
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0083119 A1

US 2011 0083119A1

Emmelmann (43) Pub. Date: Apr. 7, 2011

(54) INTERACTIVE SERVERSIDE COMPONENTS (52) U.S. Cl. ... 717/111; 717/113

(76) Inventor: Helmut Emmelmann, Mannheim
(DE) (57) ABSTRACT

Serverside internet applications are created by placing inter
(21) Appl. No.: 12/966,976 active server side components (ISSC's) on internet pages.

1-1. ISSC's encapsulate dynamic page functions including pro
(22) Filed: Dec. 13, 2010 cessing of user responses on the server and thus can be reused,

O O which drastically reduces programming effort. The ISSC
Related U.S. Application Data technique remembers information (inform of an ISSC object)

(63) Continuation of application No. 09/449,021, filed on about each ISSC during dynamic page generation on the
Nov. 24, 1999. server. Then, it generates HTML code in a way such that the

ISSC event is sent to the server using a conventional HTTP
(60) Provisional application No. 60 11 0,657, filed on Nov. GET or POST request. On the server, the event is then passed

27, 1998, provisional application No. 60/110,815, to the corresponding ISSC object. All components work with
filed on Nov. 25, 1998. out disturbing each other, even when nested or combined. A

Publication Classificati browser based editor can also be used to place ISSC's on ublication Classification pages and to modify their properties. During dynamic page
(51) Int. Cl. generation, Scripts and handles are embedded into the page

G06F 9/44 (2006.01) that permit editing of the page itself.

Client Computer with
Browser Program

User Interaction With
browser (31

Send Request (32

Receive Page (41)

Analyze and display page

Wait for user interOction
4.

4.

critics

Server Computer with Web Server and
ISSC Processor Program

Web Server Software ISSC Processor
Software (Invention)

Receives Request (33

CIS ISSC Processor (54

Read and Parse Requested
Component Page and
associated Component

Initialize Component E.ditor
----------(98) ----------
Cornponent Processing (37)

Pige Generation (38

Pass generated page to
Web server, Cleanup (39

Take generated page and
send it to client browser

40

US 2011/0083119 A1

QuaUulu00

Apr. 7, 2011 Sheet 1 of 36 Patent Application Publication

US 2011/0083119 A1 Apr. 7, 2011 Sheet 2 of 36 Patent Application Publication

] T

T« E » « E??) » « E? » « E?PTT

[

TO?I?IETOTT),

Patent Application Publication Apr. 7, 2011 Sheet 3 of 36 US 2011/0083119 A1

e heitml Component Editor - Microsoft Internet Explorer Ox

K= KK di)Select wMC Edit vinsert v.
Best C.Select Inspector Mode Page Mode Quick Insert

Welcome to the Component Editor

With the component editor you can edit pages shown in other browser Windows. It is
especially intended to edit server side components. For layout editing see WYSIWYG
editing.

-components displayed in other Windows Show up with colored handles. Please click on
a handle to edit a component, or select a function from the menu bar on top of this
Window. Use New Page from File to call the new page Wizard, or use Insert to
browse available components.

To get more information please click on help here or in the menu bar. The best Way
to learn about the component editor is to look at the tutorial

FIG 3

Patent Application Publication Apr. 7, 2011 Sheet 4 of 36 US 2011/0083119 A1

e heitml Component Editor - Microsoft Internet Explorer Dx

<= KK >>Select vMC Edit vinsert v.
Best C.Select Inspector Mode Page Mode Quick Insert

Field text

Text field.

Property Description
Nome Guest Nome Field nome.

Size Field size in chorocters.

Maxlength Limit to the length of the field's value.
Value Initio field volue.

Check to require the user to fill out the
field.
Check to trim leading and trailing white
space from value.

Mandatory

Trim

Descr A description of the field value.
Disabled OYes ONo OLike form Is field disabled?

POSSWOrd D Check to render input unreadable.

FIG 4

Patent Application Publication Apr. 7, 2011 Sheet 6 of 36 US 2011/0083119 A1

Browser Software Web Server Software

Displays Internet Page receives Request,
calls the appropriate page

(13) Sends Page generating program (14)

Passes

Request Page Generation Program
Client Computer (ll or Module (15)

Server Computer (12)

Fig. 6: State of the Art Model for Server Based Internet Applications

Patent Application Publication Apr. 7, 2011 Sheet 7 of 36 US 2011/0083119 A1

Sends Request Web Server Software Browser Software

receives Request,
calls the appropriate page

generating program
(24)

Displays Internet Page

Sends Page

Passes on Returns
Request Generat

ISSC Processor Program or Server Page
Module (25)

Call ea
other

Component
Page (26)

Component
Class n (27)

Component
Class 1 (27)

Server Computer (22)

Fig. 7: Model for Server Based Internet Applications with ISSCs

Patent Application Publication Apr. 7, 2011 Sheet 8 of 36 US 2011/0083119 A1

Client Computer with Server Computer with Web Server and
Browser Program ISSC Processor Program

User Interaction With Web Server SoftWore ISSC Processor
browser (31 Software (Invention)

Send Request (32 Receives Request (33

Calls ISSC Processor (34

Read and Parse Requested
Component Page and
associated Component

Initialize Component Editor
L---------- (98) ----------

Cornponent Processing (37)

Page Generation (38

Pass generated page to
web server, cleanup (39

s Take generated page and
Receive Page (41) send it to client browser

40

Analyze and display page
42

Wait for user interOction
45

FIG 3

Patent Application Publication Apr. 7, 2011 Sheet 9 of 36 US 2011/0083119 A1

Generation Algorithm
Parameter l is a chi-list

Repeat for all nodes n of l (51

Test if n is browser text or a
component (52)

Text Component

Evaluate the Components Attributes (54)

Find the Component Class with the
components name and call its display
method, pass n and components
parameters (55)

Send the browser text
to the output (53)

Continue with next node of (56)

at end of list

Fig. 9: Generation Algorithm

Patent Application Publication

Tree
Root

Browser-Code (61)
KH1>Database Search Edlif
Formg/His
KPXThis is the fill-in form used to
create new entries, to search, modify
or delete record

Component dbform (62)

id=se.dbform1 relation='guestbook"
key="Guest Name" method= post"

FIG 10

Apr. 7, 2011 Sheet 10 of 36 US 2011/0083119 A1

Browser-Code (63)
Ktable bgcolor=A90bb90"
cellspacing=0 cellpadding=5
bOrder=0>

Ktrxid-Name</td)
Kidd

Component dbfield (64)
name="Guest Name" size=50
mandatory=false trin=true

Browser-Code (65)
</td></tre

Ktrixtolls-Malk/td
kid

Component dbfield (66)
name="Email" size=50
mandatory=false trin=true

Component chformbutton (67) name="clear" type="clear

Patent Application Publication Apr. 7, 2011 Sheet 11 of 36

Display Method of a Component Class
Parameters:

ASTNode: In
Parameter Values given in the Tag marking the Component

Create component instance object (71)

Cali the Component-Information procedure, pass the

US 2011/0083119 A1

This sometimes is done
implicitaly by the programming
language since display is a
costuctor

component instance object and the AST noden (72) These calls can

Cal Slowlandle Procedure of the SSC Processor (75
Pass the component instance object, the image to display,
and Handle-Kind “Begin-Handle’

Generate component specific browser code (76)

or re-seasons

usually be
inherited using
an object
oriented
programming
language.

Boxes with round corners
define source code parts to
be programmed per
component

Boxes with broken lines call
the component editor. These
procedures work only if
pages are displayed in edit

Call Show Handle Procedure of the ISSC Processor (77) mode. To understand the
Pass the component instance object, the image to display, component algorithm the
and Handle-Kind 'End-Handle

is -----------

Generate component specific browser code (78)

Fig.11: Display Method Algorithm Structure

Patent Application Publication Apr. 7, 2011 Sheet 12 of 36 US 2011/0083119 A1

Sample Component Class: Counter

Inherit from Class Component

Display Method, expects Counter Name as parameter cname

Inherit steps (7l) and (72) of component class (81)

Call Show-Handle for Begin-Handle (83)

Read the Value of Counter named cname from Database (84)

Generate browser code to display the Counter Value (85)

Increment Counter named cname in Database (86)

Call Show Handle for End Handle (88)

Steps (82) and (87) are not present because
Drawing 9 shows an extended counter that has
the same step numbers and uses (2) and (7)

Fig. 12. Example Counter Component Class

Patent Application Publication Apr. 7, 2011 Sheet 13 of 36 US 2011/0083119 A1

Registration Procedure

Parameter:
Component Instance

Create bid as the kind of the component instance as string followed
by the value of the global bid-counter and assign the bid to the bid
field of the component instance. (91)

Increment the global bid-counter (92)

Insert the component instance into the list of
listening components. (93)

Fig. 13: Registration Procedure

Patent Application Publication Apr. 7, 2011 Sheet 14 of 36 US 2011/0083119 A1

Component Processing Algorithm

Sort name-value pairs of the form data set on the name and
group all name-value pairs with the same bid (100)

State := OK
Repeat for all groups of name-value pairs (101)

at end

Consult the list of listening components to find the
component with the bid of the current group of name-value
Dairs 102

not found found
OO call the check method of this

component, pass group (103
On error

on OK state := error (104)

If state =OK (105)

O
S

Repeat for all groups of name-value pairs (106)

at end ext group

Consult the list of listening components to find the
component with the bid of the current group(107)

not found found
call the process method of this
component, pass group (108

Clear set of listening components (109) O

Fig. 14: Component Processing Algorithm

ye

Patent Application Publication Apr. 7, 2011 Sheet 15 of 36 US 2011/0083119 A1

Sample Component Class: Counter with Reset
Inherit from Class Component'

Display Method, expects Counter Name as parameter cname
Inherit steps (71) and (72) of 'component' class (111)

Call Registration Procedure (112)

Call Show-Handle for Begin-Handle (113)

Read the Value of Counter named cname from Database (114)

Generate browser code to display the Counter Value (115

Increment Counter named cname in Database (116)

Create a link to the URL
thispage?bid reset=true

where thispage is the url of the current page (provided by the
ISSC processor) and bid is the bid of the counter component
instance. (117)

Call Show Handle for End Handle (118)

Save counter name for processing: let this.cname=cname (119)

Process Method

Set Counter named this.cname in the Database to 0 (121)

Fig. 15: Example Component Class for Counter with Reset

Patent Application Publication Apr. 7, 2011 Sheet 16 of 36 US 2011/0083119 A1

Sample Component Class: dbinsertpanel

Inherit from Class "Component

Display Method, expects dbrelation as parameter

Inheritsteps (71) and (72) of 'component' class (131)
w

Call Registration Procedure (132)

Call Show-Handle for Begin-Handle (133)

Set global variable curpanel to this, save the old value of curpanel
let this.fieldlist = empty list
let this.dbrelation = dbrelation (134

Call Generate recursively for the content of dbinsertpanel (135)
restore old value of curpanel

Call Show Handle for End Handle (136)

Check Method receives form data set group as parameter

L- m

Process Method receives form data set group as parameter

Execute an SQL Insert Statement into the database relation this.relname. The field names are
found in this.fieldlist and the field values in form data set group

Fig. 16: Example Component Class for dbinsertpanel

Patent Application Publication Apr. 7, 2011 Sheet 17 of 36 US 2011/0083119 A1

Example Component Class: dbinsertfield

Inherit from Class "Component'

Display Method, expects fieldname and fieldsize as parameter

Inherit steps (71) and (72) of 'component' class (151)

Call Show-Handle for Begin-Handle (152)

The global variable curpanel is the component object of the enclosing panel (153)
Insert the fieldname into curpanel.fieldlist w

Generate code for an HTML text input field. Field name is
curpanel.bid". Tieldiname

and the fieldsize is given as parameter. (154)

Call Show Handle for End Handle (155)

Fig. 17: Example Component Class for dininsertfield

Patent Application Publication Apr. 7, 2011 Sheet 18 of 36 US 2011/0083119 A1

Editor Structure

Page (161)

Edit-Processor, (162)
adds user interface elements and
scripts for editing

reads writes

Component Editor Server Part
modifies pages based on commands
fron the client part (166)

Edit-Page (163)

Component Editor
Client Part (165)

loaded into the
browser as a script Edit Page with

Edit Scripts (164)

Loaded into the
Browser

Fig.18: Editor Structure

Patent Application Publication Apr. 7, 2011 Sheet 19 of 36 US 2011/0083119 A1

Component Editor Initialization Procedure

Get the Cookie named "complevel' and test
if the value = 1 (17l)

Value = 0 or
no Cookie set

Get the IP number of the client and check if it
is in the set of allowed IP addresses. (172)

IP allowed

Get the cookie named 'secret and check if it
is in the set of valid secret cookies. (173)

Cookie not valid
or no cookie set

Let complevel = 0 (No Edit-Mode) (174)

Cookie valid

Let complevel = 1 (Edit-Mode) (175)

Fig. 19: Component Editor Initialization Procedure

Patent Application Publication Apr. 7, 2011 Sheet 20 of 36 US 2011/0083119 A1

Component Information Procedure
Parameters

Component noden of AST,
Current component Instance

Test if complevel=1 (181)

If this is the first call of Component
Information for a component page (182)

yes

O

yes

Generate Page Initialization Code (183)
Global-Component-Number = 1:

Assign Global Component Number to the CINR of current instance and
increment the Global Component Number 184

Generate Script Code to build up component description (185)
More precisely generate the code

<script language="JavaScript'>
cFIlewcomp0,
c.kind-componentkind;
c.pos=Position;

where componentkind is the kind of the component of n and
Position is the encoded position of the component found in the AST node n

Generate Code to store the attributes of the component instance (186)
c.p=newattribO;

For each attribute of n
c.p.attributname= "Attributevalue"
where Attributvalue is the escaped value of the current attribute

Generate Code to store the component description into the comps Array (187)
compsCINR = c
</script)

where CINR is the component instance number of the current component instance

Fig.20: Component Information
Procedure

Patent Application Publication Apr. 7, 2011 Sheet 21 of 36 US 2011/0083119 A1

Show-Handle Procedure
Parameters

Current Component Instance
Handle Kind: Begin-Handle or End-Handle
Handle Image: im

Test if complevel=l and component
instance stems from component page (191

no

Generate a link

where cinr is the component instance number (cinr) of the
current component instance (192)

Generate the handle image
"
where im is the handle image name (193)

Generate '4'ad (194)

Fig.21: Component Editor Show Handle Procedure

Patent Application Publication Apr. 7, 2011 Sheet 22 of 36 US 2011/0083119 A1

Generate-Page-Initialization-Code

Generate code to set the variable yh to point to the component
editor control window. For example in javascript this is
achieved by using the open function with the window name of
the component editor control window.
Generate code to store the own window handle in
yh.appwindow so that the control window can access the
Application-window. (201)

Generate definitions of helper functions necessary to create
component descriptions. These are basically empty constructors
to create the component description and attribute description
objects. (202)

Fig.22: Generate Page Initialization Code

Patent Application Publication Apr. 7, 2011 Sheet 24 of 36 US 2011/0083119 A1

Component Editor Client Part Pages

Start Page
Initialize Editor

(221)

Menu Page
(223)

Creates Control
Window and loads
Control Page

goes into
Menu Frame

Creates Menu Frame and
loads Page

Control Page
(222)

oads on Menu

goes into
Component Editor

Window

Creates Working Frame
and loads Help Page Component

Help Pages Component Edit Catalog Pages
(224) Pages (226) e

(225)
Help Text listing available

one page for
each component

kind

Components,
several pages for
nany components

Fig.24: Component Editor Client Part Page Structure

Patent Application Publication Apr. 7, 2011 Sheet 25 of 36 US 2011/0083119 A1

Component Editor Start Page

Calljavascript open function to
open up the component editor control window
to load the component editor control page into it

(231)

Message "Component Editor Coming Up Please Wait (232)
Links to Application Pages (233)

Fig. 25: Component Editor Start Page

Patent Application Publication Apr. 7, 2011 Sheet 26 of 36 US 2011/0083119 A1

Component Editor Control Page

Insert Procedure Definition (241)

Cedit Procedure Definition (241)

Load Procedure (242) Unload Procedure (243)
Set Complevel Cookie to 1 Set Complevel Cookie to 0

Frame set for Component Editor Window (244)
0 Menu Frame with Menu Page
a Working Frame with initial Help Page

Fig. 26: Component Editor Control Page

Patent Application Publication Apr. 7, 2011 Sheet 27 of 36 US 2011/0083119 A1

Insert Procedure

Parameter: Component Kind

Create an empty component
description in editcomp (251)

Set editcompkind to the kind
parameter given (252)

Let editcomp.text become the empty
string (253)

Let Insert-Mode = true (254)

Load Component Edit Page for Kind editcomp.kind
into the Working Frame (255)

Fig. 27: Insert Procedure

Patent Application Publication Apr. 7, 2011 Sheet 28 of 36 US 2011/0083119 A1

Cedit Procedure
Parameters

WindoW W
Component Instance Number: Cn
Handle Kind (Begin or End Handle); hk

ODD WindoW=W (261 Curcorrp=W. Corps, Cr?,

If InSertrode=true (262
IO

Let editcomp=curcomp
269

Load Component Edit Page
for Kind editcomp. kind into
the Working Franne (270

Let pos be the position
of curcorro

Check Handle Kind hk (265

Begin-Handle
End-Hordle

Let targetipos contain Let targetipos contain
posipoge-name and pos.page-name and
pos. beginright (264) pos.endleft if present.

