

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2012/085287 A1

(43) International Publication Date

28 June 2012 (28.06.2012)

WIPO | PCT

(51) International Patent Classification:

C07C 45/34 (2006.01) *C07C 15/50* (2006.01)
C07C 47/575 (2006.01) *C07C 15/58* (2006.01)
C07C 47/21 (2006.01) *C07C 43/23* (2006.01)
C07C 47/228 (2006.01) *C07C 43/215* (2006.01)
C07C 47/54 (2006.01) *C07D 317/50* (2006.01)
C07C 49/245 (2006.01) *C07D 317/54* (2006.01)
C07C 49/788 (2006.01) *C11D 3/18* (2006.01)
C07C 15/44 (2006.01)

(74) Agent: **SIEVERT, Claudia**; Ueberlandstrasse 138, CH-8600 Duebendorf (CH).

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/EP2011/074003

(22) International Filing Date:

23 December 2011 (23.12.2011)

(25) Filing Language:

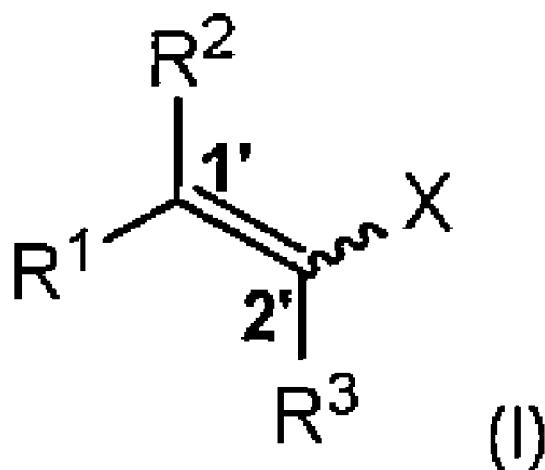
English

(26) Publication Language:

English

(30) Priority Data:

1021864.2 23 December 2010 (23.12.2010) GB

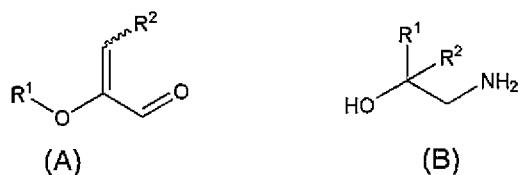

(71) **Applicant** (for all designated States except US): **GIVAUDAN SA** [CH/CH]; Chemin de la Parfumerie 5, CH-1214 Vernier (CH).

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

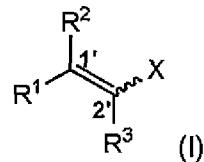
(54) Title: COMPOUNDS CAPABLE OF RELEASING FRAGRANT COMPOUNDS

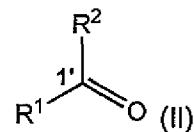

(57) **Abstract:** Provided is class of compounds of formula (I) wherein X, R¹, R² and R³ have the same meaning as given in the specification capable of releasing fragrant compounds in a controlled manner into the surroundings.

COMPOUNDS CAPABLE OF RELEASING FRAGRANT COMPOUNDS

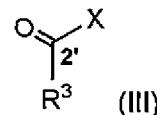
The present invention relates to a particular class of compounds capable of releasing fragrant compounds in a controlled manner into the surroundings. The present invention
5 is also concerned with a process for their production, and consumer products comprising them.

The provision of fragrance in products by addition thereto of inherently fragrant substances to products is well known and widely used. An alternative method of
10 providing fragrance is by the use of a precursor, that is, a substance that is itself, basically because of the high molecular weight, essentially odorless, but which, in particular circumstances, will decompose to release the fragrant molecule.


There are several classes of compounds known which release fragrant molecules upon
15 activation, such as hydrolysis, temperature change, oxygen, action of light and enzymes. According to our best knowledge only two classes of compounds have been reported to release upon oxidative cleavage odoriferous compounds. JP 2001-072637 discloses 2-alkoxy-3-arylpropenals (A) releasing functional substances. There are no details given with regard to the release mechanism nor with regard to any functional
20 substance thus released. Yang et al. (*Helv. Chim. Acta* 2003, 86, 2928-2936) reports the release of aldehydes and ketones of β -amino alcohols (B) by periodate oxidation in H_2O (= water).


