ¹H NMR (CDCl₃, 400 MHz) δ ppm 1.74 (s, (H), 2.33 (s, 6H), 3.60 (s, 2H), 8.02 (d, J=8.8Hz, 1H), 8.43 (s, 1H), 8.49 (d, J=8.4Hz, 1H), 8.62 (s, 1H), 9.26 (s, 1H); ESIMS found for C₁₉H₂₂IN₅O₂ m/z 480.0 (M+H).

Steps 5

[0697] A mixture of *tert*-butyl 5-(5-((dimethylamino)methyl)pyridin-3-yl)-3-iodo-1H-pyrazolo[4,3-b]pyridine-1-carboxylate (**XCIII**) (80 mg, 0.17 mmol, 1.0 eq), (1-(*tert*-butoxycarbonyl)-4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid (**LXXX**) (65.4 mg, 0.18 mmol, 1.1 eq), Pd(dppf)Cl₂ (12.2 mg, 0.017 mmol, 0.1 eq), and K₃PO₄ (71 mg, 0.33 mmol, 2.0 eq) in dioxane (10 mL) and water (1 mL) was stirred at 90°C for 16 h. The mixture was filtered and the filtrate was concentrated to give the *tert*-butyl 3-(1-(*tert*-butoxycarbonyl)-4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-((dimethylamino) methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine-1-carboxylate (**XCIV**) as a yellow solid (100 mg, ~0.15 mmol, crude) which was used in the next step directly.

Step 6

[0698] A mixture of *tert*-butyl 3-(1-(*tert*-butoxycarbonyl)-4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-((dimethylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine-1-carboxylate (**XCIV**) (100 mg, \sim 0.15 mmol, 1.0 eq) in HCl/EtOAc (4 M, 50 mL) was stirred at 20°C for 16 h. The mixture was filtered and the filtrate was concentrated. The residue was purified by acid prep-HPLC to give 1-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine (69) as an off-white solid (8 mg, 0.017 mmol, 10.2% yield for 2 steps). ¹H NMR (400 MHz, DMSO- d_6) δ ppm 2.79 (br d, J=3.97 Hz, δ H), 4.49 (br d, J=4.41 Hz, 2 H), 7.49 - 7.60 (m, 2 H), 7.67 - 7.78 (m, 2 H), 7.83 - 7.91 (m, 1 H), 8.28 (d, J=9.04 Hz, 1 H), 8.41 (d, J=8.82 Hz, 1 H), 8.51 (s, 1 H), 8.85 (br d, J=1.10 Hz, 1 H), 9.13 (br s, 1 H), 9.29 (s, 1 H), 9.52 (d, J=1.54 Hz, 1 H), 13.61 (s, 1 H), 14.48 (br s, 1 H); ESIMS found for $C_{27}H_{22}FN_7$ m/z 464.1 (M+1).

[0699] The following compounds were prepared in accordance with the procedures described herein. See, for example, Schemes 1a and 1-18.

[0700] 3-(4-(3-Fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine 4.

[0701] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 7.31 - 7.39 (m, 1 H), 7.55 - 7.62 (m, 1 H), 7.63 - 7.77 (m, 3 H), 7.93 (s, 1 H), 8.17 - 8.23 (m, 1 H), 8.24 - 8.30 (m, 1 H), 8.34 (s, 1 H), 8.62 (dt, J=8.05, 1.93 Hz, 1 H), 8.69 (dd, J=4.85, 1.54 Hz, 1 H), 8.86 (s, 1 H), 9.46 (d, J=1.76 Hz, 1 H), 12.50 (br d, J=1.54 Hz, 2 H), 13.91 (br s, 1 H); ESIMS found for C_{24} H₁₅FN₆ m/z 407.0 (M+1).

141

[0702] 5-(3-(4-(3-Fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b] pyridin-5-yl)-N,N-dimethylpyridin-3-amine 7.

[0703] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 2.99 (s, 6 H), 7.30 - 7.39 (m, 1 H), 7.57 - 7.71 (m, 3 H), 7.78 (s, 1 H), 7.83 (br d, J=2.21 Hz, 1 H), 8.10 - 8.24 (m, 3 H), 8.24 - 8.31 (m, 1 H), 8.70 (br d, J=0.66 Hz, 1 H), 8.83 (s, 1 H), 12.43 (br s, 1 H), 13.85 (br s, 1 H); ESIMS found for $C_{26}H_{20}FN_{7}$ m/z 450.1 (M+1).

r 1 F

[0704] N-(5-(3-(4-(3-Fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo [4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide 8.

[0705] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 1.28 (s, 7 H), 7.23 - 7.32 (m, 1 H), 7.55 - 7.67 (m, 2 H), 7.73 (br d, J=7.94 Hz, 1 H), 7.79 (s, 1 H), 8.07 (br d, J=8.82 Hz, 1 H), 8.27 (br d, J=8.82 Hz, 1 H), 8.31 (s, 1 H), 8.80 - 8.84 (m, 1 H), 8.85 (s, 1 H), 8.96 (br d, J=2.21 Hz, 1 H), 9.09 (br d, J=2.21 Hz, 1 H), 9.58 (s, 1 H), 12.41 (br s, 1 H); ESIMS found for $C_{29}H_{24}FN_{7}O$ m/z 506.1 (M+1).

15

[0706] 3-(4-(3-Fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine 15.

[0707] 1 H NMR (400 MHz, METHANOL- d_4) δ ppm 1.54 - 1.69 (m, 1 H), 1.84 - 1.94 (m, 1 H), 2.00 (br s, 4 H), 3.13 - 3.26 (m, 2 H), 3.60 - 3.72 (m, 2 H), 4.74 (br s, 2 H), 7.31 - 7.42 (m, 1 H), 7.58 - 7.67 (m, 1 H), 7.71 (br d, J=3.31 Hz, 2 H), 7.78 - 7.91 (m, 1 H), 8.25 - 8.43 (m, 3 H), 9.15 (br s, 1 H), 9.33 (br s, 1 H), 9.77 (br s, 1 H), 9.90 (br s, 1 H); ESIMS found for $C_{30}H_{26}FN_7$ m/z 504.1 (M+1).

[0708] N-(5-(3-(4-(3-Fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo [4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide **23**.

[0709] ¹H NMR (400 MHz, DMSO- d_6) δ ppm 1.17 - 1.38 (m, 4 H), 1.38 - 1.54 (m, 2 H), 1.62 - 1.73 (m, 1 H), 1.75 - 1.84 (m, 2 H), 1.84 - 1.96 (m, 2 H), 7.36 - 7.49 (m, 1 H), 7.69 - 7.88 (m, 3 H), 8.04 (s, 1 H), 8.15 (br d, J=8.77 Hz, 1 H), 8.37 (s, 1 H), 8.55 (s, 1 H), 8.98 (br d, J=3.51 Hz, 1 H), 9.06 (br d, J=0.88 Hz, 1 H), 9.12 (br s, 1 H), 9.16 (br s, 1 H), 10.49 (br s, 1 H), 13.73 (br s, 1 H), 14.45 (br s, 1 H); ESIMS found for $C_{31}H_{26}FN_7O$ m/z 532.1 (M+1).

[0710] 3-(4-(4-Fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine 33.

[0711] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 2.57 (s, 3 H), 7.34 - 7.43 (m, 2 H), 7.46 (br d, J=5.07 Hz, 1 H), 7.69 (br d, J=0.88 Hz, 1 H), 7.78 - 7.88 (m, 3 H), 8.20 - 8.28 (m, 2 H), 8.52 (d, J=5.07 Hz, 1 H), 8.74 (s, 1 H), 8.80 (s, 1 H), 12.39 (br s, 1 H), 13.88 (br s, 1 H); ESIMS found for C_{25} H₁₇FN₆ m/z 421.1 (M+1).

[0712] N-(5-(3-(4-(4-Fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo [4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide **39**.

[0713] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 7.11 - 7.19 (m, 1 H), 7.40 (br t, J=8.71 Hz, 2 H), 7.55 - 7.63 (m, 2 H), 7.64 - 7.74 (m, 1 H), 7.83 (br dd, J=8.60, 6.84 Hz, 1 H), 8.00 (br dd, J=8.60, 5.51 Hz, 1 H), 8.03 - 8.11 (m, 2 H), 8.22 (br d, J=8.82 Hz, 1 H), 8.40 (br d, J=8.82 Hz, 1 H), 8.48 (s, 1 H), 9.07 (s, 1 H), 9.10 (br d, J=2.20 Hz, 1 H), 9.21 (br d, J=1.76 Hz, 1 H), 9.26 (br s, 1 H), 10.82 (br s, 1 H), 13.73 (br s, 1 H), 14.41 (br s, 1 H); ESIMS found for $C_{31}H_{20}FN_{7}O$ m/z 526.0 (M+1).

[0714] 5-(5-((3,3-Difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine 54.

[0715] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 2.58 - 2.71 (m, 2 H), 2.90 - 3.06 (m, 2 H), 3.43 - 3.62 (m, 2 H), 4.60 (br s, 2 H), 7.51 - 7.59 (m, 2 H), 7.96 - 8.07 (m, 3 H), 8.27 - 8.34 (m, 1 H), 8.38 - 8.46 (m, 1 H), 8.48 - 8.54 (m, 1 H), 8.90 (br d, J=1.10 Hz, 1 H), 9.15 - 9.24 (m, 2 H), 9.57 (dd, J=4.41, 1.10 Hz, 1 H), 13.60 (br d, J=1.10 Hz, 1 H), 14.50 (br s, 1 H); ESIMS found for $C_{29}H_{22}F_{3}N_{7}$ m/z 526.1 (M+1).

[0716] 3-(4-(4-Fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine 56.

[0717] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 7.53 - 7.64 (m, 3 H), 7.99 - 8.05 (m, 2 H), 8.05 - 8.11 (m, 1 H), 8.13 (s, 1 H), 8.35 (d, J=8.77 Hz, 1 H), 8.51 (s, 1 H), 8.59 - 8.65 (m, 2 H), 8.76 (br d, J=4.82 Hz, 1 H), 9.05 (s, 1 H), 13.75 (s, 1 H), 14.40 (s, 1 H); ESIMS found for $C_{24}H_{15}FN_{6}$ m/z 407.0 (M+1).

[0718] N-(5-(3-(4-(2-Fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo [4,3-b] pyridin-5-yl)pyridin-3-yl)-3-methylbutanamide 58.

[0719] ¹H NMR (400 MHz, DMSO- d_6) δ ppm 0.99 (d, J=6.62 Hz, 6 H), 2.08 - 2.21 (m, 1 H), 2.33 (d, J=7.06 Hz, 2 H), 7.47 - 7.58 (m, 2 H), 7.62 - 7.71 (m, 1 H), 7.78 (s, 1 H), 7.87 (td, J=7.44, 1.65 Hz, 1 H), 8.14 (d, J=8.82 Hz, 1 H), 8.38 (d, J=9.04 Hz, 1 H), 8.50 (s, 1 H), 8.95 (s, 1 H), 9.05 (br s, 1 H), 9.14 (br d, J=1.54 Hz, 1 H), 9.17 (s, 1 H), 10.58 (br s, 1 H), 13.66 (s, 1 H), 14.43 (br s, 1 H); ESIMS found for $C_{29}H_{24}FN_7O$ m/z 506.1 (M+1).

[0720] 1-(5-(3-(4-(2-Fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo [4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine **69**.

[0721] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 2.79 (br d, J=3.97 Hz, 6 H), 4.49 (br d, J=4.41 Hz, 2 H), 7.49 - 7.60 (m, 2 H), 7.67 - 7.78 (m, 2 H), 7.83 - 7.91 (m, 1 H), 8.28 (d, J=9.04 Hz, 1 H), 8.41 (d, J=8.82 Hz, 1 H), 8.51 (s, 1 H), 8.85 (br d, J=1.10 Hz, 1 H), 9.13 (br s, 1 H), 9.29 (s, 1 H), 9.52 (d, J=1.54 Hz, 1 H), 13.61 (s, 1 H), 14.48 (br s, 1 H); ESIMS found for $C_{27}H_{22}FN_{7}$ m/z 464.1 (M+1).

76

[0722] N-(5-(3-(4-(2-Fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo [4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide 76.

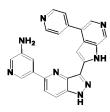
[0723] ¹H NMR (400 MHz, DMSO- d_6) δ ppm 0.79 - 1.01 (m, 4 H), 1.97 (ddd, J=12.24, 7.61, 4.85 Hz, 1 H), 7.42 - 7.59 (m, 2 H), 7.61 - 7.70 (m, 1 H), 7.74 (s, 1 H), 7.88 (td, J=7.66, 1.65 Hz, 1 H), 8.17 (d, J=9.04 Hz, 1 H), 8.39 (d, J=8.82 Hz, 1 H), 8.49 (s, 1 H), 9.07 (br s, 1 H), 9.21 (br s, 2 H), 9.25 (br s, 1 H), 11.29 (br s, 1 H), 13.61 (s, 1 H), 14.51 (br s, 1 H); ESIMS found for $C_{28}H_{20}FN_7O$ m/z 490.0 (M+1).

[0724] N-Benzyl-1-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine **80**.

[0725] ¹H NMR (400 MHz, DMSO- d_6) δ ppm 4.26 (br s, 2 H), 4.40 (br s, 2 H), 6.91 (br s, 1 H), 7.38 - 7.48 (m, 2 H), 7.53 - 7.64 (m, 2 H), 7.67 (br t, J=7.72 Hz, 1 H), 7.76 - 7.88 (m, 1 H), 8.20 (br d, J=8.82 Hz, 1 H), 8.34 (d, J=8.82 Hz, 1 H), 8.38 (br t, J=2.76 Hz, 1 H), 8.48 - 8.62 (m, 2 H), 8.88 (s, 1 H), 9.01 (br s, 1 H), 9.15 - 9.33 (m, 2 H), 9.46 (br d, J=1.10 Hz, 1 H), 10.07 (br s, 2 H), 13.27 (br s, 1 H), 14.00 (br s, 1 H); ESIMS found for C32H24FN7 m/z 526.0 (M+1).

