(12) 특허협력조약에 의하여 공개된 국제출원

(19) 세계지식재산권기구
국제사무국

(43) 국제공개일
2011년 9월 9일 (09.09.2011)

WO 2011/010882 A2

(51) 국제특허분류: 미분류
(21) 국제출원번호: PCT/KR2011/001497
(22) 국제출원일: 2011년 3월 4일 (04.03.2011)
(25) 출원인: 한국어
(26) 공개인: 한국어
(30) 우선권정보:
10-2010-0019671 2010년 3월 5일 (05.03.2010) KR

(72) 발명자: 경

(54) Title: PHARMACEUTICAL COMPOSITION FOR THE PREVENTION OR TREATMENT OF OSTEOARTHRITIS CONTAINING REBAMIPIDE AS AN ACTIVE INGREDIENT

(54) 발명의 명칭: 유효성분으로서 레바미피드를 함유하는 골관절염 예방 또는 치료용 약학 조성물을

[Fig. 1]

nonarthritis MIA MIA + Rebamipide
Femur
B Tibia

(57) Abstract: Provided is a pharmaceutically composition for the prevention or treatment of osteoarthritis containing rebamipide and a pharmaceutically acceptable carrier. The pharmaceutical composition can be of a form for oral administration, and preferably can have a solid oral formulation taking the form of a tablet or capsule. Also, the pharmaceutical composition can be prepared in a unit dosage form suitable for oral administration in a dose of from 0.5 to 50 mg/kg, and preferably from 0.6 to 6 mg/kg.

(57) 요약: 본 발명은 레바미피드를 함유하는 골관절염 예방 또는 치료용 약학 조성물을 제공한다. 상기 약학 조성물은 경구 투여용 형태일 수 있으며, 바카라 하게는 정제 또는 캔플 제제 형태의 고형 경구용 제제를 가질 수 있다. 또한, 상기 약학 조성물은 레바미피드가 0.5 내지 50 mg/kg, 더욱 바카라하게는 0.6 내지 6 mg/kg의 용량으로 경구투여에 기여하는 적합한 단위 투여 형태(unit dosage form)로 체계화될 수 있다.

공개:
— 국제조사보고서 없이 공개하며 보고서 접수 후 이를 별도 공개할 (규칙 48.2(g))
명세서

발명의 명칭: 유효성분으로서 레바미피드를 함유하는 골관절염 예방 또는 치료용 약학 조성품

기술분야

본 발명은 레바미피드를 유효성분으로 함유하는 골관절염(osteoarthritis)의 예방 또는 치료용 약학 조성품에 관한 것이다.

배경기술

골관절염(osteoarthritis)은 퇴행성 관절염으로 정해지기도 하는 관절염의 일종으로서, 온의 관절에서 연골과 주위골에 퇴행성 변화가 나타나서 생기는 관절염을 맡한다. 즉, 골관절염은 관절 연골의 점차적인 소실과 더불어 연골 하방에 위치한 뼈의 비대, 관절 가장자리 부위의 골 생성, 및 비특이적인 외막 염증을 특징으로 하는 질환이다. 골관절염은 노화나 과도한 물리적 압박(예를 들어, 비만, 외상 등)에 의해서 연골이 손상되어 발생하는 질환이다. 따라서, 골관절염은 체중은 많이 받는 관절, 즉, 무릎(손), 팔꿈치, 엉덩이(고)관절 등에 심한 통증과 운동 장애를 나타내며, 장기간 방치할 경우에는 관절의 변형까지 초래하게 된다.

골관절염은 연골내 수분 함량이 증가되어 부종을 일으키는 연골 변화 단계(1단계), 연골이 파괴되면서 연골 표면이 갈라지고 척이지면서 손상되어 뼈가 드러나고 관절강이 줄어지는 원심유화(fibrillation) 단계(2단계), 연골세포가 연골을 화학적하게 해서 연골 생성을 시작하지만 연골 생성보다 연골 파괴가 더 빠르게 일어나기 때문에 전반적으로 연골이 줄어들게 되는 단계(3단계), 뼈가 변형되며 관절기형 및 기능장애를 초래하는 뼈 변화 단계(4단계), 및 연조직 (soft tissue)이 두꺼워지는 장애 상태를 초래하는 뼈 변화 단계(5단계)로 진행되게 된다.