25 The systems reported in the prior art are often either too stable or too unstable and are therefore rather unsuitable as delivery systems for the controlled release of fragrances. It is therefore necessary to reach an optimal balance between stability and instability so as to obtain a release rate of the precursors as required for different applications, a task
30 which is very difficult to achieve. In addition, the β -amino alcohols (B) described by Yang et al. release the aldehyde / ketone only in the presence of periodate, an additive which is not accepted in consumer products.

It has now been found that the compounds of formula (I) as hereinbelow described can act as precursors for the release, by spontaneous air oxidation, of an aldehyde or ketone and a further fragrant compound containing a carbonyl group.


5 Thus, there is provided in one aspect the use of a compound of formula (I)

as precursor for generating a ketone or aldehyde of the formula (II)

and a carbonyl compound of the formula (III)

10

wherein

R¹ is selected from the group consisting of

C₅ – C₁₄ alkyl, for example C₆ – C₁₂ such as C₈, C₉, C₁₀ or C₁₁ alkyl;

15 C₅ – C₁₄ alkenyl, for example C₆ – C₁₂ such as C₈, C₉, C₁₀ or C₁₁ alkenyl comprising, e.g. one or two carbon-to-carbon double bonds;

C₅ – C₆ cycloalkyl such as cyclohexyl, or cyclopentyl;

C₅ – C₈ cycloalkyl (e.g. cyclohexyl, cyclopentyl) substituted with 1, 2, or 3 groups

20 selected from C₁ – C₆ alkyl (e.g. ethyl, isopropyl, tert-pentyl) and C₂ – C₄ alkylidene (e.g. isopropenyl);

C₅ – C₈ cycloalkenyl, e.g. C₆ cycloalkenyl such as cyclohexa-2,4-dienyl, cyclohex-1-enyl, cyclooct-3-enyl;

25 C₅ – C₈ cycloalkenyl such as cyclooct-3-enyl, wherein the cycloalkenyl-ring is substituted with 1, 2, or 3 groups selected from C₁ – C₄ alkyl (e.g. ethyl, or isopropyl), C₂ – C₄ alkylidene (e.g. isopropenyl), and C₃–C₅ cycloalkyl (e.g. R¹ is 7-methyl-spiro[4.5]dec-8-en-6-yl, spiro[4.5]dec-7-en-7-yl, 5,5-dimethylcyclohex-1-enyl, 2,6,6-trimethylcyclohex-1,3-dienyl, 2,4-dimethylcyclohex-3-enyl, or 4-isopropenyl(cyclohex-1-en-1yl);

(C₁ – C₃)alkyl(C₅ – C₆)cycloalkyl wherein the cycloalkyl-ring is optionally substituted with one group selected from –OH group and =O group, and/or one or two ether group(s), and/or up to four C₁-C₅ alkyl groups (e.g. R¹ is (3-tertbutylcyclohexyl)ethyl, or (4-(1,1-dimethylpropyl)cyclohexyl)methyl, (3-oxo-2-pentylcyclopentyl)methyl);

5 (C₁ – C₄)alkyl(C₅ – C₆)cycloalkenyl wherein the cycloalkenyl-ring is optionally substituted with one –OH group, and/or one or two ether group(s), and/or up to four (i.e. 0, 1, 2, 3 or 4) C₁-C₅ alkyl groups (e.g. (2,6,6-trimethylcyclohex-1-en-1-yl)ethyl, 1-(2,6,6-10 trimethylcyclohex-2-en-1-yl)butan-3-yl);

(C₂ – C₃)alkenyl(C₅ – C₆)cycloalkenyl wherein the cycloalkenyl-ring is optionally substituted with one –OH group, and/or one or two ether group(s), and/or up to four (i.e. 0, 1, 2, 3, or 4) C₁-C₅ alkyl groups (e.g. (2,6,6-trimethylcyclohex-1-en-1-yl)ethenyl, 15 (2,6,6-trimethylcyclohex-2-en-1-yl)ethenyl, (2,6,6-trimethylcyclohex-2-en-1-yl)prop-2-en-2-yl, (2,6,6-trimethylcyclohex-1-en-1-yl)prop-2-en-2-yl);

C₆ – C₁₄ aryl, e.g. phenyl;