[0726] 5-(4-Methylpyridin-3-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine 89.

[0727] ¹H NMR (400 MHz, METHANOL- d_4) δ ppm 2.85 (s, 3 H), 7.93 (d, J=9.00 Hz, 1 H), 8.01 - 8.07 (m, 2 H), 8.15 (d, J=6.26 Hz, 1 H), 8.38 (d, J=8.61 Hz, 1 H), 8.55 (s, 1 H), 8.69 - 8.76 (m, 1 H), 8.83 (d, J=6.26 Hz, 1 H), 8.91 (br d, J=5.09 Hz, 1 H), 9.13 (s, 2 H), 9.26 (s, 1 H); ESIMS found for $C_{24}H_{17}N_7$ m/z 404.0 (M+1).


[0728] N-Isopropyl-5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine 96.

[0729] ¹H NMR (400 MHz, DMSO- d_6) δ ppm 1.20 (d, J=6.17 Hz, δ H), 3.78 - 3.84 (m, 3 H), 7.02 - 7.14 (m, 1 H), 7.71 (br dd, J=7.72, 4.85 Hz, 1 H), 7.81 (br dd, J=8.16, 5.07 Hz, 1 H), 8.00 (s, 1 H), 8.15 (br d, J=2.43 Hz, 1 H), 8.27 (br d, J=9.04 Hz, 1 H), 8.56 (s, 1 H), 8.62 (s, 1 H), 8.79 (br d, J=3.31 Hz, 1 H), 8.83 (br dd, J=4.85, 1.32 Hz, 1 H), 9.04 (br d, J=1.98 Hz, 1 H), 9.15 (s, 1 H), 9.24 (s, 1 H), 13.85 (br s, 1 H), 14.55 (br s, 1 H); ESIMS found for $C_{26}H_{22}N_8$ m/z 447.1 (M+1).

110

[0730] 5-(5-((3,3-Difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine 110.

[0731] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 2.60 - 2.72 (m, 2 H), 3.58 - 3.69 (m, 2 H), 3.85 - 3.96 (m, 2 H), 4.69 (br s, 2 H), 7.90 - 7.99 (m, 1 H), 8.06 (s, 1 H), 8.34 (br d, J=8.60 Hz, 1 H), 8.42 (br d, J=8.82 Hz, 1 H), 8.61 - 8.70 (m, 2 H), 8.94 (br s, 2 H), 9.30 (br d, J=15.44 Hz, 3 H), 9.59 (br s, 1 H), 13.72 (br s, 1 H), 14.55 (br s, 1 H); ESIMS found for $C_{28}H_{22}F_{2}N_{8}$ m/z 509.0 (M+1).

115

[0732] 5-(3-(4-(Pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b] pyridin-5-yl)pyridin-3-amine 115.

[0733] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 5.50 (br s, 2 H), 7.74 (br d, J=1.76 Hz, 1 H), 7.89 (br d, J=5.95 Hz, 2 H), 7.93 (s, 1 H), 7.99 (br d, J=8.82 Hz, 1 H), 8.05 (br d, J=2.43 Hz, 1 H), 8.18 - 8.27 (m, 2 H), 8.40 (s, 1 H), 8.57 (s, 1 H), 8.78 (br d, J=5.73 Hz, 2 H), 8.89 (s, 1 H), 12.49 (s, 1 H); ESIMS found for $C_{23}H_{16}N_{8}$ m/z 405.1 (M+1).

127

[0734] 5-(5-(Piperidin-1-ylmethyl)pyridin-3-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine 127.

[0735] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 1.37 - 1.49 (m, 1 H), 1.69 - 1.78 (m, 1 H), 1.79 - 1.96 (m, 4 H), 2.93 - 3.05 (m, 2 H), 3.41 (br d, J=10.80 Hz, 2 H), 4.53 (br d, J=3.75 Hz, 2 H), 8.06 (s, 1 H), 8.32 - 8.47 (m, 4 H), 8.76 (s, 1 H), 8.93 (br s, 1 H), 9.09 (br d, J=5.51 Hz, 2 H), 9.41 (s, 1 H), 9.52 (br s, 1 H), 9.62 (br s, 1 H), 13.76 (br s, 1 H), 14.62 (br s, 1 H); ESIMS found for $C_{29}H_{26}N_8$ m/z 487.1 (M+1).

258

[0736] N-((5-(3-(1H-Pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl) pyridin-3-yl)methyl)ethanamine 258.

[0737] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 1.32 (br t, J=7.28 Hz, 3 H), 3.01 - 3.14 (m, 2 H), 4.32 - 4.42 (m, 2 H), 8.15 (br d, J=1.10 Hz, 1 H), 8.24 - 8.30 (m, 1 H), 8.30 - 8.35 (m, 1 H), 8.40 (br d, J=8.82 Hz, 1 H), 8.83 (br d, J=1.54 Hz, 1 H), 9.16 (br d, J=11.91 Hz, 2 H), 9.56 (br d, J=1.98 Hz, 1 H), 9.59 (br d, J=6.17 Hz, 1 H), 13.43 (br s, 1 H), 14.42 (br s, 1 H); ESIMS found for $C_{21}H_{19}N_7$ m/z 370.1 (M+1).

274

[0738] N-(5-(3-(1H-Pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl) pyridin-3-yl)cyclopentanecarboxamide 274.

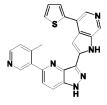
[0739] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 1.54 - 1.66 (m, 2 H), 1.68 - 1.87 (m, 4 H), 1.88 - 1.99 (m, 2 H), 2.85 - 2.95 (m, 1 H), 7.62 (d, J=4.82 Hz, 1 H), 7.66 (s, 1 H), 8.10 (d, J=9.21 Hz, 1 H), 8.13 (d, J=4.82 Hz, 1 H), 8.25 (d, J=8.77 Hz, 1 H), 8.82 (s, 1 H), 8.90 (t, J=2.19 Hz, 1 H), 8.94 (d, J=2.19 Hz, 1 H), 9.12 (d, J=2.19 Hz, 1 H), 10.30 (s, 1 H), 12.16 (s, 1 H), 13.83 (br s, 1 H); ESIMS found for $C_{24}H_{21}N_{7}O$ m/z 424.2 (M+1).

280

[0740] 5-(Pyridin-2-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b] pyridine 280.

[0741] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 7.58 (br dd, J=6.61, 5.51 Hz, 1 H), 8.06 (br d, J=0.88 Hz, 1 H), 8.08 - 8.17 (m, 1 H), 8.24 (br d, J=6.61 Hz, 1 H), 8.31 - 8.39 (m, 2 H), 8.65 (d, J=9.04 Hz, 1 H), 8.76 - 8.85 (m, 2 H), 9.05 (br s, 1 H), 13.54 (br s, 1 H), 14.36 (br s, 1 H); ESIMS found for C_{18} H₁₂N₆ m/z 313.0 (M+1).

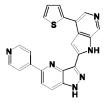
318


[0742] N-(5-(3-(4-(Furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b] pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide 318.

[0743] ¹H NMR (400 MHz, DMSO- d_6) δ ppm 3.81 (s, 2 H), 7.25 (br d, J=7.28 Hz, 2 H), 7.28 - 7.34 (m, 2 H), 7.35 - 7.41 (m, 2 H), 8.06 (s, 1 H), 8.10 (br d, J=8.82 Hz, 1 H), 8.25 (br d, J=8.82 Hz, 1 H), 8.36 - 8.43 (m, 1 H), 8.82 (br d, J=0.88 Hz, 1 H), 8.85 (s, 1 H), 8.92 (br d, J=2.43 Hz, 1 H), 9.05 (br s, 1 H), 9.14 (s, 1 H), 9.18 (br d, J=1.76 Hz, 1 H), 10.88 (br s, 1 H), 13.11 (br d, J=1.10 Hz, 1 H), 13.79 (br s, 2 H); ESIMS found for $C_{30}H_{21}N_7O_2$ m/z 512.1 (M+1).

[0744] 1-Cyclopentyl-N-((5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine 333.

333


[0745] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 1.38 - 1.56 (m, 4 H), 1.82 - 1.91 (m, 2 H), 2.07 - 2.17 (m, 2 H), 2.43 (br d, J=6.84 Hz, 2 H), 5.74 (s, 1 H), 7.84 (br dd, J=7.72, 5.07 Hz, 1 H), 7.89 (br s, 1 H), 8.54 (br d, J=8.38 Hz, 1 H), 8.57 - 8.63 (m, 2 H), 8.85 - 8.89 (m, 1 H), 8.94 (br d, J=1.54 Hz, 1 H), 8.96 (br d, J=1.98 Hz, 1 H), 9.00 (br d, J=1.54 Hz, 1 H), 9.09 (s, 1 H), 9.20 (br dd, J=5.07, 1.76 Hz, 2 H), 10.86 (br s, 1 H), 13.95 (br s, 1 H), 14.79 (s, 1 H); ESIMS found for $C_{29}H_{27}N_7O$ m/z 490.1 (M+1).

341

[0746] 5-(4-Methylpyridin-3-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine 341.

[0747] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 2.58 (br s, 3 H), 7.30 - 7.36 (m, 1 H), 7.51 - 7.61 (m, 1 H), 7.74 - 7.82 (m, 1 H), 7.96 (br d, J=4.19 Hz, 1 H), 8.22 - 8.34 (m, 2 H), 8.42 (dt, J=2.43, 1.21 Hz, 1 H), 8.57 - 8.64 (m, 1 H), 8.67 (br s, 1 H), 8.80 (br d, J=0.66 Hz, 1 H), 9.12 (br s, 1 H), 13.13 (br s, 1 H), 13.75 (br s, 1 H); ESIMS found for C_{23} H₁₆N₆S m/z 409.0 (M+1).

354

[0748] 5-(Pyridin-4-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine 354.

[0749] ¹H NMR (400 MHz, DMSO- d_6) δ ppm 7.38 (br s, 1 H), 8.03 (br d, J=3.75 Hz, 1 H), 8.28 - 8.39 (m, 2 H), 8.42 - 8.48 (m, 1 H), 8.48 - 8.53 (m, 1 H), 8.71 (s, 2 H), 8.89 (br d,

J=5.73 Hz, 2 H), 9.15 (s, 2 H), 13.18 (s, 1 H), 13.86 (s, 1 H); ESIMS found for $C_{22}H_{14}N_6S$ m/z 395.2 (M+1).

[0750] N-(3-Fluoro-5-(2-(5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide **481**.

[0751] 1 H NMR (400 MHz, METHANOL- d_4) δ ppm 2.57 (s, 3 H), 2.95 (s, 3 H), 4.38 (s, 2 H), 7.30 - 7.36 (m, 1 H), 7.44 - 7.54 (m, 2 H), 7.65 (s, 1 H), 7.75 (br d, J=8.16 Hz, 1 H), 7.94 (s, 1 H), 8.15 - 8.26 (m, 2 H), 8.29 (s, 1 H), 8.49 (d, J=5.07 Hz, 1 H), 8.69 (s, 1 H), 8.89 (s, 1 H); ESIMS found for C_{27} H₂₂FN₇O₂S m/z 528.0 (M+1).

[0752] N-(3-Fluoro-5-(2-(5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide 491.

[0753] 1 H NMR (400 MHz, METHANOL- d_4) δ ppm 1.50 (br d, J=4.63 Hz, 2 H), 1.58 - 1.69 (m, 4 H), 2.52 (br s, 4 H), 2.97 (s, 3 H), 3.66 (s, 2 H), 4.42 (s, 2 H), 7.29 (br d, J=9.70 Hz, 1 H), 7.46 (br d, J=9.48 Hz, 1 H), 7.63 (s, 1 H), 7.74 (s, 1 H), 7.98 - 8.04 (m, 1 H), 8.04 - 8.12 (m, 1 H), 8.18 (s, 1 H), 8.55 (br s, 1 H), 8.58 (br s, 1 H), 8.78 (s, 1 H), 9.24 (d, J=1.76 Hz, 1 H); ESIMS found for $C_{32}H_{31}FN_8O_2S$ m/z 611.0 (M+1).

[0754] N-(3-(2-(5-((3,3-Difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-1H-pyrrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorobenzyl)methanesulfonamide 502.

[0755] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 2.18 - 2.30 (m, 2 H), 2.76 (br t, J=6.73 Hz, 2 H), 2.86 - 3.03 (m, 5 H), 3.79 (s, 2 H), 4.40 (br d, J=6.17 Hz, 2 H), 7.38 (br d, J=9.26 Hz, 1 H), 7.63 (br d, J=9.26 Hz, 1 H), 7.74 (s, 1 H), 7.90 (br t, J=6.17 Hz, 1 H), 7.95 (s, 1 H), 8.20 (br d, J=8.82 Hz, 1 H), 8.30 (br d, J=8.82 Hz, 1 H), 8.40 (br s, 1 H), 8.47 (br s, 1 H), 8.62 (br s, 1 H), 8.96 (br s, 1 H), 9.41 (br s, 1 H), 13.09 (br s, 1 H), 14.31 (br s, 1 H); ESIMS found for $C_{31}H_{27}F_{3}N_{8}O_{2}S$ m/z 633.1 (M+1).

[0756] N-(3-Fluoro-5-(2-(5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide **503**.