골관절염과 다른 블루에 속하는 르마다스 판절염(rheumatoid arthritis)은 활막 세포의 염증과 증식을 특징으로 하는, 만성 자가면역 질환(immune diseases)으로서, 골관절염과 달리 판절 주위 뼈의 골다공증 및 골미란 등이 발생한다. 르마다스 판절염은 활막(synovial membrane)의 염증이 관절막(joint capsule)과 인대(ligament), 건(tendon)으로 퍼지는 단계(1단계), 관절연골(joint cartilage)의 점차적인 파괴로 판절 간격이 좁아지고 판절막과 인대의 장력이 소실되는 단계(2단계), 염증이 뼈로 침범하여 뼈의 부분적 침식이 발생하는 단계(3단계), 및 관절기능이 소실되는 단계(4단계)로 진행되게 된다. 따라서, 골관절염과 르마다스 판절염은 그 발병 원인 및 진행단계가 전혀 상이하며, 이에 대한 치료 방법도 상이하다.

현재 골관절염의 치료를 위해서는, 아세트아미노펜(acetaminophen), 트라마돌(tramadol), 비스테로이드성 항염제(nonsteroidal antiinflammatory drugs, NSAIDs), 디아세린(diacerin), 글루코사미네 (glucosamine) 등의 약물이
사용되고 있다. 이들 가운데 비스테로이드성 항염제는 위, 심이지장 궤양 등의 위장관 부작용이 문제점으로 지적되고 있다. 따라서, 위장관 부작용의 위험인자를 가지고 있는 골관절염 환자에게 상기 약물을 투여할 경우, 레바미피드 등의 점막 보호제(cytoprotective agent)나 시메티딘, 라니티딘 등의 H2-수용체 침착제, 오메프라졸 등의 프로도 펌프 저제제등이 동시에 치방되고 있다.

발병의 상세한 설명

기술적 과제

본 발명자들은 의료 현장에서 다수의 골관절염 환자를 치료하는 과정에서, 놀랍게도 위장관 부작용을 방지하기 위하여 병용 투여되는 레바미피드 자체가 골관절염에 대한 예방 및 치료 활성을 갖는다는 것을 발견하였다. 즉, 레바미피드가 골관절염의 개선이나 치료 활성과 관련된다는 보고가 전혀 없음을 감안할 때, 이는 매우 놀라운 것이다.

따라서, 본 발명은 레바미피드를 유 효성분으로 포함하는, 골관절염의 예방 또는 치료용 약학 조성물을 제공한다.

파세 해결 수단

본 발명의 일 체계에 따라, 레바미피드 및 약학적으로 허용 가능한 단체를 포함하는 골관절염의 예방 또는 치료용 약학 조성물이 제공된다.

상기 약학 조성물은 경구 투여용 형태일 수 있으며, 바람직하게는 정제 또는 칼슘제 형태의 경구용 고형 제형(oral solid dosage form)을 가질 수 있다. 또한, 상기 약학 조성물은 레바미피드가 0.5 내지 50 mg/kg, 더욱 바람직하게는 0.6 내지 6 mg/kg의 용량으로 경구투여되기에 적합한 단위 투여 형태(unit dosage form)로 제조화될 수 있다.

발명의 효과

본 발명에 의하면, 레바미피드가 골관절염의 예방 또는 치료 활성을 갖는다는 것이 밝혀졌다. 따라서, 본 발명의 약학 조성물은 르마시스 관절염의 예방 또는 치료를 위하여 단독으로 혹은 다른 골관절염 치료제와 병용하여 사용될 수 있다.

도면의 간단한 설명

도 1은 골관절염 유도 후 7일째 레트의 대퇴골(Femur) 및 경골(Tibia)을 분리하여 현미경으로 관찰한 결과이다.

도 2는 투시에 의한 블루(toluidine blue), 사프라닌 O(safranin O), H&E 염색법을 이용하여 조직학적으로 유결의 파괴정도를 분석한 결과이다.

도 3은 조직학적 분석 결과로부터 Histology grade를 계산하여 나타낸 결과이다.