20 C₆ – C₁₄ aryl wherein the aryl ring is substituted with up to 3 (i.e. 0, 1, 2, or 3) groups selected from C₁ – C₄ alkyl (e.g. ethyl, iso-propyl, tert-butyl), –O – CH₂ – O –, and –OR¹¹ wherein R¹¹ is independently selected from hydrogen and C₁ – C₄ alkyl (e.g. ethyl, iso-propyl, tert-butyl);

(C₁ – C₃)alkyl(C₆ – C₁₄)aryl, e.g. benzyl, 2-phenylethyl;

25 (C₁ – C₃)alkyl(C₆ – C₁₄)aryl such as benzyl or 2-phenylethyl wherein the aryl-ring is substituted with up to 2 groups (e.g. 1 group) selected from C₁ – C₄ alkyl (e.g. ethyl, iso-propyl, tert-butyl), –O – CH₂ – O –, and –OR¹² wherein R¹² is independently selected from hydrogen and C₁ – C₄ alkyl (e.g. ethyl, iso-propyl, tert-butyl);

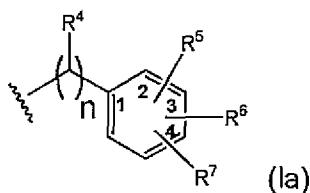
30 (C₂ – C₈)alkenyl(C₆ – C₁₄)aryl, e.g. 2-phenylethylene-1-yl, 1-phenylhept-1-en-2-yl; (C₂ – C₈)alkenyl(C₆ – C₁₄)aryl wherein the aryl-ring is substituted with up to 2 groups (e.g. 1 group) selected from C₁ – C₄ alkyl (e.g. ethyl, iso-propyl, tert-butyl), –O – CH₂ – O –, and –OR¹³ wherein R¹³ is independently selected from hydrogen and C₁ – C₄ alkyl (e.g. ethyl, iso-propyl, tert-butyl);

bi-, tri, or tetracyclic hydrocarbon ring comprising C₈ – C₁₂ carbon atoms optionally substituted with up to 6 groups selected from C₁ – C₄ alkyl (e.g. ethyl, iso-propyl, tert-butyl), – O – CH₂ – O –, and –OR¹⁴ wherein R¹⁴ is independently selected from hydrogen and C₁ – C₄ alkyl (e.g. ethyl, iso-propyl, tert-butyl), e.g. R¹ is 1,1,6,7-tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-7-yl, 2-((1,1-dimethyl-(2,3-dihydro-1H-indene))-6-yl)-eth-1-yl, 3,6,8,8-tetramethyl-2,3,4,7,8,8a-hexahydro-1H-3a,7-methanoazulen-5(4H)-ylidene, or 1,1,2,4,4,7-hexamethyl-1,2,3,4-tetrahydronaphthalene-6-yl;

5 R² is selected from hydrogen, C₁ – C₅ alkyl, and C₂ – C₅ alkenyl (e.g. but-3-enyl);

10 or

R¹ and R² form together with the carbon atom to which they are attached


15 a) a 5 to 7 membered hydrocarbon ring(s), the ring(s) may contain up to two (i.e. 0, 1 or 2) ether groups, and /or the ring(s) may optionally be substituted with C₁-C₅ alkyl groups (e.g. methyl or 3-methylbutyl), for example, R¹ and R² forming together with the carbon atom to which they are attached is 7-methyl-3,4-dihydro-2H-benzo[b]([1,4]dioxepine-3-ylidene), 7-(1,1-dimethylethyl)-3,4-dihydro-2H-benzo[b]([1,4]dioxepine-3-ylidene), or 7-(3-methylbutyl)-3,4-dihydro-2H-benzo[b]([1,4]dioxepine-3-ylidene);

20 b) 2-(2-(4-methylcyclohex-3-en-1-yl)propyl)cyclopent-1-ylidene; or

25 c) a 14 – 17 membered hydrocarbon ring (e.g. cyclohexadec-1-ene-6-ylidene, (Z)-cycloheptadec-1-ene-10-ylidene), the ring may be substituted with a methyl group (e.g. (Z)-4-methyl-cyclotetradec-1-ene-6-ylidene, 4-methyl-cyclopentadec-1-ene-6-ylidene);

30 R³ is hydrogen or methyl; and

X means a radical of formula (Ia)

wherein

n is 0 or 1;

R⁴ is hydrogen or methyl;

