I*I Innovation, Sciences et Innovation, Science and CA 2800631 C 2018/02/13
Développement economique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (11)(21) 2 800 63 1
(12 BREVET CANADIEN
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2010/11/08 (51) Cl.Int./Int.Cl. GO6F 9/372(2018.01),

(87) Date publication PCT/PCT Publication Date: 2011/12/29 GO6F 13/38(2006.01)

2 1; . (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2018/02/13 GREINER DAN US

(85) Entree phase nationale/National Entry: 2012/11/23 CRADDOCK. DAVID, US:

(86) N° demande PCT/PCT Application No.: EP 2010/067028 GREGG, THOMAS, US]

o o FARRELL, MARK, US
(87) N publication PCT/PCT Publication No.: 2011/160710 o
(73) Proprietaire/Owner:

(30) Priornte/Priority: 2010/06/23 (US12/821,194) INTERNATIONAL BUSINESS MACHINES

CORPORATION, US
(74) Agent: WANG, PETER

(54) Titre : INSTRUCTIONS DE STOCKAGE/BLOCAGE DE STOCKAGE POUR COMMUNIQUER AVEC DES

ADAPTATEURS

54) Title: STORE/STORE BLOCK INSTRUCTIONS FOR COMMUNICATING WITH ADAPTERS

600
PCI STORE e

OPCODE FIELD 1 FIELD 2 |

602 604 606
A

FIELD 1

‘ I/\/ 604
DATA STORED

B

FIELD 2

510~ ENABLED HANDLE
612——+ ADDRESS SPACE 606
614 — OFFSET WITHIN ADDRESS SPACE
5161 LENGTH
618—"T STATUS

(57) Abréegée/Abstract:

Communication with adapters of a computing environment Is facllitated. Control Instructions specifically designed for
communicating data to and from the adapters are provided to facilitate the communication. The Instructions explicitly target the

adapters. Information provided in an instruction is used to steer the instruction to an appropriate
as a Peripheral Component Interconnect (PCI) adapter or a Peripheral Component Interconnect

location within the adapter, such

=xpress (PCle) adapter.

50 rue Victoria e Place du Portage1l e Gatineau, (Québec) K1AOC9 e www.opic.ic.gc.ca
50 Victoria Street e Place du Portage 1 ¢ Gatineau, Quebec K1AO0C9 e www.cipo.ic.gc.ca

Ll

Canada

CA 2800631 2017-03-13

Abstract

Communication with adapters of a computing environment is facilitated. Control
instructions specifically designed for communicating data to and from the adapters are
provided to facilitate the communication. The instructions explicitly target the adapters.
Intormation provided 1n an instruction is used to steer the instruction to an appropriate

location within the adapter, such as a Peripheral Component Interconnect (PCI) adapter

or a Peripheral Component Interconnect Express (PCle) adapter.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

STORE/STORE BLOCK INSTRUCTIONS FOR COMMUNICATING
WITH ADAPTERS

BACKGROUND

This invention relates, in general, to input/output processing of a computing environment,

and in particular, to facilitating communication with adapters of the computing environment.

A computing environment may include one or more types of input/output devices, mcluding
various types of adapters. One type of adapter is a Peripheral Component Interconnect (PCI)
or Peripheral Component Interconnect Express (PCle) adapter. This adapter includes one or
more address spaces used in communicating data between the adapter and the system to

which the adapter is attached. The PCI specification is available from the World Wide Web

at www.pcisig.com/home.

US Patent No. 6,704,831, issued March 9, 2004, Avery, “Method and Apparatus for
Converting Address Information Between PCI Bus Protocol and a Message-Passing Queue-
Oriented Bus Protocol,” describes PCI load/store operations and DMA operations are
implemented via work queue pairs in a message-passing, queue-oriented bus architecture.
PCI address space is divided into segments and, each segment, n turn, 18 divided mto
regions. A separate work queue is assigned to each segment. A first portion of a PCI address
is matched against the address ranges represented by the segments and used to select a
memory segment and its corresponding work queue. An entry in the work queue holds a
second portion of the PCI address which specifies a region within the selected segment that
is assigned to a specific PCI device. In one embodiment, PIO load/store operations are
implemented by selecting a work queue assigned to PIO operations and creating a work
queue entry with the PCI address of a register on a PCI device and a pointer to the PIO data.
The work queue entry is sent to a PCI bridge where the PCI address 1s extracted and used to
program the appropriate device register with the data using the data pointer. DMA transfers
are also implemented by selecting a work queue by means comparing a portion ot the PCI
address generated by the PCI device to an address range table and selecting a work queue

that services the address range. A work queue entry is created with the remainder of the PCI

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

address and a pointer to the DMA data. An RDMA operation 18 used to perform the DMA
transfer. The page and region data is used in connection with a translation protection table mn

the host channel adapter to access physical memory and perform the DMA transfer.

US Patent No. 7,613,847, issued November 3, 2009, Kjos et al, “Partially Virtualizing an I/O
Device for Use by Virtual Machines,” describes a computer system comprises a physical
computer and a virtual machine monitor executable on the physical computer and contigured
to create an emulation of at least one guest operating system adapted to control the physical
computer. The computer system further comprises a host executable on the physical
computer that manages physical resources coupled to the physical computer on behalf of the
virtual machine monitor and the at least one guest operating system. The host 1s adapted to
virtualize a Peripheral Component Interconnect (PCI) configuration address space whereby
the at least one guest operating system controls PCI input/output (I/O) devices directly and

1n absence of I/O emulation.

In some systems, a portion of an address space of the central processing unit (CPU) coupled
to the adapter is mapped to an address space of the adapter enabling CPU instructions that

access storage to directly manipulate the data in the adapter’s address space.

BRIEF SUMMARY

In accordance with an aspect of the present invention, a capability is provided for facilitating
communication with adapters, such as PCI or PCle adapters. Control instructions
specifically designed for communicating data to and from adapters are provided and used for

communication.

The shortcomings of the prior art are overcome and advantages are provided through the
provision of a computer program product for executing a store instruction for storing data in
an adapter. The computer program product includes a computer readable storage medium
readable by a processing circuit and storing instructions for execution by the processing
circuit for performing a method. The method includes, for instance, obtaining a machine

instruction for execution, the machine instruction being defined for computer execution

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

according to a computer architecture, the machine instruction including, for instance, an
opcode field identifying a store to adapter instruction; a first field identifying a first location
that includes data to be stored in an adapter; a second ficld identifying a second location, the
contents of which include a function handle identifying the adapter, a designation of an
address space within the adapter in which data is to be stored, and an offset within the
address space; and executing the machine instruction, the executing including using the
function handle to obtain a function table entry associated with the adapter; obtaining a data
address of the adapter using at least one of information in the function table entry and the
offset; and storing data from the first location in a specific location in the address space
identified by the designation of the address space, the specific location identified by the data
address of the adapter.

Further, a computer program product for executing a store block instruction for storing data
in an adapter is provided. The computer program product includes a computer readable
storage medium readable by a processing circuit and storing instructions for execution by the
processing circuit for performing a method. The method includes, for instance, obtaining a
machine instruction for execution, the machine instruction being defined for computer
execution according to a computer architecture, the machine instruction including, for
instance, an opcode field identifying a store block to adapter instruction; a first ficld
identifying a first location, the contents of which include a function handle 1dentifying an
adapter, and a designation of an address space within the adapter in which data 1s to be
stored; a second field identifying a second location that includes an offset within the address
space; a third field identifying a third location that includes an address in memory that
includes data to be stored in the adapter; and executing the machine instruction, the
executing including using the function handle to obtain a function table entry associated with
the adapter; obtaining a data address of the adapter using information in the function table
entry and the offset; and storing data obtained from memory at the address in the third tield
into a specific location in the address space identified by the designation of the address

space, the specific location identified by the data address of the adapter.

Methods and systems relating to one or more aspects of the present invention are also

described and claimed herein.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

Additional features and advantages are realized through the techniques of the present
invention. Other embodiments and aspects of the invention are described 1n detail herein

and are considered a part of the claimed invention.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

One or more aspects of the present invention are particularly pointed out and distinctly
claimed as examples in the claims at the conclusion of the specification. The foregoing and
other objects, features, and advantages of the invention are apparent from the following

detailed description taken in conjunction with the accompanying drawings in which:

FIG. 1A depicts one embodiment of a computing environment to incorporate and use one or

more aspects of the present invention;

FIG. 1B depicts one embodiment of a device table entry located in the I/O hub of FIG. 1A

and used in accordance with an aspect of the present invention;

FIG. 1C depicts another embodiment of a computing environment to incorporate and use one

or more aspects of the present invention;

FIG. 2 depicts one example of address spaces of an adapter function, in accordance with an

aspect of the present invention;

FIG. 3A depicts one example of a function table entry used in accordance with an aspect of

the present invention;

FIG. 3B depicts one embodiment of a function handle used in accordance with an aspect of

the present invention;

FIG. 4A depicts one embodiment of a PCI Load instruction used in accordance with an

aspect of the present invention;

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

FIG. 4B depicts onec embodiment of a field used by the PCI Load mstruction of FIG. 4A, m

accordance with an aspect of the present invention;

FIG. 4C depicts one embodiment of another field used by the PCI Load instruction of FIG.

4A, in accordance with an aspect of the present invention;

FIGs. 5A-5B depict one embodiment of the logic to perform a PCI Load operation, in

accordance with an aspect of the present invention;

FIG. 6A depicts one embodiment of a PCI Store instruction used in accordance with an

aspect of the present invention;

FIG. 6B depicts one embodiment of a field used by the PCI Store instruction of FIG. 6A, 1n

accordance with an aspect of the present mmvention;

FIG. 6C depicts one embodiment of another field used by the PCI Store instruction of FIG.

6A, in accordance with an aspect of the present invention;

FIGs. 7A-7B depict one embodiment of the logic to perform a PCI Store operation, 1n

accordance with an aspect of the present invention;

FIG. 8A depicts one embodiment of a PCI Store Block instruction used in accordance with

an aspect of the present invention;

FIG. 8B depicts one embodiment of a field used by the PCI Store Block instruction of FIG.

8A, in accordance with an aspect of the present invention;

FIG. 8C depicts one embodiment of another field used by the PCI Store Block imstruction of

FIG. 8A, in accordance with an aspect of the present invention;

FIG. 8D depicts one embodiment of yet another field used by the PCI Store Block

instruction of FIG. 8A, in accordance with an aspect of the present invention;

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

FIGs. 9A-9B depict one embodiment of the logic to perform a PCI Store Block operation, n

accordance with an aspect of the present invention;

FIG. 10 depicts one embodiment of a computer program product incorporating one or more

aspects of the present invention;

FIG. 11 depicts one embodiment of a host computer system to incorporate and use one or

more aspects of the present invention;

FIG. 12 depicts a further example of a computer system to incorporate and use one or more

aspects of the present invention;

FIG. 13 depicts another example of a computer system comprising a computer network to

incorporate and use one or more aspects of the present invention;

FIG. 14 depicts one embodiment of various elements of a computer system to incorporate

and use one or more aspects of the present invention;

FIG. 15A depicts one embodiment of the execution unit of the computer system of FIG. 14

to incorporate and use one or more aspects of the present invention;

FIG. 15B depicts one embodiment of the branch unit of the computer system ot FIG. 14 to

incorporate and use one or more aspects of the present invention;

FIG. 15C depicts one embodiment of the load/store unit of the computer system of FIG. 14

to incorporate and use one or more aspects of the present invention; and

FIG. 16 depicts one embodiment of an emulated host computer system to incorporate and

use one or more aspects of the present invention.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

DETAILED DESCRIPTION

In accordance with an aspect of the present invention, one or more control mstructions are
provided to facilitate communication with adapters of a computing environment. The
control instructions are specifically designed for communicating data to and from the

address spaces of the adapters.

As used herein, the term adapter includes any type of adapter (e.g., storage adapter, network
adapter, processing adapter, PCI adapter, cryptographic adapter, other type ot input/output
adapters, etc.). In one embodiment, an adapter includes one adapter function. However, in
other embodiments, an adapter may include a plurality of adapter functions. One or more
aspects of the present invention are applicable whether an adapter includes one adapter
function or a plurality of adapter functions. In one embodiment, if an adapter includes a
plurality of adapter functions, then cach function may be communicated with in accordance
with an aspect of the present invention. Moreover, in the examples presented herein, adapter

is used interchangeably with adapter function (e.g., PCI function) unless otherwise noted.

One embodiment of a computing environment to incorporate and use one or more aspects of
the present invention is described with reference to FIG. 1A. In one example, a computing
environment 100 is a System z® server offered by International Business Machines
Corporation. System z® is based on the z/Architecture® offered by International Business
Machines Corporation. Details regarding the z/Architecture® are described in an IBM®
publication entitled, "z/Architecture Principles of Operation," IBM Publication No. SA22-
7832-07, February 2009. IBM®, System z® and z/Architecture® are registered trademarks
of International Business Machines Corporation, Armonk, New York. Other names used
herein may be registered trademarks, trademarks or product names of International Business

Machines Corporation or other companies.