[0757] ¹H NMR (400 MHz, DMSO- d_6) δ ppm 2.96 (s, 3 H), 4.41 (br d, J=6.17 Hz, 2 H), 6.56 (s, 1 H), 7.33 (br d, J=9.92 Hz, 1 H), 7.56 - 7.64 (m, 1 H), 7.75 (s, 1 H), 7.79 (br t, J=6.50 Hz, 1 H), 7.91 (s, 1 H), 8.24 - 8.30 (m, 1 H), 8.30 - 8.35 (m, 1 H), 8.35 (br s, 1 H), 8.90 (br s, 1 H), 9.30 (s, 1 H), 9.66 (s, 1 H), 12.68 (s, 1 H), 14.05 (br s, 1 H); ESIMS found for $C_{25}H_{19}FN_8O_2S$ m/z 515.0 (M+1).

[0758] N-(3-Fluoro-5-(2-(5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide 504.

[0759] ¹H NMR (400 MHz, DMSO- d_6) δ ppm 2.95 (s, 3 H), 4.40 (br d, J=5.95 Hz, 1 H), 7.46 (br d, J=9.26 Hz, 1 H), 7.56 - 7.63 (m, 1 H), 7.72 - 7.79 (m, 2 H), 7.81 (br t, J=6.28 Hz, 1 H), 8.02 - 8.10 (m, 1 H), 8.13 (s, 1 H), 8.35 (br d, J=8.82 Hz, 1 H), 8.53 (s, 1 H), 8.62 (br d, J=9.04 Hz, 1 H), 8.66 (br d, J=7.94 Hz, 1 H), 8.78 (br d, J=4.63 Hz, 1 H), 9.12 (s, 1 H), 13.80 (br s, 1 H), 14.44 (br s, 1 H); ESIMS found for $C_{26}H_{20}FN_7O_2S$ m/z 514.1 (M+1).

[0760] 3-(4-(3-Fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridine 505.

[0761] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 2.09 - 2.28 (m, 4 H), 3.00 - 3.15 (m, 2 H), 3.21 - 3.31 (m, 1 H), 3.38 (br d, J=12.28 Hz, 2 H), 7.41 - 7.57 (m, 2 H), 7.71 - 7.85 (m, 3 H), 8.03 (s, 1 H), 8.16 (br d, J=8.77 Hz, 1 H), 8.54 (s, 1 H), 9.02 - 9.15 (m, 2 H), 13.69 (br s, 1 H), 14.31 (br s, 1 H); ESIMS found for $C_{24}H_{21}FN_{6}$ m/z 413.1 (M+1).

518

[0762] 5-(5-(Benzyloxy)pyridin-3-yl)-3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c] pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine 518.

[0763] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 2.09 - 2.28 (m, 4 H), 3.00 - 3.15 (m, 2 H), 3.21 - 3.31 (m, 1 H), 3.38 (br d, J=12.28 Hz, 3 H), 7.41 - 7.57 (m, 2 H), 7.71 - 7.85 (m, 3 H), 8.03 (s, 1 H), 8.16 (br d, J=8.77 Hz, 1 H), 8.54 (s, 1 H), 9.02 - 9.15 (m, 2 H), 13.69 (br s, 1 H), 14.31 (br s, 1 H); ESIMS found for $C_{31}H_{21}FN_{6}O$ m/z 513.1 (M+1).

[0764] 3-(4-(2-Fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine 539.

[0765] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 7.40 - 7.50 (m, 2 H), 7.53 (br s, 1 H), 7.55 - 7.62 (m, 1 H), 7.65 - 7.72 (m, 1 H), 7.76 (br t, J=8.27 Hz, 1 H), 7.82 (d, J=8.82 Hz, 1 H), 8.08 (d, J=8.82 Hz, 1 H), 8.12 - 8.23 (m, 1 H), 8.19 (br d, J=10.14 Hz, 1 H), 8.86 (s, 1 H), 12.23 (br s, 1 H), 13.12 (br s, 1 H), 13.68 (br s, 1 H); ESIMS found for $C_{22}H_{14}FN_7$ m/z 396.2 (M+1).

[0766] 5-(1-Methyl-1H-pyrazol-4-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine 556.

[0767] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 3.96 (br s, 3 H), 7.79 - 7.89 (m, 2 H), 8.03 (br d, J=2.87 Hz, 1 H), 8.13 - 8.24 (m, 2 H), 8.43 - 8.49 (m, 1 H), 8.49 - 8.56 (m, 1 H), 8.62 (br d, J=2.65 Hz, 1 H), 8.88 (br dd, J=3.42, 2.76 Hz, 1 H), 9.07 - 9.14 (m, 1 H), 9.15 - 9.23 (m, 1 H), 13.63 (br s, 1 H), 14.23 (br s, 1 H); ESIMS found for $C_{22}H_{16}N_8$ m/z 393.0 (M+1).

[0768] 5-(1,2-Dimethyl-1H-imidazol-5-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c] pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine 573.

[0769] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 2.67 (br s, 3 H), 4.12 (s, 3 H), 7.57 (br s, 1 H), 7.77 (br s, 1 H), 7.81 - 7.91 (m, 2 H), 8.06 - 8.23 (m, 3 H), 8.40 (br s, 1 H), 8.77 - 8.84 (m, 1 H), 8.86 (br s, 1 H), 12.50 (s, 1 H); ESIMS found for $C_{23}H_{18}N_{8}$ m/z 407.0 (M+1).

[0770] 5-(5-(Cyclohexyloxy)pyridin-3-yl)-3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c] pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine 607.

[0771] 1 H NMR (400 MHz, METHANOL- d_4) δ ppm 1.30 - 1.58 (m, 4 H), 1.59 - 1.71 (m, 3 H), 1.73 - 1.82 (m, 2 H), 1.82 - 1.91 (m, 2 H), 1.91 - 2.00 (m, 3 H), 2.05 - 2.16 (m, 2 H), 3.37 - 3.54 (m, 4 H), 4.62 (td, J=8.60, 4.63 Hz, 1 H), 7.65 (s, 1 H), 7.92 (s, 1 H), 8.06 - 8.13 (m, 1 H), 8.15 - 8.20 (m, 1 H), 8.20 - 8.24 (m, 1 H), 8.33 (d, J=2.65 Hz, 1 H), 8.49 (br d, J=6.39 Hz, 2 H), 8.96 (d, J=1.76 Hz, 1 H); ESIMS found for $C_{29}H_{31}N_7O$ m/z 494.1 (M+1).

659

[0772] 2-((5-(3-(1H-Pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl) pyridin-3-yl)oxy)-N,N-dimethylethan-1-amine 659.

[0773] 1 H NMR (400 MHz, DMSO- d_{6}) δ ppm 2.90 (br d, J=4.63 Hz, 5 H), 3.58 - 3.66 (m, 2 H), 4.70 (br t, J=4.96 Hz, 2 H), 8.05 (br d, J=1.10 Hz, 1 H), 8.28 - 8.35 (m, 2 H), 8.35 - 8.41

(m, 1 H), 8.48 (br s, 1 H), 8.56 (br d, J=2.65 Hz, 1 H), 9.06 (s, 1 H), 9.25 (s, 1 H), 10.80 (br s, 1 H), 13.51 (s, 1 H), 14.45 (br s, 1 H); ESIMS found for $C_{22}H_{21}N_7O$ m/z 400.1 (M+1).

[0774] 3-(4-(Furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl) ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine **690**.

[0775] 1 H NMR (400 MHz, DMSO- d_6) δ ppm 2.08 (s, 4 H), 3.17 (s, 4 H), 3.70 (br dd, J=6.17, 3.31 Hz, 2 H), 4.57 - 4.65 (m, 2 H), 7.36 (br s, 2 H), 8.08 (br d, J=1.10 Hz, 1 H), 8.24 (br d, J=7.50 Hz, 1 H), 8.27 (br d, J=1.54 Hz, 1 H), 8.41 - 8.45 (m, 1 H), 8.47 (br d, J=2.65 Hz, 1 H), 8.78 (s, 1 H), 8.83 (s, 1 H), 9.15 (br s, 1 H), 9.17 (br d, J=1.54 Hz, 1 H), 13.11 (br s, 1 H), 13.79 (br s, 1 H); ESIMS found for $C_{28}H_{25}N_7O_2$ m/z 492.1 (M+1).

Example 2.

[0776] The screening assay for Wnt activity is described as follows. Reporter cell lines can be generated by stably transducing cancer cell lines (e.g., colon cancer) or primary cells (e.g., IEC-6 intestinal cells) with a lentiviral construct that includes a Wnt-responsive promoter driving expression of the firefly luciferase gene.

[0777] SW480 colon carcinoma cells were transduced with a lentiviral vector expressing luciferase with a human Sp5 promoter consisting of a sequence of eight TCF/LEF binding sites. SW480 cells stably expressing the Sp5-Luc reporter gene and a hygromycin resistance gene were selected by treatment with 150 μg/mL of hygromycin for 7 days. These stably transduced SW480 cells were expanded in cell culture and used for all further screening activities. Each compound was dissolved in DMSO as a 10 mM stock and used to prepare compound source plates. Serial dilution (1:3, 10-point dose-response curves starting from 10 μM) and compound transfer was performed using the ECHO 550 (Labcyte, Sunnyvale, CA) into 384-well white solid bottom assay plates (Greiner Bio-One) with appropriate DMSO backfill for a final DMSO concentration of 0.1%. For Sp5-Luc reporter gene assays, the cells were plated at 4,000 cells/well in 384-well plates with medium containing 1% fetal bovine serum and incubated overnight at 37°C and 5% CO₂. Following incubation, 20 μl of BrightGlo luminescence reagent (Promega) was added to each well of the 384-well assay plates. The plates were placed on an orbital shaker for 2 min and then luminescence was quantified using the Envision (Perkin Elmer) plate reader. Readings were

normalized to DMSO only treated cells, and normalized activities were utilized for EC₅₀ calculations using the dose-response log (inhibitor) vs. response –variable slope (four parameters) nonlinear regression feature available in GraphPad Prism 5.0 (or Dotmatics). For EC₅₀ of >10 μ M, the percent inhibition at 10 μ M is provided.

[0778] Table 2 shows the measured activity for representative compounds of Formula I as described herein.

Compound	EC ₅₀ (μM)						
4	0.255	69	1.509	280	>10 (2.1%)	505	>10 (32.9%)
7	0.516	76	1.417	318	>10 (0%)	518	1.283
8	1.971	80	3.980	333	>10 (25.5%)	539	1.202
15	3.708	89	>10 (35.4%)	341	4.069	556	7.015
23	1.461	96	1.728	354	2,226	573	>10 (43.9%)
33	>10 (21.5%)	110	3.854	481	0.980	607	3.346
39	3.429	115	>10 (30.1%)	491	1.304	659	3.350
54	0.751	127	>10 (29.6%)	502	2.106	690	>10 (7.4%)
56	2.325	258	8.449	503	>10 (46.4%)		
58	0.702	274	2.629	504	3.646		

Table 2.

Example 3.

[0779] Representative compounds were screened using the following assay procedure to assess the effect on cell viability as described below.

[0780] Each compound was dissolved in DMSO as a 10 mM stock and used to prepare compound source plates. Serial dilution (1:3, 8-point dose-response curves from $10 \mu\text{M}$ to $0.0045 \mu\text{M}$) and compound transfer was performed using the ECHO 550 (Labcyte, Sunnyvale, CA) into 96-well clear bottom, black-walled plates (Corning- Costar).

[0781] Approximately 2 x 103 SW480 colon cancer cells were seeded into each well and allowed to incubate in the presence or absence of compound for four days at 37°C/5% CO₂. Eight replicates of DMSO-treated cells served as controls and cells treated with compound were performed in duplicate.

[0782] After incubation, $20\mu L$ of CellTiter-Blue (Promega) was added to each well allowed to incubate for approximately 3 hours. This reagent was a buffered solution which contains resazurin, metabolically active cells were able to reduce rezarurin (blue) into resorufin (pink) which was highly fluorescent. This measured fluorescence was used as a readout for cell viability.

[0783] After incubation, the plates were read at Ex 560 nm Em 590 nm (Cytation 3, BioTek). Dose-response curves were generated and EC₅₀ concentration values were calculated using non-linear regression curve fit in the GraphPad Prism (San Diego, CA) or Dotmatics' Studies

Software (Bishops Stortford, UK). For EC₅₀ of >10 μ M, the percent inhibition at 10 μ M is provided.

[0784] Table 3 shows the activity of representative compounds of Formula I as provided herein.

Compound EC50 (µM) Compound EC₅₀ (μM) Compound EC₅₀ (μM) Compound EC50 (µM) 0.475 0.557 280 >10 (3.3%) 505 >10 (26.0%) 69 0.357 76 0.897 318 >10 (23.8%) 518 1.119 1.207 6.725 7.842 539 2.885 8 80 333 15 89 8.838 4.246 556 4.043 4.607 341 573 23 1.067 96 1.379 354 1.082 >10 (5.3%) 1.857 110 4.855 2.776 0.498 33 481 607 1.479 39 2.307 >10 (7.6%) 1.957 659 115 491 54 0.827**127** 5.256 502 3.086 690 >10 (0%) 56 1.120 258 3.580 503 >10 (28.3%) 58 504 >10 (47.6%) 0.413274 3.123

Table 3.

Example 4.

[0785] Representative compounds were screened using primary human fibroblasts (derived from IPF patients) treated with TGF- β 1 to determine their ability to inhibit the fibrotic process.