Otherwise take pos.
Bedinricht (265

Assign targetipos to the
targetipos field of the componen
form displayed in the working

InsertMode : =false (267

Submit the component form
displayed in the working frame

263

FIG 23

Patent Application Publication Apr. 7, 2011 Sheet 29 of 36 US 2011/0083119 A1

Component Edit Page

HTML Form called Component Edit Form (281)

Form Fields one for each possible component
attribute initially empty (282)

Hidden Component-Kind Field containing Component Kind (283)

Hidden Component Position Field initially empty (284)

Hidden Target Position Field initially empty (285)

Textarea for Component Content (286)

Submit Button (287) Content Button (288) Delete Button (289)

On/odd Procedure

Copy attribute values from top. editcompp
into attribute form fields (290)
Copy position of editcompp into position field

FIG. 29

Patent Application Publication Apr. 7, 2011 Sheet 30 of 36 US 2011/0083119 A1

Component Editor Server Part

Analyze and decode Form Data Set and
store Information in global variables.

Decode the pos form field into its parts
and make them accessible by

pospage-name, pos, beginleft... (301)

Call the Component Editor Initialization
and Check if complevel=1 (302

Check Whether Content button Was
clicked by inspecting the form

dato set (303

Yes, Content Clicked

Send Error Message Process-Content
304 305

FO

Process Update
O6

FIG 3O

Patent Application Publication Apr. 7, 2011 Sheet 31 of 36 US 2011/0083119 A1

Process-Content Procedure

Read the content of the page given in the pos.page
name form field from character position beginright
until endleft excluding the 'Y' and '-' characters. Store
the result, the content of the component, into a string
variable t. (311)

Generate a script that assigns the value of t to
editcomp.text. Note that special characters like new
line need to be escaped. (312)

Generate a script to
Load the Component Edit Page for Kind editcompkind
into the Working Frame (313)

Fig.31: Process Content Procedure

Patent Application Publication Apr. 7, 2011 Sheet 32 of 36 US 2011/0083119 A1

Process Update
Parorefer

Decoded Form Data Set of component form
Decoded position pos

TargetFOs given in the form data Set? (527

fo yes

t=Generate-Component
Text (325

Decode targetipos and Insert
the string t into the file

specified by
targetipospage-name at the

line and column given in
togetage OS Is there a field rared Text

in the form data set (329)

Is endricht in Dos (325

Check if Delete Button was
pressed by investigating

Forrr, Doto Set (322

t=Generate-Component
Text (323

FO

Delete all characters Delete all character Replace all Replace all
of the page of the page characters of the characters of the
specified by specified by page specified by page specified by

pospage-name that pospage-name pospage-name paspage-name that
are between between between are between

pos, beginleft and pos, beginleft and pos, beginleft and pos, beginleft and
pos.endright (326) pos, endrightline pos, endright by t pos, beginnight by t

Generate Update performed' message into the output
page (332

Issue reload in application Window accessible as
top.oODWindoW (33.5

FIG. 32

Patent Application Publication Apr. 7, 2011 Sheet 33 of 36 US 2011/0083119 A1

Generate-Component-Text Procedure
Parameters,
Decoded Form DataSet of Component Form

Let string t become '< followed by the component
kind and a space character. (341)

Repeat for all form fields whose name starts with 'p.'
(i.e. the name has the form p.name) (342)

End of loop More fields

Append name followed by an =' and a double
quote“ the form field content, a closing double
quote" and a final space to the stringt. (343)

Append >' to t (344)

Is there a field named text' in
the form data set (345

No

Append the value of the text form field
to t. (346)

Append <' followed by the component
kind and a >' to t (347)

Fig.33: Generate Component Text Procedure

Patent Application Publication Apr. 7, 2011 Sheet 34 of 36 US 2011/0083119 A1

Multi-Window Applications

To make the generation algorithm work for multiple windows replace step (93) of
the registration subprocedure of the generation algorithm by

Insert the component instance into that list of listening
components that belongs to the destination window. (351)

Insert Step (352) before step (101) of Fig. 14

Step (100) of Fig. 14

Let the list of listening components become the concatenation of
all the lists of listening components of all windows. (352)

Step (101) of Fig. 14

Replace Step (109) of Fig. 14 by (step 353)

Clear the list of listening components that belongs to
the destination window (353)

Fig.34: Mutli-Window Applications

Patent Application Publication Apr. 7, 2011 Sheet 35 of 36 US 2011/0083119 A1

Persistent Components

(71) of Fig. 11 can be replaced by

Check if the component has a name
given and if there is already a
component of that name in session
memory (361)

Create new component instance object (363) Use the existing Object
as component instance object (362)

Continue with
Step 72 of Fig. 11

Step 91 of Fig. 13

Delete component instance from the list of listening
components (or in the multi-windows case from all lists of
listening components), provided it is already contained in
it. (364)

Step 92 of Fig. 13

Fig.35: Persistent Components

Patent Application Publication Apr. 7, 2011 Sheet 36 of 36 US 2011/0083119 A1

Session Less ISSC

Session variables like bid counter, and list of listening components
become global server variables shared for all users.

Step 109 of page 114 becomes:

Remove all component objects from the list of listening
components that were added longer than a fixed time-out
value ago. (371

Fig. 36: Session Less ISSC

US 2011/00831. 19 A1

INTERACTIVE SERVERSIDE COMPONENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 09/449,021, filed Nov. 24, 1999, which
claims priority from U.S. Provisional Application No.
60/110,657, filed Nov. 27, 1998, and U.S. Provisional Appli
cation No. 60/110,815, filed Nov. 25, 1998.

FIELD OF THE INVENTION

0002 The invention relates generally to software develop
ment systems and internet applications, and more particu
larly, to a method and apparatus for developing and using
interactive server side components.

BACKGROUND

1. Web Applications

0003. With reference to FIG. 6, modem internet/intranet
technology allows web browsers (13) running on client com
puters (11) to display internet pages that are stored on server
computers (12). More precisely, there is a web server com
puter (12) connected to a client computer (11) through a
computer network. The web server computer (12) runs some
web server software (14) and the client computer runs a web
browser (13). The internet pages are stored on the web server
computer (12). In the classical internet approach, the web
server Software sends the internet pages unchanged to the
browser. Alternatively, the web server can invoke a page
generating program (e.g. a CGI-Script) or server module (15)
that dynamically generates the page, which is then sent to the
browser.
0004 Modern browsers (such as Netscape Navigator or
Microsoft Explorer) understand that internet pages contain
programs or can download and execute programs by some
other means. In this way, internet applications can be created
that work on client side. We are not concerned here with these
kind of applications. The other approach for internet applica
tions generates the pages dynamically on the server computer
using page generating programs or server modules. When
talking about server side internet/intranet applications, we
mean applications working this way. Both server side and
client side applications have their advantages and disadvan
tages, and both techniques are used heavily.
0005 Serverside internet/intranet applications can be cre
ated by writing programs or Scripts that generate web pages to
be sent to the client. However, creating these programs
requires a lot of rather complex programming effort. In fact,
even simple applications must be created by skilled program
mers. Texts and graphic design are intermingled with the
program code and so must also be maintained by program
CS.

0006 Embedded page languages partly avoid this prob
lem by embedding server side programs into internet pages.
The output of these embedded programs is inserted into the
internet pages. In this way, dynamic content can be realized,
i.e., the internet pages contain dynamically changing parts.
Examples include page counters or the display of database
information. However, all dynamic parts must be pro
grammed. To create truly interactive pages, i.e., pages that
react on user input, like database displays with scroll buttons,
counters with reset button, shopping baskets, database search

Apr. 7, 2011

forms, data entry forms, etc., embedded page languages
require that a processing routine be programmed to handle the
user input.

2. Component Technologies
0007. It is a common to build application programs by
plugging together off-the-shelf components. Provided that
the available components match the problem, applications
can be created very quickly this way. In extreme cases, pro
gramming can be avoided by using existing components.
0008. In many cases, however, the available components
are not flexible enough to create an application that has
exactly the desired functionality. Thus, flexibility is very
important. The more flexible the components are, the more
applications that can be created with the advantages of the
component approach.
0009 Component oriented programming enables the user
to program or modify components. It is often combined with
object oriented technology, which makes it is possible by
inheritance to modify components in an efficient way. With
component oriented programming, simple applications can
be created without programming by reusing off the shelf
components, and more complicated applications can be cre
ated less expensively because at least big parts can be done
using off the shelf components and other parts can be done by
user written components.
0010 User written components provide a means to reuse
program code several times which in itself is a huge benefit
compared to classical programming, where it is known to be
difficult to reuse existing parts.

3. Component Technology for Server-Based Internet
Applications

0011 We are concerned with the problem of using com
ponent based programming techniques for internet applica
tions. There is client based component technology available,
Such as Active X or Java. In this case, the components are
downloaded from the server and then executed on the client
computer. Client-based technologies have certain disadvan
tages (complexity, long download times, security risks, slow
connection to the database, etc.) that make server based tech
nology very relevant.
0012 Some HTML editors provide support for a fixed set
of components on their pages. This is not component oriented
programming since the user can not create his own compo
nents, add existing components or freely combine compo
nents and programs. Also, components cannot be nested and
the number of components per page is fixed rather than
dynamic.

4. Editors and Application Development Tools
0013 Typical application programming is a cycle of edit,
compile and test. An application programmer writes a pro
gram into a text file. From time to time, the program is
compiled and the programmer can test to see if the program
works as desired. If not, selected program text is changed and
the cycle begins again. In this way, the programmer receives
feedback on bugs only after compiling and testing. During
programming, the developer must imagine how the final pro
gram works, which can be difficult and time consuming.
(0014 WYSIWYG application development (where appli
cable) avoids this development cycle. Ideally, the developer
always has a running application on screen and can modify it

US 2011/00831. 19 A1

directly. This simplifies development to such an extent that
non-programmers can create certain kinds of applications. It
is crucial, however, that the application shown during devel
opment is as similar to the final application as possible. If the
final application is in fact different, users are forced to test the
application in the real environment, which introduces a new
kind of development cycle and thereby drastically reduces the
benefit of WYSIWYG development.
0015 WYSIWYG tools are common for web page design
(the layout) but not for web application development. There
are fine WYSIWYG development tools for GUI applications.
The few WYSIWYG development tools available for server
based internet applications somehow simulate or abstract
from the real browser and server environment. They do not
really match the production environment with the disadvan
tage that the users need to test the application in the real
environment again introducing a new development cycle. We
do not know of tools that provide the user with a running
application on Screen, that can be edited at the same time.

5. Maintaining State

0016. It is a well known problem to maintain the state of a
connection from the browser to the server. In addition it is a
problem on several web server architectures to maintain the
state information. On some architectures (CGI) the user pro
gram stops after servicing a page request and looses all data.
0017. However modern web and application servers pro
vide solutions for these problems. ISSCs work on top of these
solutions. We assume in the rest of this description that vari
ables and heap data structures remain available throughout a
user session.

OBJECTS AND SUMMARY OF THE
INVENTION

0018. It is an object of the invention to provide a tool and
a technique to develop server side web applications by com
posing them out of interactive server side components and
placing them on page templates. The technique includes a
mechanism to generate pages from Such page templates that
allows multiple independent and interactive components per
dynamic page, and a browser-based editor to place and
modify components on page templates.
0019 We call a server-side component interactive if the
component upon user interaction can trigger actions on the
server. Current approaches are constrained to a fixed set of
interactive components per page, while our approach
dynamically determines the set of components per page dur
ing page generation. This is an essential improvement since a
broad range of applications can now be built from compo
nents that can not be done with a fixed set. For example,
components can be nested allowing inner components to be
removed or repeated or the set of components can be con
trolled by a program. Furthermore, our approach is simple
enough to allow programmers to create their own compo
nentS.

0020. The browser-based component editor allows the
user to remotely edit a running application. This becomes
possible by a novel approach. The server transforms each
page into a new page that contains editing features (like
Scripts and layout elements) for the page itself. Besides being
editable, the page keeps all its normal functions. For the user
this means that he can test and edit his application with a

Apr. 7, 2011

single tool, while all current approaches require the user to
Switch between two views, the browser and the programming
tool.
0021. The present invention creates server side internet
applications by placing interactive server side components
(ISSC's) on internet pages. ISSC's encapsulate dynamic page
functions including processing of user responses on the
server. Thus, ISSC's can be reused, which drastically reduces
programming effort. In order to flexibly create applications,
ISSC's can be used on dynamic pages and the number and the
kinds of ISSC contained on a single page can change dynami
cally during page generation.
0022. The ISSC technique remembers information (in
form of an ISSC object) on each ISSC during dynamic page
generation on the server. It generates HTML code in a way
such that when the user triggers an event of a certain ISSC,
this event will be sent to the server using a conventional HTTP
GET or POST request. On the server, the event is then passed
to the corresponding ISSC object. The ISSC algorithm makes
Sure that all components work without disturbing each other,
even when nested or combined. This latter property of the
algorithm allows end users to compose applications by freely
combining multiple ISSC's.
0023 The ISSC algorithm can be extended to create a
browser based editor that can place ISSC's on pages and to
modify their properties: During dynamic page generation,
Scripts and handles are embedded into the page that permit
editing of the page itself. Handles mark the position of com
ponents on the page. Clicking on a handle invokes scripts that
permit editing of the component's attributes or allows the user
to insert, move, copy, or delete components. The Scripts then
send change requests back to the server (using conventional
HTTP requests) and the server performs the change and redis
plays the page. Edit Scripts and handles do not interfere with
the function of the pages and slightly modify the layout of the
pages. Thus, this novel mechanism allows the user to edit a
“running web application.”