In one example, computing environment 100 includes one or more central processing units
(CPUs) 102 coupled to a system memory 104 (a.k.a., main memory) via a memory controller
106. To access system memory 104, a central processing unit 102 issues a read or write

request that includes an address used to access system memory. The address included n the

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

request is typically not directly usable to access system memory, and theretore, 1t 18
translated to an address that is directly usable in accessing system memory. The address 1s
translated via a translation mechanism (XLATE) 108. For example, the address 1s translated

from a virtual address to a real or absolute address using, for instance, dynamic address

translation (DAT).

The request, including the address (translated, if necessary), 1s received by memory
controller 106. In one example, memory controller 106 is comprised of hardware and 1s
used to arbitrate for access to the system memory and to maintain the memory's consistency.
This arbitration is performed for requests received from CPUs 102, as well as for requests
received from one or more adapters 110. Like the central processing units, the adapters issue

requests to system memory 104 to gain access to the system memory.

In one example, adapter 110 is a Peripheral Component Interconnect (PCI) or PCI Express
(PCle) adapter that includes one or more PCI functions. A PCI function issues a request that
is routed to an input/output hub 112 (e.g., a PCI hub) via one or more switches (e.g., PCle
switches) 114. In one example, the input/output hub is comprised of hardware, including

one or more state machines, and is coupled to memory controller 106 via an I/O-to-memory

bus 120.

The input/output hub includes, for instance, a root complex 116 that receives the request
from a switch. The request includes an input/output address that is provided to an address
translation and protection unit 118 which accesses information used for the request. As
examples, the request may include an input/output address used to perform a direct memory
access (DMA) operation or to request a message signaled interruption (MSI). Address
translation and protection unit 118 accesses information used tor the DMA or MSI request.
As a particular example, for a DMA operation, information may be obtained to translate the
address. The translated address is then forwarded to the memory controller to access system

memory.

In one example, as described with reference to FIG. 1B, information used for the DMA or

MSI request issued by an adapter is obtained from a device table entry 130 of a device table

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

132 located in the I/O hub (e.g., in the address translation and protection unit). The device
table entry includes information for the adapter, and each adapter has at least one device
table entry associated therewith. For instance, there is one device table entry per address
space (in system memory) assigned to the adapter. For a request issued from an adapter
(e.g., PCI function 138), a device table entry is located using a requestor ID provided in the

request.

Referring now to FIG. 1C, in a further embodiment of a computing environment, in addition
to or instead of one or more CPUs 102, a central processing complex 1s coupled to memory
controller 106. In this example, a central processing complex 150 includes, for imnstance, one
or more partitions or zones 152 (e.g., logical partitions LP1-LPn), one or more central
processors (e.g., CP1-CPm) 154, and a hypervisor 156 (e.g., a logical partition manager),

cach of which 1s described below.

Each logical partition 152 is capable of functioning as a separate system. That is, each
logical partition can be independently reset, initially loaded with an operating system or a
hypervisor (such as zZVM® offered by International Business Machines Corporation,
Armonk, New York), if desired, and operate with different programs. An operating system,
a hypervisor, or an application program running in a logical partition appears to have access
to a full and complete system, but only a portion of it is available. A combination of
hardware and Licensed Internal Code (also referred to as microcode or millicode) keeps a
program in a logical partition from interfering with the program in a different logical
partition. This allows several different logical partitions to operate on a single or multiple
physical processor in a time slice manner. In this particular example, each logical partition
has a resident operating system 158, which may differ for one or more logical partitions. In
one embodiment, operating system 158 is a zZOS® or zLinux operating system, offered by
International Business Machines Corporation, Armonk, New York. z/OS® and z/VM® are

registered trademarks of International Business Machines Corporation, Armonk, New York.

Central processors 154 are physical processor resources that are allocated to the logical
partitions. For instance, a logical partition 152 includes one or more logical processors, each

of which represents all or a share of the physical processor resource 154 allocated to the

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

10

partition. The underlying processor resource may either be dedicated to that partition or

shared with another partition.

Logical partitions 152 are managed by hypervisor 156 implemented by firmware running on
processors 154. Logical partitions 152 and hypervisor 156 each comprise one or more
programs residing in respective portions of central storage associated with the central
processors. One example of hypervisor 156 is the Processor Resource/Systems Manager

(PR/SM), offered by International Business Machines Corporation, Armonk, New York.

As used herein, firmware includes, e.g., the microcode, millicode and/or macrocode of the
processor. It includes, for instance, the hardware-level nstructions and/or data structures
used in implementation of higher-level machine code. In one embodiment, it includes, for
instance, proprietary code that is typically delivered as microcode that includes trusted
software or microcode specific to the underlying hardware and controls operating system

access to the system hardware.

Although, in this example, a central processing complex having logical partitions 1s
described, one or more aspects of the present invention may be incorporated in and used by
other processing units, including single or multi-processor processing units that are not
partitioned, among others. The central processing complex described herein 1s only one

example.

As described above, adapters can issue requests to the processors requesting various
operations, such as direct memory accesses, message signaled interrupts, etc. Further, the
processors can issue requests to the adapters. For instance, returning to FIG. 1B, a processor
102 can issue a request to access an adapter function 138. The request is routed from the
processor to the adapter function via I/O hub 112 and one or more switches 114. In this
embodiment, the memory controller is not shown. However, the I/O hub may be coupled to

the processor directly or via a memory controller.

As an example, an operating system 140 executing within the processor 1ssues an instruction

to the adapter function requesting a particular operation. In this example, instructions 1ssued

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

11

by the operating system are specific to the I/0 infrastructure. That 1s, since the /0
infrastructure is based on PCI or PCle (both of which are referred to herein as PCI, unless
otherwise noted), the instructions are PCI instructions. Example PCI instructions include
PCI Load, PCI Store and PCI Store Block, to name a few. Although, in this example, the
I/0 infrastructure and instructions are based on PCI, in other embodiments, other

infrastructures and corresponding instructions may be used.

In one particular example, the instructions are directed to a specific location within an
address space of the adapter function. For instance, as shown in FIG. 2, an adapter function
138 includes storage 200, which is defined as a plurality of address spaces, including, for
instance: a configuration space 202 (e.g., PCI configuration space for a PCI function); an
1/0 space 204 (e.g., PCI 1/O space); and one or more memory spaces 206 (€.g., PCI memory
space). In other embodiments, more, less or different address spaces may be provided. The
instructions are targeted to a particular address space and a particular location within the
address space. This ensures that the configuration (e.g., operating system, LPAR, processor,

guest, etc.) issuing the instruction is authorized to access the adapter function.

To facilitate processing of the instructions, information stored in one or more data structures
is used. One such data structure that includes information regarding adapters 1s a function
table 300 stored, for instance, in secure memory. As shown in FIG. 3A, 1n one example, a
function table 300 includes one or more function table entries (FTEs) 302. In one example,
there is one function table entry per adapter function. Each function table entry 302 includes
information to be used in processing associated with its adapter function. In one example,

function table entry 302 includes, for mstance:

Instance Number 308: This field indicates a particular instance of the function handle

associated with the function table entry;

Device Table Entry (DTE) Index 1...n 310: There may be one or more device table indices,
and ecach index is an index into a device table to locate a device table entry (DTE). There are
one or more device table entries per adapter function, and each entry includes information

associated with its adapter function, including information used to process requests of the

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

12

adapter function (e.g., DMA requests, MSI requests) and information relating to requests to
the adapter function (e.g., PCI instructions). Each device table entry is associated with one
address space within system memory assigned to the adapter function. An adapter function
may have one or more address spaces within system memory assigned to the adapter

function.

Busy Indicator 312: This field indicates whether the adapter function 18 busy;

Permanent Error State Indicator 314: This field indicates whether the adapter function is 1n a

permanent error state;

Recovery Initiated Indicator 316: This field indicates whether recovery has been initiated

for the adapter function;

Permission Indicator 318: This field indicates whether the operating system trying to enable

the adapter function has authority to do so;

Enable Indicator 320: This field indicates whether the adapter function is enabled (e.g.,
1=enabled, 0=disabled);

Requestor Identifier (RID) 322: This is an identifier of the adapter function and may
include, for instance, a bus number, device number and function number. This field 18 used,

for instance, for accesses of a configuration space of the adapter function.

For instance, the configuration space may be accessed by specifying the configuration space
in an instruction issued by the operating system (or other configuration) to the adapter
function. Specified in the instruction is an offset into the configuration space and a function
handle used to locate the appropriate function table entry that includes the RID. The
firmware receives the instruction and determines it is for a configuration space. Theretore, 1t
uses the RID to generate a request to the I/O hub, and the I/O hub creates a request to access

the adapter. The location of the adapter function is based on the RID, and the ottset

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

13

specifies an offset into the configuration space of the adapter function. For instance, the

offset specifies a register number in the configuration space.

Base Address Register (BAR) (1 to n) 324: This field includes a plurality of unsigned
integers, designated as BARO — BARn, which are associated with the originally specified
adapter function, and whose values are also stored in the base address registers associated
with the adapter function. Each BAR specifies the starting address of a memory space or 1/0
space within the adapter function, and also indicates the type of address space, that 1s

whether it is a 64 or 32 bit memory space, or a 32 bit I/O space, as examples;

In one example, it is used for accesses to memory space and/or I/O space of the adapter
function. For instance, an offset provided in an instruction to access the adapter function 1s
added to the value in the base address register associated with the address space designated
in the instruction to obtain the address to be used to access the adapter function. The address
space identifier provided in the instruction identifies the address space within the adapter

function to be accessed and the corresponding BAR to be used,;

Size 1...n 326: This field includes a plurality of unsigned integers, designated as SIZEQ —
SIZEn. The value of a Size field, when non-zero, represents the size of each address space

with each entry corresponding to a previously described BAR.

Further details regarding BAR and Size are described below.

1. When a BAR is not implemented for an adapter function, the BAR field and its

corresponding size field are both stored as zeros.

2. When a BAR field represents either an I/0 address space or a 32-bit memory address

space, the corresponding size field is non-zero and represents the size of the address space.

3. When a BAR field represents a 64-bit memory address space,
a. The BARn field represents the least significant address bits.

b. The next consecutive BARn+1 field represents the most significant address bits.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

14

C. The corresponding SIZEn field is non-zero and represents the size of the address
space.

d. The corresponding SIZEn+1 field is not meaningful and 1s stored as zero.

Internal Routing Information 328: This information is used to perform particular routing to
the adapter. It includes, for instance, node, processor chip, and I/O hub addressing

information, as examples.

Status Indicator 330: This provides an indication of whether load/store operations are

blocked, as well as other indications.

In one example, the busy indicator, permanent error state indicator, and recovery initiated
indicator are set based on monitoring performed by the firmware. Further, the permission
indicator is set, for instance, based on policy. The BAR information 1s based on
configuration information discovered during a bus walk by the processor (e.g., firmware of
the processor). Other ficlds may be set based on configuration, initialization and/or events.
In other embodiments, the function table entry may include more, less or different
information. The information included may depend on the operations supported by or

enabled for the adapter function.

To locate a function table entry in a function table that includes one or more entries, 1n one
embodiment, a function handle is used. For instance, on¢ or more bits of the function handle

arc used as an index into the function table to locate a particular function table entry.

Referring to FIG. 3B, additional details regarding a function handle are described. In one
example, a function handle 350 includes an enable indicator 352 that indicates whether the
PCI function handle is enabled; a PCI function number 354 that identifies the function (this
is a static identifier, and in one embodiment, is an index into the function table); and an
instance number 356 which indicates the particular instance of this function handle. For
example, each time the function is enabled, the instance number is incremented to provide a

new 1nstance number.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

15

In accordance with an aspect of the present invention, to access an adapter function, a
configuration issues a request to the adapter function, which 1s executed by a processor. In
the examples herein, the configuration is an operating system, but in other examples, i1t may
be a system, processor, logical partition, guest, etc. These requests are via specific
instructions, which access the adapter. Example instructions include PCI Load, PCI Store,
and PCI Store Block instructions. These instructions are specific to the adapter architecture
(e.g., PCI). Further details regarding these instructions are described below. For instance,
one embodiment of a PCI Load instruction is described with reference to FIGs. 4A-5B; one
embodiment of a PCI Store instruction is described with reference to FIGs. 6A-7B; and one

embodiment of a PCI Store Block instruction is described with reference to FIGs. 8 A-9B.

Referring initially to FIG. 4A, one embodiment of a PCI Load instruction 18 depicted. As
shown, a PCI Load instruction 400 includes, for instance, an opcode 402 indicating the PCI
Load instruction; a first field 404 specifying a location at which data fetched from an adapter
function will be loaded; and a second field 406 specifying a location at which various
information is included regarding the adapter function from which data 1s to be loaded. The

contents of the locations designated by Fields 1 and 2 are further described below.