[0786] Human Fibroblast Cell Culture: Primary human fibroblasts derived from IPF patients (LL29 cells) [¹Xiaoqiu Liu, et.al., "Fibrotic Lung Fibroblasts Show Blunted Inhibition by cAMP Due to Deficient cAMP Response Element-Binding Protein Phosphorylation", Journal of Pharmacology and Experimental Therapeutics (2005), 315(2), 678-687; ²Watts, K. L., et.al., "RhoA signaling modulates cyclin D1 expression in human lung fibroblasts; implications for idiopathic pulmonary fibrosis", Respiratory Research (2006), 7(1), 88] were obtained from American Type Culture Collection (ATCC) and expanded in F12 medium supplemented with 15% Fetal Bovine Serum and Penicillin/Streptomycin.

[0787] Compound Screening: Each compound was dissolved in DMSO as a 10 mM stock and used to prepare compound source plates. Serial dilution (1:2, 11-point dose-response curves from 10 μM to 1.87 nM) and compound transfer was performed using the ECHO 550 (Labcyte, Sunnyvale, CA) into 384-well clear bottom assay plates (Greiner Bio-One) with appropriate DMSO backfill for a final DMSO concentration of 0.1%. LL29 cells are plated at 1,500 cells/well in 80 μL/well F12 medium supplemented with 1% Fetal Bovine Serum. One hour after addition of the cells, TGF-β1 (Peprotech; 20 ng/mL) was added to the plates to induce fibrosis (ref. 1 and 2 above). Wells treated with TGF-β1 and containing DMSO were used as controls. Cells were incubated at 37°C and 5% CO₂ for 4 days. Following incubation for 4 days, SYTOX green

nucleic acid stain (Life Technologies [Thermo Fisher Scientific]) was added to the wells at a final concentration of 1 µM and incubated at room temperature for 30 min. Cells were then fixed using 4% formaldehyde (Electron Microscopy Sciences), washed 3 times with PBS followed by blocking and permeabilization using 3% Bovine Serum Albumin (BSA; Sigma) and 0.3% Triton X-100 (Sigma) in PBS. Cells were then stained with antibody specific to α -smooth muscle actin (α SMA; Abcam) (ref. 1 and 2 above) in 3% Bovine Serum Albumin (BSA; Sigma) and 0.3% Triton X-100 (Sigma) in PBS, and incubated overnight at 4°C. Cells were then washed 3 times with PBS, followed by incubation with Alexa Flor-647 conjugated secondary antibody (Life Technologies [Thermo Fisher Scientific]) and DAPI at room temperature for 1 hour. Cells were then washed 3 times with PBS and plates were sealed for imaging. aSMA staining was imaged by excitation at 630 nm and emission at 665 nm and quantified using the Compartmental Analysis program on the CellInsight CX5 (Thermo Scientific). Dead or apoptotic cells were excluded from analysis based on positive SYTOX green staining. % of total cells positive for αSMA were counted in each well and normalized to the average of 11 wells treated with TGF-β1 on the same plate using Dotmatics' Studies Software. The normalized averages (fold change over untreated) of 3 replicate wells for each compound concentration were used to create dose-responses curves and EC₅₀ values were calculated using non-linear regression curve fit in the Dotmatics' Studies Software. For EC₅₀ of $>10 \mu M$, the percent inhibition at 10 μM is provided.

[0788] Table 4 shows the activity of representative compounds of Formula I as provided herein.

Compound	EC ₅₀ (μM)						
4	0.272	69	1.125	280	1.246	505	>10 (0%)
7	0.450	76	2.045	318	>10 (35.5%)	518	1.203
8	2.307	80	4.603	333	1.504	539	2.308
15	>10	89	1.539	341	0.521	556	3.017
23	0.718	96	>10 (0%)	354	1.175	573	2.192
33	1.761	110	0.329	481	0.262	607	0.199
39	>10 (39.8%)	115	6,653	491	1.220	659	4.127
54	0.370	127	4.955	502	>10 (25.4%)	690	>10 (29.5%)
56	1.302	258	6.633	503	2,206		
50	0.607	274	0.656	504	2 667		

Table 4.

Example 5.

[0789] Representative compounds were screened using primary human mesenchymal stem cells (hMSCs) to determine their ability to induce chondrogenesis (process by which cartilage is developed).

[0790] Human Mesenchymal Stem Cell Culture: Primary human mesenchymal stem cells (hMSCs) were purchased from Lonza (Walkersville, MD) and expanded in Mesenchymal Stem Cell Growth Media (Lonza). Cells between passage 3 and 6 were used for the experiments.

[0791] Compound Screening: Each compound was dissolved in DMSO as a 10 mM stock and used to prepare compound source plates. Serial dilution (1:3, 6-point dose-response curves from 2700 nM to 10 nM) and compound transfer was performed using the ECHO 550 (Labcyte, Sunnyvale, CA) into 96-well clear bottom assay plates (Greiner Bio-One) with appropriate DMSO backfill for a final DMSO concentration of 0.03%. hMSCs were plated at 20,000 cells/well in 250 μL/well Incomplete Chondrogenic Induction Medium (Lonza; DMEM, dexamethasone, ascorbate, insulin-transferrin-selenium [ITS supplement], gentamycinamphotericin [GA-1000], sodium pyruvate, proline and L-glutamine). TGF-β3 (10 ng/mL) was used as a positive control for differentiation while negative control wells were treated with 75 nL DMSO for normalization and calculating EC₅₀ values. Cells were incubated at 37°C and 5% CO₂ for 6 days. To image chondrogenic nodules, the cells were fixed using 4% formaldehyde (Electron Microscopy Sciences), and stained with 2 μg/mL Rhodamine B (Sigma-Aldrich) and 20 μM Nile Red (Sigma-Aldrich) [Johnson K., et.al, A Stem Cell-Based Approach to Cartilage Repair, Science, (2012), 336(6082), 717-721]. The nodules imaged (4 images per well at 4X magnification) by excitation at 531 nm and emission at 625 nm and quantified using the CellInsight CX5 (Thermo Scientific). Number of nodules in each well was normalized to the average of 3 DMSO treated wells on the same plate using Excel (Microsoft Inc.). The normalized averages (fold change over DMSO) of 3 replicate wells for each compound concentration were calculated. Due to solubility limitations of some of the compounds, curve fitting was incomplete leading to inaccurate EC₅₀ determinations.

[0792] Using TGF- β 3 as a positive control, the concentration of representative compounds required to induce 50% levels of chondrogenesis is reported. In addition, the maximum activity of each compound and the respective dose that each compound reached maximum chondrogenesis activity is reported. Table 5 shows the activity of representative compounds as provided herein.

Table 5.

Compound	Conc (nM) of Max. activity	Max. Activity as % TGF-β3 activity	Conc (nM) of 50% TGF-β3 activity	Compound	Conc (nM) of Max. activity	Max. Activity as % TGF-β3 activity	Conc (nM) of 50% TGF-β3 activity
4	2700	92	30	127	10	97	10
7	2700	85	100	274	30	50	30
15	900	54	10	481	0	87	10

33	900	28	NA	491	10	83	10
54	900	194	900	503	30	106	10
69	10	51	30	504	2700	99	300
89	100	149	10	505	2700	103	2700
110	300	23	NA	539	2700	40	NA
115	2700	53	30	556	300	52	10

Example 6.

[0793] Representative compounds were screened using the following assay procedure to determine their ability to inhibit IL-6 and therefore demonstrate their anti-inflammatory properties.

[0794] Human Monocyte Cell Culture: Human monocyte cell line (THP-1 cells; Catalog # TIB-202, ATCC, Manassas, VA) were cultured in Roswell Park Memorial Institute (RPMI) 1640 Medium (Catalog # 21870-100, Buffalo, NY) with 1% L-glutamine, 1% HEPES, 1% Sodium Pyruvate, 2% Sodium Bicarbonate supplemented with 100 units/mL penicillin, 50 μg/mL streptomycin, 2-mercaptoethanol (0.05mM) [basal medium] and 10% fetal bovine serum (Catalog # 16140089, Life Technologies, Carlsbad, CA) at 37°C and 5% CO₂.

[0795] Compound Screening: THP-1 cells were cultured in basal media with 1% FBS for 24 hours before the start of the assay. Each compound was dissolved in DMSO as a 10 mM stock and used to prepare compound source plates. Serial dilution (1:3, 10-point dose-response curves starting from 10 µM) and compound transfer was performed using the ECHO 550 (Labcyte, Sunnyvale, CA) into 384-well white low volume assay plates (Greiner Bio-One) with appropriate DMSO backfill for a final DMSO concentration of 0.1%. THP-1 cells were plated at 5000 cells/well in the 384-well plates and incubated at 37°C for 2 h. 500 ng/mL of LPS was added after 2 hours and cells were incubated for another 22 hours at 37°C. Plates were spun in a centrifuge for 1 minute at 10,000 rpm and a mixture of anti-IL6 XL665, and anti-IL6 Cryptate diluted in reconstitution buffer (Cisbio Inc.) was added to each well. Following incubation for 3hrs at room temperature, Homogeneous Time-Resolved Fluorescence (HTRF) was measured using the Envision (Perkin Elmer) at 665 nm and 620 nM. The ratio of fluorescence at 665 nm to 620 nm was used as a readout for IL6 quantification. All samples were processed in duplicate. Readings were normalized to DMSO treated cells and normalized activities were utilized for EC₅₀ calculations using the doseresponse log (inhibitor) vs. response -variable slope (four parameters) nonlinear regression feature available in GraphPad Prism 5.0 (or Dotmatics). For EC₅₀ of >10 μM, the percent inhibition at 10 μM is provided.

[0796] Table 6 shows the activity of representative compounds of Formula I as provided herein.

Table 6.

Compound	EC ₅₀ (μM)						
4	0.266	69	1.151	280	>10 (47.2%)	505	1.106
7	0.038	76	0.157	318	>10 (30.9%)	518	>10 (35.5%)
8	0.228	80	5.793	333	0.456	539	0.160
15	>10 (51.3%)	89	0.424	341	0.118	556	3.713
23	>10 (1%)	96	0.120	354	5.798	573	>10 (0%)
33	>10 (37.8%)	110	0.380	481	0.115	607	2.360
39	>10 (33.1%)	115	1.033	491	0.213	659	1.490
54	0.177	127	2.855	502	1.758	690	>10 (9.7%)
56	>10 (32.6%)	258	0.873	503	0.649		
58	0.085	274	0.235	504	0.031		

WHAT IS CLAIMED IS:

1. A compound, or a pharmaceutically acceptable salt thereof, of Formula I:

wherein:

R¹ and R² are independently selected from the group consisting of H and halide;

 R^3 is selected from the group consisting of –heteroaryl optionally substituted with 1-4 R^6 and –heterocyclyl optionally substituted with 1-10 R^7 ;

 R^5 is selected from the group consisting of H, –heteroaryl optionally substituted with 1-4 R^8 , –heterocyclyl optionally substituted with 1-10 R^9 , and –aryl optionally substituted with 1-5 R^{10} ;

each R^6 is independently selected from the group consisting of halide, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$, $-(C_{1-4} \text{ alkylene})_p$ heterocyclyl optionally substituted with 1-10 R^{11} , $-(C_{2-4} \text{ alkynylene})_p$ heterocyclyl optionally substituted with 1-10 R^{11} , $-(C_{2-4} \text{ alkynylene})_p$ heterocyclyl optionally substituted with 1-10 R^{11} , $-(C_{1-4} \text{ alkylene})_p$ carbocyclyl optionally substituted with 1-12 R^{12} , $-(C_{2-4} \text{ alkenylene})_p$ carbocyclyl optionally substituted with 1-12 R^{12} , $-(C_{2-4} \text{ alkenylene})_p$ carbocyclyl optionally substituted with 1-12 R^{12} , $-(C_{1-4} \text{ alkylene})_p$ aryl optionally substituted with 1-12 R^{12} , $-(C_{1-4} \text{ alkylene})_p$ aryl optionally substituted with 1-15 R^{13} , $-(C_{2-4} \text{ alkenylene})_p$ aryl optionally substituted with 1-15 R^{13} , $-(C_{2-4} \text{ alkenylene})_p$ aryl optionally substituted with 1-15 R^{13} , $-(C_{2-4} \text{ alkenylene})_p$ aryl optionally substituted with 1-15 R^{13} , $-(C_{2-6} \text{ alkenylene})_p$ aryl optionally substituted with 1-15 R^{13} , $-(C_{2-6} \text{ alkenylene})_p$ aryl optionally substituted with 1-15 R^{13} , $-(C_{2-6} \text{ alkenylene})_p$ aryl optionally substituted with 1-15 R^{13} , $-(C_{2-6} \text{ alkenylene})_p$ aryl optionally substituted with 1-15 R^{13} , $-(C_{2-6} \text{ alkenylene})_p$ aryl optionally substituted with 1-15 R^{13} , $-(C_{2-6} \text{ alkenylene})_p$ aryl optionally substituted with 1-15 R^{13} , $-(C_{2-6} \text{ alkenylene})_p$ aryl optionally substituted with 1-26 R^{13} , $-(C_{2-6} \text{ alkenylene})_p$ aryl optionally substituted with 1-27 R^{13} , $-(C_{2-6} \text{ alkenylene})_p$ aryl optionally substituted with 1-27 R^{13} , $-(C_{2-6} \text{ alkenylene})_p$ aryl optionally substituted with 1-28 R^{13} , $-(C_{2-6} \text{ alkenylene})_p$ aryl optionally substituted with 1-29 R^{13} , $-(C_{2-6} \text{ alkenylene})_p$ aryl optionally substituted with 1-30 R^{13} , $-(C_{2-6} \text{ alkenylene})_p$ aryl optionally substituted with 1-30 R^{13} , $-(C_{2-6} \text{ alkenylene})_p$ aryl op

each R^7 is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkenyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^8 is independently selected from the group consisting of $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), $-(C_{2-6}$ alkynyl), halide, $-CF_3$, $-OCH_3$, -CN, and $-C(=O)R^{19}$;

each R^9 is independently selected from the group consisting of $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), $-(C_{2-6}$ alkynyl), halide, $-CF_3$, -CN, and $-OCH_3$;

each R^{10} is independently selected from the group consisting of $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$, halide, $-CF_3$, -CN, $-(C_{1-6} \text{ alkylene})_p NHSO_2 R^{19}$, $-(C_{2-6} \text{ alkynyl})$