BRIEF DESCRIPTION OF THE DRAWINGS

0024 FIG. 1 is a screen shot showing a typical database
form.
0025 FIG. 2 is a screen shot similar to FIG. 1 showing
handles to identify the components of the database form.
0026 FIG. 3 is a screen shot illustrating the startup screen
for the component editor.
0027 FIG. 4 is a screen shot of the component editor
window displaying an edit page.
0028 FIG. 5 is a source code listing of a sample compo
nent page.
0029 FIG. 6 is a schematic block diagram illustrating a
prior art server based internet application.
0030 FIG. 7 is a schematic block diagram illustrating a
server based internet application in accordance with the
present invention.
0031 FIG. 8 is a schematic block diagram illustrating the
functional interaction of the client computer and the server
computer.
0032 FIG. 9 is a flow chart illustrating the algorithm for
page generation.
0033 FIG. 10 is an example of an abstract syntax tree for
the present invention.
0034 FIG. 11 is a flow chart illustrating the algorithm for
the display method of a component class.

US 2011/00831. 19 A1

0035 FIG. 12 is a flow chart illustrating the handling of the
component class for a counter.
0036 FIG. 13 is a flow chart illustrating the registration
procedure.
0037 FIG. 14 is a flow chart illustrating the algorithm for
processing of components.
0038 FIG. 15 is a flow chart illustrating the handling of the
component class for a counter with reset.
0039 FIG.16 is a flow chart illustrating the handling of the
component class for dbinsertpanel.
0040 FIG. 17 is a flow chart illustrating the handling of the
component class for dbinsertfield.
0041 FIG. 18 is a schematic block diagram illustrating the
component editor.
0042 FIG. 19 is a flow chart illustrating the algorithm for
initialization of the component editor.
0043 FIG. 20 is a flow chart illustrating the algorithm for
obtaining information regarding a component.
0044 FIG. 21 is a flow chart illustrating the algorithm for
the show-handle procedure.
0045 FIG.22 is a flow chart illustrating the procedure for
generating page initialization code.
0046 FIG.23 is a flow chart illustrating the structure in the
client computer for the component editor.
0047 FIG. 24 is block diagram illustrating the component
editor pages.
0048 FIG.25 is a schematic block diagram illustrating the
start page of the component editor.
0049 FIG. 26 is a block diagram illustrating the control
page of the component editor.
0050 FIG. 27 is a flow chart illustrating the algorithm for
the insert procedure.
0051 FIG. 28 is a flow chart illustrating the algorithm for
the cedit procedure.
0052 FIG.29 is a schematic block diagram illustrating the
component edit page.
0053 FIG.30 is a flow chart illustrating the algorithm for
the component editor server part.
0054 FIG.31 is a flow chart illustrating the algorithm for
handling the content button.
0055 FIG.32 is a flow chart illustrating the algorithm for
updating a page.
0056 FIG.33 is a flow chart illustrating the algorithm for
generating component text.
0057 FIG.34 is a flow chart illustrating the procedures for
multi-window applications.
0058 FIG. 35 is a flow chart illustrating the handling of
persistent components.
0059 FIG.36 is a flow chart illustrating the handling of the
inventive technique independent of a single server user ses
S1O.

DETAILED DESCRIPTION

A. Overview and Terminology

0060 First, we will explain the terminology, the back
ground information and the rationale of the interactive server
side components (ISSCs). Then we shall describe the tech
nique for implementing ISSC's in detail.
0061 1. Component Pages
0062 An ordinary internet page is written in HTML, XML
or any other language the browser understands. The page
could contain embedded Scripts written in JavaScript,
VBScript, or any other programming language Supported by

Apr. 7, 2011

the browser. The code contained on the page is called
“browser code” since this code is processed by the browser.
0063. Using a syntax similar to the HTML/XML tag syn
tax, components can be added to the page. A page with com
ponents is called component page. Tags marking components
are distinguished from browser code by their tag name. FIG.
2 shows part of the page code of the sample page shown in the
introduction. Tags marking components are shown using bold
formatting, while browser code is shown in normal format
ting. The <dbformid, <dbfieldtextd, and <dbformbutton-> tags
mark form, field, and button components, while all other tags
are ordinary browser code.
0064. Note that the actual syntax used to mark the com
ponents on the pages is irrelevant for the invention, but intro
ducing the syntax makes things more concrete and more easy
to describe.
0065. Each component marked on a page has a certain
component kind (the tag name in HTML terminology) and
has attributes. Attributes can be static constants as in XML or
HTML or dynamically evaluated expressions.
0066. There can be several components of the same or
different kind on a single page. Components can be nested
inside each other, i.e., a component can have a content con
taining browser code and other components. For example,
<dbfields . . . D are nested inside a <dbform . . . D in the
example of FIG. 5. We use HTML/XML-like elements with
end-tags to express nesting syntactically.
0067 Please note that putting a component tag on the page
is all that needs to be done to enable the component. Espe
cially it is not necessary to implement a separate program that
handles the input of a form or reacts on the user pressing a
button. Instead, the components are interactive and can oper
ate automatically on user input.
0068. By adding components to a page, the page becomes
a dynamic page or server side application. A page might
display different content when requested several times. For
example, a database component displays the current database
content, which may change anytime. The page we get by
viewing the page a single time is called an instance of the
component page.
0069 2. Component Classes
0070 Before components of a certain kind can be used,
they need to be programmed. However, after a component
kind is programmed it can be used on as many pages as
desired without additional programming. A component can be
programmed in any programming language, but it is preferred
to use an object-oriented language. For each component kind
one class (or Subprogram in non-object oriented languages)
needs to be programmed. We refer to this class as the com
ponent class.
0071. The component class contains several methods,
most significantly the display method. The display method
generates browser code, such as HTML, Javascript, XML, or
whatever the browser understands, that displays the compo
nent on the browser screen. Interactive components have
other methods to react on user interaction.
0072 A product incorporating ISSC's will preferably
include predeveloped components and as well as providing a
means for the user to program his or her own components.
These can be based on existing components by inheriting
from existing component classes.
(0073. 3. The Setting
(0074 The preferred system structure is shown in FIG. 7.
To use web pages containing ISSC's (26), the server computer

US 2011/00831. 19 A1

(22) must contain an ISSC processor program (25) and com
ponent classes (27) for all components used.
0075 When a client browser (23) requests a component
page (26) the web server program (24) calls the ISSC proces
sor (25). The ISSC processor program then reads the compo
nent page and generates a browser page by using the compo
nent classes. The generated page is passed to the web server
(24), which sends it to the client browser (23). A detailed
description of this process and how it interacts with the algo
rithm used in the ISSC processor is given below.
0076 4. Features of ISSC
0077. A general goal of ISSC's is to allow non-program
mers to create powerful applications while at the same time
providing programmers with great flexibility in creating
applications. This is particularly advantageous for non-pro
grammers since components can be deployed with Zero pro
gramming and the component tags are as similar as possible
to HTML/XML tags.
0078 ISSC's support the development of components
with at least the following features. Feature 1 is that compo
nents are interactive, i.e., they can react on user input. It is
essential to use at least Some interactive components in an
application, since very few applications simply display infor
mation without processing user responses. For example,
while a web counter is non-interactive, a web counter with
reset button is interactive since the user can click on the button
and the counter needs to react. The database form shown in
FIG. 1 is also interactive since the user can press a button and
send the form data set to the dbform component, which then
stores it into the database.
007.9 Feature 2 is that components can be nested, i.e., they
can contain other components. Syntactically, this is expressed
by HTML/XML elements with end-tag. The content, i.e., the
text between the tag and the end-tag, typically consists of
browser code and other components. Nested components sig
nificantly improve flexibility since components can be flex
ibly combined. For example, a form contains fields as shown
in FIG. 5, and a database scroller or a shopping basket con
tains components defining the layout.
0080. Feature 3 is that components with non-empty con
tent can decide where and how often the content is displayed.
It can be once, never, or multiple times. For example, a data
base Scroller displays its content multiple times, once for each
database record, or never if there was no result. Conditional
components can decide to include the content based on a
certain condition. This feature is essential for dynamic com
ponent structures on pages.
0081. The following features of ISSC's are technical con
straints imposed by the internet. It is clear that these are
essential to create a working system. Feature 4 is that the
internet works on a page by page basis, rather than an event
action basis as used in current GUI Systems. Feature 5 recog
nizes that the internet is an unsafe environment. There is a risk
that users might fake their browsers in order to work differ
ently than intended. This means that all security checks need
to be done on the server. For example, it is not sufficient to
disable a button in the browser to disable a certain server
functionality because users may add the button by manipu
lating the browser.
0082. The following features are necessary to make com
ponent tags behave naturally, like HTML/XML tags. Feature
6 is that multiple components of the same or different kind
work without interference on a single page. Feature 7 is that
a component works even when used inside another compo

Apr. 7, 2011

nent. Because of Feature 3, this means that the component can
be deleted (because the enclosing component decided not to
include its content) or it can be displayed multiple times.
I0083 Lastly, Feature 8 allows programming whereby the
implementation of a component can dynamically decide to
make use of other components.
I008.4 5. Component Instances
I0085. The set of components directly marked in the text of
a component page is called the static set of components. As
explained above, component pages are dynamic and therefore
components might be displayed differently for different page
requests. Also, the browser code on the page and the number
and kind of components can change dynamically. Each com
ponent can have one, Zero, or multiple component instances
that are actually displayed.
I0086. Because of Feature 3, a component can remove its
content from the page or it can display it multiple times. This
means that the browser code and the components are removed
or displayed multiple times. Therefore, a component inside a
component can have as many component instances as the
frequency that the content is displayed. A typical example is
a database field.<dbfield... D component contained in a table
of database records. It is displayed for each database record
shown on the screen, which could be several, one or none. A
<dbfield... D component on a component page expands into
several <dbfield . . . D component instances, one for each
record displayed. Because of Feature 8, it is possible that
during display of a component, new component instances are
dynamically added to the page.
I0087 6. Interactive Components
I0088 Interactive components are a significant feature of
the invention. Non-programmers are unable to program pro
cessing routines that are normally required to process user
input. However, non-programmers can use components.
Therefore, interactive components provide a way for non
programmers to create server side interactive web applica
tions.
I0089. The interactive components are also a great benefit
to programmers because they encapsulate the display and the
processing of responses into a single object. This results in a
better program structure and makes it much easier to use
components, thereby allowing the programmer to create new
components by inheriting from existing component classes.
0090. An interactive component shows up in the browser
with user interface elements the user can manipulate or some
other means to receive user input. When the user interacts,
information is stored in the browser and sent to the server with
the next page request. The ISSC model makes sure that the
information is sent to the right component instance on the
server to perform the desired action.
0091. The interactive component produces browser code
in order to display it, just like any component. In the case of
an interactive component, the browser code contains code to
make the browser collect user input and to eventually send it
to the server. Often, an interactive component contains but
tons to be pressed or fields to be filled out. An interactive
component can also program the browser to wait for key
strokes and to send them to the server.
0092 6a. HTML Browser
0093. The interactive user interface elements most com
monly used in HTML are links and forms with form controls.
An interactive component can contain links. When the user
presses a link, the component instance waiting on the server is
triggered and it performs an appropriate action. For example,

US 2011/00831. 19 A1

a database scroller component could have a scroll button that
is realized as an HTML link. Clicking on the button makes the
component Scroll.
0094 Technically, clicking on the link causes the browser

to send a page request to the server. The ISSC technique then
makes Sure that the right component method is called to
process the user interaction.
0095. In the case of forms, things are more complex. Fill
ing out the field usually does not cause the browser to send a
request to the server. Thus, interacting with a form field
component does not immediately result in a server action.
Instead, all information entered is collected by the browser
and sent to server completely as the form data set when a
submit button is pressed. Therefore, the form data set can
contain information for several components and trigger
actions of several components.
0096 6b. Other Browser Functionality
0097. Current browsers cando a lot more than just HTML,
e.g. process Scripting languages. How the browser functions
is not important for the ISSC technique. It is important, how
ever, that the component produces some browser code that
causes the browser to collect certain user interactions and to
send the interactions to the server in a specific way. In HTML,
these are realized with links and form controls like fields and
buttons. In JavaScript, there are many more choices, including
pop-up boxes and capturing keystrokes.
0098 6c. Component Data
0099. In order to handle user input and to perform actions,
a component instance in general needs to have the data that
was calculated during display. For example, a delete button
needs to know which database record to delete; a field needs
to know where to store its content; and a scroll button needs to
know what set of records to scroll. We solve that problem by
creating an object (of the programming language), namely the
component object, when a component instance is created.
This display routine and all action routines are methods of the
component object and can access fields of the object to store
their data.
0100. To store the component objects between page
accesses, ISSC's are based on a programming language/web
server/application server that keeps the object available
between different page requests.
0101 6d. Component Identification Bid
0102 Each interactive component instance gets an unique
identification called bid. The bid must be unique at least
within a session. When the browser sends information about
user interaction to the server, it must include the bid of the
addressed component. More precisely, the components must
program the browser to include the bid into Subsequent page
requests.
0103) In the special case of HTML, a component must
include the bid into the name of each form control generated.
We do that by adding the bid followed by a point to the name
of the form control. When the user submits a form, the form
data set is included in the request as name-value pairs. Since
the name of each form control includes the bid, the ISSC
processor can consult the bid to find out the component
instance that contains the form control. When adding URL
parameters to the link of an URL, parameter names must also
be prefixed with the bid.
0104. With other browsers there might be another way to
include the bid into a page request, but the underlying prin
ciple is the same.
0105 7. Preferred Embodiment Implementation Lan
guage
0106. The preferred embodiment of the ISSC invention is
implemented in the heitml programming language which is a

Apr. 7, 2011

page template language as well. In this embodiment, heitml is
used for the component pages and heitml features are used to
mark components. It is noted, however, that the ISSC inven
tion is not dependent on it's the choice of implementation
language and it is not dependent on a particular way for
marking components on component pages. The heitml lan
guage was developed by the present inventor. heitml versions
up to 1.2 are in the prior art. New features of heitml version 2
are described below.