5 R⁵ is hydrogen or methyl;

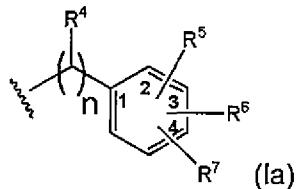
R⁶ is selected from hydrogen, C₁ – C₅ alkyl, vinyl, hydroxyl, methoxy or ethoxy; and

10 R⁷ is selected from hydrogen, C₁ – C₅ alkyl, vinyl, hydroxyl, methoxy or ethoxy; with the proviso that if one of R⁶ and R⁷ is hydroxyl then the other is selected from methoxy or ethoxy (e.g. if R⁷ = OH, then R⁶ = methoxy or ethoxy); or

15 R⁶ and R⁷ form together with the carbon atoms to which they are attached a 5 or 6 membered ring containing up to two oxygen atoms (e.g. cyclopentane, cyclopentene, cyclohexane, cyclohexene, 1,3-dioxolane), wherein the ring may optionally be substituted with up to 6 methyl groups (e.g. 1, 2, or 5 methyl groups);

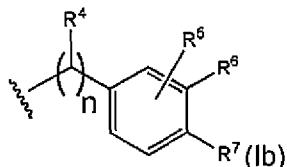
with the proviso that

a) if n = 0, R¹ is not a group selected from aryl and aryl substituted with an –OR¹¹ 20 wherein R¹¹ is C₁-C₄ alkyl; and


b) if R³ is hydrogen and R¹ is selected from the group consisting of alkenyl, alkenylcycloalkenyl, alkenylaryl and cycloalkenyl in which no sp³-hybridised C-atom is between C-1' and the nearest C-C double bond of R¹, then n = 1.

25

Non-limiting examples are compounds of formula (I) wherein X is phenyl optionally substituted with up to 3 (i.e. 0, 1, 2 or 3) groups selected from C₁-C₄ alkyl (e.g. methyl, ethyl, iso-propyl, tert-butyl), vinyl, hydroxy, C₁-C₃ alkoxy (e.g. ethoxy), and –O – CH₂ – O –, e.g. X is benzo[d][1,3]dioxol-5-yl, 3-methylphenyl, 4-methylphenyl, 4-methoxyphenyl, 4-vinylphenyl or 3-ethoxy-4-hydroxyphenyl.


30

Further, non-limiting examples are compounds of formula (I) wherein X is a radical of formula (Ia)

wherein R⁵ is hydrogen or methyl and R⁶ and R⁷ form together with the C-3 and C-4 a 5 or 6 membered ring (e.g. cyclopentane, cyclopentene, cyclohexane, cyclohexene, 1,3-dioxolane) wherein the ring may optionally substituted with up to 5 methyl groups (e.g. 1 or 2 methyl groups).

Further, non-limiting examples are compounds of formula (I) wherein X is a radical of formula (Ib)

wherein n = 0 or 1, R⁴ and R⁵ independently of each other are selected from hydrogen and methyl, and R⁶ and R⁷ independently of each other are selected from hydrogen, C₁ – C₅ alkyl, vinyl, hydroxyl, methoxy or ethoxy.

15

Further, non-limiting examples are compounds of formula (I) wherein X is selected from naphthyl (e.g. naphth-2-yl), (naphthyl)methyl, 1,1,2,4,4,7-hexamethyl-1,2,3,4-tetrahydronaphthalen-6-yl, and 1,1,2,4,4,-pentamethyl-1,2,3,4-tetrahydronaphthalen-7-yl.

20

Further non-limiting examples are compounds of formula (I) wherein R¹ is C₁, C₂ or C₃ alkylphenyl wherein the phenyl ring is substituted with up to 3 (i.e. 0, 1, 2 or 3) groups selected from C₁-C₄ alkyl (e.g. iso-propyl, tert-butyl), hydroxy, C₁-C₃ alkoxy (e.g. ethoxy), and

25

– O – CH₂ – O –.

Further, non-limiting examples are compounds of formula (I) wherein R² is hydrogen and R³ is hydrogen or methyl.

Further, non-limiting examples are compounds of formula (I) wherein R² is hydrogen or methyl and R³ is hydrogen.

Further, non-limiting examples are compounds of formula (I) wherein n = 0, R² and R³ 5 are independently selected from hydrogen and methyl, R⁶ is selected from hydrogen, methyl and hydroxyl, and R⁷ is selected from hydrogen, methoxy and ethoxy, with the proviso that if R⁶ is hydroxyl than R⁷ is methoxy or ethoxy.