 $alkenylene)_pNHSO_2R^{19}, -(C_{2-6}\ alkynylene)_pNHSO_2R^{19}, -NR^{15}(C_{1-6}\ alkylene)NR^{15}R^{16}, -NR^{15}(C_{2-6}\ alkynylene)NR^{15}R^{16}, -(C_{1-6}\ alkylene)_pNR^{15}R^{16}, -(C_{2-6}\ alkynylene)_pNR^{15}R^{16}, -(C_{2-6}\ alkynylene)_pNR^{15}R^{16}, and -OR^{27};$

each R^{11} is independently selected from the group consisting of amino, $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{12} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{13} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{14} is independently selected from the group consisting of $-(C_{1-9} \text{ alkyl})$, $-(C_{1-4} \text{ haloalkyl})$, $-(C_{2-9} \text{ alkenyl})$, $-(C_{2-9} \text{ alkynyl})$, -heteroaryl optionally substituted with 1-4 R^{20} , -aryl optionally substituted with 1-5 R^{21} , $-\text{CH}_2$ aryl optionally substituted with 1-12 R^{22} , $-\text{CH}_2$ carbocyclyl optionally substituted with 1-12 R^{22} , $-(C_{1-4} \text{ alkylene})_pNR^{25}R^{26}$, $-(C_{2-4} \text{ alkenylene})_pNR^{25}R^{26}$, -heterocyclyl optionally substituted with 1-10 R^{23} , and $-\text{CH}_2$ heterocyclyl optionally substituted with 1-10 R^{23} ;

each R^{15} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$;

each R^{16} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$, $-(C_{2-6} \text{ alkynyl})$, $-CH_2$ aryl optionally substituted with 1-5 R^{21} , and $-CH_2$ carbocyclyl optionally substituted with 1-12 R^{22} ;

each R^{17} is independently selected from the group consisting of H, $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), and $-(C_{2-6}$ alkynyl);

each R^{18} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkynyl})$, $-(C_{2-6} \text{ alkynyl})$, $-CH_2$ aryl optionally substituted with 1-5 R^{21} , and $-CH_2$ carbocyclyl optionally substituted with 1-12 R^{22} ;

each R^{19} is independently selected from the group consisting of $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkenyl})$, and $-(C_{2-6} \text{ alkynyl})$;

each R^{20} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{21} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{22} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

each R^{23} is independently selected from the group consisting of $-(C_{1-4} \text{ alkyl})$, $-(C_{2-4} \text{ alkynyl})$, $-(C_{2-4} \text{ alkynyl})$, halide, $-CF_3$, and -CN;

 R^{24} is selected from the group consisting of H, $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), $-(C_{2-6}$ alkynyl), $-(C_{1-4}$ alkylene)_pheterocyclyl optionally substituted with 1-10 R^{23} , $-(C_{2-4}$ alkenylene)_pheterocyclyl optionally substituted with 1-10 R^{23} , $-(C_{2-4}$ alkynylene)_pheterocyclyl optionally substituted with 1-12 R^{22} , $-(C_{2-4}$ alkylene)_pcarbocyclyl optionally substituted with 1-12 R^{22} , $-(C_{2-4}$ alkynylene)_pcarbocyclyl optionally substituted with 1-12 R^{22} , $-(C_{2-4}$ alkynylene)_pcarbocyclyl optionally substituted with 1-12 R^{22} , $-(C_{1-4}$ alkylene)_paryl optionally substituted with 1-5 R^{21} , $-(C_{2-4}$ alkynylene)_paryl optionally substituted with 1-5 R^{21} , $-(C_{1-6}$ alkylene)_p $NR^{25}R^{26}$, $-(C_{2-4}$ alkenylene)_p $NR^{25}R^{26}$, and $-(C_{2-4}$ alkynylene)_p $NR^{25}R^{26}$;

each R^{25} is independently selected from the group consisting of H, $-(C_{1-6} \text{ alkyl})$, $-(C_{2-6} \text{ alkenyl})$, and $-(C_{2-6} \text{ alkynyl})$;

each R^{26} is independently selected from the group consisting of H, $-(C_{1-6}$ alkyl), $-(C_{2-6}$ alkenyl), and $-(C_{2-6}$ alkynyl);

 R^{27} is selected from the group consisting of H, $-(C_{1-6} \, alkyl)$, $-(C_{2-6} \, alkenyl)$, $-(C_{2-6} \, alkynyl)$, $-(C_{1-4} \, alkylene)_p heterocyclyl$ optionally substituted with 1-10 R^{23} , $-(C_{2-4} \, alkenylene)_p heterocyclyl$ optionally substituted with 1-10 R^{23} , $-(C_{2-4} \, alkynylene)_p heterocyclyl optionally substituted with 1-10 <math>R^{23}$, $-(C_{1-6} \, alkylene)_p NR^{25} R^{26}$, $-(C_{2-6} \, alkenylene)_p NR^{25} R^{26}$, and $-(C_{2-6} \, alkynylene)_p NR^{25} R^{26}$; and each p is independently an integer of 0 or 1.

- **2.** The compound of claim 1, wherein R^1 and R^2 are H.
- **3.** The compound of any of claims 1-2, wherein R^1 is H, and R^2 is F.
- 4. The compound of any of claims 1-3, wherein R^3 is –pyridinyl optionally substituted with $1 R^6$.
- 5. The compound of any of claims 1-4, wherein R^3 is -pyridin-3-yl optionally substituted with $1\,R^6$.
- **6.** The compound of any of claims 1-5, wherein \mathbb{R}^3 is -pyrimidinyl optionally substituted with $1\ \mathbb{R}^6$.
- 7. The compound of any of claims 1-6, wherein R^3 is -pyrimidin-5-yl optionally substituted with $1\,R^6$.
- 8. The compound of any of claims 1-7, wherein R^3 is -pyrazolyl optionally substituted with $1\,R^6$.
- 9. The compound of any of claims 1-8, wherein R^3 is –imidazolyl substituted with 1-2 R^6 .

10. The compound of any of claims 1-9, wherein R^6 is selected from the group consisting of $-(C_{1-3}$ alkyl), $-CH_2$ heterocyclyl optionally substituted with 1-2 R^{11} , $-NHC(=O)R^{14}$, $-NR^{15}R^{16}$, $-CH_2NR^{17}R^{18}$, and $-OR^{24}$.

- 11. The compound of any of claims 1-10, wherein R^6 is $-(C_{1-3}$ alkyl).
- 12. The compound of any of claims 1-11, wherein each R^6 is $-(C_{1-3}$ alkyl).
- 13. The compound of any of claims 1-12, wherein R^{11} is halide.
- **14.** The compound of any of claims 1-13, wherein R^{14} is selected from the group consisting of $-(C_{1-5} \text{ alkyl})$, -phenyl optionally substituted with 1-2 R^{21} , $-CH_2$ phenyl optionally substituted with 1-2 R^{21} , and -carbocyclyl optionally substituted with 1-2 R^{22} .
- 15. The compound of any of claims 1-14, wherein R^{15} and R^{16} are independently selected from H and $-(C_{1-3}$ alkyl).
- **16.** The compound of any of claims 1-15, wherein R^{17} and R^{18} are independently selected from H and $-(C_{1-3}$ alkyl).
- 17. The compound of any of claims 1-16, wherein R^{24} is selected from the group consisting of H, $-(C_{1-3} \text{ alkyl})$, -heterocyclyl optionally substituted with 1-2 R^{23} , $-(CH_2)$ heterocyclyl optionally substituted with 1-2 R^{23} , $-(CH_2CH_2)$ heterocyclyl optionally substituted with 1-2 R^{23} , $-(CH_2CH_2)$ aryl optionally substituted with 1-2 R^{21} , and $-(CH_2CH_2)N(C_{1-2} \text{ alkyl})_2$.
- **18.** The compound of any of claims 1-17, wherein the –phenyl and –carbocyclyl are both unsubstituted.
- 19. The compound of any of claims 1-18, wherein R^5 is -phenyl optionally substituted with 1-2 R^{10} .
 - **20.** The compound of any of claims 1-19, wherein R^{10} is one halide.
- **21.** The compound of any of claims 1-20, wherein one R^{10} is halide and one R^{10} is $CH_2NHSO_2R^{19}$.
 - **22.** The compound of any of claims 1-21, wherein R^{19} is $-(C_{1-3}$ alkyl).
- **23.** The compound of any of claims 1-22, wherein one R^{10} is halide and one R^{10} is NHCH₂CH₂NR¹⁵R¹⁶.
- **24.** The compound of any of claims 1-23, wherein R^{15} and R^{16} are independently selected from H and $-(C_{1-3}$ alkyl).
- **25.** The compound of any of claims 1-24, wherein R^5 is -heteroaryl optionally substituted with 1-2 R^8 .

26. The compound of any of claims 1-25, wherein R^5 is selected from the group consisting of –pyridinyl optionally substituted with 1-2 R^8 , –imidazolyl optionally substituted with 1-2 R^8 , –furanyl optionally substituted with 1-2 R^8 , and –thiophenyl optionally substituted with 1-2 R^8 .

- **27.** The compound of any of claims 1-26, wherein R^8 is selected from the group consisting of halide, $-(C_{1-3} \text{ alkyl})$, and $-C(=0)R^{19}$, and R^{19} is $-(C_{1-2} \text{ alkyl})$.
- **28.** The compound of any of claims 1-27, wherein R^5 is –heterocyclyl optionally substituted with 1-2 R^9 .
- **29.** The compound of any of claims 1-28, wherein R^5 is selected from the group consisting of –piperidinyl optionally substituted with 1-2 R^9 and –piperazinyl optionally substituted with 1-2 R^9 .
 - **30.** The compound of any of claims 1-29, wherein R^9 is $-(C_{1-3}$ alkyl).
- **31.** The compound of any of claims 1-30, wherein the compound of Formula I is selected from the group consisting of:
- N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [1];
- N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3-methylbutanamide [2];
- 5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [3];
- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [4];
- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [5];
- N-((5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [6];
- 5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N,N-dimethylpyridin-3-amine [7];
- N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [8];
- N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [9];
- N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [10];

- N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [11];
- 5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N-isopropylpyridin-3-amine [12];
- 1-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine [13];
- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [14];
- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [15];
- N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3,3-dimethylbutanamide [16];
- N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [17];
- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [18];
- N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [19];
- N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [20];
- N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [21];
- N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [22];
- N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [23];
- N-benzyl-1-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [**24**];
- 1-cyclopentyl-N-((5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [25];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [**26**];
- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridine [27];

- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [28];
- N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [29];
- N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3-methylbutanamide [**30**];
- 5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [31];
- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [32];
- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [33];
- N-((5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [**34**];
- 5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N,N-dimethylpyridin-3-amine [35];
- N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [36];
- N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [37];
- N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [38];
- N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [39];
- 5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N-isopropylpyridin-3-amine [40];
- 1-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine [41];
- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [42];
- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [43];
- N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3,3-dimethylbutanamide [44];

N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [45];

- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [46];
- N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [47];
- N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [48];
- N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [49];
- N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [**50**];
- N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [51];
- N-benzyl-1-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [52];
- 1-cyclopentyl-N-((5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [53];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [54];
- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridine [55];
- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [56];
- N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [57];
- N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3-methylbutanamide [58];
- 5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [59];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [60];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [61];

N-((5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [**62**];

- 5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N,N-dimethylpyridin-3-amine [63];
- N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [64];
- N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [65];
- N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [66];
- N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [67];
- 5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N-isopropylpyridin-3-amine [68];
- 1-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine [69];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [70];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [71];
- N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3,3-dimethylbutanamide [72];
- N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [73];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [74];
- N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [75];
- N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [76];
- N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [77];
- N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [78];

- N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [79];
- N-benzyl-1-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [80];
- 1-cyclopentyl-N-((5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [81];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [82];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridine [83];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [84];
- N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [85];
- 3-methyl-N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [86];
- 5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [87];
- 5-(pyridin-3-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [88];
- 5-(4-methylpyridin-3-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [89];
- N-((5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [90];
- N,N-dimethyl-5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [91];
- N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [92];
- N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [93];
- 2-phenyl-N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [94];
- N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [95];

N-isopropyl-5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [96];

- N,N-dimethyl-1-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [97];
- 3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [98];
- 5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [99]; and
- 3,3-dimethyl-N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-
- b]pyridin-5-yl)pyridin-3-yl)butanamide [100]; or a pharmaceutically acceptable salt thereof.
- **32.** The compound of any of claims 1-30, wherein the compound of Formula I is selected from the group consisting of:
- N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [101];
- 3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [102];
- N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [103];
- N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [**104**];
- N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [105];
- N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [106];
- N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [107];
- N-benzyl-1-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [108];
- 1-cyclopentyl-N-((5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [109];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [110];
- 3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridine [111];

5-(pyridin-2-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [112];

- N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [113];
- 3-methyl-N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [114];
- 5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [115];
- 5-(pyridin-3-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [116];
- 5-(4-methylpyridin-3-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [117];
- N-((5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [118];
- N,N-dimethyl-5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [119];
- N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [120];
- N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [121];
- 2-phenyl-N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [122];
- N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [123];
- N-isopropyl-5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [124];
- N,N-dimethyl-1-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [125];
- 3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [126];
- 5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [127];
- 3,3-dimethyl-N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [128];

N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [129];