B. The ISSC Processor

1. The ISSC Processor

0107 FIG.7 shows how the browser program (23) running
on the client computer, the web server program (24) running
on the server computer, and the ISSC processor (25) are
connected, and it gives an indication of the data flow. The web
browser and web server programs are well known programs
which are within the skill of one in the art, while the ISSC
processor contains the newly invented techniques.
0.108 FIG.8 is a flow chart describing what happens and in
what order. Initially, the user invokes a web browser on the
client computer and interacts with the user interface of the
browser to select a page possibly being a component page
(31). The browser sends (32) a request to the web server. The
web server receives and analyzes (33) the request, and when
a component page is requested, the web server calls the com
ponent processor (34). Most web servers available today can
be parameterized to do this.
0109 The ISSC processor then reads and parses the
requested component page (35) resulting in an abstract syntax
tree (AST). The component editor is then initialized (36).
This step is required only for the component editor, see sec
tion C below.
0110. The ISSC processor evaluates the parameters of the
request and determines if the user wants to interact with any
components. If so, the component(s) are called to process the
user input (37). The ISSC processor then processes the AST
of the component page according to a page generation
method. The result is a browser page (38).
0111. Then the ISSC processor cleans up all unused com
ponent objects and saves all other objects for Subsequent page
requests (39).
0112 Finally the generated page is sent to the web server
(39), in turn sends it to the client browser (40). The browser
then receives the page (41) displays it (42) and waits for
further user interaction. (42)
0113. Note that only steps (35)-(39) are performed by the
ISSC processor. We will now describe them in detail.
0114 2. Page Parsing
0115 The web server passes the file name (or any other
identification) of the component page to the ISSC processor.
The ISSC processor then reads the component page (usually
from a file, but it could also be stored in a database or in any
other way) and parses it. This means it finds out what tags on
the page mark components, i.e., those tags that have a com
ponent class with the same name. The result is an abstract
syntax tree (AST). Parsing is a well known and well under
stood technology. Anybody skilled in the field of compiler
construction and parsing can construct the parser required for
the ISSC technique.
0116. The AST contains two kinds of nodes, one for
browser code and the other one for components marked on the
page. Browser code nodes contain the code and component
nodes contain the name of the component and its attributes.
The page is represented as a list of nodes called cb-list. Each
node representing a component with content in turn contains

US 2011/00831. 19 A1

acb-list that represents the content of the component. Interms
of a tree, the cb-lists connect all the childrenofanode or of the
tree root.

0117 FIG. 10 contains an example AST for the compo
nent page shown in FIG.5. The page consists of some browser
code (61) followed by a <dbform ... component (62). The
<dbform . . . D component in turn contains browser code
(63), (65) with dbfield (64), (66) and dbformbutton (67) com
ponents. The middle and the right column of FIG. 10 are
cb-lists. The middle column shows the cb-list representing
the page with elements (61) and (62). The right column cb-list
represents the content of the <dbform . . . component and
has the elements (63). . . (67).
0118. 3. Component Editor Initialization and Component
Processing Algorithm Postponed
0119 The component editor and all its procedures are
described in section C below. The techniques described here
can be understood and work without a call to the component
editor. If the component editor is switched off, the calls to the
component editor have no effect. This is why all calls to the
component editors are shown using boxes with broken lines
in the drawing.
0120 For the ease of description, the component process
ing technique will be introduced later. For an initial request of
a component page, the component processing does nothing.
The component processing algorithm starts to work only after
the user interacts with a specific component, e.g. by pressing
the button of the component. This can happen only after the
component was already displayed by an initial page request.
0121 4. Generation Algorithm
0122 FIG. 9 is a flow chart of the page generation algo
rithm. It is a recursive algorithm taking a cb-list as parameter
1. The cb-list 1 is processed node by node (51). If a node
represents browser code (52), it is sent to the browser
unchanged (53). If a node represents a component (52), the
attributes of the component are evaluated (54). Then, the
component class of the component is identified, i.e. the com
ponent class with the name of the component kind taken. The
display method of the component is called (55). Processing
continues with the next node of the component list (56).
0123 Note that in case of a component with an end tag,
processing continues with the component or browser code
after the end tag. In this way, the content of the component is
skipped, unless the display method of the component recur
sively triggers the generation algorithm for the content of the
component.
0.124 5. Component Class—Display Method
0.125. The page generation algorithm calls the display
method for each component. More precisely, it evaluates the
kind of the component, selects the component class with that
name, and then calls its display method.
0126 The display method implements a big part of the
functionality of each component. In fact, all display methods
are different depending on the functionality of the compo
nent. However, we will describe the basic structure of the
algorithm as used for most interactive components.
0127. The basic structure of a display method is given in
FIG. 11. The boxes with round corners are filled out differ
ently for each component. First, a component object is cre
ated in step (71). Depending on the programming language,
this often happens implicitly by declaring the display method
to be a constructor method. Information on the component
needs to be passed to the component editor by calling the
Component-Information procedure in step (72). Then, for
interactive components, the registration procedure of the
ISSC processor is called in step (73). This method assigns a
bid and registers the component object to receive messages.

Apr. 7, 2011

0128. Using an object-oriented language, step (72) and
possibly also step (73) can be inherited from a suitable base
class. Thus, step (74) is actually the first thing that needs to be
programmed by the user writing a component class.
I0129. Depending on the functionality of the component,
HTML code is generated that displays the component in the
browser in steps (74), (76) and (78).
I0130. The procedure Show-Handle needs to be called for
component editing in steps (75) and (77). However, these
steps have no effect if the page is not displayed in edit-mode.
I0131 The code recursively calls back the Generate
method of the ISSC processor in order to call the generation
algorithm for the content of the current component. The dis
play method is free to not call the Generate method, and to
delete the content and all components therein. the code can
also call the Generate method multiple times. Whenever the
Generate method is called, new browser code is generated for
the content and new component objects are created for all
components contained in the content.
0.132. The display method is free to create subcomponents
by calling display methods of the appropriate component
classes.
I0133. The component might also generate HTML code to
display form controls, such as fields or buttons. All names of
field controls must start with the bid followed by a point, as
described earlier.
0.134 6. Example Component: Counter
0.135 FIG. 12 shows an example component class for
implementing a web counter. The counter class has a single
method, namely the display method. Since the component is
not interactive, there are no other methods. The class inherits
from class component in step (81), and therefore steps (71)
and (72) of the display method of FIG. 11 are inherited. The
registration procedure is not called since the component is not
interactive, so step (73) of FIG. 11 is not needed.
0.136 The display method then calls the Show-Handle
routine in step (83). The counter value is read from the data
base in step (84). Because there can be several counters in the
database, the component accepts a counter name (cname) as
a attribute. It is used to distinguish the counters in the data
base. The browser code is generated to display the counter
value in step (85), which in HTML means just to print the
value (unless special formatting is needed). Then, the counter
in the database is incremented in step (86) and the end handle
is displayed in step (88).
I0137 7. Registration Procedure
0.138. The registration procedure shown in FIG. 13 is
called by the display method to indicate that a component
object is ready to receive user input. Registration inserts the
component instance into the list of listening components and
assigns a new bid to the component instance.
I0139 Generation of the bid is a simple process. The ISSC
processor maintains a global bid-counter. The bid is con
structed by the component kind (as an identifier string) fol
lowed by the counter value in step (91). The bid contains the
component kind just for debugging and documentation pur
poses. Then, the counter is incremented in step (92) and the
component object is inserted into the list of listening compo
nents in step (93).
0140. To make the bid unique within a session, the bid
counter must not be reset between page accesses.
0141 8. Cleanup
0142. After completion of the generation algorithm, all
component objects that wait for user input were stored in the
list of listening components by the registration procedure.
The list, all component objects therein, and all referenced
data objects are stored until the next page access. Also, the

US 2011/00831. 19 A1

value of the bid-counter must be kept. All other objects that
are not referenced any more are cleaned up. This is usually
handled by a kind of garbage collection done by the underly
ing System.
0143 9. Component Processing of the ISSC Processor
0144. In case of an HTML form submission, the browser
sends the form data set together with the request. It is an
encoded list of value name pairs indicating the values of the
form controls. This is the case regardless of the protocol or of
the HTTP-Method used; only the actual encoding is different
for GET and PUT HTTP-Methods or other protocols used.
0145 Because of the form control naming scheme, each
form control name starts with the bid of the component that
displayed the form control followed by a point. Thus, the
ISSC-processor finds out using the bid to what component
instance the value should be sent. All component instances
whose bid is contained in the request are addressed by the
request.
0146 Component processing works as a two phase pro
cess. First, the ISSC processor calls the check method of all
addressed components. If none of these lead to an error, the
ISSC processor calls the process method of all addressed
components.
0147 FIG. 14 shows a flow chart of the algorithm. First,
the value name pairs of the form data set are sorted according
to the name in step (100). Since the name starts with the bid,
this creates groups of name-value pairs with the same bid.
Then, we loop through each of these groups in step (101).
Based on the bid, the associated component object is looked
up in the list of listening components (step 102). If found, the
check method for that object is called (step 103). The check
method receives as input the group of name-value pairs and it
returns either “OK” or an error. Using the state variable (step
104), the algorithm determines if any check routine returned
an error. If there was no error (step 105), all groups of name
value pairs are again processed. This time the process method
for each component object is called (step 108).
0148, 10. Check and Process Methods
0149. As explained above, the component processing
algorithm calls check and process methods of the component
classes. If the user reacted on an interactive component, then
the ISSC processor calls the check and process methods of the
appropriate component class. Check and process methods
receive the parameters supplied by the browser.
0150 Check and process methods need to be developed
completely by the component programmer. We give illustra
tive examples below.
0151. The check method is called first and should deter
mine whether the requested action can be completed without
an error. Unless a check of any component did report an error,
the process method is called to actually perform the desired
function. It is possible that multiple components are selected
by the user. For example, by submitting an HTML form,
several field components are submitted. In the case of mul
tiple components, first all check routines are called and then,
only if everything is OK, all process routines are called.
0152 Check and Process receive the group of name-value
pairs of the form data set that are intended for that component
instance, i.e., all pairs whose name starts with the bid of the
component instance. The string bid followed by the point is
stripped of the names before the pairs are passed just to
simplify programming.
0153. 11. Example Interactive Component Class: Counter
with Reset

0154 FIG. 15 shows an example of an interactive compo
nent class implementing a web counter with a reset button.

Apr. 7, 2011

The reset button is realized as a link containing the word reset.
When the user clicks on reset, the counter is reset to zero.
0155 The display method is similar to the counter com
ponent shown in FIG. 12. In addition, the display method calls
the registration procedure (step 112), shows the reset-link
(step 117) and saves the counter name (step 119).
0156 The reset link (step 117) links back to the same page
and it passes a parameter named “bid.reset to the server,
where bid is the bid of the rcounter component instance. It
asks the ISSC-Processor about the URL of the current page to
include it into the URL. Step (119) copies the component
name into the component object for use of the process
method.
0157 Clicking on the reset link, causes the same page to
be redisplayed. However component processing calls the
check and process methods of the component, because of the
bid.reset parameter
0158. The check method returns “OK” simply because
there is no error possible. The process methodsets the counter
to 0 and uses the counter name stored in the component object
to identify the counter.
0159 12. Example Component: dbinsertpanel and dbin
Sertfield
0160 Adbinsertpanel contains several dbinsertfields. The
dbinsertfields show up as HTML text fields. When a dbinsert
panel is submitted, the content of all the contained dbinsert
fields is written into the database. A dbinsertpanel must be
enclosed in an HTML form and the HTML form must have a
button to submit it. The dbinsertpanel receives the database
relation name as parameter. dbinsertfields have the field name
and size as parameters.
0.161 The process for handling a dbinsertpanel class is
shown in FIG. 16. The display method creates the object (step
131), calls the registration procedure (step 132) and shows the
handles (steps 133 and 136), just as with the counter with
reset. Then, it uses a global variable curpanel to store itself. In
this way, dbinsertfields contained inside can access the com
ponent object. A list of field names “this.fieldlist’ is initial
ized to an empty state and the relation name is saved in the
component object (step 134). Then, the content of the dbin
Sertpanel is included by recursively calling Generate (step
135). This calls the display methods of nested dbinsertfield
components.
0162 Handling of the dbinsertfield class is shown in FIG.
17. The dbinsertfield component is not interactive in this
implementation. Instead, fields belong directly to the dbin
sertpanel and use the bid of the panel. Steps (151), (152) and
(155) are the same as with the counter component. In step
(153), the field inserts its name into the field list of the enclos
ing dbinsertpanel. Thus, after complete processing of the
content of the dbinsertpanel, the fieldlist contains all field
names. In step (154), an HTML input field is generated using
the bid of the enclosing panel.
0163 Because the dbinsertpanel is interactive it has check
and process methods. Check is trivial in step (140) of FIG.16.
The process method (141) receives the group of name-value
pairs of the form data set that is intended for this component
as parameter. The process routine then executes an SQL state
ment. The relation name is available in the component object
and so is the list of field names. The field values are given as
the group of name-value pairs Supplied as parameters.
0164. The field list is required so that fields faked by a user
manipulating the browser are not stored in the database. Oth
erwise the name-value pairs Supplied to process were enough
information.
0.165. Note that because of the features of our invention,
there can be multiple dbinsertpanels in a single HTML form

US 2011/00831. 19 A1

working independently without problems! So several data
base records can be written from a single form.
(0166 13. Multi-Window Applications
0167. The main algorithm assumes that only one browser
window or frame is used. The main problem when using
several windows or frames is the list of listening components.
This list is supposed to contain all the components that are
currently visible in the browser and which could send a mes
sage back to the server. The single window algorithm com
pletely clears the list of listening components when creating a
new page since all component instances in the browser will be
replaced by a new page. This is no longer the case when
several windows or frames are used, since a page request
replaces only the component instances of a single browser
window or frame.
0168 To handle several windows or frames, the algo
rithms are modified to use several lists of listening compo
nents, one for each window or frame. Each page request has
a destination window? frame, i.e., the window or frame the
resulting page is to be displayed in. The page generation
algorithm is modified to use the list of listening components
of the destination window/frame instead of the single list of
listening components used before.
(0169 FIG. 34 shows in step (351) a replacement for step
(93) of FIG. 13, which is the only step where the generation
algorithm accesses the list of listening components.
0170 The component processing algorithm of FIG. 14 is
modified to work on all lists of listening components. This is
accomplished by concatenating all lists of listening compo
nents before step (101) of the algorithm. Thus, step (352) is
inserted before step (101). Then in steps (101) through (108),
the concatenated list is used. In step (109) only the list of
listening components of the destination window is cleared;
step (353) illustrates this modified step. Finally, the clean-up
procedure must be modified to retain the multiple lists of
listening components instead of the single list.
0171 14. Persistent Components
0172. In the basic model, each time a page is requested,
component objects are created for all components on that
page. This means that even if the same page is displayed
again, new component objects are created. This is fine with
the ISSC technique since a component exists only as long as
it can accept user input, however, when programming com
ponents, it is sometimes useful to keep the identity of an
object for a longer time.
(0173 This is no problem with the ISSC model. A display
method is not required to create a new component object, but
an existing one can be reused instead. For example, compo
nents can have a name parameter. FIG. 35 illustrates a modi
fied version of the display method of FIG. 11. The display
method of the component looks into a global session wide
associative array to find out if there is already a component
object with that name (step 361). If so, the display method
takes this object (step 362) rather than creating a new one
(step 363).
0.174. This is actually no change in the basic algorithms
presented but just another way of implementing a component
class. However, the following single change needs to be made
in the Registration Procedure of FIG. 11. After step (91),
another step (364) must be added that deletes the component
instance from the list of listening components in case it is
already contained in the list.
0175 15. Working without Session and Session Memory
0176). As described, the ISSC model works on top of a
session system which keeps session data persistent during a
user session. Alternatively, it is possible to create bids that are
unique for all component instances created on a single server.