In one example, Field 1 designates a general register, and as depicted in FIG. 4B, the
contents 404 of that register include a contiguous range of one or more bytes loaded from the
location of the adapter function specified in the instruction. In one example, the data 18

loaded into the rightmost byte positions of the register.

In one embodiment, Field 2 designates a pair of general registers that include various

information. As shown in FIG. 4B, the contents of the registers include, for instance:

Enabled Handle 410: This field is an enabled function handle of the adapter function from
which the data is to be loaded;

Address Space 412: This field identifies the address space within the adapter function from
which the data is to be loaded;

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

16

Offset Within Address Space 414: This field specifies the offset within the specified address

space from which the data is to be loaded;

Length field 416: This field specifies the length of the load operation (e.g., the number of
bytes to be loaded); and

Status field 418: This field provides a status code which is applicable when the nstruction

completes with a predefined condition code.

In one embodiment, the bytes loaded from the adapter function are to be contained within an
integral boundary in the adapter function's designated PCI address space. When the address
space field designates a memory address space, the integral boundary size 1s, for instance, a

double word. When the address space ficld designates an I/O address space or a

configuration address space, the integral boundary size 1s, for instance, a word.

One embodiment of the logic associated with a PCI Load instruction is described with
reference to FIGs. 5A-5B. In one example, the instruction is issued by an operating system
(or other configuration) and executed by the processor (e.g., firmware) executing the
operating system. In the examples herein, the instructions and adapter functions are PCI-
based. However, in other examples, a different adapter architecture and corresponding

instructions may be used.

To issue the instruction, the operating system provides the following operands to the
instruction (e.g., in one or more registers designated by the instruction): the PCI function
handle, the PCI address space (PCIAS), the offset into the PCI address space, and the length
of the data to be loaded. Upon successful completion of the PCI Load instruction, the data 1s

loaded in the location (e.g., register) designated by the instruction.

Referring to FIG. 5A, initially, a determination is made as to whether the facility allowing
for a PCI Load instruction is installed, INQUIRY 500. This determination 1s made by, for
instance, checking an indicator stored in, for instance, a control block. If the facility 1s not

installed, an exception condition is provided, STEP 502. Otherwise, a determination 1s made

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

17

as to whether the operands are aligned, INQUIRY 504. For instance, if certain operands
need to be in even/odd register pairs, a determination is made as to whether those
requirements are met. If the operands are not aligned, then an exception 1s provided, STEP
506. Otherwise, if the facility is installed and the operands are aligned, a determination 1s
made as to whether the handle provided in the operands of the PCI Load instruction 18
enabled, INQUIRY 508. In one example, this determination 1s made by checking an enable
indicator in the handle. If the handle is not enabled, then an exception condition 1s provided,

STEP 510.

If the handle is enabled, then the handle is used to locate a function table entry, STEP 512.
That is, at least a portion of the handle is used as an index into the function table to locate the

function table entry corresponding to the adapter function from which data 1s to be loaded.

Thereafter, if the configuration issuing the instruction is a guest, a determination is made as
to whether the function is configured for use by a guest, INQUIRY 514. If it 18 not
authorized, then an exception condition is provided, STEP 516. This inquiry may be 1gnored
if the configuration is not a guest or other authorizations may be checked, if designated. (In
one example, in the z/Architecture®, a pageable guest is interpretively executed via the Start
Interpretive Execution (SIE) instruction, at level 2 of interpretation. For instance, the logical
partition (LPAR) hypervisor executes the SIE instruction to begin the logical partition in
physical, fixed memory. If z/VM® is the operating system in that logical partition, 1t issues
the SIE instruction to execute its guests (virtual) machines in 1ts V=V (virtual) storage.
Therefore, the LPAR hypervisor uses level-1 SIE, and the zZVM® hypervisor uses level-2
SIE.)

A determination is then made as to whether the function 1s enabled, INQUIRY 518. In one
example, this determination is made by checking an enable indicator in the function table

entry. If it is not enabled, then an exception condition 18 provided, STEP 520.

If the function is enabled, then a determination is made as to whether the address space 18
valid, INQUIRY 522. For instance, is the specified address space a designated address space

of the adapter function and one that is appropriate for this instruction. If the address space 1s

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

18

invalid, then an exception condition is provided, STEP 524. Otherwise, a determination 18
made as to whether load/store is blocked, INQUIRY 526. In one example, this
determination is made by checking the status indicator in the function table entry. If

load/store is blocked, then an exception condition 18 provided, STEP 528.

However, if load/store is not blocked, a determination is made as to whether recovery 18
active, INQUIRY 530. In one example, this determination is made by checking the recovery
initiated indicator in the function table entry. If recovery is active, then an exception
condition is provided, STEP 532. Otherwise, a determination is made as to whether the
function is busy, INQUIRY 534. This determination is made by checking the busy indicator
in the function table entry. If the function is busy, then a busy condition 18 provided, STEP

536. With a busy condition, the instruction can be retried, instead of dropped.

If the function is not busy, then a further determination is made as to whether the offset
specified in the instruction is valid, INQUIRY 538. That is, is the offset in combination with
the length of the operation within the base and length of the address space, as specified in the
function table entry. If not, then an exception condition is provided, STEP 540. However, 1t
the offset is valid, then a determination is made as to whether the length 1s valid, INQUIRY
542. That is, subject to the address space type, offset within the address space, and an
integral boundary size is the length valid. If not, then an exception condition 1s provided,
STEP 544. Otherwise, processing continues with the load instruction. (In one embodiment,

the firmware performs the above checks.)

Continuing with FIG. 5B, a determination is made by the firmware as to whether the load 1s
for a configuration address space of the adapter function, INQUIRY 550. That is, based on
the configuration of the adapter function's memory, is the specified address space provided
in the instruction a configuration space. If so, then the firmware performs various
processing to provide the request to a hub coupled to the adapter function; the hub then

routes the request to the function, STEP 552.

For example, the firmware obtains the requestor ID from the function table entry pointed to

by the function handle provided in the instruction operands. Further, the firmware

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

19

determines based on information in the function table entry (e.g., the internal routing
information) the hub to receive this request. That is, an environment may have one or more
hubs and the firmware determines the hub coupled to the adapter function. It then forwards
the request to the hub. The hub generates a configuration read request packet that tlows out
on the PCI bus to the adapter function identified by the RID in the function table entry. The
configuration read request includes the RID and offset (i.¢., data address) that are used to

fetch the data, as described below.

Returning to INQUIRY 550, if the designated address space 18 not a configuration space,
then once again the firmware performs various processing to provide the request to the hub,
STEP 554. The firmware uses the handle to select a function table entry and from that entry
it obtains information to locate the appropriate hub. It also calculates a data address to be
used in the load operation. This address is calculated by adding the BAR starting address
(with the BAR being that associated with the address space identifier provided in the
instruction) obtained from the function table entry to the offset provided in the instruction.
This calculated data address is provided to the hub. The hub then takes that address and
includes it in a request packet, such as a DMA read request packet, that flows out over the

PCI bus to the adapter function.

Responsive to receiving the request either via STEP 552 or STEP 554, the adapter function
fetches the requested data from the specified location (i.e., at the data address) and returns
that data in a response to the request, STEP 556. The response is forwarded from the adapter
function to the I/O hub. Responsive to receiving the response, the hub forwards the response
to the initiating processor. The initiating processor then takes the data from the response
packet and loads it in the designated location specified in the instruction (e.g., field 1 404).
The PCI Load operation concludes with an indication of success (e.g., setting a condition

code of zero).

In addition to a load instruction that retrieves data from an adapter function and stores i1t in a
designated location, another instruction that may be executed is a store instruction. The store
instruction stores data at a specified location in the adapter function. One embodiment of a

PCI Store instruction is described with reference to FIG. 6A. As shown, a PCI Store

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

20

instruction 600 includes, for instance, an opcode 602 indicating the PCI Store instruction; a
first field 604 specifying a location that includes data to be stored in an adapter function; and
a second field 606 specifying a location at which various information is included regarding

the adapter function to which data is to be stored. The contents of the locations designated

by Fields 1 and 2 are further described below.

In one example, Field 1 designates a general register, and as depicted in FIG. 6B, the
contents 604 of that register include a contiguous range of one or more bytes of data to be
stored into the specified location of an adapter function. In one example, the data in the

rightmost byte positions of the register are stored.

In one embodiment, Field 2 designates a pair of general registers that include various

information. As shown in FIG. 6B, the contents of the register include, for instance:

Enabled Handle 610: This field is an enabled function handle of the adapter function to
which the data is to be stored;

Address Space 612: This field identifies the address space within the adapter function to
which the data 1s to be stored;

Offset Within Address Space 614: This field specifies the offset within the specified address

space to which the data is to be stored;

Length field 616: This field specifies the length of the store operation (e.g., the number of
bytes to be stored); and

Status field 618: This field provides a status code which is applicable when the instruction

completes with a predefined condition code.

On embodiment of the logic associated with a PCI Store instruction is described with
reference to FIGs. 7A-7B. In one example, the instruction is issued by an operating system,

and executed by the processor (e.g., firmware) executing the operating system.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

21

To issue the instruction, the operating system provides the following operands to the
instruction (e.g., in one or more registers designated by the instruction): the PCI function
handle, the PCI address space (PCIAS), the offset into the PCI address space, the length ot
the data to be stored, and a pointer to the data to be stored. Upon successful completion ot

the PCI Store instruction, the data is stored in the location designated by the instruction.

Referring to FIG. 7A, initially, a determination is made as to whether the facility allowing
for a PCI Store instruction is installed, INQUIRY 700. This determination 1s made by, for
instance, checking an indicator stored in, for instance, a control block. If the facility 1s not
installed, an exception condition is provided, STEP 702. Otherwise, a determination 1s made
as to whether the operands are aligned, INQUIRY 704. For instance, if certain operands
need to be in even/odd register pairs, a determination is made as to whether those
requirements are met. If the operands are not aligned, then an exception 1s provided, STEP
706. Otherwise, if the facility is installed and the operands are aligned, a determination 18
made as to whether the handle provided in the operands of the PCI Store instruction 18
enabled, INQUIRY 708. In one example, this determination is made by checking an enable

indicator in the handle. If the handle is not enabled, then an exception condition is provided,

STEP 710.

If the handle is enabled, then the handle is used to locate a function table entry, STEP 712.
That is, at least a portion of the handle is used as an index into the function table to locate the

function table entry corresponding to the adapter function at which data is to be stored.

Thereafter, if the configuration issuing the instruction is a guest, a determination 1s made as
to whether the function is configured for use by a guest, INQUIRY 714. If 1t 18 not
authorized, then an exception condition is provided, STEP 716. This inquiry may be 1gnored

if the configuration is not a guest or other authorizations may be checked, if designated.

A determination is then made as to whether the function 1s enabled, INQUIRY 718. In on¢
example, this determination is made by checking an enable indicator in the function table

entry. If it is not enabled, then an exception condition is provided, STEP 720.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

22

If the function is enabled, then a determination is made as to whether the address space 1s
valid, INQUIRY 722. For instance, is the specified address space a designated address space
of the adapter function and one that is appropriate for this instruction. If the address space 1s
invalid, then an exception condition is provided, STEP 724. Otherwise, a determination 18
made as to whether load/store is blocked, INQUIRY 726. In one example, this
determination is made by checking the status indicator in the function table entry. It

load/store is blocked, then an exception condition 18 provided, STEP 72.

However, if the load/store is not blocked, a determination is made as to whether recovery 18
active, INQUIRY 730. In one example, this determination is made by checking the recovery
initiated indicator in the function table entry. If recovery is active, then an exception
condition is provided, STEP 732. Otherwise, a determination is made as to whether the
function is busy, INQUIRY 734. This determination is made by checking the busy indicator
in the function table entry. If the function is busy, then a busy condition 18 provided, STEP

736. With a busy condition, the instruction can be retried, instead of dropped.

If the function is not busy, then a further determination is made as to whether the offset
specified in the instruction is valid, INQUIRY 738. That is, is the offset in combination with
the length of the operation within the base and length of the address space, as specified in the
function table entry. If not, then an exception condition is provided, STEP 740. However, it
the offset is valid, then a determination is made as to whether the length 18 valid, INQUIRY
742. That is, subject to the address space type, offset within the address space, and an
integral boundary size is the length valid. If not, then an exception condition is provided,
STEP 744. Otherwise, processing continues with the store instruction. (In one embodiment,

the firmware performs the above checks.)