- 5-(pyridin-4-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [130];
- N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [131];
- N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [132];
- N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [133];
- N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [134];
- N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [135];
- N-benzyl-1-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [136];
- 1-cyclopentyl-N-((5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [137];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [138];
- 3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridine [139];
- 5-(pyridin-2-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [140];
- N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [141];
- 3-methyl-N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [142];
- 5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [143];
- 3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [144];
- 5-(4-methylpyridin-3-yl)-3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [145];

- N-((5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [146];
- N,N-dimethyl-5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [147];
- N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [148];
- N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [149];
- 2-phenyl-N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [**150**];
- N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [151];
- N-isopropyl-5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [152];
- N,N-dimethyl-1-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [153];
- 3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [154];
- 5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [155];
- 3,3-dimethyl-N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [**156**];
- N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [157];
- 3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [158];
- N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [159];
- N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [**160**];
- N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [161];
- N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [162];

N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [**163**];

- N-benzyl-1-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [**164**];
- 1-cyclopentyl-N-((5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [165];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [166];
- 3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridine [167];
- 5-(pyridin-2-yl)-3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [168];
- N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [169];
- 3-methyl-N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [170];
- 5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [171];
- 3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [172];
- 5-(4-methylpyridin-3-yl)-3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [173];
- N-((5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [174];
- N,N-dimethyl-5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [175];
- N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [176];
- N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [177];
- 2-phenyl-N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [178];
- N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [179];

N-isopropyl-5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [180];

- N,N-dimethyl-1-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [181];
- 3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [182];
- 3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [183];
- 3,3-dimethyl-N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [184];
- N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [185];
- 3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [186];
- N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [187];
- N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [188];
- N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [189];
- N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [190];
- N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [191];
- N-benzyl-1-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [192];
- 1-cyclopentyl-N-((5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [193];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [194];
- 3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridine [195];
- 3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [196];

- N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [197];
- 3-methyl-N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [198];
- 5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [199]; and
- 3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [**200**]; or a pharmaceutically acceptable salt thereof.
- **33.** The compound of any of claims 1-30, wherein the compound of Formula I is selected from the group consisting of:
- 3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [201];
- N-((5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [**202**];
- N,N-dimethyl-5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [**203**];
- N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [**204**];
- N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [205];
- N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [**206**];
- N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [**207**];
- N-isopropyl-5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [208];
- N,N-dimethyl-1-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [**209**];
- 3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [210];
- 3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [211];
- 3,3-dimethyl-N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [212];

N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [213];

- 3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [214];
- N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [215];
- N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [216];
- N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [217];
- N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [218];
- N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [219];
- N-benzyl-1-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [220];
- 1-cyclopentyl-N-((5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [**221**];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [222];
- 3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridine [223];
- 3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [224];
- N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [**225**];
- 3-methyl-N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [**226**];
- 5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [227];
- 3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [228];
- 3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [229];

N-((5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [230];

- N,N-dimethyl-5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [231];
- N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [232];
- N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [233];
- N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [**234**];
- N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [235];
- N-isopropyl-5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [**236**];
- N,N-dimethyl-1-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [237];
- 3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [238];
- 3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [239];
- 3,3-dimethyl-N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [240];
- N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [**241**];
- 3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [242];
- N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [**243**];
- N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [244];
- N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [245];
- N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [246];

N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [247];

- N-benzyl-1-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [248];
- 1-cyclopentyl-N-((5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [**249**];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [250];
- 3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridine [251];
- 3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [252];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [253];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3-methylbutanamide [**254**];
- 5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [255];
- 5-(pyridin-3-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [256];
- 5-(4-methylpyridin-3-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [257];
- N-((5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [258];
- 5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N,N-dimethylpyridin-3-amine [259];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [**260**];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [**261**];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [**262**];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [263];
- 5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N-isopropylpyridin-3-amine [264];

1-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine [265];

- 5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [266];
- 5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [267];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3,3-dimethylbutanamide [**268**];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [**269**];
- 5-(pyridin-4-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [270];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [271];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [272];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [273];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [274];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [275];
- 1-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N-benzylmethanamine [276];
- 1-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N-(cyclopentylmethyl)methanamine [277];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [278];
- 5-(pyrimidin-5-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [279];
- 5-(pyridin-2-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [**280**];
- N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [**281**];
- 3-methyl-N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [**282**];

5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [283];

- 5-(pyridin-3-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [284];
- 5-(4-methylpyridin-3-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [285];
- N-((5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [**286**];
- N,N-dimethyl-5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [287];
- N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [**288**];
- N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [**289**];
- 2-phenyl-N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [290];
- N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [**291**];
- N-isopropyl-5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [**292**];
- N,N-dimethyl-1-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [**293**];
- 5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [294];
- 5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [295];
- 3,3-dimethyl-N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [296];
- N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [297];
- 5-(pyridin-4-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [298];
- N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [299]; and

- N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [**300**]; or a pharmaceutically acceptable salt thereof.
- **34.** The compound of any of claims 1-30, wherein the compound of Formula I is selected from the group consisting of:
- N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [**301**];
- N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [**302**];
- N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [**303**];
- N-benzyl-1-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [**304**];
- 1-cyclopentyl-N-((5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [305];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [**306**];
- 5-(pyrimidin-5-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [307];
- 5-(pyridin-2-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [308];
- N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [**309**];
- N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3-methylbutanamide [310];
- 5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [311];
- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [312];
- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [313];
- N-((5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [314];
- 5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N,N-dimethylpyridin-3-amine [315];

N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [316];

- N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [317];
- N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [318];
- N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [319];
- 5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N-isopropylpyridin-3-amine [**320**];
- 1-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine [**321**];
- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [322];
- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [323];
- N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3,3-dimethylbutanamide [**324**];
- N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [325];
- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [**326**];
- N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [327];
- N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [328];
- N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [329];
- N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [330];
- N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [331];
- N-benzyl-1-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [332];

- 1-cyclopentyl-N-((5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [**333**];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [**334**];
- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridine [335];
- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [**336**];
- N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [337];
- 3-methyl-N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [338];
- 5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [339];
- 5-(pyridin-3-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [**340**];
- 5-(4-methylpyridin-3-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [341];
- N-((5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [**342**];
- N,N-dimethyl-5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [**343**];
- N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [**344**];
- N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [**345**];
- 2-phenyl-N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [**346**];
- N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [**347**];
- N-isopropyl-5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [**348**];
- N,N-dimethyl-1-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [349];

5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [**350**];

- 5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [351];
- 3,3-dimethyl-N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [**352**];
- N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [353];
- 5-(pyridin-4-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [354];
- N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [355];
- N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [356];
- N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [357];
- N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [**358**];
- N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [**359**];
- N-benzyl-1-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [**360**];
- 1-cyclopentyl-N-((5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [361];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [**362**];
- 5-(pyrimidin-5-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [363];
- 5-(pyridin-2-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [**364**];
- N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [**365**];
- N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3-methylbutanamide [**366**];

5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [367];

- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [368];
- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [**369**];
- N-((5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [370];
- 5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N,N-dimethylpyridin-3-amine [371];
- N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [372];
- N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [373];
- N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [374];
- N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [375];
- 5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N-isopropylpyridin-3-amine [376];
- 1-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine [377];
- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [378];
- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [379];
- N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3,3-dimethylbutanamide [**380**];
- N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [**381**];
- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [382];
- N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [**383**];

N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [384];

- N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [385];
- N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [386];
- N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [387];
- N-benzyl-1-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [388];
- 1-cyclopentyl-N-((5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [389];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [**390**];
- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridine [391];
- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [392];
- N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [**393**];
- 3-methyl-N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [**394**];
- 5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [395];
- 3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [396];
- 5-(4-methylpyridin-3-yl)-3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [397];
- N-((5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [398];
- N,N-dimethyl-5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [399]; and
- N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [400]; or a pharmaceutically acceptable salt thereof.

35. The compound of any of claims 1-30, wherein the compound of Formula I is selected from the group consisting of:

- N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [401];
- N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [402];
- N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [403];
- N-isopropyl-5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [404];
- N,N-dimethyl-1-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [405];
- 3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [406];
- 3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [407];
- 3,3-dimethyl-N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butanamide [408];
- N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [409];
- 3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [410];
- N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [411];
- N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [412];
- N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [413];
- N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [414];
- N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [415];
- N-benzyl-1-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [416];

- 1-cyclopentyl-N-((5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [417];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [418];
- 3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridine [419];
- 3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [420];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [421];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3-methylbutanamide [422];
- 1-(5-(2-(5-(5-aminopyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [423];
- 1-(5-(2-(5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [424];
- 1-(5-(2-(5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [425];
- 1-(5-(2-(5-((ethylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [426];
- 1-(5-(2-(5-(5-(dimethylamino)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [427];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [428];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [429];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [430];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [431];
- 1-(5-(2-(5-(isopropylamino)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [432];
- 1-(5-(2-(5-((dimethylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [433];

- 1-(5-(2-(5-(5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [434];
- 1-(5-(2-(5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [435];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3,3-dimethylbutanamide [436];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [437];
- 1-(5-(2-(5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [438];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [439];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [440];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [441];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [442];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [443];
- 1-(5-(2-(5-(5-((benzylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [444];
- 1-(5-(2-(5-(5-(((cyclopentylmethyl)amino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [445];
- 1-(5-(2-(5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [446];
- 1-(5-(2-(5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [447];
- 1-(5-(2-(5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [448];
- N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [449];
- N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3-methylbutanamide [450];

N¹-(3-(2-(5-(5-aminopyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenyl)-N²,N²-dimethylethane-1,2-diamine [451];

- N¹-(3-fluoro-5-(2-(5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N²,N²-dimethylethane-1,2-diamine [452];
- N¹-(3-fluoro-5-(2-(5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N²,N²-dimethylethane-1,2-diamine [453];
- N¹-(3-(2-(5-(5-((ethylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenyl)-N²,N²-dimethylethane-1,2-diamine [454];
- N¹-(3-(2-(5-(5-(dimethylamino)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenyl)-N²,N²-dimethylethane-1,2-diamine [455];
- N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [456];
- N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [457];
- N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [458];
- N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [459];
- N¹-(3-fluoro-5-(2-(5-(5-(isopropylamino)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N²,N²-dimethylethane-1,2-diamine [460];
- N¹-(3-(2-(5-(5-((dimethylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenyl)-N²,N²-dimethylethane-1,2-diamine [461];
- N¹-(3-fluoro-5-(2-(5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N²,N²-dimethylethane-1,2-diamine [462];
- N¹-(3-fluoro-5-(2-(5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N²,N²-dimethylethane-1,2-diamine [463];
- N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3,3-dimethylbutanamide [464];
- N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [465];
- N¹-(3-fluoro-5-(2-(5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N²,N²-dimethylethane-1,2-diamine [466];
- N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [467];

N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [468];

- N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [469];
- N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [470];
- N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [471];
- N¹-(3-(2-(5-(5-((benzylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenyl)-N²,N²-dimethylethane-1,2-diamine [472];
- N¹-(3-(2-(5-(5-(((cyclopentylmethyl)amino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenyl)-N²,N²-dimethylethane-1,2-diamine [473];
- N¹-(3-(2-(5-(5-(3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenyl)-N²,N²-dimethylethane-1,2-diamine [474];
- N¹-(3-fluoro-5-(2-(5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N²,N²-dimethylethane-1,2-diamine [475];
- N¹-(3-fluoro-5-(2-(5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N²,N²-dimethylethane-1,2-diamine [476];
- N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [477];
- N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3-methylbutanamide [478];
- N-(3-(2-(5-(5-aminopyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorobenzyl)methanesulfonamide [479];
- N-(3-fluoro-5-(2-(5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [480];
- N-(3-fluoro-5-(2-(5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [481];
- N-(3-(2-(5-(5-((ethylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorobenzyl)methanesulfonamide [482];
- N-(3-(2-(5-(5-(dimethylamino)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorobenzyl)methanesulfonamide [483];
- N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [484];

N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [485];

- N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [486];
- N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [487];
- N-(3-fluoro-5-(2-(5-(5-(isopropylamino)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [488];
- N-(3-(2-(5-(5-((dimethylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorobenzyl)methanesulfonamide [489];
- N-(3-fluoro-5-(2-(5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [490];
- N-(3-fluoro-5-(2-(5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [491];
- N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3,3-dimethylbutanamide [492];
- N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [493];
- N-(3-fluoro-5-(2-(5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [494];
- N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [495];
- N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [496];
- N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [497];
- N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [498];
- N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [499]; and
- N-(3-(2-(5-(5-((benzylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorobenzyl)methanesulfonamide [500]; or a pharmaceutically acceptable salt thereof.