Apr. 7, 2011

In that way, session and session memory are not required, but
components can be identified by the bid alone.
0177. In order to implement this change, the bid counter
must be a server global shared variable (probably protected
for multiple shared access) that is global for every process
generating ISSC pages. Also, there must be a global list of
listening components shared for all users using the server
(probably protected for multiple shared access). In addition,
the global list of listening components is not deleted at the end
of the component processing algorithm. Instead there is an
expiry mechanism that deletes component objects based on
an expiry condition, for example, ifan object was not used for
a certain time period. Thus, the version of the ISSC algorithm
which works best depends on the underlying web server
system and its ability to provide session memory and global
memory.
0.178 16. Alternative Component Processing Algorithm
0179 The alternative component processing algorithm is
different and in most cases weaker than the main algorithm
presented. It has the following restrictions: (1) the display
method of a component with end tag must call generate for the
content exactly once; (2) display methods may not call dis
play methods of interactive components; and (3) data stored
in Component Objects is not preserved.
0180. The advantage, however, is that sessions and session
memory to store component objects is not needed Note that in
contrast to the method described in section 15 above, no
server memory is needed at all.
0181. The differences between the main algorithm and the
alternative algorithm are: (1) there is no session memory
required, so neither the bid-counter nor the list of listening
components are available when processing starts with another
page; (2) the bid-counter is reset at the beginning of process
ing of each page; (3) before step (100) of the component
processing algorithm, the list of listening components is cre
ated from the abstract syntax tree in the following way:
0182. The abstract syntax tree is traversed just as in the
generation algorithm. For each component node of a compo
nent class, a new component object of that component class is
created by calling the create method. Create is an additional
method that needs to be Supplied by the programmer of a
component class. A parameter create receives the known
attributes of the component. Create must call the register
procedure in the case of an interactive component, which
assigns a bid and inserts the component into the list of listen
ing components. Finally, after the traversal, the bid-counter is
reset.

0183 Because of the above constraints, the component
objects will be created with the same bids as the initial page
generation algorithm. Thus, the list of listening components
is reconstructed but loses component data. However, compo
nent processing still works with the reconstructed list.
0184. It is also possible to intermingle the component
processing and the reconstruction algorithm into a single
algorithm using a simple program transformation.

C. Component Editor

0185. The component editor invention introduces a new
architecture and various algorithms for WYSIWYG editors in
a browser based environment. It can be used to edit arbitrary
pages provided they can be displayed using a Sophisticated
programmable browser, Such as a current internet browser.
The basic idea is to inserts Scripts into pages so that they can
be edited inside the browser.
0186 The advantages of the component editor are: (1)
normal pages as well as component pages can be edited; (2)
the editor works fine over a network—all pages can be stored

US 2011/00831. 19 A1

on the server, and (3) displayed pages stay completely func
tional while being displayed and edited.
0187 Editing of components is very important since non
programmers can create applications by reusing existing
components provided they have a means to edit component
pages in an easy way. The component editor provides this
easy way to edit component pages and so becomes a good
application development environment.
0188 Storing the page on the server rather than on the
client is relevant in many internet applications where it is
burdensome to install an editor on every client computer. An
example is users of web hosting providers that want to install
and maintain a few components on their virtual web sites or
corporate intranets that should be maintained separate from
many client computers.
0189 It is most desirable that during editing the compo
nent pages look and work just as the final pages do. This is
important for efficient WYSIWYG development.
0190. 1. Overview
0191 The basic idea is to use the browser itself to display
a page for WYSIWYG editing. An editor-processor takes a
page and transforms it into an edit-page. The edit-page almost
looks like the original page, but in addition contains Scripts
and user interface elements to permit editing the page itself.
0.192 FIG. 1 shows a normal page with a database search
form and FIG. 2 shows the corresponding edit-page. The edit
page contains handles and Scripts. By clicking on the handles,
the elements on the page can be edited. The Scripts are an
invisible but important part of the editor implementation.
0193 FIG. 18 illustrates the editor process. A page (161) is
transformed by the edit processor (162) into the edit-page
(163), which is displayed by the browser (164). The edit-page
contains user interface elements and Scripts that enable edit
ing of the page. In addition, there is the component editor
client part (165) that consists of several pages and Scripts that
cooperate with the edit page to implement the editing func
tionality.
0194 Since the page may be stored on the server, the client
part of the component editor can not access it directly, but
from time to time sends editing commands to the component
editor server part (166). The server part will then modify the
page and in cooperation with the client part initiate a reload of
the page to reflect the changes.
0.195. It is easily possible to run such an editor across the
network by running the server part on a server computer and
the client part a client computer. The edit processor can either
run on the server computer or on the client computer. Because
reloading the page and the interaction between client and
server part are not too frequent, working across a slow net
work like the internet is possible. It is, however, also possible
to run the complete editor on a single machine by running the
browser and the server part on a single computer.
0196. Because the pages are displayed with the usual
browser, pages in edit mode are displayed and work (in case
of embedded Scripts) very similar to the final pages.
(0197) 2. ISSC's and the Component Editor
0198 Although the editing method described above is
independent of the ISSC model they are closely linked. The
main advantage of the editing method is component editing of
pages containing ISSC's. The implementation of the edit
processor is integrated in the ISSC processor and makes use
of features of the ISSC model.

0199. In fact, the integration of the ISSC processor and the
edit-processor makes it possible to edit components on the
pages. Because the pages displayed in edit mode are pro

Apr. 7, 2011

cessed by the same ISSC-processor in the same environment
(on the server), they stay fully functional and work as the
pages outside the editor.
0200 Since the edit-processor is integrated with the ISSC
processor it is specialized in editing ISSC's. To edit HTML
tags, we pack them into components by writing a component
class whose display routine displays the HTML tag itself.
This does not effect normal page processing but during edit
mode the tag can be edited like a component.
0201 3. The User Interface of the Component Editor
0202 Users can add, modify, or delete components on
component pages using the component editor. The editor
works through the internet inside the browser and is started by
requesting a specific URL. This opens another browser win
dow containing the editor menu and a work-frame containing
an initial help text as shown in FIG. 3.
0203 While the component editor window is open, pages
are shown in edit-mode. In the edit mode, components are
surrounded by handles as shown in FIG. 2. Handles have two
important functions: to edit existing components and to mark
the position where to insert a new component.
0204 Clicking on a handle allows the user to edit a com
ponent. The component editor shows all attributes of the
component in the component editor window inside an HTML
form as shown in FIG. 4. The form has a save button to change
the components’ attributes and a delete button to delete the
component. Although not shown in FIG. 4, where a compo
nent has an end tag, a Content button is provided to display the
content of the component
0205 Clicking on a handle to display a component does
not interact with the server (unless this is the first component
of a certain kind). This is important because information on
the components can so be browsed without server interaction,
avoiding the possibly slow network. Clicking on the Content
button, however, requires a server interaction.
0206. Also, new components can be added to pages. By
clicking on a certain menu item, the component catalog is
displayed in the work-window. It is possible to browse the
catalog and to select a suitable component (kind). This will
cause an empty form to be displayed wherein possible
attributes of the new component can be entered. Finally,
clicking on a handle inserts the new component into the
current page after the handle.
0207 4. Detailed Description of the Component Editor
0208. The component editor consists of three parts: (1) an
extension of the ISSC processor called the component editor
ISSC processor extension; (2) a collection of pages and
Scripts running on the client in the browser, the client part; (3)
a program running on the server to perform the actual modi
fications on the pages, the server part. These parts are
described in detail in Sections 5-7 below, however, prior to
doing so some basic details will be introduced.
0209 4a. Implementation Language
0210. The implementation of a component editor is inde
pendent of the programming language used. However, the
client part needs to be written in a language the client browser
understands and that interacts well with the browser's page
language. Below we give a detailed description on the client
part and sometimes talk about javaScript simply to give a
more detailed description. This does not, however, mean that
the principle algorithm is dependant on javascript.
02.11 4b. Component Instance Numbers (CINR)
0212. Each component instance on a page receives a com
ponent instance number. This number is used in the client part
to identify a particular component instance. Numbering starts
from 1.

US 2011/00831. 19 A1

0213 4c. Positions
0214. A character position (charpos) exactly identifies a
character inside a page. A charpoS can be encoded in various
ways, for example, as a byte offset inside the page or as a line
and column number. We use line and column numbers. A
page-name precisely identifies a page on the server. Usually
this is a file name with a complete path, however, it can also be
Some other kind of identification, for example, if the pages are
stored in a database.
0215. The position of a component consists of the page
name, the charpos of the initial - and of the final is of the
(begin) tag, and if there is an end tag the charpos of the initial
< and of the final d' of the end tag. The parser stores the
position of each component in the component node of the
AST. This is a simple extension to the parser.
0216 We will refer to the page-name by pos.page-name,
the charpos of the < of the begin tag by pos.begin left, the
charpos of the > of the begin tag by pos.beginright, the
charpos of the < of the end tag by pos.endleft, and the
charpos of the > of the end tag by pos.endright. In case of
another syntax being used to mark components on pages,
pos.beginleft and pos.beginright are the begin and end posi
tions of the character sequence marking the begin of a com
ponent, while pos.endleft and pos.endright are the begin and
end positions of the character sequence marking the end of a
component.
0217 Internally, positions are stored in records of the pro
gramming language of the ISSC-processor and the server
part. However, positions are worked on in the client part also.
Then they are converted into a text string representation since
HTML forms can handle only text stringfields but no records.
0218 5. Component Editor ISSC Processor Extension
0219. The extension consists of the Determining-Com
plevel procedure, to find out if we are in edit-mode, the
Show-Handle procedure to display handles, and the Compo
nent-Information procedure to include information on com
ponent instances into the page.
0220 5a. Component Editor Initialization
0221. With reference to FIG. 19, the first task is to find out
if a page needs to be displayed in edit-mode. The browser's
Cookie feature is used for this purpose. While the component
editor client part is activated, it sets a cookie name complevel
to value 1. When the component editor is closed, the client
part sets to cookie to 0.
0222. If set, the browser sends the cookie with each
request to the server. On initialization, the ISSC processor
executes the Component Editor Initialization Procedure
given in FIG. 19. It reads the cookie (step 171). If the cookie
is 0 or not present, complevel is set to 0 (step 174).
0223) Then the algorithm checks if the user is authorized
for component editing. There are two ways to do authoriza
tion. IP based authorization checks to see if the client IP
belongs to the group of allowed IP numbers (step 172). If so,
complevel is set to 1 (step 175), otherwise cookie-based
authorization is tried. People authorized for component edit
ing get a certain cookie named secret placed into their
browser. Determine-Complevel checks to see if the cookie
contains a valid key for component editing (step 173). If not,
the user is not authorized to do component editing and com
plevel is set to 0 (step 174).
0224 Note that this is really safe only if communication is
encrypted. It is no problem, however, to use an encrypting
web server for this purpose.

Apr. 7, 2011

0225. Note that the usual HTML authorization protocol
can not be used since this requires everyone accessing the
pages to entera user name and a password. This is not desired
for public accessible pages.
0226 5b. Component-Information Procedure
0227. With reference to FIG. 20, the component-informa
tion procedure is called by the ISSC processor upon creation
of a new component instance before the display method of a
component is called. If the page is displayed in edit-mode, the
procedure inserts information on the current component
instances into the page.
0228 Finally, the information is stored in an array (named
comps) of the browser's scripting language. It contains a
component description for each component instance on the
page. The component instance number (CINR) is used to
index the array. Each component description is an object of
the browser's scripting language and contains the following
information: the kind of the component; the position of the
component in the component page; and the attributes of the
component. This is in turn is a record containing all the
attributes given in the tag marking the component.
0229. In order to create this data structure, a script must be
embedded in the page. The script is executed by the browser
when the page is displayed and it builds up the component
array data structure.
0230. The component information procedure first checks
to see if the page is to be displayed in edit-mode by testing the
complevel variable (step 181). If not set, nothing is done.
0231. If this is the first time the component information
procedure is called on a page (step 182), then the page ini
tialization code is generated and a global component instance
counter is initialized (step 183).
0232. Then, the current component instance receives the
value of the global component instance counter as its com
ponent instance number (CINR) and the global component
instance counter is incremented. (step 184).
0233. Afterwards, the procedure generates script code to
build up a component description by creating the description
object and assigning the component kind and the component
instances position (step 185). This information is found in the
component node of the parse tree. Code is then generated to
store the attributes of the component instance into another
object and to store it into the component description (step
186). Finally, code is generated to store the component
description into the component array comps (step 187).
0234 5c. Generate-Page-Initialization Code
0235. The generated page needs to talk to the control win
dow of the component editor. This communication must be
initiated. For example, as shown in FIG. 22, in the case of a
javascipt browser, a call to the open window function needs to
be generated and the resulting handle needs to be stored (step
201). Then, the code for any helper functions needed in the
page is generated. This basically means constructor functions
for the component description, the component array and the
attributes object. (step 202)
0236 5d. Show-Handle Procedure
0237 Handles are displayed by the show handle proce
dure illustrated in FIG. 21. This procedure has to be called
inside the display method of a component. It depends on the
layout of the component where handles can be placed best.
0238. The show handle algorithm first checks to see if the
page is to be displayed in edit-mode by testing the complevel
variable (step 191) and if the current component instance
stems from a component page. If so, it includes the handle in

US 2011/00831. 19 A1

the browser code generated. In order to make the handle work,
it must be enclosed in an HTML link that calls a specific
procedure of the component editor client part in case the
handle is clicked on. Therefore, an opening HTML <a ... D
tag is generated (step 192). The hrefattribute of this tags calls
the cedit procedure of the component editor client part when
the handle is clicked. The cedit procedure receives as a param
eter the Component Instance Number (CINR) which is stored
as an attribute of the current component instance and the
handle kind (begin or end handle). Then, an <img ... D tag to
actually display the handle is generated in step 193. Finally
the <a ... D tag is closed (step 194).
0239. 6. The Component Editor Client Part
0240. The component editor client part consists of a col
lection of HTML pages with embedded javascript programs.
0241 6a. Description Technique and Drawings
0242 We first describe the structure of the client part and
then describe HTML page by page. Besides flow charts, we
use drawings to visualize HTML pages and the tags and
Scripts placed on them. Each drawing representing a page is
enclosed in a box with round corners.
0243 6b. Structure
0244 FIG. 23 shows the window and frame structure of
the component editor. There is an application window (211)
displaying the component pages. These pages are generated
by the ISSC processor. They are displayed in edit-mode so
that the components on the pages show up with handles
attached. There can be several application windows or
frames, in case the application itself works with multiple
windows or frames.
0245 Additionally, there is the component editor control
window (212). It consists of two frames, the Menu-frame
(213) and the working frame (214). The Menu-frame contains
a fixed menu, while the content of the working frame changes
depending on the function currently used.
0246 FIG. 24 shows the HTML pages for the component
editor. Arrows indicate which pages reference other pages.
The Start page (221) creates the control window and loads the
control page (222) into it. The control page defines the frame
set of the component editor and loads the Menu-page (223)
into the Menu Frame and the Help page (224) into the Work
frame.
0247 During normal operation of the component editor,
clicking on a handle displays a component using a component
edit page in the Work-frame. There is a component edit page
for each component kind used.
0248 Clicking on a menu item on the Menu-page can
display various help pages or pages (226) of the component
catalog. After selection of a component kind, a component
edit page with an empty form is displayed.
0249 Most of the internal script functions and global vari
ables are defined on the control page. Since this page is never
reloaded, all variables keep their values during a component
editing session.
0250 All pages shown in the structure can be kept in the
browser cache, so displaying a page does not really access the
server in most cases.
0251 6c. Starting Page
0252. The starting page contains a simple script as shown
in the flow chart of FIG. 25. Another browser window, the
component editor window, is opened. By Supplying the right
parameters, the browser is told the right window size, to
exclude any control bars, and to call the component editor
control page into the new window (step 231).