발명의 실시를 위한 희선의 형태

본 명세서에서 "레바미피드(rebamipide)"라 함은 우수물, 수화물(예를 들어, 1/2 수화물 등), 결정형 등의 모든 형태의 레바미피드를 포함하며, 또한
레바미피드의 약학적용으로 허용가능한 염을 포함한다. 상기 레바미피드의 약학적용으로 허용가능한 염은 칼슘, 칼륨, 나트륨 및 마그네슘 등으로부터 제조된 무기이온염, 염산, 질산, 인산, 브롬산, 요오드산 및 황산 등으로부터 제조된 무기산염, 아세트산, 포름산, 숙신산, 타타르산, 시트르산, 트리클로로아세트산, 트리프루오로아세트산, 글루콘산, 벤조산, 타르산, 푸마르산, 및 발레인산 등으로부터 제조된 유기산염, 메탄올산염, 엔탈산염, 벤젠산염, p-тол루엔산염 및 나트륨산염 등으로 제조된 질소산염, 글리신, 아르가민, 라이신 등으로부터 제조된 아미노산염 및 트리에틸아민, 트리에틸아민, 페로니아, 페리린, 페놀산 등의 제조된 아미노산염 등을 포함한다.

본 발명은 레바미피드 및 약학적으로 허용가능한 단체를 포함하는 골판결합의 예방 또는 치료용 약학 조성물을 제공한다.

가장 실험에서 확인할 수 있는 바와 같이, 골판결합 유도물질로 알려져 있는 포노소듐 요오드아세테이트(Monosodium Iodoacetate, MIA)를 랜트에 투여하여 골판결합을 유발시킨 뒤 레바미피드를 경구투여하였을 때, 연골 손상이 유의있게 억제되었으며(도 1 참조), 조직학적 시험 결과, 레바미피드를 경구투여한 경우 연골 및 그 구성성분의 손상이 정도가 정상 랜트와 비슷하였으며, 연골의 파괴나 구성성분의 분해 또한 호전되었다(도 2 및 도 3 참조). 상기 결과들은 점막 보호체(cytotoxic agent)로 사용되는 레바미피드가 우수한 골판결합 치료활성을 갖는다는 것을 보여준다.

본 발명의 약학 조성물은 약학적용으로 허용가능한 단체를 포함하며, 각각 동상의 방법에 따라 산체, 과림체, 정체, 캡슐체, 혈타억, 아밀전, 시립, 에어로졸 등의 정구형 제형, 외용제, 좌체 및 면균 주사용액의 형태로 제조화될 수 있다. 바람직하게는 본 발명의 약학 조성물은 구구 투여용 형태일 수 있으며, 더욱 바람직하게는 정체 또는 캡슐체 형태의 고형 경구용 제형(dosage form)을 가질 수 있다. 예를 들어, 본 발명의 약학 조성물은 상업적으로 사용되는 레바미피드-합유 정체[예를 들어, 무코스타징(오츠카제약)]의 형태일 수 있다. 상기 약학적용으로 허용가능한 단체는 탄토스, 탱스트로즈, 수크로스, 솔비톨, 만니톨, 자랄리톨, 에리스리톨, 말티톨, 전분, 아카시야 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 살리카이트, 설탕로스, 메틸 설탕로스, 미겔링 설탕로스, 히드록시프로필 설탕로스, 저자환도히드록시프로필 설탕로스, 히드록시프로필메칠 설탕로스 2910, 폴리에틸렌글리콜 6000, 폴리비닐 퍼튬리돈, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 산화탄소, 탈크, 그레네슘 스테이레이트 및 광물유 등을 포함한다. 또한, 중전체, 중량체, 결합체, 습유체, 봉제체, 계면활성체 등의 희석제 또는 무형제를 포함한다. 경구용 고형 제체는 정체, 환체, 산체, 과립체, 캡슐체 등을 포함하며, 이러한 고형제체는 적어도 하나 이상의 무형제 예를 들면, 전분, 칼슘카보네이트 (calcium carbonate), 수크로스(sucrose) 또는 략토스(lactose), 젤라틴 등을 포함할 수 있으며, 마그네슘 스테이레이트, 탈크
같은 영향을 얻을 수 있다. 구체적으로는, 본 발명의 약물 조성물은, 유효성분으로 레바미피드를 포함하고, 단체로서 저항성 허드록시프로필셀룰로스, 미결정셀룰로스, 산화탄탄, 허드록시프로필메칠셀룰로스 2910, 폴리에틸렌글리콜 6000, 허드록시프로필셀룰로스, 및 스테아르산마르게슘을 포함하는 경제 형태일 수 있다. 경구용 약성 제제는 흰색타, 내용액체, 유제, 시림제 등을 포함하며, 블, 리퀴드 파라핀 등의 화석제, 습윤제, 간미제, 방향제, 보온제 등을 포함할 수 있다. 비장구용 제제는 범균된 수용액, 비수성용제, 흰색타, 유제, 동결간조 제제, 좌제를 포함하며, 비수성 용제, 흰색타료는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르류 등을 포함한다. 좌제의 기제로는 위템솔(witexol), 마크로콜, 트윈 (tween) 61, 카카오치, 라우렌치, 글리세로글리렌 등이 사용될 수 있다.