36. The compound of any of claims 1-30, wherein the compound of Formula I is selected from the group consisting of:

- N-(3-(2-(5-(5-(((cyclopentylmethyl)amino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorobenzyl)methanesulfonamide [501];
- N-(3-(2-(5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorobenzyl)methanesulfonamide [**502**];
- N-(3-fluoro-5-(2-(5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [**503**];
- N-(3-fluoro-5-(2-(5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [504];
- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridine [505];
- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [**506**];
- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [507];
- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1-methyl-1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [508];
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [509];
- 1-(6-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [510];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [511];
- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [512];
- N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [513];
- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [514];
- 2-((5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)-N,N-dimethylethan-1-amine [515];
- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-methoxypyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [516];

5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [517];

- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [518];
- 2-cyclohexyl-N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [519];
- 3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridine [**520**];
- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridine [521];
- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [522];
- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [523];
- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1-methyl-1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [524];
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [525];
- 1-(6-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [**526**];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [527];
- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [528];
- N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [**529**];
- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [**530**];
- 2-((5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)-N,N-dimethylethan-1-amine [531];
- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-methoxypyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [**532**];
- 5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [**533**];

- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [534];
- 2-cyclohexyl-N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [535];
- 3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridine [536];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridine [537];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [538];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [539];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1-methyl-1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [540];
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [541];
- 1-(6-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [**542**];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [543];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [**544**];
- N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [545];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [**546**];
- 2-((5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)-N,N-dimethylethan-1-amine [**547**];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-methoxypyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [548];
- 5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [**549**];
- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [550];

- 2-cyclohexyl-N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [551];
- 3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridine [552];
- 5-(piperidin-4-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [553];
- 3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [554];
- 5-(1H-pyrazol-4-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [555];
- 5-(1-methyl-1H-pyrazol-4-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [556];
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [557];
- 1-(6-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [558];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [559];
- 5-(5-(piperidin-4-yloxy)pyridin-3-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [560];
- 2-(piperidin-4-yl)-N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [**561**];
- 3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [**562**];
- N,N-dimethyl-2-((5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)ethan-1-amine [563];
- 5-(5-methoxypyridin-3-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [**564**];
- 5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [**565**];
- 5-(pyrazin-2-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [566];
- 2-cyclohexyl-N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [567];

5-(pyrazin-2-yl)-3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [568];

- 5-(piperidin-4-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [569];
- 3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [570];
- 5-(1H-pyrazol-4-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [571];
- 5-(1-methyl-1H-pyrazol-4-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [572];
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [573];
- 1-(6-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [574];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [575];
- 5-(5-(piperidin-4-yloxy)pyridin-3-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [576];
- 2-(piperidin-4-yl)-N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [577];
- 3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [578];
- N,N-dimethyl-2-((5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)ethan-1-amine [579];
- 5-(5-methoxypyridin-3-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [580];
- 5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [**581**];
- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [582];
- 2-cyclohexyl-N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [**583**];
- 5-(pyrazin-2-yl)-3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [584];

5-(piperidin-4-yl)-3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [585];

- 3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [586];
- 5-(1H-pyrazol-4-yl)-3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [587];
- 5-(1-methyl-1H-pyrazol-4-yl)-3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [588];
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [589];
- 1-(6-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [**590**];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [591];
- 5-(5-(piperidin-4-yloxy)pyridin-3-yl)-3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [592];
- 2-(piperidin-4-yl)-N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [**593**];
- 3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [594];
- N,N-dimethyl-2-((5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)ethan-1-amine [595];
- 5-(5-methoxypyridin-3-yl)-3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [596];
- 5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [597];
- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [598];
- 2-cyclohexyl-N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [599]; and
- 5-(pyrazin-2-yl)-3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [600]; or a pharmaceutically acceptable salt thereof.
- **37.** The compound of any of claims 1-30, wherein the compound of Formula I is selected from the group consisting of:

- 3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridine [601];
- 3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [602];
- 3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [603];
- 5-(1-methyl-1H-pyrazol-4-yl)-3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [604];
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [605];
- 1-(6-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [606];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [607];
- 3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [608];
- N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [609];
- 3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [610];
- N,N-dimethyl-2-((5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)ethan-1-amine [611];
- 5-(5-methoxypyridin-3-yl)-3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [612];
- 5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [613];
- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [614];
- 2-cyclohexyl-N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [615];
- 3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridine [616];
- 3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridine [617];

3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [618];

- 3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [619];
- 3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1-methyl-1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [**620**];
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [**621**];
- 1-(6-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [**622**];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [**623**];
- 3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [**624**];
- N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [625];
- 3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [626];
- N,N-dimethyl-2-((5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)ethan-1-amine [627];
- 5-(5-methoxypyridin-3-yl)-3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [628];
- 5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [**629**];
- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [630];
- 2-cyclohexyl-N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [631];
- 3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridine [632];
- 3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridine [633];
- 3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [634];

- 3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [635];
- 5-(1-methyl-1H-pyrazol-4-yl)-3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [636];
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [637];
- 1-(6-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [638];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [639];
- 3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [640];
- N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [641];
- 3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [642];
- N,N-dimethyl-2-((5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)ethan-1-amine [643];
- 5-(5-methoxypyridin-3-yl)-3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [644];
- 5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [645];
- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [646];
- 2-cyclohexyl-N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [647];
- 3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridine [648];
- 5-(piperidin-4-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [649];
- 3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [650];
- 5-(1H-pyrazol-4-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [651];
- 5-(1-methyl-1H-pyrazol-4-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [652];

- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [653];
- 1-(6-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [654];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [655];
- 5-(5-(piperidin-4-yloxy)pyridin-3-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [656];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [657];
- 5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [658];
- 2-((5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)-N,N-dimethylethan-1-amine [659];
- 5-(5-methoxypyridin-3-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [660];
- 5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [661];
- 5-(5-(benzyloxy)pyridin-3-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [662];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-cyclohexylacetamide [663];
- 5-(pyrazin-2-yl)-3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [664];
- 5-(piperidin-4-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [665];
- 5-(1,2,3,6-tetrahydropyridin-4-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [666];
- 5-(1H-pyrazol-4-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [667];
- 5-(1-methyl-1H-pyrazol-4-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [668];
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [669];
- 1-(6-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [670];

5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [671];

- 5-(5-(piperidin-4-yloxy)pyridin-3-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [672];
- 2-(piperidin-4-yl)-N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [673];
- 5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [674];
- N,N-dimethyl-2-((5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)ethan-1-amine [675];
- 5-(5-methoxypyridin-3-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [676];
- 5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [677];
- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [678];
- 2-cyclohexyl-N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [679];
- 5-(pyrazin-2-yl)-3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [680];
- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridine [681];
- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [**682**];
- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [683];
- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1-methyl-1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [684];
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [685];
- 1-(6-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [686];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [687];

- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [688];
- N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [689];
- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [**690**];
- 2-((5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)-N,N-dimethylethan-1-amine [691];
- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-methoxypyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [692];
- 5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [**693**];
- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [694];
- 2-cyclohexyl-N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [695];
- 3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridine [696];
- 5-(piperidin-4-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [697];
- 5-(1,2,3,6-tetrahydropyridin-4-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [698];
- 5-(1H-pyrazol-4-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [699]; and
- 5-(1-methyl-1H-pyrazol-4-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [700]; or a pharmaceutically acceptable salt thereof.
- **38.** The compound of any of claims 1-30, wherein the compound of Formula I is selected from the group consisting of:
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [701];
- 1-(6-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [**702**];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [703];

5-(5-(piperidin-4-yloxy)pyridin-3-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [704];

- 2-(piperidin-4-yl)-N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [705];
- 5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [706];
- N,N-dimethyl-2-((5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)ethan-1-amine [707];
- 5-(5-methoxypyridin-3-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [708];
- 5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [**709**];
- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [710];
- 2-cyclohexyl-N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [711];
- 5-(pyrazin-2-yl)-3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [712];
- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridine [713];
- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [714];
- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [715];
- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1-methyl-1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [716];
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [717];
- 1-(6-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [718];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [719];
- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [720];

N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [721];

- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [722];
- 2-((5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)-N,N-dimethylethan-1-amine [723];
- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-methoxypyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [724];
- 5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [725];
- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [726];
- 2-cyclohexyl-N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [727];
- 3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridine [728];
- 3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridine [729];
- 3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [730];
- 3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [731];
- 5-(1-methyl-1H-pyrazol-4-yl)-3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [732];
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [733];
- 1-(6-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [734];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [735];
- 3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [736];
- N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [737];

- 3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [738];
- N,N-dimethyl-2-((5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)ethan-1-amine [739];
- 5-(5-methoxypyridin-3-yl)-3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [740];
- 5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [741];
- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [742];
- 2-cyclohexyl-N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [743];
- 3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridine [744];
- 1-(5-(2-(5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [745];
- 1-(5-(2-(5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [746];
- 1-(5-(2-(5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [747];
- 1-(5-(2-(5-(1-methyl-1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [**748**];
- 1-(5-(2-(5-(1,2-dimethyl-1H-imidazol-5-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [749];
- 1-(5-(2-(5-(6-(3-aminoazetidin-1-yl)pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [750];
- 1-(5-(2-(5-(cyclohexyloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [751];
- 1-(5-(2-(5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [752];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [753];
- 1-(5-(2-(5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [754];

- 1-(5-(2-(5-(5-(2-(dimethylamino)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [755];
- 1-(5-(2-(5-(5-methoxypyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [756];
- 1-(5-(2-(5-(5-hydroxypyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [757];
- 1-(5-(2-(5-(5-(benzyloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [758];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-cyclohexylacetamide [759];
- 1-(5-(2-(5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)thiophen-2-yl)ethan-1-one [**760**];
- N-(3-fluoro-5-(2-(5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [761];
- N-(3-fluoro-5-(2-(5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [762];
- N-(3-(2-(5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorobenzyl)methanesulfonamide [763];
- N-(3-fluoro-5-(2-(5-(1-methyl-1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [764];
- N-(3-(2-(5-(1,2-dimethyl-1H-imidazol-5-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorobenzyl)methanesulfonamide [765];
- N-(3-(2-(5-(6-(3-aminoazetidin-1-yl)pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorobenzyl)methanesulfonamide [766];
- N-(3-(2-(5-(5-(cyclohexyloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorobenzyl)methanesulfonamide [767];
- N-(3-fluoro-5-(2-(5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [768];
- N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [769];
- N-(3-fluoro-5-(2-(5-(5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [770];
- N-(3-(2-(5-(5-(2-(dimethylamino)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorobenzyl)methanesulfonamide [771];

N-(3-fluoro-5-(2-(5-(5-methoxypyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [772];

- N-(3-fluoro-5-(2-(5-(5-hydroxypyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [773];
- N-(3-(2-(5-(5-(benzyloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorobenzyl)methanesulfonamide [774];
- 2-cyclohexyl-N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [775];
- N-(3-fluoro-5-(2-(5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)benzyl)methanesulfonamide [776];
- N1-(3-fluoro-5-(2-(5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N2,N2-dimethylethane-1,2-diamine [777];
- N¹-(3-fluoro-5-(2-(5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N²,N²-dimethylethane-1,2-diamine [778];
- N¹-(3-(2-(5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenyl)-N²,N²-dimethylethane-1,2-diamine [779];
- N¹-(3-fluoro-5-(2-(5-(1-methyl-1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N²,N²-dimethylethane-1,2-diamine [780];
- N¹-(3-(2-(5-(1,2-dimethyl-1H-imidazol-5-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenyl)-N²,N²-dimethylethane-1,2-diamine [781];
- N¹-(3-(2-(5-(6-(3-aminoazetidin-1-yl)pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenyl)-N²,N²-dimethylethane-1,2-diamine [782];
- N¹-(3-(2-(5-(5-(cyclohexyloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenyl)-N²,N²-dimethylethane-1,2-diamine [783];
- N¹-(3-fluoro-5-(2-(5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N²,N²-dimethylethane-1,2-diamine [784];
- N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [785];
- N¹-(3-fluoro-5-(2-(5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N²,N²-dimethylethane-1,2-diamine [786];
- N¹-(3-(2-(5-(5-(2-(dimethylamino)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenyl)-N²,N²-dimethylethane-1,2-diamine [787];
- N¹-(3-fluoro-5-(2-(5-(5-methoxypyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N²,N²-dimethylethane-1,2-diamine [788];

5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [789];

- N¹-(3-(2-(5-(5-(benzyloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenyl)-N²,N2-dimethylethane-1,2-diamine [790];
- 2-cyclohexyl-N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [791];
- N¹-(3-fluoro-5-(2-(5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)-N²,N²-dimethylethane-1,2-diamine [792];
- N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [793];
- N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3-methylbutanamide [794];
- 5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [795];
- 2-(3-fluoro-5-(2-(5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenoxy)-N,N-dimethylethan-1-amine [796];
- 2-(3-fluoro-5-(2-(5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenoxy)-N,N-dimethylethan-1-amine [797];
- 2-(3-(2-(5-(5-((ethylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenoxy)-N,N-dimethylethan-1-amine [798];
- 5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N,N-dimethylpyridin-3-amine [799]; and
- N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [800]; or a pharmaceutically acceptable salt thereof.
- **39.** The compound of any of claims 1-30, wherein the compound of Formula I is selected from the group consisting of:
- N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [801];
- N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [802];
- N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [**803**];

5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N-isopropylpyridin-3-amine [804];

- 2-(3-(2-(5-(5-((dimethylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenoxy)-N,N-dimethylethan-1-amine [805];
- 2-(3-fluoro-5-(2-(5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenoxy)-N,N-dimethylethan-1-amine [806];
- 2-(3-fluoro-5-(2-(5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenoxy)-N,N-dimethylethan-1-amine [807];
- N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrrolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3,3-dimethylbutanamide [808];
- N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [809];
- N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [810];
- N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrrolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [811];
- N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [812];
- N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [813];
- N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [814];
- 2-(3-(2-(5-(5-((benzylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenoxy)-N,N-dimethylethan-1-amine [815];
- 2-(3-(2-(5-(((cyclopentylmethyl)amino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenoxy)-N,N-dimethylethan-1-amine [816];
- 2-(3-(2-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenoxy)-N,N-dimethylethan-1-amine [817];
- 2-(3-fluoro-5-(2-(5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenoxy)-N,N-dimethylethan-1-amine [818];
- 2-(3-fluoro-5-(2-(5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenoxy)-N,N-dimethylethan-1-amine [819];
- 2-(3-fluoro-5-(2-(5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenoxy)-N,N-dimethylethan-1-amine [820];