Apr. 7, 2011

0253) The starting page contains text to indicate to the user
that the component editor is being loaded now (step 232) and
additional links (step 233) to show some application pages.
0254 6d. Component Edit Page Interface
0255. The component edit page is described below. How
ever, since it is referenced before that, we will introduce the
interface here.
0256 There is a component edit page for each component
kind. The page contains a form for the attribute values of a
component. The page is used to entera new component and to
editan existing one. There is a global variable name editcomp
which contains the component description of the component
instance that should be displayed on the form. So editcomp
must be initialized the right way, before the component edit
page is loaded.
0257 The editcomp.text field is special (besides the fact
that it is there only for component kinds that have an end tag).
It is used to display the component's content. If there is no text
field in editcomp, no text area shows up on the form and the
content can not be edited. This is used to initially display a
component since a component's attributes can be displayed
without server interaction, but loading the content requires
server interaction. The user can request that by clicking on the
content button.
(0258 6e. Component Editor Control Page
0259. As shown in FIG. 26, the component editor control
page contains all the main algorithms of the client part,
namely the cedit procedure and the insert procedure (step
241). The page also contains a load procedure (step 242) and
an unload procedure (243) and a frame set (step 244) defining
the Menu- and the Work-frame. The Menu-frame is defined to
contain the Menu-page and the Work-frame to contain an
initial help page.
0260 The load procedure (step 242) is called by the
browser when the control page is completely loaded. The
procedure sets the complevel cookie to 1. The unload proce
dure (243) is called by the browser when the control page is
unloaded, i.e., the component editor window is closed. The
procedure sets the complevel cookie to 0. This way, the com
plevel cookie indicates if the component editor window is
open. This information is used by the ISSC processor to find
out whether to display a page in edit-mode or not.
0261) 6f. Menu-Page
0262 The page layout looks like a menu bar. It contains
links to request various functionality of the component editor;
links to help pages; and links to component catalog pages. All
links in the menu page use either the HTML target parameter
to make the linked pages appear in the Work-frame, or they
use the javascript syntax in order to call a javascript proce
dure in the control page. The menu page is an ideal place to
add functionality to the editor simply by adding links.
0263 6g. Catalog Pages
0264. The catalog pages contain a catalog of available
components (or more precisely component kinds). The user
can browse the catalog, read the descriptions and finally click
on a particular component kind. This will select the compo
nent kind for insert. Technically, all links to a certain compo
nent kind use the javascript: URL syntax to evoke the Insert
procedure and to pass the component kind inform of a string.
0265 6.h. Insert Procedure
0266 The Insert procedure is shown in FIG. 27. An empty
component description is created in the editcomp variable
(step 251) possibly containing default values. The kind field
of editcomp is set to the selected component kind (step 252).

US 2011/00831. 19 A1

The text field of editcomp is set to an empty string (step 253)
or a default value in order to make the component edit page
display an empty text field for the content of the component
(in case the component can have a content). Then, the Insert
Mode flag is set so that clicking on a handle will insert the new
object (step 254). Finally, the component edit page for the
selected component kind is displayed (step 255).
0267 6i. Cedit Procedure
0268. The cedit procedure is contained in the client part,
more precisely, on the Control page. It is called when the user
clicks on a handle. Cedit receives the component instance
number, the window the component instance is displayed in,
and the handle kind (begin or end handle).
0269. As shown in FIG. 28, the first step is to get the
component description (step 261). Using the window handle
passed, the comps array of the Application-window can be
accessed. By indexing comps with the component instance
number, we get the component description. The component
description is stored in the curcomp variable for later access.
Also, the window handle of the application window is stored
in the appwindow variable. This is used to issue a reload in the
application window after an update.
0270. It is checked to see if we are in insert mode (step
262). By clicking on the handle in the insert-mode the user
requests to insert a new component after the handle. A filled
out component form is already waiting in the Work-frame at
this time. The target position “targetpos. i.e., the position
where to insert the new component, is calculated. It consists
of the page-name and the charpos. If the begin handle (step
263) is clicked, the target position is after the begin tag of the
component (step 264). Otherwise, if the user clicked on the
end handle the target position is after the end tag unless we
have a component without end tag (step 265). Then, the target
position is after the tag regardless of which handle is clicked.
Then, the targetpos is inserted into the targetpos field of the
component form in the Work-frame (step 266), the Insert
Mode is reset (step 267), and the form is submitted (step 268).
0271 In case there is no Insert-Mode, clicking on the
handle displays the component in the Work-frame. This is
done by storing the component description into editcomp, the
component description of the currently edited component
(step 269). Afterwards, the component edit page for the cur
rent component kind is loaded into the Work-frame (step
270).
0272 6. Component Editing Pages
0273 For each component kind there is a component edit
ing page as shown in FIG. 29. It contains an HTML form
(281) designed to edit components of a specific component
kind and possibly help information about the component
kind.
0274 The form contains fields (282) for each possible
component attribute. It contains a hidden field (283) contain
ing the component kind, a hidden field (284) for the compo
nent position, and a hidden field (285) for the target position
in case of an insert.
0275 For components that have content and an end tag, an
HTML text area field (286) is on the form named text. Using
a script, we make Sure that the text area is shown only if
editcomp indeed has a text field. see 6k below.
0276. Additionally, the form contains a submit button
(287), a content button (in case of a component kind with end
tag) (288), and a delete button (289). Using a script, the
buttons are hidden in case of a new component (editcomp.pos
not defined) see 6k below.

Apr. 7, 2011

0277. The component edit page contains an onload proce
dure. It reads the information of editcomp and displays it in
the form (290). This is the position of the component and its
attributes. Note that fields not present in the component
description editcompare left empty in the component form.
0278 6k. Hiding Parts of Pages Based on a Script
0279. It is not totally straight forward in current javascript
based browsers to exclude part of the page, based on a java
script condition. What needs to be done is to not include the
conditional part in the HTML code. Instead an embedded
Script is used that inserts the conditional part into the page
using write statements, provided the condition is met.
(0280 7. The Component Editor Server Part
0281. The server part is called by the web server when a
component editing form is Submitted. It then performs the
action requested by the user, which is either to modify a
component page by inserting, deleting, or updating a compo
nent, or to get information from a component page and to
display another form for the user.
0282 Technically, the server part is as a page generation
program that is connected to the web server as shown in FIG.
6. The program generates a web page that is sent to the
browser as described and shown in the Work-frame of the
component editor. In addition, the server part performs the
requested changes on the component pages.
0283 7a. Functions Performed
0284. The server part can perform various functions based
on the form data supplied: insert a Component described by
the form into a Page; delete a Component with or without end
tag from a Page; update a Component based on the form data
with or without changing the content of a tag with end tag:
display a Component Form with a text area to edit the content
of a specific component
0285 7b. Form Fields Sent
0286. In case of an insert, the form data set contains a field
named targetpos, which contains the page-name and char
pos where the new component is to be inserted.
0287. In case of a delete, the form data set contains a
button named 'delete.

0288. In case of an update, the form data set contains a
button named submit.

0289. In order to display the content, the form data set
contains a button named content.

0290 For insert and update, the form data set contains a
field name kind containing the component kind and fields
named 'p.' attributename that define component attributes. In
addition, there may be a field named text containing the
content of a component with end tag.
0291 For delete, update and display content there is also a
pos’ form field that contains the position of the component
encoded into a string. The position contains the page-name of
the component page, beginleft, beginright, and possibly
endleft and endright.
0292 7c. Component Editor Server Part Algorithm
0293. A flow chart is given in FIG. 30. First, the form data
set submitted is decoded and all form fields sent are stored in
an easy accessible form (step 301). Then, we check to see if
the user is authorized to perform the desired modification
(step 302). If not, a page containing an error message is
generated (step 304). If the user is authorized, we check to see
if the content button was pressed by inspecting the form data
set (step 303). If so, the process-content routine is called (step
305); otherwise the process update procedure (step 306) is
called.

US 2011/00831. 19 A1

0294 7d. Process-Content Procedure
0295) A flow chart is given in FIG. 31. Based on the
position form field, we can access the content of the compo
nent. More precisely, the position gives the file name, the
position of the is of the begin tag and the position of the <
of the end tag. All characters in between form the content of
the component. By reading the file and extracting all the
characters between these positions, the algorithm loads the
content into a string variable t (step 311).
0296. Since the algorithm generates an HTML page that is
loaded into the Work-frame, it is possible to embed javascript
code in that page. The algorithm does that and generates
javascript code that assigns t to editcomp.text (step 312).
Basically, the code can look like top.editcomp.text="t”
where t is inserted literally. However, special characters in t
like new lines, carriage returns and double-quotes need to be
escaped.
0297 Finally, javascript code is inserted that loads the
component edit page of the appropriate kind into the Work
frame (step 313). This means that the page generated will
actually not show up because the component-edit-page is
loaded immediately afterwards.
0298 7e. Process-Update Procedure
0299. A flow chart is given in FIG.32. The algorithm first
decides (in step 321) what kind of update to perform. If the
form data set contains a target position, it is an insert (handled
in step 323). Otherwise, if (step 322) the form data set con
tains a Delete button then a delete is requested (handled in
step 325). Otherwise an existing component is to be saved
(step 328).
0300 For an insert, Generate-Component-Text is called
generating the text to be inserted (step 323). Then, this text is
inserted at the location specified by the targetpos form data
field (step 324). Targetpos contains the page-name as well as
the character position. The component editor reads, modifies
and writes the page accordingly.
0301 For a delete, there two cases: a component with or
without end tag. If the position form field contains the char
acter position of the end tag, then all characters of the page
specified by page-name are deleted Starting from the position
of the left < of the begin tag (begin left) until the position of
the > of the end tag (endright) (step 326). Otherwise, all
characters of the page are deleted starting from the position of
the left < of the (begin) tag (beginleft) until the position of
the D' of the (begin) tag (beginright) (step 327).
0302) To save a component Generate-Component-Text is
called to produce the new text (step 328). Then, there are also
two cases to distinguish, either the begin tag is updated or the
complete element consisting of begin tag, content, and end
tag. The first case can happen if the component does not use
an end tag or if the user wants to modify the attributes but not
the content of a component with end tag. If there is a text
field in the form data set (step 329), then all characters in the
page specified page-name that are between beginleft and
endright are replaced by t (step 330). Otherwise, only the
characters between beginleft and beginright are replaced
(331).
0303 Finally, an update performed message is shown on
the page (step 332) and some javascript code is inserted to
cause a reload of the Application-window in the following
way (step 333): Since the page generated is loaded into the
Work-frame using top.appwindow the appwindow variable
of the control window can be accessed. The variable app
window is controlled by the client code to make sure it
contains the handle of the application window so that the
reload method of top.appwindow must be called.

Apr. 7, 2011

(0304) 7f. Generate Component Text
0305. This procedure generates the text for a component to
be inserted or to replace another component. The procedure
reads the form data set and results in a string (possibly with
new line characters).
(0306 A flow chart is given in FIG. 33. First, a '-' is
generated followed by the content of the kind form field (step
341). Then, the algorithm loops for all form fields whose
name starts with p. (step 342). For each form field named
p.attribute-name, the text attribute-name="attribute
value” is appended where attribute-value is the value of the
p.attribute-name form field (step 343). After all attributes, a
closing > is generated (step 344).
0307 If the form data set contains a field named text
(step 345), then the content of the text form field is also
generated (step 346) followed by an end tag </kind ol' (step
347) where kind is the content of the kind form field.
0308) Note that it is straight forward to adapt this proce
dure to generate any other syntax used to mark components.

D. heitml Language

0309 This section describes object oriented features of
heitml and their application: interactive server side objects.
An interactive server side object can be placed on a dynamic
web page by a single HTML/XML element so even non
programmers can deploy them. Typical interactive objects are
database query forms, Scrollers, database entry forms, shop
ping baskets, etc.
0310 heitml extends HTML by object oriented program
ming concepts, so that interactive objects can be pro
grammed. An interactive object can, besides performing com
plex functions to display itself, also remain active longer than
a single page request in order to process user input in the next
dialog step.
0311 heitml is a language extension of HTML. HTML
describes static hypertext documents. heitml extends this to
server side dynamic documents and complete web applica
tions as needed for web-database integration or e-commerce
applications. HTML pages are usually downloaded verbatim
from a web server and displayed by a browser. heitml docu
ments on the other hand are processed by the server and
transformed into HTML before being sent to the browser.
0312 heitml introduces server side interactive objects. An
interactive object within a web page displays dynamically
generated information, waits for user input, and processes it.
Interactive objects are placed on web pages using the well
known tag syntax of HTML, XML, and SGML. This allows
non-programmers to use server side objects on their pages
and thereby drastically improve cooperation in project teams
consisting of programmers, graphic designers etc.
0313 The biggest advantage of heitml is that interactive
objects can be combined, nested, parameterized, and pro
grammed very flexibly. These features are crucial to create
applications by reusing cooperating interactive objects
instead of rewriting everything from Scratch each time.
0314. There are class libraries of ready-to-use heitml
objects. All are implemented using the programming lan
guage features of heitml. Library objects can be freely com
bined with user written objects. Also new objects can be
created by inheriting from the already existing classes.
0315 Classically, web applications are programmed in a
page oriented way. This means programs or page templates
with embedded programs are created by the programmer
Each program or template is started when the browser
requests a page. Then this single HTML page is generated and
sent to the browser.

US 2011/00831. 19 A1

0316. Adding some server side functionality, for example
a database form, requires additions in at least two places: The
form needs to be added to the page program that shows the
form and a processing routine needs to be added to the fol
lowing page program. This hampers the creation and espe
cially the use of reusable components: A user who just wants
to add some server side functionality must insert the right
calls in several places of the program and so requires detailed
knowledge of the program and the component.
0317. The goal ofheitml is to specify the use of serverside
functionality the same way as browser functionality, namely,
by using HTML/XML like tags, so that it can be used by an
HTML-designer without programming knowledge. We have
shown that this is possible and are convinced that there is no
need for using another totally different syntax/semantics, as
many other approaches do. In contrast, we think that for the
programming of server side functions syntactical features
beyond XML are necessary.
0318 For example, a counter can be used on aheitml page
by writing:

0319
0320

The counter value is <counter name="test'>
or for a counter with a reset button:

0321. This is a <counter name="test” resetbutton
0322 Note that there is no big difference in the descrip

tion, although there is a big difference in the implementation:
The counter with reset button reacts on a users response (i.e.
pressing the reset button).
0323. Another example is a database display element and
a database scroller element:

This is the database content:
<dbdisplay relation="customers'>
<dbformat

<dbfield “Name''> <dbfield "Address>

<dbformatic
<dbonempty>
No data found.