본 발명의 약학조성물에 함유되는 상기 레바미피드의 투여량은 환자의 상태 및 병증, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당뇨자에 의해 적절하게 선택할 수 있다. 예를 들면, 상기 레바미피드는 1일 0.1 내지 100 mg/kg, 바람직하게는 0.5 내지 50 mg/kg의 용량으로 경구투여할 수 있으며, 특히 바람직하게는 약 0.6 내지 6 mg/kg의 용량으로 경구투여할 수 있다. 따라서, 본 발명의 약학 조성물은 레바미피드가 0.5 내지 50 mg/kg, 더욱 바람직하게는 0.6 내지 6 mg/kg의 용량으로 경구투여되기 위하여 적합한 단위 투여 형태(unit dosage form)로 제제화할 수 있다. 상기 투여는 하루에 한번 또는 수회 나누어 투여할 수도 있다. 본 발명의 약학 조성물을 단독으로 투여되거나 다른 골관절염 치료제, 예를 들어 비스테로이드성 항염제와 병용하여 투여할 수 있고, 병용하여 투여할 경우 다른 치료제와 순차적 또는 동시에 투여될 수 있다.

이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 에서하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.

실시예. 레바미피드의 경구투여시 골관절염 치료 효능 평가

(1) 시험방법

5주령의 우성 위스터(Wistar)계 면트의 오른쪽 무릎에 4mg/50ul의 용량으로 모노소듐 요오드아세테이트(Monoiodide Iodoacetate, MIA)를 투여하여 골관절염을 유도하였다. MIA는 채리생실험수에 용해시켜 투여하였다.

골관절염이 유도된 면트를 각각 5마리씩 3군으로 나누고, 첫번째 군은 아무런 처리를 하지 않은 군, 즉 정상 대조군(non-arthritis), 두번째 군은 MIA에 투여에 의해 골관절염을 유도한 군(MIA), 세 번째 군은 MIA에 투여에 의해 골관절염을 유도한 면트에 레바미피드를 7일 동안 뱀입 경구투여 한 군(MIA+Rebamipide)으로 하였다.