Further, non-limiting examples are compounds of formula (I) wherein R² is hydrogen or 10 methyl, R³ is hydrogen, and R¹ is (C₁-C₃)alkyl(C₆-C₁₄)aryl wherein the aryl-ring is optionally substituted with one group selected from methoxy and hydroxyl.

Further, non-limiting examples are compounds of formula (I) wherein R¹ is C₅-C₁₄ 15 alkenyl comprising one carbon-to-carbon double bond, R² is hydrogen, and R³ is hydrogen, with the proviso that the carbon-to-carbon double bond is not in alpha position to C-1'.

Further, non-limiting examples are compounds of formula (I) wherein R¹ is C₅-C₁₄ 20 alkenyl comprising one carbon-to-carbon double bond, R² is hydrogen, and R³ is methyl.

As used in relation to compounds of formula (I) unless otherwise indicated "alkyl" refers to linear or branched alkyl wherein the alkyl residue may comprise up to one -OH group and up to 2 (i.e. 0, 1 or 2) ether group(s), such as undecan-2-yl, 2,4,4-trimethylpentyl, 25 2,6-dimethylheptyl, and 6-methylheptan-2-yloxypropyl; "alkenyl" refers to linear or branched alkyl comprising at least one carbon-to-carbon double bond, e.g. 2 or 3 double bonds, the alkenyl may optionally comprise a -OH group and/or ether group, for example oct-1,5-dienyl, non-3-enyl, and 2,6-dimethylhept-1,5-dienyl; "hydrocarbon ring" refers to saturated and unsaturated ring systems, preferably containing up to two 30 carbon-to-carbon double bonds per ring, wherein the ring may be substituted with up to 3 (e.g. one or two) C₁-C₃ alkyl; and "ether group" refers to an oxygen atom connected to two carbon atoms.

With regard to the compounds of formula (I) the wavy bond means that the 35 arrangement at the ethylenic double bond may be either in E- or Z- configuration.

All the compounds of formula (I) hereinabove described have in common the fact that, on exposure to ambient air they release volatile compounds over a long period of time (e.g. several days such as 2-7 days or even longer). In a preferred embodiment, at least

5 one of the released compounds is a fragrant compound. In a further embodiment the compound of formula (II) is a fragrant aldehyde (for $R^2 = H$) or ketone (for $R^2 \neq H$) and a second compound is a fragrant carbonyl compound of formula (III).

Examples of fragrant aldehydes $O=CHR^1$ which may be released from the compound of formula (I) under activating conditions include, but are not limited to, the following:

10 benzaldehyde, 2,6,10-trimethylundec-9-enal, 8,8-dimethyl-1,2,3,4,5,6,7,8-octahydro-naphthalene-2-carbaldehyde, (4-isopropyl-phenyl)-ethanal, 2,4-dimethyl-cyclohex-3-ene-1-carbaldehyde, 1,3,5-trimethyl-cyclohex-1-ene-4-carbaldehyde, 4-(4-hydroxy-4-methylpentyl)-cyclohex-3-ene-1-carbaldehyde, hex-2-enal, hex-3-enal (including (Z)-