Continuing with FIG. 7B, a determination is made by the firmware as to whether the store 1s
for a configuration address space of the adapter function, INQUIRY 750. That 1s, based on
the configuration of the adapter function's memory, is the specified address space provided
in the instruction a configuration space. If so, then the firmware performs various
processing to provide the request to a hub coupled to the adapter function; the hub then

routes the request to the function, STEP 752.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

23

For example, the firmware obtains the requestor ID from the function table entry pointed to
by the function handle provided in the instruction operands. Further, the firmware
determines based on information in the function table entry (e.g., the internal routing
information) the hub to receive this request. That is, an environment may have one or more
hubs and the firmware determines the hub coupled to the adapter function. It then forwards
the request to the hub. The hub generates a configuration write request packet that flows out
on the PCI bus to the adapter function identified by the RID in the function table entry. The
configuration write request includes the RID and offset (i.e., data address) that are used to

store the data, as described below.

Returning to INQUIRY 750, if the designated address space is not a configuration space,
then once again the firmware performs various processing to provide the request to the hub,
STEP 754. The firmware uses the handle to select a function table entry and from that entry
it obtains information to locate the appropriate hub. It also calculates a data address to be
used in the store operation. This address is calculated by adding the BAR starting address
obtained from the function table entry to the offsct provided in the instruction. This
calculated data address is provided to the hub. The hub then takes that address and includes
it in a request packet, such as a DMA write request packet, that flows out over the PCI bus to

the adapter function.

Responsive to receiving the request either via STEP 752 or STEP 754, the adapter function
stores the requested data at the specified location (i.c., at the data address), STEP 756. The
PCI Store operation concludes with an indication of success (e.g., setting a condition code of

ZCT0).

In addition to the load and store instructions, which typically load or store a maximum of,
e.g., 8 bytes, another instruction that may be executed is a store block instruction. The store
block instruction stores larger blocks of data (e.g., 16, 32, 64, 128 or 256 bytes) at a
specified location in the adapter function; the block sizes are not necessarily limited to
powers of two in size. In one example, the specified location is in a memory space of the

adapter function (not an I/O or configuration space).

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

24

One embodiment of a PCI Store Block instruction is described with reference to FIG. 8A.
As shown, a PCI Store Block instruction 800 includes, for instance, an opcode 802
indicating the PCI Store Block instruction; a first field 804 specifying a location at which
various information is included regarding the adapter function to which data 1s to be stored; a
second field 806 specifying a location that includes an offset within the specified address
space into which the data is to be stored; and a third field 808 specifying a location that
includes an address in system memory of data to be stored in the adapter function. The

contents of the locations designated by Fields 1, 2 and 3 are further described below.

In one embodiment, Field 1 designates a general register that includes various information.

As shown in FIG. 8B, the contents of the register include, for mmstance:

Enabled Handle 810: This field is an enabled function handle of the adapter function to
which the data is to be stored;

Address Space 812: This ficld identifies the address space within the adapter function to
which the data is to be stored;

Length field 814: This field specifics the length of the store operation (e.g., the number of
bytes to be stored); and

Status field 816: This field provides a status code which is applicable when the nstruction

completes with a predefined condition code.

In one example, Field 2 designates a general register, and as depicted in FIG. 8C, the
contents of the register include a value (e.g., 64-bit unsigned integer) that specifies the oftset

within the specified address space into which the data 1s to be stored.

In one example, Field 3, as depicted in FIG. 8D, includes the logical address in system

memory of the first byte of data 822 to be stored in the adapter function.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

25

One embodiment of the logic associated with a PCI Store Block instruction 18 described with
reference to FIGs. 9A-9B. In one example, the instruction is issued by an operating system,

and executed by the processor (e.g., firmware) executing the operating system.

To issue the instruction, the operating system provides the following operands to the
instruction (e.g., in one or more registers designated by the instruction): the PCI function
handle, the PCI address space (PCIAS), the offsct into the PCI address space, the length of
the data to be stored, and a pointer to the data to be stored. The pointer operand may
comprise both a register and a signed or unsigned displacement. Upon successtul
completion of the PCI Store Block instruction, the data is stored in the location in the adapter

designated by the instruction.

Referring to FIG. 9A, initially, a determination is made as to whether the facility allowing
for a PCI Store Block instruction is installed, INQUIRY 900. This determination 1s made
by, for instance, checking an indicator stored in, for instance, a control block. If the facility
is not installed, an exception condition is provided, STEP 902. Otherwise, if the facility 18
installed, a determination is made as to whether the handle provided in the operands of the
PCI Store Block instruction is enabled, INQUIRY 904. In one example, this determination
is made by checking an enable indicator in the handle. If the handle is not enabled, then an

exception condition 1s provided, STEP 906.

If the handle is enabled, then the handle is used to locate a function table entry, STEP 912.
That is, at least a portion of the handle is used as an index into the function table to locate the

function table entry corresponding to the adapter function at which data 1s to be stored.

Thereafter, if the configuration issuing the instruction is a guest, a determination 1s made as
to whether the function is configured for use by a guest, INQUIRY 914. If 1t 18 not
authorized, then an exception condition is provided, STEP 916. This inquiry may be 1gnored

if the configuration is not a guest or other authorizations may be checked, 1f designated.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

26

A determination is then made as to whether the function 1s enabled, INQUIRY 918. In one
example, this determination is made by checking an enable indicator in the function table

entry. Ifit is not enabled, then an exception condition 1s provided, STEP 920.

If the function is enabled, then a determination is made as to whether the address space 18
valid, INQUIRY 922. For instance, is the specified address space a designated address space
of the adapter function and one that is appropriate for this instruction (i.e., a memory space).
If the address space is invalid, then an exception condition 1s provided, STEP 924.
Otherwise, a determination is made as to whether load/store is blocked, INQUIRY 926. In
one example, this determination is made by checking the status indicator in the function

table entry. If load/store is blocked, then an exception condition is provided, STEP 928.

However, if the load/store is not blocked, a determination is made as to whether recovery 1s
active, INQUIRY 930. In one example, this determination is made by checking the recovery
initiated indicator in the function table entry. If recovery is active, then an exception
condition is provided, STEP 932. Otherwise, a determination 1s made as to whether the
function is busy, INQUIRY 934. This determination is made by checking the busy indicator
in the function table entry. If the function is busy, then a busy condition 18 provided, STEP

936. With a busy condition, the instruction can be retried, instead of dropped.

If the function is not busy, then a further determination is made as to whether the offset
specified in the instruction is valid, INQUIRY 938. That is, is the offset in combination with
the length of the operation within the base and length of the address space, as specified in the
function table entry. If not, then an exception condition is provided, STEP 940. However, it
the offset is valid, then a determination is made as to whether the length 1s valid, INQUIRY
942. That is, subject to the address space type, offset within the address space, and an
integral boundary size is the length valid. If not, then an exception condition is provided,
STEP 944. Otherwise, processing continues with the store block instruction. (In on¢

embodiment, the firmware performs the above checks.)

Continuing with FIG. 9B, a determination is made by the firmware as to whether the storage

that includes the data to be stored is accessible, INQUIRY 950. If not, an exception

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

27

condition is provided, STEP 952. If so, then the firmware performs various processing to

provide the request to a hub coupled to the adapter function; the hub then routes the request

to the function, STEP 954.

For example, the firmware uses the handle to select a function table entry and from that entry
it obtains information to locate the appropriate hub. It also calculates a data address to be
used in the store block operation. This address is calculated by adding the BAR starting
address (with the BAR being identified by the address space identifier) obtained from the
function table entry to the offset provided in the instruction. This calculated data address 1s
provided to the hub. In addition, the data referenced by the address provided 1n the
instruction is fetched from system memory and provided to the I/O hub. The hub then takes
that address and data and includes it in a request packet, such as a DMA write request

packet, that flows out over the PCI bus to the adapter function.

Responsive to receiving the request, the adapter function stores the requested data at the
specified location (i.c., at the data address) , STEP 956. The PCI Store Block operation

concludes with an indication of success (e.g., setting a condition code of zero).

Described in detail above is a capability for communicating with adapters of a computing
environment using control instructions specifically designed for such communication. The
communication is performed without using memory mapped 1/O and is not limited to control
registers in the adapter function. The instructions ensure that the configuration that 1ssues
the instruction is authorized to access the adapter function. Further, for the Store Block
instruction, it ensures that the specified main storage location is within the configuration's

memory.

In the embodiments described herein, the adapters are PCI adapters. PCI, as used herein,
refers to any adapters implemented according to a PCI-based specification as defined by the
Peripheral Component Interconnect Special Interest Group (PCI-SIG), including but not
limited to, PCI or PCle. In one particular example, the Peripheral Component Interconnect
Express (PCle) is a component level interconnect standard that defines a bi-directional

communication protocol for transactions between 1/0 adapters and host systems. PCle

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

28

communications are encapsulated in packets according to the PCle standard for transmission
on a PCle bus. Transactions originating at I/O adapters and ending at host systems are
referred to as upbound transactions. Transactions originating at host systems and
terminating at I/O adapters are referred to as downbound transactions. The PCle topology 1s
based on point-to-point unidirectional links that are paired (e.g., one upbound link, one
downbound link) to form the PCle bus. The PCle standard is maintained and published by
the PCI-SIG, as noted above in the Background section.

As will be appreciated by one skilled in the art, aspects of the present invention may be
embodied as a system, method or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that may all generally be referred to
herein as a "circuit," "module"” or "system". Furthermore, aspects of the present invention
may take the form of a computer program product embodied 1n one or more computer

readable medium(s) having computer readable program code embodied thereon.

Any combination of one or more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable storage medium. A computer
readable storage medium may be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared or semiconductor system, apparatus, or device, or any
suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the
computer readable storage medium include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory
(CD-ROM), an optical storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document, a computer readable storage
medium may be any tangible medium that can contain or store a program for use by or n

connection with an instruction execution system, apparatus, or device.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

29

Referring now to FIG. 10, in one example, a computer program product 1000 includes, for
instance, one or more computer readable storage media 1002 to store computer readable
program code means or logic 1004 thereon to provide and facilitate one or more aspects ot

the present mvention.

Program code embodied on a computer readable medium may be transmitted using an
appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF,

etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for aspects of the present invention may
be written in any combination of one or more programming languages, including an object
oriented programming language, such as Java, Smalltalk, C++ or the like, and conventional
procedural programming languages, such as the "C" programming language, assembler or
similar programming languages. The program code may execute entirely on the user's
computer, partly on the user's computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be connected to the user's computer
through any type of network, including a local area network (LAN) or a wide area network
(WAN), or the connection may be made to an external computer (for example, through the

Internet using an Internet Service Provider).

Aspects of the present invention are described herein with reference to flowchart illustrations
and/or block diagrams of methods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by computer program instructions.
These computer program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus, create means for implementing

the functions/acts specified in the flowchart and/or block diagram block or blocks.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

30

These computer program instructions may also be stored in a computer readable medium
that can direct a computer, other programmable data processing apparatus, or other devices
to function in a particular manner, such that the instructions stored in the computer readable
medium produce an article of manufacture including instructions which implement the

function/act specified in the flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable apparatus or other devices to
produce a computer implemented process such that the instructions which execute on the
computer or other programmable apparatus provide processes for implementing the

functions/acts specified in the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate the architecture, functionality, and
operation of possible implementations of systems, methods and computer program products
according to various embodiments of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, segment, or portion of code, which
comprises one or more executable instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative implementations, the functions
noted in the block may occur out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems that perform the specitied

functions or acts, or combinations of special purpose hardware and computer nstructions.

In addition to the above, one or more aspects of the present invention may be provided,

offered, deployed, managed, serviced, etc. by a service provider who offers management of
customer environments. For instance, the service provider can create, maintain, support, etc.
computer code and/or a computer infrastructure that performs one or more aspects of the

present invention for one or more customers. In return, the service provider may receive

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

31

payment from the customer under a subscription and/or fee agreement, as examples.
Additionally or alternatively, the service provider may receive payment from the sale of

advertising content to one or more third parties.

In one aspect of the present invention, an application may be deployed for pertorming one or
more aspects of the present invention. As one example, the deploying of an application
comprises providing computer infrastructure operable to perform one or more aspects of the

present invention.

As a further aspect of the present invention, a computing infrastructure may be deployed
comprising integrating computer readable code into a computing system, in which the code
in combination with the computing system is capable of performing one or more aspects of

the present invention.

As yet a further aspect of the present invention, a process for integrating computing
infrastructure comprising integrating computer readable code into a computer system may be
provided. The computer system comprises a computer readable medium, in which the
computer medium comprises one or more aspects of the present invention. The code mn
combination with the computer system is capable of performing one or more aspects of the

present mvention.