<dbonempty>
<dbdisplay>

0324. This displays a list of customer records on the web
page. The <dbformat element holds the format of a database
record, and the <dbonempty contains the text to be dis
played in case the database is empty.
0325 If the tag <dbscrollers is used instead of dbdisplay,
not all records are shown at once, but Scroll buttons make it
possible to scroll through pages of data. Clearly the imple
mentation of a scroller is much more complex, since it must
react to the Scroll buttons accordingly.
0326. There are many possible new elements like
<counters or <dbdisplay). Examples are a <dbform to
modify database records or, more application-specific, a
shopping basket or a discussion group.
0327. It is very important, however, that tags can be freely
combined. Only combination makes it possible to build com
plex applications. Have a look at the following example:

<dbdisplay relation="customers'>

<dbonempty>
No data found <counter name='modata resetbutton

<dbonempty>
</dbdisplay>

Apr. 7, 2011

0328. The counter now only counts if the database is
empty, because it only shows up on the page if the database is
empty. This means server side features of a page change
dynamically for example based on database content.
0329. It is even more interesting to enter the counter into
the <dbformatd. In this case every database record shown is
counted and there are counter appears several times on a
single page. These things may sound simple and straight
forward, but they require certain special implementation
techniques.
0330 Just as an HTML web site consists of HTML pages,
a heitml web site consists of heitml pages. heitml is an exten
sion of HTML, so heitml pages can contain normal HTML
code. In addition, heitml pages contain server side function
ality in the form of objects. A heitml tag such as <counters
actually places a counter object on the page.
0331 Whenaheitml page is requested from the server, the
heitml objects on this page are created in the server. The
objects then perform their specific functions, possibly inter
acting with other objects, and finally generate HTML code to
display themselves in the browser. When the user answers,
e.g. by clicking on a button or a link of an object, the object
waiting on the server receives a message and reacts accord
ingly.
0332 A heitml object that specifically waits for user
responses is called interactive. For example a usual page
counter is not interactive, yet a counter with a reset button is
interactive, since the object must wait on the server for the
user to press the reset button.
0333 Another example of a non-interactive object is
<dbdisplay). It performs a database query and shows the
results on the page. <dbscrollers does the same but allows the
user to scroll. Since the <dbscroller reacts on the scroll
buttons it is interactive.

0334. As usual in object oriented systems, you can define
classes inheitml. A class defines the functionality of a certain
class of objects. Once a class such as counter is defined,
objects of that class can be placed on pages by using the tag
Syntax.
0335 heitml offers the possibility to define classes using
the <def> tag.

0336. Example: <defmytag-><inherit Object>This is to
be printed</def>

0337 This defines subsequent uses of <mytag-> to be
replaced by “This is to be printed. More precisely it defines
a class named mytag so that objects of the class show up as
“This is to be printed'. So when the tag <mytag-> occurs on a
page an object of the class mytag is created and displayed as
“This is to be printed”.
0338 Below we give the syntax of a tag definition in
EBNF. Terminal tokens are printed in bold letters. Nontermi
nals are written in italics. The nonterminal heitml stands for
any heitml text, Ident stands for an identifier enclosed in
quotation marks.

0339 Syntax: <def Ident><inherit Ident>heitmlk/def>
0340. Using this mechanism, text, parts of pages and page
layouts, can be packed into objects and be reused several
times. To reuse a class on several pages, heitml provides an
inclusion mechanism. Definitions can be written into include
files which can be reused by other pages.
0341 Classes can have parameters and parameters might
have default values. Default values are taken, if a parameter is
not given, when a tag is used. Parameter values can be
inserted into the text using the <2> tag:

US 2011/00831. 19 A1

Example:
<defbig texts.<inherit Object><fontsize="+4"><? texts</def>

<big text="heitml> prints heitml
Syntax: <def Ident Parameterlist > <inherit Ident > heitml < def>
Parameterlist ::= (Identifier = string)*

0342. Definitions can be nested, i.e., there can be a tag
definition inside another one. Nested definitions are called
methods of the enclosing class and may not contain an
<inherit Tag. An inner definition is visible only within the
enclosing define. In fact, the inherit tag can also be left out in
non-nested definitions. In this case they define methods of an
implicitly defined class named page. Practically, they are
often used like procedures of other languages.
0343 Inheritance is the major object oriented concept
used for achieving reusability. Through inheritance it is pos
sible to create several similar objects without specifying each
one from scratch. Classes can inherit the methods of another
class. The <inherit tag is used for this purpose.

0344 Syntax: <inherit Class>
0345. It must be placed directly behind the <def> tag and
the class must give the name of a preceding class definition. It
is then called a superclass. What inheritance means is that all
the methods of the superclass become visible, unless they are
overwritten by a new method definition.
0346 We call an element that consists of a start-tag, the
content, and an end-tag an environment. Environments are
defined using the <defenvo tag. They can be classes when
defined with <inherit and methods otherwise.

Syntax: <defenv Ident Parameterlist > <inherit Ident > heitml < defenvic
Parameterlist ::= (Identifier = string)*

0347 The heitml text between <defenva and </defenva is
called body and may contain the <defbody tag. When the
environment is used on a web page, the whole environment is
replaced by the body. Inside the body the <defbody tag is
replaced by the content.
0348. Inheritance works for environment definitions the
same way as for normal classes.
0349 Additionally, inside the content of an environment
methods of the environment-class can be used.

0350. The <gld-tag defines a list, like <uld but uses a
gif-image as bullet. As usual, the tag can be used to create
list entries inside the <gld-tag.
0351 Executing the <gld creates a table. The first column
contains the bullet and the second column the text. The -
tag is redefined to achieve this functionality. A tag can
occur several times in a document, sometimes within an <uld
or <old and sometimes within a <gld. The redefinition of
as a method of <gld ensures that is redefined within a

Apr. 7, 2011

<gld only. This heitml language feature is very powerful,
because different tag definitions can be used in each environ
ment.

0352 An interactive object stays on the server waiting to
process user input. For example, database forms or database
scrollers are interactive objects. They are initially displayed
on the page and they contain links or buttons the user can click
to request a certain function. This needs to be programmed in
form of a program procedure that we call processing routine.
We need to introduce more programming concepts before we
can give more details on interactive objects.
0353 heitml is an extension of HTML and a complete
object oriented programming language. This means that not
only adaptive web pages, but complete applications can be
done. Therefore, it is a hybrid language combining document
description and programming in one language.
0354 heitml features three important syntax changes that
apply to heitml tags:
0355 (1) heitml allows expressions in parameter posi
tions: e.g. <mytag param=5*6+26>. Parameter expressions
are evaluated and the result is used. To pass a constant, quotes
must be used e.g. <mytag param="test>.
0356 (2) heitml knows positional parameters. HTML
uses keyword parameters, i.e. the parameters of a tag can be
given in any order but are always written in the form
parametername value. In contrast, most programming lan
guages have positional parameters. So heitml Supports both.
The parametername can be left out if the parameters are given
in the same order as in the definition.

0357 (3) Programs using a lot of tags soon become
unreadable, because of many ><sequences. So heitml allows
to replace >< as a semicolon and to leave out “let’ after a
semicolon.

Example: <let i=1 ><while i-100><let arrayi)=iki><let i=i-1d.</while>
New Syntax: <let i=1; while i-100; arrayi=ii; i=i--1; while>

0358. A heitml page is seen as a program and is processed
in textual order. Ordinary text is just displayed and HTML
tags work as usual (when the output or heitml is sent to a
browser).
0359 heitml introduces a variety of new tags directly cor
responding to common language constructs. There are con
trol structures, e.g.

Syntax: <if Expr > heitml <else heitml </if>
<while Expr > heitml <|while>
<break

and expression handling tags to evaluate a variable, to insert
the content of a variable into the document, and to assign
Some generated text to a variable.

Syntax: <let Variable = Expr >
<? Expr Format >
<assign Variable > heitml <lassign>

0360. In addition, expressions can be used as parameters
for user defined tags. Finally, there are tags for accessing the
database using SQL.

US 2011/00831. 19 A1

0361 heitml variables are dynamically typed. Possible
types are boolean, integer, real (double precision), string, and
object. There are the usual operators and a lot of built in
functions.
0362 Variables do not need to be declared. They are
always local to the current page or the current definition. In
addition, there are global variables that always have to be
written as gl.variablename, and session variables written as
se.variablename. Session variables keep their values between
page accesses.
0363 The object data type is most interesting in heitml
since it provides the full functionality of associative arrays. It
covers the record/struct/object datatype as well as the array
datatype of other languages.
0364. An object consists of several fields. Each field can
contain a value of any type. The fields are ordered and num
bered starting with 0. Each field can have a field name, which
must be unique. If o is an object, then o.name accesses the
field with the given name. oil, where i is an expression
leading to an integer, accesses the i-th field. OS, where S is an
expression leading to a string, accesses the field with the
name given by S. Associative arrays are a powerful concept
since they allow addressing of subobjects in a very flexible
way.
0365. Objects are fully dynamic, so fields can be added
and deleted etc. Multidimensional arrays or arrays of objects
can be realized by using objects as field values. Objects use
reference semantics, as is common in object oriented lan
guages.
0366 Each object belongs to a class that is determined to
create the object. An object is created either by directly call
ing a constructor function (named as the class name), or by
using the class name as a tag. Object methods can be called
using the usual syntax X.methodname (parameters), where X
is an expression evaluating to an object.
0367 The body of a class definition implicitly defines a
display/create method. When the class is called (i.e. a tag with
the name of the class is processed) an object of the class is
created and the display/create method is executed.
0368. Inside each method, the object can be referred to by
the keyword this, so object fields can be accessed writing
this.fieldname. The following example clarifies this. <ald

16
Apr. 7, 2011

works as <gld from 3.5 but marks the list items with letters.
<al uses an object variable to keep track of the letter to be
taken next.

0369. The object vanishes unless this is assigned to a glo
bal data structure. It is possible to assign the object to a
session variable and to later call a method of the object using
the programming language method call. This is the way inter
active objects work.
0370. The prototype of an interactive object is a database
form that displays a database record and allows the user to
update it. Such a form could look like

<dbform ... -

<fieldtext “Name''>
<fieldtext “Email

</dbforms

0371. The form consists of the <dbform environment
with some parameters identifying the record to be shown. The
content describes the layout of the form; <fieldtext displays
a field of the database record.
0372 Simplified implementations of <dbform and
<fieldtext are given below. No error checks are performed
and the database record must always exist.<dbform inherits
the method registerme from the class Interactive. Registerme
saves the object in a session variable and makes Sure that the
process method of the object is called when the user clicks the
submit button of the form.

<defenv dbform relkey:
inherit Interactive:
defprocess inp;

foe

bupdates

fabupdate:

deffield text name size:

foe

seSIorm;

><input name="<? this.bid.<?name> size=<?size> value=this.recordname><

this.rel=rel; this.key=key:
bquery q> select * from <? reld where <2 key “AND%Qn'> <
brow: this.record = q.; dbquery;

registerme:
efbody

><input name="<? this.bidd-Submit type="Submit value="Submit's <
isesform:

idefenwic

US 2011/00831. 19 A1

0373 The class <dbformd is defined with two methods,
fieldtext and process. The create/display routine performs a
database select statement to read the record. It assigns the
complete database record to a field of the object so that all
following calls of fieldtext can access the values.
0374 <fieldtext> creates an HTML input field. Its initial
value is the field value contained in the database. The field
name itself is prefixed by this.bid which is generated by
registerme so that input fields of different objects receive
different names. The process method gets one parameter. It
contains all input fields belonging to the object. It performs
the appropriate database update.
0375. The heitml system includes a browser based WYSI
WYG component editor. A component is nothing else than a
heitml object, that can be edited by the component editor.
0376. The component editor displays an ordinary heitml
page in the browser and attaches handles to every component
on the page. Then the user can click on the handle to modify
the attributes of a component. It is also possible to select new
components from a catalog and add them to an existing page.
0377 To program a component, an ordinary heitml class
needs to be programmed to perform the desired function.
Then, this class needs to inherit the class Component or
SimpleComponent. For SimpleComponents, this is all that
needs to be done. For Components an additional component
description file needs to be created uSusally named 'com
Classname. The component description file contains docu
mentation and help texts to be displayed by the component
editor. It also describes the possible values and the desired
formatting of the component attributes.
0378 heitml can work as a CGI program or as a web server
extension using the ISAPI or apache API interfaces. heitml is
first translated using state of the art compiler techniques into
an intermediate representation and is then interpreted.
0379 When a user requests several pages from a server
then (some) variables in heitml keep their values, including
all objects they refer to. Keeping state is a crucial feature for
many applications.
0380. In CGI applications and web applications it is not
possible to keep data from one page access to another. CGI
Scripts are started anew for each request and so lose all
memory. When using the API of a multi-process server like
apache, page requests for the same user might be handled by
different tasks. In multi-threaded servers like the MIIS, vari
ables are kept, but all programs must be thread-safe, since
they must be able to process multiple requests in parallel.
0381 Advantageously, heitml abstracts from the underly
ing mechanisms and simulates a simple persistent memory
for the author, although heitml is available for all the inter
faces described above.
0382. After each page access heitml performs a kind of
garbage collection to find out which objects need to be kept.
These are written to file and read in again when needed. This
way user sessions can have very long timeouts and are per
sistent even beyond server crashes.
0383 More and more websites turn out to be large soft
ware systems consisting of HTML pages and HTML genera
tion programs. There are well known principles to Support the
creation of large Software systems, to enhance maintainabil
ity, and to reuse software parts. Encapsulation, information
hiding, and abstraction are familiar mechanisms. Currently,
HTML and most of its derivatives lack these mechanisms.
There is no way to structure a web site in HTML in a top
down or bottom-up manner because HTML supports neither
encapsulation, nor information hiding, nor abstraction. There
is no way to hide unnecessary technical details and no way to
reuse parts several times.

Apr. 7, 2011

0384. Many applications require HTML pages to be
dynamically changing. There are many approaches to gener
ate pages or their parts from programs (two-level language
approach). This approach sacrifices the simplicity of HTML
that makes it intuitive for thousands of non-programmers,
graphic designers, and text authors. However this approach
creates unnecessary complexity for programmers, too, since
two different languages have to be used. This often enforces
a bad program structure, Scattering logically connected parts
throughout the system since the abstraction mechanisms of
the programming language can not be used for the HTML
part.
0385. On the other hand, object oriented languages have
tremendous success because of their ability to create large,
maintainable event driven systems. In object oriented lan
guages, classes encapsulate State and provide clean inter
faces. Together with inheritance and genericness this pro
vides an enormous possibility for reuse.
0386 heitml has been designed to enrich HTML with
these advantages. heitml is an object oriented programming
language which Smoothly combines the markup features of
HTML with modern concepts such as inheritance, opera
tional methods, and user-defined elements. Classes describe
tags that can be used to place user-defined objects on web
pages. A heitml class generates HTML code, expanding its
program to a final text. A heitml class can be reused and
extended which allows designing web page systems in a
modular, class-based way.