15 hex-3-enal), 3-(3-tert-butylcyclohexyl)propanal, 2-(4-tert-pentylcyclohexyl)acetaldehyde, 3,5,5-trimethyl-hexanal, heptanal, 2,6-dimethyl-hept-5-enal, decanal, dec-9-enal, dec-4-en-1-al, 2-methyl-decanal, undec-10-en-1-al, undecanal, dodecanal, 2-methyl-undecanal, tridecanal, tridec-2-enal, octanal, nonanal, non-2-enal, undec-9-enal, 2-phenyl-propanal, 2-(4-methyl-phenyl)-ethanal, 2-(4-methoxyphenyl)acetaldehyde, 3,7-dimethyl-octanal, dihydrofarnesal (3,7,11-trimethyldodeca-6,10-dienal), 7-hydroxy-3,7-dimethyl-octanal, 2,6-dimethyl-oct-5-en-1-al, 3-(3-isopropyl-phenyl)-butanal (Florhydral), 4-(4-methyl-pent-3-enyl)-cyclohex-3-ene-1-carbaldehyde, 2,3,5,5,-tetramethyl-hexanal, decahydro-4,8,8-trimethyl-1,4-methanoazulene-9-carboxaldehyde (longifolic aldehyde), 2-methyl-3-(4-tert-butylphenyl)-propanal (Lilial), 3-(4-tert-butyl-phenyl)-propanal, 3-(4-isobutyl-phenyl)-propanal, 3-(benzo[1,3]dioxol-5-yl)-2-methyl-propanal, 3,7-dimethyl-oct-6-ene-1-al, 3,7-dimethyl-octanal, 2-methyl-3-(4-isopropylphenyl)-propanal, 4-tert-butyl-cyclohexane-1-carbaldehyde, 4-(octahydro-4,7-methano-5H-inden-5-ylidene)-butanal, (3,7-dimethyl-oct-6-enoxy)-ethanal, 2 (E),6 (Z)-nonadienal, 2,4-dimethyl-2,6-heptadienal, (E)-dec-2-enal, dodec-2-enal, 3,7-dimethyl-octa-2,6-dienal, 2,4-diethyl-hepta-2,6-dienal, 3,7-dimethyl-nona-2,6-dienal, 2-propyl-hept-2-enal, 3-(4-methoxyphenyl)-2-methylpropanal, 4-methoxybenzaldehyde, 1,3-benzodioxole-5-carboxaldehyde, 2,6,6-trimethylcyclohexa-1,3-dienecarbaldehyde, 4-((6-methylheptan-2-yl)oxy)butanal, 3-(4-ethylphenyl)-2,2-dimethylpropanal, (E)-2-benzylideneheptanal, cinnamaldehyde, 3-(3,3-dimethyl-2,3-dihydro-1H-inden-5-yl)propanal, 2-methyl-4-

(2,6,6-trimethylcyclohex-2-en-1-yl)butanal (Cetonal) and 4-isopropenyl-cyclohex-1-ene-1-carbaldehyde.

Examples of fragrant ketones $O=CR^1R^2$ which may be released from the compound of formula (I) under activating conditions include, but are not limited to, the following:

Raspberry Ketone (4-(4-hydroxyphenyl)butan-2-one), Ionones such as alpha-Ionone, dihydro alpha-Ionone, dihydro beta-Ionone, N-allyl alpha-ionone (1-(2,6,6-trimethyl-2-cyclohexen-1-yl)-1,6-heptadien-3-one), beta-Ionone, N-methyl alpha-ionone (1-(2,6,6-trimethylcyclohex-2-en-1-yl)pent-1-en-3-one), dimethyl alpha-ionone (2-methyl-1-(2,6,6-trimethylcyclohex-2-en-1-yl)pent-1-en-3-one), and Cetone Alpha (3-methyl-4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-3-en-2-one), Nectaryl (2-(2-(4-methylcyclohex-3-en-1-yl)propyl)cyclopentanone), Magnolione (3-(2-oxopropyl)-2-pentylcyclopentanone), Acetophenone, Oranger Crist (1-(naphthalen-2-yl)ethanone) and Cassione (4-(benzo[d][1,3]dioxol-5-yl)butan-2-one).

Examples of fragrant compounds of formula (III) $O=CR^3X$ which may be released from the compound of formula (I) under activating conditions include, but are not limited to, the following: Ethylvanillin, Vanillin, Oranger Crist (1-(naphthalen-2-yl)ethanone), acetophenone, Heliotropine (1,3-benzodioxole-5-carboxaldehyde), anisic aldehyde, veratric aldehyde, phenylacetic aldehyde, Syringa Aldehyde (4-methyl phenylacetaldehyde), benzaldehyde, 3-methyl-benzaldehyde, 1-(4-methoxyphenyl)ethanone (Acetanisole), 4-(1-methylethyl)-benzenacetaldehyde, Ambra (2,4-(di-(1,1-dimethylethyl))-5-methoxy-benzaldehyde), 4-isopropyl-benzaldehyde, 1-(2,4-dimethylphenyl)ethanone, Fixal (5,5,7,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalene-2-carbaldehyde), Fixolide (1-(3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)ethanone), Florantone T (1-(5,6,7,8-tetrahydronaphthalen-2-yl)ethanone), 1-(1,1,2,3,3,6-hexamethyl-2,3-dihydro-1H-inden-5-yl)ethanone, 2-(4-isopropylphenyl)propanal, Vulcanolide (3,5,5,6,7,8,8-heptamethyl-5,6,7,8-tetrahydronaphthalene-2-carbaldehyde) and Safraleine (2,3,3-trimethyl-2,3-dihydro-1H-inden-1-one).