Although various embodiments are described above, these are only examples. For example,
computing environments of other architectures can incorporate and use one or more aspects
of the present invention. As examples, servers other than System z® servers, such as Power
Systems servers or other servers offered by International Business Machines Corporation, or
servers of other companies can include, use and/or benefit from one or more aspects ot the
present invention. Further, although in the examples herein, the adapters and PCI hub are
considered a part of the server, in other embodiments, they do not have to necessarily be
considered a part of the server, but can simply be considered as being coupled to system
memory and/or other components of a computing environment. The computing environment
need not be a server. Further, although tables are described, any data structure can be used

and the term table is to include all such data structures. Yet further, although the adapters

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

32

arc PCI based, one or more aspects of the present invention are usable with other adapters or
other I/O components. Adapter and PCI adapter are just examples. Moreover, the FTE or
the parameters of the FTE can be located and maintained in other than secure memory,
including, for instance, in hardware (e.g., PCI function hardware). The DTE, FTE and/or
handle may include more, less or different information, as well as any of the instructions or

instruction fields. Many other variations are possible.

Further, other types of computing environments can benefit from one or more aspects of the
present invention. As an example, a data processing system suitable for storing and/or
executing program code is usable that includes at least two processors coupled directly or
indirectly to memory elements through a system bus. The memory elements include, tor
instance, local memory employed during actual execution of the program code, bulk storage,
and cache memory which provide temporary storage of at least some program code 1n order

to reduce the number of times code must be retrieved from bulk storage during execution.

Input/Output or /O devices (including, but not limited to, keyboards, displays, pointing
devices, DASD, tape, CDs, DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening I/O controllers. Network
adapters may also be coupled to the system to enable the data processing system to become
coupled to other data processing systems or remote printers or storage devices through
intervening private or public networks. Modems, cable modems, and Ethernet cards are just

a few of the available types of network adapters.

Referring to FIG. 11, representative components of a Host Computer system 5000 to
implement one or more aspects of the present invention are portrayed. The representative
host computer 5000 comprises one or more CPUs 5001 in communication with computer
memory (i.e., central storage) 5002, as well as 1/0 interfaces to storage media devices 5011
and networks 5010 for communicating with other computers or SANs and the like. The
CPU 5001 is compliant with an architecture having an architected instruction set and
architected functionality. The CPU 5001 may have dynamic address translation (DAT) 5003
for transforming program addresses (virtual addresses) into real addresses of memory. A

DAT typically includes a translation lookaside buffer (TLB) 5007 for caching translations so

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

33

that later accesses to the block of computer memory 5002 do not require the delay of address
translation. Typically, a cache 5009 is employed between computer memory 5002 and the
processor 5001. The cache 5009 may be hierarchical having a large cache available to more
than one CPU and smaller, faster (lower level) caches between the large cache and each
CPU. In some implementations, the lower level caches are split to provide separate low
level caches for instruction fetching and data accesses. In one embodiment, an instruction 18
fetched from memory 5002 by an instruction fetch unit 5004 via a cache 5009. The
instruction is decoded in an instruction decode unit 5006 and dispatched (with other
instructions in some embodiments) to instruction execution unit or units 5008. Typically
several execution units 5008 are employed, for example an arithmetic execution unit, a
floating point execution unit and a branch instruction execution unit. The instruction 18
executed by the execution unit, accessing operands from instruction specified registers or
memory as needed. If an operand is to be accessed (loaded or stored) from memory 5002, a
load/store unit 5005 typically handles the access under control of the instruction being
executed. Instructions may be executed in hardware circuits or in internal microcode

(firmware) or by a combination of both.

As noted, a computer system includes information in local (or main) storage, as well as
addressing, protection, and reference and change recording. Some aspects of addressing
include the format of addresses, the concept of address spaces, the various types of
addresses, and the manner in which one type of address is translated to another type ot
address. Some of main storage includes permanently assigned storage locations. Main
storage provides the system with directly addressable fast-access storage of data. Both data
and programs are to be loaded into main storage (from input devices) before they can be

processed.

Main storage may include one or more smaller, faster-access buffer storages, sometimes
called caches. A cache is typically physically associated with a CPU or an I/O processor.
The effects, except on performance, of the physical construction and use of distinct storage

media are generally not observable by the program.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

34

Separate caches may be maintained for instructions and for data operands. Information
within a cache is maintained in contiguous bytes on an integral boundary called a cache
block or cache line (or line, for short). A model may provide an EXTRACT CACHE
ATTRIBUTE instruction which returns the size of a cache line in bytes. A model may also
provide PREFETCH DATA and PREFETCH DATA RELATIVE LONG instructions which
effects the prefetching of storage into the data or instruction cache or the releasing ot data

from the cache.

Storage is viewed as a long horizontal string of bits. For most operations, accesses to storage
proceed in a left-to-right sequence. The string of bits is subdivided into units of eight bits.
An eight-bit unit is called a byte, which is the basic building block of all information
formats. Each byte location in storage is identified by a unique nonnegative integer, which
is the address of that byte location or, simply, the byte address. Adjacent byte locations have
consccutive addresses, starting with 0 on the left and proceeding 1n a left-to-right sequence.

Addresses are unsigned binary integers and are 24, 31, or 64 bits.

Information is transmitted between storage and a CPU or a channel subsystem one byte, or a
group of bytes, at a time. Unless otherwise specified, in, for instance, the z/Architecture®, a
group of bytes in storage is addressed by the leftmost byte of the group. The number of
bytes in the group is either implied or explicitly specified by the operation to be performed.
When used in a CPU operation, a group of bytes is called a field. Within each group ot
bytes, in, for instance, the z/Architecture®, bits are numbered in a left-to-right sequence. In
the z/Architecture®, the leftmost bits are sometimes referred to as the “high-order” bits and
the rightmost bits as the “low-order” bits. Bit numbers are not storage addresses, however.
Only bytes can be addressed. To operate on individual bits of a byte in storage, the entire
byte is accessed. The bits in a byte are numbered 0 through 7, from left to right (in, ¢.g., the
z/Architecture®). The bits in an address may be numbered 8-31 or 40-63 for 24-bit
addresses, or 1-31 or 33-63 for 31-bit addresses; they are numbered 0-63 for 64-bit
addresses. Within any other fixed-length format of multiple bytes, the bits making up the
format are consecutively numbered starting from 0. For purposes of error detection, and 1n
preferably for correction, one or more check bits may be transmitted with each byte or with a

group of bytes. Such check bits are generated automatically by the machine and cannot be

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

35

directly controlled by the program. Storage capacities are expressed in number of bytes.
When the length of a storage-operand field is implied by the operation code of an
instruction, the field is said to have a fixed length, which can be one, two, four, eight, or
sixteen bytes. Larger ficlds may be implied for some instructions. When the length of a
storage-operand field is not implied but is stated explicitly, the field is said to have a variable
length. Variable-length operands can vary in length by increments of one byte (or with some
instructions, in multiples of two bytes or other multiples). When information is placed in
storage, the contents of only those byte locations are replaced that are included 1n the
designated field, even though the width of the physical path to storage may be greater than
the length of the field being stored.

Certain units of information are to be on an integral boundary in storage. A boundary 18
called integral for a unit of information when its storage address is a multiple of the length of
the unit in bytes. Special names are given to ficlds of 2, 4, §, and 16 bytes on an integral
boundary. A halfword is a group of two consecutive bytes on a two-byte boundary and 1s

the basic building block of instructions. A word is a group of four consecutive bytes on a
four-byte boundary. A doubleword is a group of eight consecutive bytes on an eight-byte
boundary. A quadword is a group of 16 consecutive bytes on a 16-byte boundary. When
storage addresses designate halfwords, words, doublewords, and quadwords, the binary
representation of the address contains one, two, three, or four rightmost zero bits,
respectively. Instructions are to be on two-byte integral boundaries. The storage operands

of most instructions do not have boundary-alignment requirements.

On devices that implement separate caches for instructions and data operands, a significant
delay may be experienced if the program stores into a cache line from which instructions are
subsequently fetched, regardless of whether the store alters the instructions that are

subsequently fetched.

In one embodiment, the invention may be practiced by software (sometimes referred to
licensed internal code, firmware, micro-code, milli-code, pico-code and the like, any of
which would be consistent with the present invention). Referring to FIG. &, software

program code which embodies the present invention 18 typically accessed by processor 5001

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

36

of the host system 5000 from long-term storage media devices 5011, such as a CD-ROM
drive, tape drive or hard drive. The software program code may be embodied on any of a
variety of known media for use with a data processing system, such as a diskette, hard drive,
or CD-ROM. The code may be distributed on such media, or may be distributed to users
from computer memory 5002 or storage of one computer system over a network 5010 to

other computer systems for use by users of such other systems.

The software program code includes an operating system which controls the function and
interaction of the various computer components and one or more application programs.
Program code is normally paged from storage media device 5011 to the relatively higher-
speed computer storage 5002 where it is available for processing by processor 5001. The
techniques and methods for embodying software program code in memory, on physical
media, and/or distributing software code via networks are well known and will not be further
discussed herein. Program code, when created and stored on a tangible medium (including
but not limited to electronic memory modules (RAM), flash memory, Compact Discs (CDs),
DVDs, Magnetic Tape and the like is often referred to as a “computer program product™.
The computer program product medium is typically readable by a processing circuit

preferably in a computer system for execution by the processing circuit.

FIG. 12 illustrates a representative workstation or server hardware system in which the
present invention may be practiced. The system 5020 of FIG. 12 comprises a representative
base computer system 5021, such as a personal computer, a workstation or a server,
including optional peripheral devices. The base computer system 5021 includes one or more
processors 5026 and a bus employed to connect and enable communication between the
processor(s) 5026 and the other components of the system 5021 in accordance with known
techniques. The bus connects the processor 5026 to memory 5025 and long-term storage
5027 which can include a hard drive (including any of magnetic media, CD, DVD and Flash
Memory for example) or a tape drive for example. The system 5021 might also include a
user interface adapter, which connects the microprocessor 5026 via the bus to one or more
interface devices, such as a keyboard 5024, a mouse 5023, a printer/scanner 5030 and/or

other interface devices, which can be any user interface device, such as a touch sensitive

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

37

screen, digitized entry pad, etc. The bus also connects a display device 5022, such as an

LCD screen or monitor, to the microprocessor 5026 via a display adapter.

The system 5021 may communicate with other computers or networks of computers by way
of a network adapter capable of communicating 5028 with a network 5029. Example
network adapters are communications channels, token ring, Ethernet or modems.
Alternatively, the system 5021 may communicate using a wireless interface, such as a CDPD
(cellular digital packet data) card. The system 5021 may be associated with such other
computers in a Local Arca Network (LAN) or a Wide Area Network (WAN), or the system
5021 can be a client in a client/server arrangement with another computer, etc. All of these
configurations, as well as the appropriate communications hardware and software, are

known 1n the art.

FIG. 13 illustrates a data processing network 5040 in which the present invention may be
practiced. The data processing network 5040 may include a plurality of individual networks,
such as a wireless network and a wired network, each of which may include a plurahty ot
individual workstations 5041, 5042, 5043, 5044. Additionally, as those skilled in the art will
appreciate, one or more LANs may be included, where a LAN may comprise a plurality of

intelligent workstations coupled to a host processor.

Still referring to FIG. 13, the networks may also include maintrame computers or servers,
such as a gateway computer (client server 5046) or application server (remote server 5048
which may access a data repository and may also be accessed directly from a workstation
5045). A gateway computer 5046 serves as a point of entry into each individual network. A
gateway is needed when connecting one networking protocol to another. The gateway 5046
may be preferably coupled to another network (the Internet 5047 for example) by means of a
communications link. The gateway 5046 may also be directly coupled to one or more
workstations 5041, 5042, 5043, 5044 using a communications link. The gateway computer
may be implemented utilizing an IBM eServer™ System z® server available from

International Business Machines Corporation.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

38

Referring concurrently to FIG. 12 and FIG. 13, software programming code which may
embody the present invention may be accessed by the processor 5026 of the system 5020
from long-term storage media 5027, such as a CD-ROM drive or hard drive. The software
programming code may be embodied on any of a variety of known media for use with a data
processing system, such as a diskette, hard drive, or CD-ROM. The code may be distributed
on such media, or may be distributed to users 5050, 5051 from the memory or storage ot one
computer system over a network to other computer systems for use by users of such other

Systems.

Alternatively, the programming code may be embodied in the memory 5025, and accessed
by the processor 5026 using the processor bus. Such programming code includes an
operating system which controls the function and interaction of the various computer
components and one or more application programs 5032. Program code is normally paged
from storage media 5027 to high-speed memory 5025 where it is available for processing by
the processor 5026. The techniques and methods for embodying software programming
code in memory, on physical media, and/or distributing software code via networks are well
known and will not be further discussed herein. Program code, when created and stored on a
tangible medium (including but not limited to electronic memory modules (RAM), flash
memory, Compact Discs (CDs), DVDs, Magnetic Tape and the like is often referred to as a
“computer program product”. The computer program product medium is typically readable
by a processing circuit preferably in a computer system for execution by the processing

circuit.

The cache that is most readily available to the processor (normally faster and smaller than
other caches of the processor) is the lowest (L1 or level one) cache and main store (main
memory) is the highest level cache (L3 if there are 3 levels). The lowest level cache 1s often
divided into an instruction cache (I-Cache) holding machine instructions to be executed and

a data cache (D-Cache) holding data operands.