- 2-(3-fluoro-5-(2-(5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenoxy)-N,N-dimethylethan-1-amine [821];
- 2-(3-(2-(5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenoxy)-N,N-dimethylethan-1-amine [822];
- 2-(3-fluoro-5-(2-(5-(1-methyl-1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenoxy)-N,N-dimethylethan-1-amine [823];
- 2-(3-(2-(5-(1,2-dimethyl-1H-imidazol-5-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenoxy)-N,N-dimethylethan-1-amine [824];
- 1-(6-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [825];
- 2-(3-(2-(5-(5-(cyclohexyloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenoxy)-N,N-dimethylethan-1-amine [826];
- 2-(3-fluoro-5-(2-(5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenoxy)-N,N-dimethylethan-1-amine [827];
- N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrrolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [828];
- 2-(3-fluoro-5-(2-(5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenoxy)-N,N-dimethylethan-1-amine [829];
- 2-((5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)-N,N-dimethylethan-1-amine [830];
- 2-(3-fluoro-5-(2-(5-(5-methoxypyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenoxy)-N,N-dimethylethan-1-amine [831];
- 5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [832];
- 2-(3-(2-(5-(5-(benzyloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenoxy)-N,N-dimethylethan-1-amine [833];
- 2-cyclohexyl-N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [834];
- 2-(3-fluoro-5-(2-(5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenoxy)-N,N-dimethylethan-1-amine [835];
- 2-(3-fluoro-5-(2-(5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenoxy)-N,N-dimethylethan-1-amine [836];
- N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [837];

N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3-methylbutanamide [838];

- 5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [839];
- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [840];
- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [841];
- N-((5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [842];
- 5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N,N-dimethylpyridin-3-amine [843];
- N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [844];
- N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [845];
- N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [**846**];
- N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [847];
- 5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrrazolo[4,3-b]pyridin-5-yl)-N-isopropylpyridin-3-amine [848];
- 1-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine [849];
- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [850];
- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [851];
- N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3,3-dimethylbutanamide [852];
- N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [**853**];
- N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [854];

N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [855];

- N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [856];
- N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrrolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [857];
- N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [858];
- N-benzyl-1-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [859];
- 1-cyclopentyl-N-((5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [860];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [861];
- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridine [862];
- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [863];
- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridine [864];
- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [865];
- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [866];
- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1-methyl-1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [867];
- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [868];
- 1-(6-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [**869**];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [870];
- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [871];

N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrrolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [872];

- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [873];
- 2-((5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrrolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)-N,N-dimethylethan-1-amine [874];
- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-methoxypyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [875];
- 5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [876];
- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [877];
- 2-cyclohexyl-N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [878];
- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [879];
- 3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridine [880];
- N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [881];
- N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3-methylbutanamide [882];
- 3-(2-(5-(5-aminopyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenol [883];
- 3-fluoro-5-(2-(5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [884];
- 3-fluoro-5-(2-(5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [885];
- 3-(2-(5-(5-((ethylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenol [886];
- 3-(2-(5-(5-(dimethylamino)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenol [887];
- N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [888];

N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [889];

- N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [890];
- N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [891];
- 3-fluoro-5-(2-(5-(5-(isopropylamino)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [892];
- 3-(2-(5-(5-((dimethylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenol [893];
- 3-fluoro-5-(2-(5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [894];
- 3-fluoro-5-(2-(5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [895];
- N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3,3-dimethylbutanamide [896];
- N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [897];
- N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [898];
- N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [899]; and
- N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [900]; or a pharmaceutically acceptable salt thereof.
- **40.** The compound of any of claims 1-30, wherein the compound of Formula I is selected from the group consisting of:
- N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [901];
- N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [902];
- 3-(2-(5-(5-((benzylamino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenol [903];

3-(2-(5-(5-(((cyclopentylmethyl)amino)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenol [904];

- 3-(2-(5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenol [905];
- 3-fluoro-5-(2-(5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [906];
- 3-fluoro-5-(2-(5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [907];
- 3-fluoro-5-(2-(5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [908];
- 3-fluoro-5-(2-(5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [909];
- 3-(2-(5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenol [910];
- 3-fluoro-5-(2-(5-(1-methyl-1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [911];
- 3-(2-(5-(1,2-dimethyl-1H-imidazol-5-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenol [912];
- 3-(2-(5-(6-(3-aminoazetidin-1-yl)pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenol [913];
- 3-(2-(5-(5-(cyclohexyloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenol [914];
- 3-fluoro-5-(2-(5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [915];
- N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [916];
- 3-fluoro-5-(2-(5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [917];
- 3-(2-(5-(5-(2-(dimethylamino)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenol [918];
- 3-fluoro-5-(2-(5-(5-methoxypyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [919];
- 5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [920];

3-(2-(5-(5-(benzyloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)-5-fluorophenol [921];

- 2-cyclohexyl-N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrrolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [922];
- 3-fluoro-5-(2-(5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [923];
- 3-fluoro-5-(2-(5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-4-yl)phenol [924];
- N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)propionamide [925];
- N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3-methylbutanamide [926];
- 5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-amine [927];
- 3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [928];
- 3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(4-methylpyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [929];
- N-((5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)ethanamine [930];
- 5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N,N-dimethylpyridin-3-amine [931];
- N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pivalamide [932];
- N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)isobutyramide [933];
- N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-phenylacetamide [934];
- N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)benzamide [935];
- 5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)-N-isopropylpyridin-3-amine [936];
- 1-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-N,N-dimethylmethanamine [937];

- 3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(pyrrolidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [938];
- 3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-1-ylmethyl)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [939];
- N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-3,3-dimethylbutanamide [940];
- N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)butyramide [941];
- N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)pentanamide [942];
- N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopropanecarboxamide [943];
- N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclobutanecarboxamide [944];
- N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclopentanecarboxamide [945];
- N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)cyclohexanecarboxamide [946];
- N-benzyl-1-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methanamine [947];
- 1-cyclopentyl-N-((5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)methyl)methanamine [948];
- 5-(5-((3,3-difluoropyrrolidin-1-yl)methyl)pyridin-3-yl)-3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [949];
- 3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrimidin-5-yl)-1H-pyrazolo[4,3-b]pyridine [950];
- 3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [951];
- 3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(piperidin-4-yl)-1H-pyrazolo[4,3-b]pyridine [952];
- 3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [953];
- 3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [954];

3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(1-methyl-1H-pyrazol-4-yl)-1H-pyrazolo[4,3-b]pyridine [955];

- 5-(1,2-dimethyl-1H-imidazol-5-yl)-3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [956];
- 1-(6-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyrazin-2-yl)azetidin-3-amine [957];
- 5-(5-(cyclohexyloxy)pyridin-3-yl)-3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [958];
- 3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(piperidin-4-yloxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [959];
- N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(piperidin-4-yl)acetamide [960];
- 3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-(2-(pyrrolidin-1-yl)ethoxy)pyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [**961**];
- 2-((5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)oxy)-N,N-dimethylethan-1-amine [962];
- 3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(5-methoxypyridin-3-yl)-1H-pyrazolo[4,3-b]pyridine [963];
- 5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-ol [964];
- 5-(5-(benzyloxy)pyridin-3-yl)-3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridine [965];
- 2-cyclohexyl-N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [966];
- 3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyridin-4-yl)-1H-pyrazolo[4,3-b]pyridine [967];
- 3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-5-(pyrazin-2-yl)-1H-pyrazolo[4,3-b]pyridine [968];
- 2-(dimethylamino)-N-(5-(3-(4-(3-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [969];
- 2-(dimethylamino)-N-(5-(3-(4-(4-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [970];
- 2-(dimethylamino)-N-(5-(3-(4-(2-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [971];

2-(dimethylamino)-N-(5-(3-(4-(pyridin-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [972];

- 2-(dimethylamino)-N-(5-(3-(4-(pyridin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [973];
- 2-(dimethylamino)-N-(5-(3-(4-(pyridin-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [974];
- 2-(dimethylamino)-N-(5-(3-(4-(piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [975];
- 2-(dimethylamino)-N-(5-(3-(4-(4-methyl-1H-imidazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [976];
- 2-(dimethylamino)-N-(5-(3-(4-(4-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [977];
- N-(5-(3-(1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(dimethylamino)acetamide [978];
- 2-(dimethylamino)-N-(5-(3-(4-(thiophen-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [979];
- 2-(dimethylamino)-N-(5-(3-(4-(furan-3-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [980];
- 2-(dimethylamino)-N-(5-(3-(4-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [981];
- 2-(dimethylamino)-N-(5-(3-(4-(5-fluorothiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [982];
- 2-(dimethylamino)-N-(5-(3-(4-(5-methylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [983];
- N-(5-(3-(4-(5-acetylthiophen-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)-2-(dimethylamino)acetamide [984];
- 2-(dimethylamino)-N-(5-(3-(4-(3-fluoro-5-(methylsulfonamidomethyl)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [985];
- 2-(dimethylamino)-N-(5-(3-(4-(3-((2-(dimethylamino)ethyl)amino)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [986];
- 2-(dimethylamino)-N-(5-(3-(4-(3-(2-(dimethylamino)ethoxy)-5-fluorophenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [987];
- 2-(dimethylamino)-N-(5-(3-(4-(3-fluoro-5-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [988];

2-(dimethylamino)-N-(5-(3-(4-(3-fluoro-5-hydroxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [989]; and 2-(dimethylamino)-N-(5-(3-(4-(3-fluoro-5-methoxyphenyl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-1H-pyrazolo[4,3-b]pyridin-5-yl)pyridin-3-yl)acetamide [990]; or a pharmaceutically acceptable salt thereof.

- **41.** A pharmaceutical composition comprising a therapeutically effective amount of a compound according to any of claims 1-40, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient.
- **42.** A method of treating or ameliorating in a patient a disorder or disease selected from the group consisting of: cancer, pulmonary fibrosis, idiopathic pulmonary fibrosis (IPF), degenerative disc disease, bone/osteoporotic fractures, bone or cartilage disease, and osteoarthritis, the method comprising administering to the patient a therapeutically effective amount of a compound according to any one of claims 1-40, or a pharmaceutically acceptable salt thereof.
 - **43.** A method of claim 42, wherein the disorder or disease is cancer.
 - **44.** A method of claim 42, wherein the disorder or disease is pulmonary fibrosis.
- **45.** A method of claim 42, wherein the disorder or disease is idiopathic pulmonary fibrosis (IPF).
 - **46.** A method of claim 42, wherein the disorder or disease is degenerative disc disease.
 - **47.** A method of claim 42, wherein the disorder or disease is a bone/osteoporotic fracture.
 - **48.** A method of claim 42, wherein the disorder or disease is a bone or cartilage disease.
 - **49.** A method of claim 42, wherein the disorder or disease is osteoarthritis.
 - **50.** The method of claim 42, wherein the patient is a human.
- **51.** The method of claim 43, wherein the cancer is selected from the group consisting of: colon cancer, colorectal cancer, leukemia, breast cancer, skin cancer, prostate cancer, stomach (gastric) cancer, lung cancer, pancreatic cancer, and liver (hepatic) cancer.
- **52.** The method of claim 42, wherein the compound inhibits one or more proteins in the Wnt pathway.
- **53.** The method of claim 42, wherein the compound inhibits signaling induced by one or more Wnt proteins.
- **54.** The method of claim 52, wherein the Wnt proteins are selected from the group consisting of: WNT1, WNT2, WNT2B, WNT3, WNT3A, WNT4. WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, WNT10A, WNT10B, WNT11, and WNT16.

55. The method of claim 53, wherein the Wnt proteins are selected from the group consisting of: WNT1, WNT2, WNT2B, WNT3, WNT3A, WNT4. WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, WNT10A, WNT10B, WNT11, and WNT16.

56. The method of claim 42, wherein the compound inhibits a kinase activity.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US16/45332

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)				
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
3. Claims Nos.: 5-56 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows:				
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.				
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:				
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:				
Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee. The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation. No protest accompanied the payment of additional search fees.				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US16/45332

A. CLASSIFICATION OF SUBJECT MATTER IPC(8) - A61K 31/437, 31/444; C07D 471/04 (2016.01) CPC - A61K 31/4162; C07D 403/04, 403/14 According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) IPC(8): A61K 31/437, 31/444; C07D 471/04 (2016.01) CPC: A61K 31/4162; C07D 403/04, 403/14					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) PATSEER (US, EP, WO, JP, DE, GB, CN, FR, KR, ES, AU, IN, CA, Other Countries (INPADOC), RU, AT, CH, TH, BR, PH); EBSCO; Google Scholar; IP.com; SureChEMBL; KEYWORDS: Wnt signal* pathway, 1H indazol 5 yl, treat* cancer*, colon cancer*, leukemia*, osteoarthritis, pyrrolopyridine*, pyrrolo pyridin*, 1H pyrrolo 2 3 c pyridin*, 1H pyrazolo 4 3 b pyridin*, azaindazole*, 4 azaindazole*					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
	US 2015/0045379 A1 (SAMUMED, LLC) 12 February 2 [0075], [0121]-[0122], [0128], [0132], [0135], [0137]	2015; paragraphs [0011], [0057], [0070],	1-3, 4/1-3		
Y	US 2013/0267548 A1 (FOLLMANN, M et al.) 10 October	1-3, 4/1-3			
Further documents are listed in the continuation of Box C. See patent family annex.					
"A" document defining the general state of the art which is not considered to be of particular relevance		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
 "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means 		 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art 			
				"P" docume	ent published prior to the international filing date but later than rity date claimed
Date of the actual completion of the international search 15 September 2016 (15.09.2016)		Date of mailing of the international search report 3 0 S E P 2016			
Name and mailing address of the ISA/ Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450		Authorized officer Shane Thomas PCT Helpdesk: 571-272-4300			
i acsimile iv	Facsimile No. 571-273-8300 PCT 0SP: 571-272-7774				