1. A computer-readable medium encoded with computer
programs having executable instructions for editing Software
applications that run on a data network which couples a server
computer and a client computer, wherein the client computer
runs a browser program, and wherein upon request by the
browser program, the Software applications generate gener
ated documents for display by the browser program on a
display device and respond to the request with the generated
documents, comprising:

a document generator program running at least part of one
of the Software applications being edited and generating
the generated documents, said generated documents
including additional editing features for interpretation
by the browser program; and

an editor program dynamically operating on the generated
documents displayed by the browser program via the
editing features,

the computer-readable medium further encoded with a plu
rality of components, wherein the Software applications
comprise at least one document template capable of
containing components, and

wherein the editor provides features to insert, modify, and
delete a component on at least one document template,

and wherein the document generator executes selected
components on document templates, and wherein at
least one of the components reacts interactively on user
input by executing instructions of said component on the
server computer.

2. A computer-readable medium as in claim 1, wherein at
least one of the components contains at least one other com
ponent.

3. A computer-readable medium as in claim 1, wherein the
set of components on documents generated from at least one
document template can vary for different requests of said
document template.

4. A Software development system having a data network
which couples a server computer to a client computer,
wherein the client computer includes a first software program

US 2011/00831. 19 A1

for generating a request for one or more pages from the server
computer and for displaying pages on a display device, and
wherein the server computer includes a second Software pro
gram for receiving and processing the request from the client
computer, for generating and storing pages, and for transmit
ting pages to the client computer in response to requests, the
server computer further comprising:

a data store,
a plurality of components residing in the data store, includ

ing at least one selected component executing first
instructions contained in said selected component on the
server computer;

a plurality of page templates residing in the data store, at
least one page template having at least one selected
component incorporated therein;

a server processor controlled by a third software program,
said program providing instructions for selecting the
page template based on the request from the client com
puter and instructions for generating a generated page
from the page template for transmission to the client
computer thereby calling first instructions; and

a component editor controlled by a fourth software pro
gram, said fourth Software program providing instruc
tions for editing selected components on the page tem
plate and instructions for making the first Software
program display a page for editing whereon the compo
nent has a similar appearance as on the generated page
with the addition of editing features.

5. The development system of claim 4, wherein a compo
nent is nested within a component.

6. A computer-readable medium encoded with computer
programs having executable instructions to edit and maintain
applications using a web browser, comprising:

an editor program operating within the web browser on
generated documents and having instructions for insert
ing, deleting, and modifying components on document
templates, wherein the editor program operates a func
tional application in an edit mode permitting editing of
said application directly in the web browser; and

a document generator program having instructions for pro
cessing document templates, for executing said compo
nents, and for generating the generated documents from
the document templates that are understandable by the
web browser,

wherein at least one of the components contains instruc
tions and can react on Subsequent document requests
containing user responses by executing selected instruc
tions of said component.

7. A computer readable medium as in claim 6 further
encoded with:

component classes, each component class implementing
one component kind; and

a parser program able to detect components marked on
document templates;

wherein the document generator program works upon a
document request using component classes to generate
browser code, and

wherein the editor program is capable of showing a menu
of components for insertion into the document tem
plates.

8. A system having a data network which couples a server
computer to a client computer, the server computer running
an application to modify dynamic documents on the server
computer, the server computer comprising:

Apr. 7, 2011

a document store;
a first Software program including instructions for trans

forming at least one first document retrieved from the
document store into a second document having features
which permit editing of the first document such that at
least a part of the second document appears and func
tions similar to the run-time view of the first document
wherein the first document includes at least one compo
nent being executed by the first Software program, the
component generating code for the run-time view of the
first document; and

a second Software program including instructions to
receive information from the client computer and
instructions to modify the first document stored in the
document store.

9. The system of claim 8 wherein the second document
includes handles and choosing one of the handles selects a
component for an editing operation.

10. The system of claim 9, wherein at least one handle
indicates the position of at least one component contained in
the first document and said editing operation includes modi
fying the component, deleting the component, and displaying
information regarding the component.

11. A system having a data network which couples a server
computer to a client computer, the server computer running
an application to modify dynamic documents on the server
computer, the server computer comprising:

a document store;
a first software program including instructions for trans

forming at least one first document retrieved from the
document store into a second document having features
which permit editing of the first document such that at
least a part of the second document appears and func
tions similar to the run-time view of the first document;
and

a second Software program including instructions to
receive information from the client computer and
instructions to modify the first document stored in the
document store

wherein the features include scripts and wherein the scripts
encapsulate information from the first document.

12. A system having a data network which couples a server
computer to a client computer, the server computer running
an application to modify dynamic documents on the server
computer, the server computer comprising:

a document store;
a first Software program including instructions for trans

forming at least one first document retrieved from the
document store into a second document having features
which permit editing of the first document such that at
least a part of the second document appears and func
tions similar to the run-time view of the first document;
and

a second Software program including instructions to
receive information from the client computer and
instructions to modify the first document stored in the
document store; and

the system further comprising at least one script for auto
matic download to the client that works in cooperation
with the second document to permit editing of the first
document.

13. A system having at least one computer running a second
Software program for editing components on web document
templates for use with a first Software program including first

US 2011/00831. 19 A1

instructions for generating a document request to obtain at
least one generated document from the second Software pro
gram and for displaying the generated document, the second
Software program capable of receiving and processing the
document request and of transmitting first documents to the
first Software program in response to requests, said system
comprising:

a plurality of components containing instructions to gen
erate browser code and each component having features
to cooperate in editing the component,

a plurality of document templates,
the second software program transmitting, while process

ing selected requests, second documents to the first soft
ware program that make the first Software program dis
play a user interface for editing functions used for
maintaining components on document templates, and

a third software program used by the second Software
program while processing selected document requests,
the third software program including third instructions
for modifying document templates in order to perform
said editing functions.

14. The system of claim 13, wherein at least some compo
nents include fourth program instructions including steps to
generate browser code for transmission to the first software
program in response to a request from the first software pro
gram, wherein the browser code can differ for multiple
requests for the same document template.

15. A system as in claim 14 having a data network coupling
the computer and a client computer, the first program running
on the client computer.

16. A system as in claim 14, wherein second documents
include HTML pages with embedded scripts and wherein the
features include program instructions for collecting and pass
ing information to the editor and instructions for displaying
additional editing features during editing.

17. The system of claim 14, wherein the editing functions
include adding a component to a document template, remov
ing a component from a document template, and modifying a
component on a document template.

18. The system of claim 14, further comprising a fifth
Software program used by the second Software program while
processing selected document requests, the fifth software pro
gram including fifth instructions for generating generated
documents from document templates thereby calling fourth
program instructions.

19. The system of claim 18, wherein the generated docu
ments include, if requested in edit mode, edit features for
interpretation by the first software program.

20. The system of claim 18 further comprising instructions
to allow the user to click on the generated documents to select
items to perform edit functions on.

21. A Software development system having at least one
computer running an application for developing dynamic web
documents, said dynamic web documents operating by being
transformed into an end user's view upon a request by a web
browser, the end user's view being provided to the browser for
display on a display device in response to the request, com
prising:

an editor program having instructions for dynamically
editing dynamic web documents,

a document generator program having instructions forgen
erating generated documents from dynamic web docu

Apr. 7, 2011

ments which look and function similar to the end user's
view of the documents with the addition of editing fea
tures,

the editor program comprising first instructions for
requesting that the document generator program pro
cesses a dynamic web document during editing thereby
resulting in a generated document,

the system comprising second instructions for displaying
at least Some information items contained on said gen
erated document in a view which allows the user to select
an item to which a modification function will be applied,

the editor program comprising third instructions to modify
the dynamic web document to perform said modification
function,

a plurality of components including at least one component
marked on said dynamic web document and including
instructions for use by the document generator program
to generate browser code.

22. The software development system of claim 21, wherein
the editor program uses a web browser for displaying said
view.

23. The software development system of claim 21, wherein
the modification function includes insertion of a component,
deletion of a component, and modification of a component.

24. A Software development system having at least one
computer running an application for developing dynamic web
documents, said dynamic web documents operating by being
transformed into an end user's view upon a request by a web
browser, the end user's view being provided to the browser for
display on a display device in response to the request, com
prising:

an editor program having instructions for dynamically
editing dynamic web documents,

a document generator program having instructions forgen
erating generated documents from dynamic web docu
ments which look and function similar to the end user's
view of the documents with the addition of editing fea
tures,

the editor program comprising first instructions for
requesting that the document generator program pro
cesses a dynamic web document during editing thereby
resulting in a generated document,

the system comprising second instructions for displaying
at least Some information items contained on said gen
erated document in a view which allows the user to select
an item to which a modification function will be applied,

the editor program comprising third instructions to modify
the dynamic web document to perform said modification
function,

sixth instructions to collect edit-information for use by the
editor program, said sixth instructions for execution dur
ing the document generation, and

a plurality of components wherein the edit-information
comprises position information on selected components
marked on the dynamic web document,

wherein the editor program uses the edit-information to
correctly modify the dynamic web document.

25. A system having at least one computer running an
application for developing document templates that are
intended for transformation into generated documents for
display by a first software program, the first Software program
including first instructions for generating a document request
to obtain at least one generated document and for displaying
the generated document on a display device, comprising:

US 2011/0083119 A1

a plurality of components having instructions to generate
browser code for transmission to the first software pro
gram,

an editor program having instructions for performing edit
ing functions to maintain components on document tem
plates, the components having the ability to cooperate
with the editor,

a plurality of document templates having said components
denoted thereon, and

a document generator program having instructions to, upon
document requests, generate generated documents from
at least one document template for display by the first
software program wherein the set of components on the
generated documents can vary for different document
requests for said document template.

26. The system as in claim 25, wherein the editing func
tions comprise adding a component, modifying a component,
and deleting a component.

27. The system as in claim 25, whereintag syntax is used to
denote at least one component on at least one document
template, whereby the tag name identifies the component
kind.

28. The system of claim 25 comprising a server computer
coupled to a client computer by a data network, the document
generator program running on the server computer, and the
editor program running, at least partly, on the client computer.

29. The system as in claim 25, wherein at least one com
ponent that can react interactively on subsequent document
requests can be excluded from said generated document upon
selected document requests for said document template.

30. The system as in claim 29 comprising third instructions
to prevent excluded components from reacting on subsequent
document requests.

31. A system as in claim 30, said third instructions com
prising fourth instructions to, upon a first document request,
store information in session memory on some of the compo
nents that are present on the document generated based on the
first document request, and fifth instructions to, upon subse
quent document requests, only react on components that have
been remembered in session memory thereby avoiding tam
pering with excluded components on the side of the first
program.

32. A system as in claim 25, wherein at least one first
component contains sixth instructions to decide upon a
request for said document template about exclusion of com
ponents nested inside the first component from the generated
document.

33. A system as in claim 25, the system providing an
editable view taking the varying set of components into
acCOunt.

34. A system as in claim 25 providing an editable view that
includes and excludes selected components on different
requests for said document template similar to the end user's
view of the document template.

35. A system as in claim 25, wherein a document generated
for at least one document template contains more components
than the document template for at least one document request.

36. The system as in claim 25, wherein multiple instances
of at least one third component denoted on the document
template can be included in at least one of the documents
generated from said document template.

37. The system as in claim 25, comprising seventh instruc
tions to assigna unique identifier to each component instance
of at least one seventh component, whereby the seventh com

20
Apr. 7, 2011

ponent includes eighth instructions to qualify names gener
ated into the browser code with the unique identifier.

38. A system as in claim 25, wherein at least one fourth
component contains ninth instructions to decide upon a
request about how many instances of components nested
inside the fourth component are included in the documents
generated from said document template.

39. A system as in claim 25, the editor program able to
provide an editable view that includes multiple instances of
selected components similar to the end user's view of the
document template.

40. A system as in claim 25, wherein at least one sixth
component includes tenth instructions to display the sixth
component, the tenth instructions being used to generate
browser code for displaying the sixth component during edit
ing as well as during normal use of the component.

41. A system having at least one computer running an
editor program for use with a web browser, the editor program
having instructions for allowing the user to dynamically edit
at least one document displayed by the browser on a display
device, wherein scripts contained in said document remain
running during editing, the editor program including a first
software program for execution within the browser having
instructions for processing selected clicks on the View of said
document displayed in the browser by initiating editing func
tions.

42. The system as in claim 41, wherein the editor program
includes instructions to display at least two windows, a first
browser window displaying said document and a second Win
dow for displaying information on an element contained in
said document.

43. The system as in claim 41, comprising a second soft
ware program having instructions for storing modifications
on said document in cooperation with the first software pro
gram.

44. The system as in claim 43 further comprising a third
program having instructions for transforming an original
document into the document, the browser displaying the
document as said view looking similar to the original docu
ment and interpreting editing features contained in the docu
ment.

45. The system as in claim 44, wherein said original docu
ment is a dynamic document having components denoted
thereon, the third software program comprising instructions
for generating browser code in cooperation with selected
instructions contained in the components.

46. The system as in claim 45, comprising a client com
puter connected to a server computer via a data network,
wherein the browser together with the first software program
is running on the client computer, and the second and the third
software program run on the server computer.

47. The system as in claim 41, wherein links contained in
said document stay functional allowing the user to browse
and edit at the same time.

48. A system for displaying dynamically generated docu
ments, the system having a data network coupling a server
computer to a client computer, wherein the client computer
has a first software program including first program instruc
tions for generating a request to obtain at least one generated
document from the server computer and for displaying the
generated document on a display device, comprising:

a plurality of components having instructions for execution
on the server computer, at least one of the components
including first features adapted to cooperate with an

US 2011/00831. 19 A1

editor in editing said component and second program
instructions to generate browser code, and

a program having instructions on the server for dynami
cally generating generated documents for transfer to the
client computer based on the data contained in a request
initiated by the client computer, thereby using second
program instructions of selected components.

49. The system of claim 48 further comprising a plurality of
document templates with components denoted thereon,
whereby the browser code generated by the components can
vary for different requests of the same document template.

50. The system of claim 49, wherein first features include
fourth program instructions for passing information to the
editor.

51. The system of claim 50, wherein at least part of said
information is collected during execution of selected compo
nents on the server computer.

52. The system of claim 50, wherein said information is
transmitted from the server computer to the client computer.

53. The system of claim 50, wherein said information
includes attribute values of said component.

54. The system of claim 49, wherein first features include
fifth instructions that display additional editing features of the
component during editing.

55. The system of claim 54, wherein said editing features
include handles.

56. The system of claim 49, wherein first features include
an extension for use by the editor, said extension for enabling
editing of an attribute value of the components.

Apr. 7, 2011

57. The system of claim 56, wherein said extension enables
display of a page for editing the attribute values of the com
ponents.

58. The system of claim 49, wherein at least one compo
nent is denoted on at least one document template using tag
Syntax, whereby the tag name identifies a component kind.

59. The system of claim 48 containing at least one compo
nent wherein second program instructions are used to gener
ate browser code for displaying the component during editing
and during normal use.

60. A method for dynamically editing an application that is
built using components and that operates by generating docu
ments comprising the steps of:

running at least part of the application on a computer,
thereby executing selected components and generating a
generated document,

displaying a view of the generated document,
selecting a component by clicking on selected portions of

said view,
identifying the selected component in the source code of

the application, and
initiating a modification function modifying the source

code of the application.
61. The method of claim 60, wherein the running step and

the displaying step are repeated after initiating the modifica
tion function.

62. The method of claim 60, further comprising collecting
edit information for use by the identifying step.

ck : * : *k