Referring to FIG. 14, an exemplary processor embodiment 1s depicted for processor 5026.
Typically one or more levels of cache 5053 are employed to buffer memory blocks in order

to improve processor performance. The cache 5053 is a high speed buffer holding cache

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

39

lines of memory data that are likely to be used. Typical cache lines are 64, 128 or 256 bytes
of memory data. Separate caches are often employed for caching instructions than for
caching data. Cache coherence (synchronization of copies of lines in memory and the
caches) is often provided by various “snoop” algorithms well known 1n the art. Main
memory storage 5025 of a processor system is often referred to as a cache. In a processor
system having 4 levels of cache 5053, main storage 5025 is sometimes referred to as the
level 5 (L5) cache since it is typically faster and only holds a portion of the non-volatile
storage (DASD, tape etc) that is available to a computer system. Main storage 50235

“caches” pages of data paged in and out of the main storage 5025 by the operating system.

A program counter (instruction counter) 5061 keeps track of the address of the current
instruction to be executed. A program counter in a z/Architecture® processor 1s 64 bits and
can be truncated to 31 or 24 bits to support prior addressing limits. A program counter 18
typically embodied in a PSW (program status word) of a computer such that it persists
during context switching. Thus, a program in progress, having a program counter value,
may be interrupted by, for example, the operating system (context switch trom the program
environment to the operating system environment). The PSW of the program maintains the
program counter value while the program is not active, and the program counter (in the
PSW) of the operating system is used while the operating system is executing. Typically,
the program counter is incremented by an amount equal to the number of bytes of the current
instruction. RISC (Reduced Instruction Set Computing) instructions are typically fixed
length while CISC (Complex Instruction Set Computing) instructions are typically variable
length. Instructions of the IBM z/Architecture® are CISC instructions having a length of 2,
4 or 6 bytes. The Program counter 5061 is modified by either a context switch operation or a
branch taken operation of a branch instruction for example. In a context switch operation,
the current program counter value is saved in the program status word along with other state
information about the program being executed (such as condition codes), and a new program
counter value is loaded pointing to an instruction of a new program module to be executed.
A branch taken operation is performed in order to permit the program to make decisions or
loop within the program by loading the result of the branch instruction into the program

counter 5061.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

4()

Typically an instruction fetch unit 5055 is employed to fetch instructions on behalf ot the
processor 5026. The fetch unit either fetches “next sequential instructions™, target
instructions of branch taken instructions, or first instructions of a program following a
context switch. Modern Instruction fetch units often employ prefetch techniques to
speculatively prefetch instructions based on the likelihood that the prefetched instructions
might be used. For example, a fetch unit may fetch 16 bytes of instruction that includes the

next sequential instruction and additional bytes of further sequential instructions.

The fetched instructions are then executed by the processor 5026. In an embodiment, the
fetched instruction(s) are passed to a dispatch unit 5056 of the fetch unit. The dispatch unit
decodes the instruction(s) and forwards information about the decoded instruction(s) to
appropriate units 5057, 5058, 5060. An execution unit 5057 will typically receive
information about decoded arithmetic instructions from the instruction fetch unit 5055 and
will perform arithmetic operations on operands according to the opcode of the instruction.
Operands are provided to the execution unit 5057 preferably either from memory 5025,
architected registers 5059 or from an immediate field of the instruction being executed.
Results of the execution, when stored, are stored either in memory 5025, registers 5059 or 1n

other machine hardware (such as control registers, PSW registers and the like).

A processor 5026 typically has one or more units 5057, 5058, 5060 for executing the
function of the instruction. Referring to FIG. 15A, an execution unit 5057 may
communicate with architected general registers 5059, a decode/dispatch unit 5056, a load
store unit 5060, and other 5065 processor units by way of interfacing logic 5071. An
execution unit 5057 may employ several register circuits 5067, 5068, 5069 to hold
information that the arithmetic logic unit (ALU) 5066 will operate on. The ALU performs
arithmetic operations such as add, subtract, multiply and divide as well as logical function
such as and, or and exclusive-or (XOR), rotate and shift. Preferably the ALU supports
specialized operations that are design dependent. Other circuits may provide other
architected facilities 5072 including condition codes and recovery support logic for example.
Typically the result of an ALU operation is held in an output register circuit 5070 which can

forward the result to a variety of other processing functions. There are many arrangements

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

41

of processor units, the present description is only intended to provide a representative

understanding of one embodiment.

An ADD instruction for example would be executed in an execution unit 5057 having
arithmetic and logical functionality while a floating point instruction for example would be
executed in a floating point execution having specialized floating point capability.
Preferably, an execution unit operates on operands identified by an instruction by performing
an opcode defined function on the operands. For example, an ADD instruction may be
executed by an execution unit 5057 on operands found in two registers 5059 identified by

register fields of the instruction.

The execution unit 5057 performs the arithmetic addition on two operands and stores the
result in a third operand where the third operand may be a third register or one of the two
source registers. The execution unit preferably utilizes an Arithmetic Logic Unit (ALU)
5066 that is capable of performing a variety of logical functions such as Shift, Rotate, And,
Or and XOR as well as a variety of algebraic functions including any of add, subtract,
multiply, divide. Some ALUs 5066 are designed for scalar operations and some for tloating
point. Data may be Big Endian (where the least significant byte is at the highest byte
address) or Little Endian (where the least significant byte is at the lowest byte address)
depending on architecture. The IBM z/Architecture® is Big Endian. Signed fields may be
sign and magnitude, 1°s complement or 2°s complement depending on architecture. A 2°s
complement number is advantageous in that the ALU does not need to design a subtract
capability since either a negative value or a positive value in 2°s complement requires only
an addition within the ALU. Numbers are commonly described in shorthand, where a 12 bt
field defines an address of a 4,096 byte block and is commonly described as a 4 Kbyte (Kilo-
byte) block, for example.

Referring to FIG. 15B, branch instruction information for executing a branch instruction 1s
typically sent to a branch unit 5058 which often employs a branch prediction algorithm such
as a branch history table 5082 to predict the outcome of the branch before other conditional
operations are complete. The target of the current branch instruction will be fetched and

speculatively executed before the conditional operations are complete. When the conditional

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

42

operations are completed the speculatively executed branch instructions are either completed
or discarded based on the conditions of the conditional operation and the speculated
outcome. A typical branch instruction may test condition codes and branch to a target
address if the condition codes meet the branch requirement of the branch instruction, a target
address may be calculated based on several numbers including ones found in register fields
or an immediate field of the instruction for example. The branch unit 5058 may employ an
ALU 5074 having a plurality of input register circuits 5075, 5076, 5077 and an output
register circuit 5080. The branch unit 5058 may communicate with general registers 5059,

decode dispatch unit 5056 or other circuits 5073, for example.

The execution of a group of instructions can be interrupted for a variety of reasons including
a context switch initiated by an operating system, a program exception or €rror causing a
context switch, an I/O interruption signal causing a context switch or multi-threading activity
of a plurality of programs (in a multi-threaded environment), for example. Preferably a
context switch action saves state information about a currently executing program and then
loads state information about another program being invoked. State information may be
saved in hardware registers or in memory for example. State information preterably
comprises a program counter value pointing to a next instruction to be executed, condition
codes, memory translation information and architected register content. A context switch
activity can be exercised by hardware circuits, application programs, operating system
programs or firmware code (microcode, pico-code or licensed internal code (LIC)) alone or

1n combination.

A processor accesses operands according to instruction defined methods. The instruction
may provide an immediate operand using the value of a portion of the instruction, may
provide one or more register fields explicitly pointing to either general purpose registers or
special purpose registers (floating point registers for example). The instruction may utilize
implied registers identified by an opcode field as operands. The instruction may utilize
memory locations for operands. A memory location of an operand may be provided by a
register, an immediate field, or a combination of registers and immediate ficld as
exemplified by the z/Architecture® long displacement facility wherein the struction

defines a base register, an index register and an immediate field (displacement field) that are

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

43

added together to provide the address of the operand in memory for example. Location
herein typically implies a location in main memory (main storage) unless otherwise

indicated.

Referring to FIG. 15C, a processor accesses storage using a load/store unit 5060. The
load/store unit 5060 may perform a load operation by obtaining the address of the target
operand in memory 5053 and loading the operand in a register 5059 or another memory
5053 location, or may perform a store operation by obtaining the address of the target
operand in memory 5053 and storing data obtained from a register 5059 or another memory
5053 location in the target operand location in memory 5053. The load/store unit 5060 may
be speculative and may access memory in a sequence that is out-of-order relative to
instruction sequence, however the load/store unit 5060 1s to maintain the appearance to
programs that instructions were executed in order. A load/store unit 5060 may communicate
with general registers 5059, decode/dispatch unit 5056, cache/memory intertace 5053 or
other elements 5083 and comprises various register circuits, ALUs 5085 and control logic
5090 to calculate storage addresses and to provide pipeline sequencing to keep operations in-
order. Some operations may be out of order but the load/store unit provides functionality to
make the out of order operations to appear to the program as having been performed in

order, as is well known 1n the art.

Preferably addresses that an application program “‘sees” are often referred to as virtual
addresses. Virtual addresses are sometimes referred to as “logical addresses™ and “eftective
addresses”. These virtual addresses are virtual in that they are redirected to physical
memory location by one of a variety of dynamic address translation (DAT) technologies
including, but not limited to, simply prefixing a virtual address with an oftset value,
translating the virtual address via one or more translation tables, the translation tables
preferably comprising at least a segment table and a page table alone or in combination,
preferably, the segment table having an entry pointing to the page table. In the
z/Architecture®, a hierarchy of translation is provided including a region first table, a region
second table, a region third table, a segment table and an optional page table. The
performance of the address translation is often improved by utilizing a translation lookaside

buffer (TLB) which comprises entries mapping a virtual address to an associated physical

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

44

memory location. The entries are created when the DAT translates a virtual address using
the translation tables. Subsequent use of the virtual address can then utilize the entry of the
fast TLB rather than the slow sequential translation table accesses. TLB content may be

managed by a variety of replacement algorithms including LRU (Least Recently used).

In the case where the processor is a processor of a multi-processor system, each processor
has responsibility to keep shared resources, such as I/O, caches, TLBs and memory,
interlocked for coherency. Typically, “snoop” technologies will be utilized in maintaining
cache coherency. In a snoop environment, each cache line may be marked as being in any
one of a shared state, an exclusive state, a changed state, an invalid state and the like 1n order

to facilitate sharing.

I/O units 5054 (FIG. 14) provide the processor with means for attaching to peripheral
devices including tape, disc, printers, displays, and networks for example. I/O units are often
presented to the computer program by software drivers. In mainframes, such as the System
z® from IBM®, channel adapters and open system adapters are 1/0 units of the mainframe

that provide the communications between the operating system and peripheral devices.

Further, other types of computing environments can benefit from one or more aspects of the
present invention. As an example, an environment may include an emulator (e.g., software
or other emulation mechanisms), in which a particular architecture (including, for instance,
instruction execution, architected functions, such as address translation, and architected
registers) or a subset thereof is emulated (e.g., on a native computer system having a
processor and memory). In such an environment, one or more emulation functions of the
emulator can implement one or more aspects of the present invention, even though a
computer executing the emulator may have a different architecture than the capabilities
being emulated. As one example, in emulation mode, the specific instruction or operation
being emulated is decoded, and an appropriate emulation function is built to implement the

individual instruction or operation.

In an emulation environment, a host computer includes, for instance, a memory to store

instructions and data; an instruction fetch unit to fetch instructions from memory and to

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

45

optionally, provide local buffering for the fetched instruction; an instruction decode unit to
receive the fetched instructions and to determine the type of instructions that have been
fetched; and an instruction execution unit to execute the instructions. Execution may include
loading data into a register from memory; storing data back to memory from a register; or
performing some type of arithmetic or logical operation, as determined by the decode unit.
In one example, cach unit is implemented in software. For instance, the operations being
performed by the units are implemented as one or more subroutines within emulator

software.

More particularly, in a mainframe, architected machine instructions are used by
programmers, usually today “C” programmers, often by way of a compiler application.
These instructions stored in the storage medium may be executed natively mn a
z/Architecture® IBM® Server, or alternatively in machines executing other architectures.
They can be emulated in the existing and in future IBM® mainframe servers and on other
machines of IBM® (e.g., Power Systems servers and System x® Servers). They can be
executed in machines running Linux on a wide variety of machines using hardware
manufactured by IBM®, Intel®, AMD™, and others. Besides execution on that hardware
under a z/Architecture®, Linux can be used as well as machines which use emulation by
Hercules or FSI (Fundamental Software, Inc), where generally execution 18 in an emulation
mode. In emulation mode, emulation software is executed by a native processor to emulate
the architecture of an emulated processor. Information about the above-referenced emulator
and

products is available on the World Wide Web at, respectively, www hercuies-390.01g

www.tunsoft.com.