MIA 유도 후 7일째 면트의 뱀입골(Femur) 및 경골(Tibia)을 체취하여 분리한 뒤 해부학적으로 판찰하였다. H&E 염색을 시행한 후 저배율 렌즈를 통해 무릎
관절 주변을 관찰하였다. 결절과의 한은 청보라색으로 세포질은 정반색으로 나타나며, 염색 완료 후 조직 사전은 부분을 중심으로 위 부분은 대퇴골(Femur 약자로 F로 표시) 아래는 장골(Tibia 약자로 T자로 표시)로 두 부위로 나뉘 세부적인 형태를 관찰하였다. 연골의 프로테오글리칸(proteoglycan)의
손실정도를 알 수 있는 사프라닌 O (Safranin O) 통해 무질관절을 염색하였다.
TRAP (Tartrate resistant acid phosphatase)은 빨 색시키는 파골세포를
발색시켜주는 염색법으로 leukocyte acid phosphatase kit (Sigma 387-A, USA)를
이용하여 37°C에서 30분간 염색반응을 실시한 후 TRAP 양성은 적자색으로
나타나며, 혜이 3개 이상이 다핵세포를 파골양성세포로 간주하였으며, 이를
광활 현미경으로 계측하였다.
[25]
(2) 시험결과
[26] 골관절염이 유도되서 7일째에 맵트의 관절을 제취하여 분리한 뒤,
해부현미경으로 관찰한 결과 레바미피드를 정구로 투여하지 않은 군에서는
연골부분에 파괴가 일어났다 (도 1의 가운데 사진의 빨간색 화살표). 그러나
레바미피드를 정구로 투여한 군에서는 연골의 파괴가 거의 일어나지 않았다 (도 1).
[27] 또한, 토루이던 블루(toluidine blue), 사프라닌 O (safranin O), H&E 염색을 통한
조직학적 분석 결과, 레바미피드를 정구로 투여하지 않은 군에서는 연골의 파괴가
더 심하게 일어났으나, 레바미피드를 정구로 투여 한 군에서는 여전히 연골이
분해되지 않고 유지되어 있었다 (도 2). 즉, H&E 염색을 통한 조직학적 분석
결과, 레바미피드를 정구로 투여 한 군(MIA+Rebamipide)에서 염증정도가 MIA군에
비해 호전되는 것을 관찰 할 수 있었다. 또한, 사프라닌 O 염색에 의한 분석 결과,
레바미피드를 정구로 투여 한 군(MIA+Rebamipide)이 비-골관절염군 비슷하게
대퇴골 연골부위에 표면은 매끄러우며 강하게 오렌지색으로 나타난 반면,
MIA군은 체적적인 연골에서 프로테오글리칸 손실로 인해 약하게 염색되며
표면이 거칠어지는 것을 관찰 할 수 있었다. 또한, TRAP 염색에 의해 장골의
연골하 골(Tibial Subchondral bone)에 존재하는 파골세포를 수를 측정한 결과,
MIA군에 비해 레바미피드를 투여한 군이 파골세포수가 유의있게 감소하는
것을 관찰 할 수 있었다.
[28] 또한, Histology grade를 하기 1에 따라 점수화하여 측정한 결과는 도 3과
같으며, 도 3의 결과로부터 MIA 유도군은 사프라닌 O 염색의 수축 및 연골
표면의 불규칙적 구조를 보였으나, 그에 비해 레바미피드 치료군은 사프라닌
O가 연골 부위에 약간 손실만 보였을 뿐 연골 형태는 매끄럽게 유지 되는 것을
관찰 할 수 있었다.
[29] 표 1
[Table 1]

<table>
<thead>
<tr>
<th>증상</th>
<th>Histology grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>정상 (Normal)</td>
<td>1</td>
</tr>
<tr>
<td>사프라닌 O 염색의 약간의 표면적 수축 (Slight superficial reduction of safranin O staining)</td>
<td>2</td>
</tr>
<tr>
<td>사프라닌 O 염색의 수축 및 약간의 표면 불규칙성 (Reduction of safranin O staining and slight surface irregularity)</td>
<td>3</td>
</tr>
<tr>
<td>심각한 표면 불규칙성 및/또는 틈 (Severe surface irregularity and/or clefts)</td>
<td>4</td>
</tr>
<tr>
<td>완전환 비-경화된 연골 두께 감소 (Full non-calcified cartilage thickness loss)</td>
<td>5</td>
</tr>
<tr>
<td>경화된 연골 감소 (calcified cartilage loss)</td>
<td>6</td>
</tr>
</tbody>
</table>

청구범위

[청구항 1] 레바미피드 및 약학적으로 허용가능한 담체를 포함하는
골편제약의 예방 또는 치료용 약학 조성물.

[청구항 2] 제1항에 있어서, 상기 약학 조성물이 정구 투여용임을 특정으로
하는 약학 조성물.

[청구항 3] 제2항에 있어서, 상기 약학 조성물이 식제 또는 임대체 형태의
정구용 고형 제형(oral solid dosage form)을 갖는 것을 특정으로
하는 약학 조성물.

[청구항 4] 제1항에 있어서, 상기 레바미피드가 0.5 내지 50 mg/kg의 용량으로
정구투여되기예 적합한 단위 투여 형태(unit dosage form)로
제제화되는 것을 특정으로 하는 약학 조성물.

[청구항 5] 제4항에 있어서, 상기 레바미피드가 0.6 내지 6 mg/kg의 용량으로
정구투여되기예 적합한 단위 투여 형태로 제제화되는 것을
특정으로 하는 약학 조성물.
[Fig. 1]

<table>
<thead>
<tr>
<th>Condition</th>
<th>Femur</th>
<th>Tibia</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonarthritis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIA + Rebamipide</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[Fig. 2]

nonarthritis MIA MIA + Rebamipide 6mg/kg

H&E

Safranin O

TRAP (Tibia)