The native processor typically executes emulation software comprising either firmware or a
native operating system to perform emulation of the emulated processor. The emulation
software is responsible for fetching and executing instructions of the emulated processor
architecture. The emulation software maintains an emulated program counter to keep track
of instruction boundaries. The emulation software may fetch one or more emulated machine
instructions at a time and convert the one or more emulated machine instructions to a
corresponding group of native machine instructions for execution by the native processor.

These converted instructions may be cached such that a faster conversion can be

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

46

accomplished. Notwithstanding, the emulation software is to maintain the architecture rules
of the emulated processor architecture so as to assure operating systems and applications
written for the emulated processor operate correctly. Furthermore, the emulation software 18
to provide resources identified by the emulated processor architecture including, but not
limited to, control registers, general purpose registers, floating point registers, dynamic
address translation function including segment tables and page tables for example, interrupt
mechanisms, context switch mechanisms, Time of Day (TOD) clocks and architected
interfaces to I/0 subsystems such that an operating system or an application program
designed to run on the emulated processor, can be run on the native processor having the

emulation software.

A specific instruction being emulated is decoded, and a subroutine is called to perform the
function of the individual instruction. An emulation software function emulating a function
of an emulated processor is implemented, for example, in a “C” subroutine or driver, or
some other method of providing a driver for the specific hardware as will be within the skill
of those in the art after understanding the description of the preferred embodiment. Various
software and hardware emulation patents including, but not limited to U.S. Letters Patent
No. 5,551,013, entitled “Multiprocessor for Hardware Emulation”, by Beausoleil et al.; and
U.S. Letters Patent No. 6,009,261, entitled “Preprocessing of Stored Target Routines for
Emulating Incompatible Instructions on a Target Processor”, by Scalzi et al; and U.S. Letters
Patent No. 5,574,873, entitled “Decoding Guest Instruction to Directly Access Emulation
Routines that Emulate the Guest Instructions”, by Davidian et al; and U.S. Letters Patent No.
6,308,255, entitled “Symmetrical Multiprocessing Bus and Chipset Used for Coprocessor
Support Allowing Non-Native Code to Run in a System”, by Gorishek et al; and U.S. Letters
Patent No. 6,463,582, entitled “Dynamic Optimizing Object Code Translator for
Architecture Emulation and Dynamic Optimizing Object Code Translation Method”, by
Lethin et al; and U.S. Letters Patent No. 5,790,825, entitled “Method for Emulating Guest
Instructions on a Host Computer Through Dynamic Recompilation of Host Instructions”, by
Eric Traut; and many others, illustrate a varicty of known ways to achieve emulation of an
instruction format architected for a different machine for a target machine available to those

skilled 1n the art.

10

15

20

25

30

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

47

In FIG. 16, an example of an emulated host computer system 5092 is provided that emulates
a host computer system 5000' of a host architecture. In the emulated host computer system
5092, the host processor (CPU) 5091 is an emulated host processor (or virtual host
processor) and comprises an emulation processor 5093 having a different native mstruction
set architecture than that of the processor 5091 of the host computer 5000". The emulated
host computer system 5092 has memory 5094 accessible to the emulation processor 5093.
In the example embodiment, the memory 5094 is partitioned into a host computer memory
5096 portion and an emulation routines 5097 portion. The host computer memory 5096 1s
available to programs of the emulated host computer 5092 according to host computer
architecture. The emulation processor 5093 executes native instructions of an architected
instruction set of an architecture other than that of the emulated processor 5091, the native
instructions obtained from emulation routines memory 5097, and may access a host
instruction for execution from a program in host computer memory 5096 by employing one
or more instruction(s) obtained in a sequence & access/decode routine which may decode the
host instruction(s) accessed to determine a native instruction execution routine for emulating
the function of the host instruction accessed. Other facilities that are defined for the host
computer system 5000 architecture may be emulated by architected facilities routines,
including such facilities as general purpose registers, control registers, dynamic address
translation and I/0 subsystem support and processor cache, for example. The emulation
routines may also take advantage of functions available in the emulation processor 5093
(such as general registers and dynamic translation of virtual addresses) to improve
performance of the emulation routines. Special hardware and off-load engines may also be

provided to assist the processor 5093 in emulating the function of the host computer 5000'.

The terminology used herein is for the purpose of describing particular embodiments only
and is not intended to be limiting of the invention. As used herein, the singular forms “a”,
“an” and “the” are intended to include the plural forms as well, unless the context clearly
indicates otherwise. It will be further understood that the terms “comprises” and/or
“comprising”, when used in this specification, specify the presence of stated features,
integers, steps, operations, elements, and/or components, but do not preclude the presence or

addition of one or more other features, integers, steps, operations, elements, components

and/or groups thereof.

10

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

43

The corresponding structures, materials, acts, and equivalents of all means or step plus
function elements in the claims below, if any, are intended to include any structure, material,
or act for performing the function in combination with other claimed elements as specifically
claimed. The description of the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaustive or limited to the invention in
the form disclosed. Many modifications and variations will be apparent to those of ordinary
skill in the art without departing from the scope of the invention. The embodiment was
chosen and described in order to best explain the principles of the invention and the practical
application, and to enable others of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are suited to the particular use

contemplated.

10

15

20

25

30

CA 2800631 2017-03-13

WO 2011/160710 PCT/EP2010/067028
49

CLAIMS

1. A computer program product for executing a store instruction for storing data in
an adapter, said computer program product comprising a non-transitory computer
readable storage medium readable by a processing circuit and storing instructions for
execution by the processing circuit for performing a method comprising:

obtaining a machine instruction for execution, the machine instruction being
defined for computer execution according to a computer architecture, the machine
instruction including an opcode field 1dentifying a store to adapter instruction, a first field
identifying a first location that includes data to be stored in an adapter, a second field
identifying a second location, the contents of which include a function handle 1dentifying
the adapter, a desi gnation of an address space within the adapter in which data is to be
stored, and an offset within the address space; and

executing the machine instruction using the function handle to obtain a function
table entry associated with the adapter, obtaining a data address of the adapter using at
least one of information in the function table entry and the offset; and

storing data from the first location in a specific location in the address space
1dentified by the designation of the address space, the specific location identified by the
data address of the adapter.

2. The computer program product of claim 1, wherein the address space to be

accessed 1s one of a memory space or an [/O space, and wherein the obtaining the data
address comprises using one or more parameters of the function table entry to obtain the

data address.

3. The computer program product of claim 2, wherein the using one or more

parameters comprises adding a value of a base address register of the function table entry

to the offset to obtain the data address.

10

15

20

25

CA 2800631 2017-03-13

WO 2011/160710 PCT/EP2010/067028
30

4, The computer program product of claim 1, wherein the address space to be
accessed 18 a configuration space, and wherein the data address is the offset provided by

the instruction, the offset identifying a register number in the configuration space.

J. The computer program product of claim 1, wherein the contents of the second

location includes an amount of data to be stored.

6. The computer program product of claim 1, wherein the instruction is implemented

based on the architecture of the adapter.

7. A computer program product for executing a store block instruction for storing
data 1n an adapter, said computer program product comprising a non-transitory computer
readable storage medium readable by a processing circuit and storing instructions for
execution by the processing circuit for performing a method comprising;

obtaining a machine instruction for execution, the machine instruction being
defined for computer execution according to a computer architecture, the machine
instruction including an opcode field identifying a store block to adapter instruction, a
first field identifying a first location, the contents of which include a function handle
identifying an adapter, and a designation of an address space within the adapter in which
data 1s to be stored, a second field identifying a second location that includes an offset
within the address space, and a third field identifying a third location that includes an
address in memory that includes data to be stored in the adapter;

executing the machine instruction using the function handle to obtain a function
table entry associated with the adapter, obtaining a data address of the adapter using
information in the function table entry and the offset; and

storing data obtained from memory at the address in the third field into a specific
location 1n the address space identified by the designation of the address space, the
specific location identified by the data address of the adapter.

10

15

20

25

30

CA 2800631 2017-03-13

WO 2011/160710 PCT/EP2010/067028
51

8. The computer program product of claim 7, wherein the obtaining comprises
adding a value of a base address register of the function table entry to the offset to obtain

the data address.

9. The computer program product of claim 7, wherein the instruction is implemented

based on the architecture of the adapter.

10. A computer system for executing a store instruction for storing data in an adapter,
said computer system comprising:

a memory, having instructions stored thereon;

a processor in communications with the memory, wherein the processor executes
the 1nstructions to:

obtain a machine instruction for execution defined for computer execution
according to a computer architecture, the machine instruction including an opcode field
1dentifying a store to adapter instruction, a first field identifying a first location that
includes data to be stored in an adapter, a second field identifying a second location, the
contents of which include a function handle identifying the adapter, a designation of an
address space within the adapter in which data is to be stored, and an offset within the
address space;

execute the machine instruction using the function handle to obtain a function
table entry associated with the adapter, obtain a data address of the adapter using at least
one of information in the function table entry and the offset; and

store data from the first location in a specific location in the address space
1dentified by the designation of the address space, the specific location identified by the
data address of the adapter.

11. The computer system of claim 10, wherein the address space to be accessed is one
of a memory space or an I/O space, and wherein obtaining the data address comprises

using one or more parameters of the function table entry to obtain the data address.

10

15

20

25

30

CA 2800631 2017-03-13

WO 2011/160710 PCT/EP2010/067028
52

12. The computer system of claim 11, wherein the using one or more parameters

comprises adding a value of a base address register ot the function table entry to the

offset to obtain the data address.

13. The computer system of claim 10, wherein the address space to be accessed is a
configuration space, and wherein the data address is the offset provided by the

instruction, the offset identifying a register number in the configuration space.

14. The computer system of claim 10, wherein the contents of the second location

includes an amount ot data to be stored.

15. The computer system of claim 10, wherein the instruction 1s implemented based

on the architecture of the adapter.

16. A computer system for executing a store block instruction for storing data in an
adapter, said computer system comprising;

a memory, having instructions stored thereon;

a processor in communications with the memory, wherein the processor executes
the instructions to:

obtain a machine instruction defined for computer execution according to a
computer architecture, the machine instruction including an opcode field identifying a
store block to adapter instruction, a first field identifying a first location, the contents of
which include a function handle identifying an adapter, and a designation of an address
space within the adapter in which data is to be stored, a second field identifying a second
location that includes an offset within the address space and a third field identifying a
third location that includes an address in memory that includes data to be stored in the
adapter;

execute the machine instruction using the function handle to obtain a function
table entry associated with the adapter, obtain a data address of the adapter using

information in the function table entry and the offset; and

10

15

20

25

30

CA 2800631 2017-03-13

WO 2011/160710 PCT/EP2010/067028
53

store data from the address in memory into a specific location in the address space
identified by the designation of the address space, the specific location 1dentified by the
data address of the adapter.

17. The computer system of claim 16, wherein obtaining comprises adding a value of

a base address register of the function table entry to the offset to obtain the data address.

18. A method of executing a store instruction for storing data in an adapter, said
method comprising:

obtaining a machine instruction for execution defined for computer execution
according to a computer architecture, the machine instruction including an opcode field
identifying a store to adapter instruction, a first field identifying a first location that
includes data to be stored in an adapter, a second field identifying a second location, the
contents of which include a function handle identifying the adapter, a designation of an
address space within the adapter in which data is to be stored, and an offset within the
address space;

executing the machine instruction using the function handle to obtain a function
table entry associated with the adapter, obtain a data address of the adapter using at least
one of information in the function table entry and the offset; and

store data from the first location 1n a speciﬁc location in the address space
identified by the designation of the address space, the specific location identified by the
data address of the adapter.

19. The method of claim 18, wherein the address space to be accessed 1s one of a
memory space or an I/O space, and wherein obtaining the data address comprises using

one or more parameters of the function table entry to obtain the data address.

20. The method of claim 19, wherein the address space to be accessed 1s a
configuration space, and wherein the data address 1s the offset provided by the

instruction, the offset 1dentifying a register number in the configuration space.

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

1/22

100

104 106

108 102

MEMORY
<= | XLATE
SYSTEM MEMORY CONTROLLER m

4—» CPU

102

<—> CPU

I/0-TO-MEMORY
o o

A’L?B ADDRESS TRANSLATION
& PROTECTION 118
ROOT COMPLEX F—116

PCle

PCle PCle
SWITCH
PCle PCle 114
SWITCH

PCle

ADAPTER ADAPTER ADAPTER ADAPTER

110 110
FIG. 1A

112

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

2/22

102

PROCESSOR

OPERATING
140 SYSTEM

/0 HUB

DEVICE TABLE 132
DEVICE TABLE ENTRY .
130

INFORMATION
112

114
PCle

SWITCH(es)

PCI PCI
FUNCTION FUNCTION
138 138

FIG. 1B

CA 02800631 2012-11-23

PCT/EP2010/067028

WO 2011/160710

3/22

0G|

OLl OLl

dd1avdv dd14dvdv dd1dvdv dd1dvdv

Ol 9l
9|0d
HOLIMS
9|0d a|Nd
Vil
HOLIAS
Tlo 9|0d
9|0d
9NH O/l A
7G|

SNd

HOSINYIdAH 851
H3ITIOHLNOD AHOWIN
--E - -
X31dWOD oz_wmm_oomn_ TVHIN3O a0l 701

omr 001l

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

4/22

138
ADAPTER FUNCTION

PCI FUNCTION STORAGE
202 ' CONFIGURATION SPACE

' /0 SPACE

200

204

E
206 MEMORY SPAC

MEMORY SPACE

e INTERNAL ROUTING INFORMATION
e STATUS INDICATOR

FIG. 2
FUNCTION TABLE
FUNCTION TABLE ENTRY 300
308
e INSTANCE NUMBER
310 oDTE INDEX - 1..n
312 - e BUSY INDICATOR 200
314 e PERM. ERROR STATE INDICATOR
316 . RECOVERY INITIATED INDICATOR
218 " |« PERMISSION INDICATOR
290 " | e ENABLE INDICATOR
|« REQUESTOR IDENTIFIER
322 - e BAR -1...n
3241 |4 SIZE 1.1
326 ==

FIG. 3A

PCI FUNCTION HANDLE
ENABLE PCI FUNCTION INSTANCE
INDICATOR NUMBER #

352 354 356
FIG. 3B

350

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

5/22

400
PCI LOAD s

OPCODE FIELD 1 FIELD 2

402 404 406
FIG. 4A
FIELD 1
404
DATA LOADED
FIG. 4B
FIELD 2
410
ENABLED HANDLE
412 ADDRESS SPACE 406
414 OFFSET WITHIN ADDRESS SPACE
LENGTH
19 STATUS
418

FIG. 4C

CA 02800631 2012-11-23

PCT/EP2010/067028

WO 2011/160710

6/22

VS Ol

g

NOILIANODO

NOILdd0X4

NOILIANOD

NOILd30X4

0¥S

NOILIANOD
ASMY

9tS
NOILIANOD

NOILd3OX4

AR

NOILIANOO
NOILd40X4

8¢S
NOILIANOD

NOILd30X

144,

T

(39Vvd LX3IN)

SdA

cvS

SdA
¢ AlI'IVA
ON 1345440
8tS

SdA

143

SdA

0ES I\

ON

¢ ASNY
NOILONNA
ON

¢ ANAILOV
IN-EVNOOE -

ON

¢ daX00'19
J4015/dvO’l

SdA
9¢G
S3A
¢ Al'ivA
ON SVIOd
¢CS

SdA

¢, d419VN-
NOILONMNA

NOILIANOOD

NOILdIOX3 ON

02S 815 — S3IA

NOILIANOO

NOLLdIDOX3 ¢, A3ZIHOHLNY

ON
143°

OLG

AdLNZ 379dVL NOILONMNA
clG J41VOO1 Ol d1AdNVH 45N

SdA

NOILIANOO

¢ 31dVN-

NOILdIDX3 ON 31ANVH

806G
0LG QIA

¢ AIANOIV
SAUNVaddo

NOILIANOD
NOILd3IOX3 ON

904 V03 SJA

NOILIANOO ¢ AdTIVLSNI
NOILd3OX3 ON ALIIOVA

00G

(z 40 1) avO

¢0G

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

722

L OAD (2 OF 2)

550
YES

NO CONFIG.

SPACE ?

552

RID (OBTAINED FROM FTE)
BAR STARTING ADDRESS 2 USED 10 GENERATE

(OBTAINED FROM FTE) +
OFFSET FORMS DATA
ADDRESS IN PCIAS.
INFO FROM FTE USED TO
| OCATE ADAPTER'S I/0
HUB: DATA ADDRESS
PROVIDED TO I/O HUB TO
INITIATE PCI REQUEST

CONFIGURATION REQUEST
FROM THE /0O HUB

FETCH "LENGTH" BYTES OF EEG
REQUESTED DATA FROM
COMPUTED LOCATION

NORMAL COMPLETION

FIG. 5B

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

8/22

600
PCl STORE s

OPCODE FIELD 1 FIELD 2

602 604 606
FIG. 6A
FIELD
604
DATA STORED
FIG. 6B
FIELD 2
610
ENABLED HANDLE
612 ADDRESS SPACE 606
614 OFFSET WITHIN ADDRESS SPACE
LENGTH
o8 STATUS
618

FIG. 6C

CA 02800631 2012-11-23

PCT/EP2010/067028

WO 2011/160710

9/22

V. Old

47

NOILIANODO

NOILdd0X4

NOILIANOD

NOILd30X4

O¥.

NOILIANOD
ASMY

9tL
NOILIANOD

NOILd3OX4

ctl

NOILIANOO
NOILd40X4

8C1L
NOILIANOD

NOILd30X

Vel

s

(39Vvd LX3IN)

SdA

cvl.

SdA
¢ AlI'VA
ON 1345440
8¢l

SdA

1294

SdA

0tL I\

ON

¢ ASNY
NOILONNA
ON

¢ ANAILOV
IN-EVNOOE -

ON

¢ daX00'19
J4015/dvO’l

SdA
9¢.
S3A
¢ Al'ivA
ON SVIOd
¢cl

SdA

¢, d419VN-
NOILONMNA

NOILIANOOD

NOILdIOX3 ON

0¢. 8L.— S3IA

NOILIANOO

NOLLdIDOX3 ¢, A3ZIHOHLNY

ON
viL

911

AdLNZ 379dVL NOILONMNA
471 J41VOO1 Ol d1AdNVH 45N

SdA

NOILIANOO

¢ 31dVN-

NOILdIDX3 ON 31ANVH

80/
0L/ QIA

¢ AIANOIV
SAUNVaddo

NOILIANOD
NOILd3IOX3 ON

Q0L V02 SJA

NOILIANOO ¢ AdTIVLSNI
NOILd3OX3 ON ALIIOVA

004

¢0L

(z 40 1) 3HO1S

CA 02800631 2012-11-23
WO 2011/160710

10/22

PCT/EP2010/067028

STORE (2 OF 2)

154

BAR STARTING ADDRESS
(OBTAINED FROM FTE) +
OFFSET FORMS DATA
ADDRESS IN PCIAS.
INFO FROM FTE USED TO
L OCATE ADAPTER'S I/0
HUB: DATA ADDRESS
PROVIDED TO /O HUB TO
INITIATE PCI REQUEST

750

YES

7152

RID (OBTAINED FROM FTE)
IS USED TO GENERATE

CONFIGURATION REQUEST
FROM THE I/0O HUB

STORE "LENGTH" BYTES

OF DATA AT THE

756

COMPUTED LOCATION

NORMAL COMPLETION

FIG. 7B

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

11/22

800

PCI STORE BLOCK

OPCODE FIELD 1 | FIELD 2 FIELD 3
3802 804 8006 808

FIG. 8A
804
FIELD 1
810
812 ENABLED HANDLE
ADDRESS SPACE
814 LENGTH

816 STATUS

FIG. 8B

806

FIELD 2

820 OFFSET WITHIN ADDRESS SPACE

FIG. 8C

808

FIELD 3

822 LOGICAL ADDRESS IN MAIN STORAGE

FIG. 8D

CA 02800631 2012-11-23

PCT/EP2010/067028

WO 2011/160710

12/22

V6 Ol

1448

NOILIANODO

NOILdd0X4

NOILIANOD

NOILd30X4

0¥6

NOILIANOD
ASMY

9t6
NOILIANOD

NOILd3OX4

AN

NOILIANOO
NOILd40X4

8¢6
NOILIANOD

NOILd30X

¥co

(39Vvd LX3IN)

SaA

7 arnvA

o 135440
CV6—" g

>
8c6
ON
7 ASNG

STA —~NOILONN-

es—

ON

¢ ANAILOV
SIA IN-EVNOOE -

omml\ ON

¢ daX00'19
J4015/dvO’l

SdA
9¢6
S3A
¢ Al'ivA
ON SVIOd
¢Co

SdA

¢ J419VN4
NOILONMA

NOILIANOO

NOILdIOX3 ON

0Z6 8L6—" S3A

NOILIANOD
NOILd30X4 ON

43¢

¢ A3ZIHOHLNY

Ol6
AY1LNL F19V.L NOILONMNA

4% 41VOO0T1OL A1ANVH ISN

SdA

NOILIANOD

¢ A3 19VN-

NOILa3dOX3 ON J 1ONVH

700
906 =P\

NOILIANOD
NOILd3dOX4 ON

¢ A TIVLSNI
ALITIOVA

006
(2 40 L) MD019 3HOLS

¢06

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

13/22

STORE BLOCK (2 OF 2)

950

052

NO EXCEPTION
CONDITION

STORAGE
ACCESSIBLE ?

YES

BAR STARTING ADDRESS
(OBTAINED FROM FTE) +
OFFSET FORMS DATA
ADDRESS IN PCIAS.
INFO FROM FTE USED TO 954
L OCATE ADAPTER'S I/0
HUB: DATA PROVIDED TO
/O HUB TO INITIATE PCI

REQUEST

STORE "LENGTH" BYTES
OF DATA AT THE 956
COMPUTED LOCATION

NORMAL COMPLETION

FIG. 9B

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

14/22

COMPUTER
PROGRAM
PRODUCT

1000

COMPUTER /
READABLE
STORAGE
MEDIUM
1002

~—

FIG. 10

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

15/22

HOST COMPUTER 5000

5001

PROCESSOR (CPU)

003 ADDRESS
5007

LOAD/STORE
UNIT

5005

5004
INSTRUCTION x
FETCH UNIT A CENTRAL
H STORAGE
2
INSTRUCTION
DECODE UNIT
5009
5002

INSTRUCTION
EXECUTION UNIT
MEDIA / \

——— ™—5011 NETWORK
5010
FIG. 11

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

16/22

OPERATING SYSTEM
APPLICATION 2
APPLICATION 3

5022 S 5031

// // /

/ /’ /
// BASE COMPUTER 7 ;
V4 7

— — —— MEMORY -
PROCESSOR

0
. 5023 e
1 B 7
5004 KEYBOARD -
PRINTER/SCANNER
NETWORK
0029

FIG. 12

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

17/22

5040

REMOTE SERVER

5048

INTERNET
5047

5046

5050
cour 5044
5043—~ =)
EEEN
I = 111 -
= F o Zane = p o
— &
CLIENT 1 CLIENT 4
CLIENT 2 5042

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

18/22

5025 MEMORY

5053

PROCESSOR CACHES
5055
PROGRAM COUNTER
206 INSTRUCTION FETCH

5026 5056 5060

DECODE/DISPATCH 5058 LOAD/STORE UNIT
EXECUTION

BRANCH 5062
UNIT

\ REGISTERS 5059
5057
5054 /O UNITS

FIG. 14

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

19/22

5057
EXECUTION UNIT

5072

FTF?E
‘ 5069
5068

F
I o

I -
A R

OTHER
5065 J 5056

DECODE/DISPATCH
5059 REGISTERS

5060

LOAD/STORE UNIT

FIG. 15A

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

20/22

5058
BRANCH UNIT

5082
FTF?E
A
AU

F
M\ gpgp

508
[[N

OTHER
5073 J 5056

DECODE/DISPATCH
5059 REGISTERS

FIG. 15B

CA 02800631 2012-11-23
WO 2011/160710 PCT/EP2010/067028

21/22

5060
LOAD/STORE UNIT

5090

FTF?E
‘ 5088
5086

\ AU e

F
M\ gpag

5084
[[N\

OTHER
5083 J 5056

DECODE/DISPATCH
5059 REGISTERS

CACHE/MEMORY
INTERFACE 2053

FIG. 15C

CA 02800631 2012-11-23

WO 2011/160710 PCT/EP2010/067028
22/22
5092
EMULATED (VIRTUAL)
HOST COMPUTER

MEMORY 5094

5000 5096

COMPUTER
MEMORY
(HOST)

EMULATED (VIRTUAL)
PROCESSOR (CPU)

5097

2093 EMULATION

ROUTINES

PROCESSOR
NATIVE

ACHITECTURE B’

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I INSTRUCTION SET
I
I
I
I
I
I
I
I
I
I
I
I
|L

——— 5011 NETWORK

5010

600
PCI STORE ,/V

OPCODE FIELD 1 l FIELD 2 \

———— Fi S £ A 1-

602 604 606
A

FIELD 1

' 604
‘ DATA STORED I -

B

FIELD 2

810\ FENABLED HANDLE

512—+ ADDRESS SPACE 606
614—— OFFSET WITHIN ADDRESS SPACE

818—"T LENGTH
618—"1 STATUS

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - abstract drawing