The activating conditions, which lead to the cleavage step, comprise the presence of molecular oxygen. The concentration of oxygen in the air is sufficient for cleaving the compound of formula (I) in such a way, that the cleavage products can be detected in the ambient air, e.g. by olfaction or GC-MS analysis of headspace samples.

The compounds of formula (I) are very stable when not exposed to the ambient air, i.e. when stored in a diluent conventionally used in conjunction with odorants, such as dipropylene glycol (DPG), isopropylmyristate (IPM), triethylcitrate (TEC) and alcohol (e.g. ethanol), and known odorants. Very good storage stability has been proven also when incorporated in consumer products such as detergent, shampoo and fabric conditioner. Thus the compounds of formula (I) may find use in a broad range of consumer products in which a prolonged and defined release of fragrant compounds is desired.

10 The compounds of formula (I) can act as fragrance precursors in functional and fine perfumery i.e. in fine fragrances, industrial, institutional, home and personal care products. Industrial, institutional and home cleaning products to which the compound of formula (I) can be added include all kinds of detergents, window cleaners, hard surface cleaners, all-purpose cleaners and furniture polishes. Preferably, the products are liquids, e.g. fabric conditioner compositions. A substrate, such as a fabric, treated with a product comprising a compound of formula (I), will diffuse a fresh and/or clean odor under cleavage conditions for much longer than one treated with a conventional product. Fabrics or clothes washed with such a fabric softener will exhibit noticeable fragrance release even after one week.

15 The compounds of the formula (I) are also useful for application in all kinds of body care products. Especially interesting products are hair care products, for example shampoos, conditioners and hairsprays, and skin care products.

20 25 The abovementioned examples are of course only illustrative and non-limiting. Many other products to which the compounds of formula (I) may be added include soaps, bath and shower gels and deodorants.

30 The compounds of formula (I) can be used alone, as a mixture thereof, or in combination with other fragrance ingredients and/or precursors thereof. Such fragrance ingredients are described, for example, in "Perfume and Flavor Chemicals", S. Arctander, Ed., Vol. I & II, Allured Publishing Corporation, Carol Stream, USA, 2003 and include fragrance compounds of natural or synthetic origin and essential oils.

The amounts in which the compounds of formula (I) may be incorporated in the various above-mentioned products vary within a wide range. The amounts depend on the nature of the fragrant compounds to be released, the nature of the product to which the compounds of formula (I) are added and the desired olfactory effect. The amounts used

5 also depend on the co-ingredients in a given composition when the compounds of formula (I) are used in admixture with perfuming co-ingredients, solvents or adjuvants. Typical concentrations are from 0.0001 to 5 weight percent of the article. In one embodiment, compounds of the present invention may be employed in a fabric softener in an amount of from 0.0001 to 0.2 weight percent. In another embodiment, compounds

10 of the present invention may be used in fine perfumery in amounts from 0.001 to 10 weight percent (e.g. up to about 5 weight percent), more preferably between 0.02 and 4 weight percent. However, these values are given only by way of example, since the experienced perfumer may also achieve effects or may create novel accords with lower or higher concentrations.

15 While some of the compounds falling within the definition of the formula (I) above are known as intermediates, others are novel.

The invention therefore also provides a compound of formula (I) as hereinabove defined

20 selected from (3-methyl-5-(2,6,6-trimethylcyclohex-1-enyl)pent-2-enyl)benzene; (5,9-dimethyldec-2-enyl)benzene; (4-methyltridec-2-enyl)benzene; (3-(2,4-dimethylcyclohex-3-enyl)allyl)benzene; (4-methyldodec-2-enyl)benzene; 1-isopropyl-3-(6-phenylhex-4-en-2-yl)benzene; but-2-ene-1,3-diylbenzene; ((4E)-3-methyl-5-(2,6,6-trimethylcyclohex-1-enyl)penta-2,4-dienyl)benzene; (3-methyldodec-2-enyl)benzene; 5-(3-methyl-5-phenylpent-3-enyl)benzo[*a*][1,3]dioxole; ((4E)-3,4-dimethyl-5-(2,6,6-trimethylcyclohex-2-enyl)penta-2,4-dienyl)benzene; (4E,8Z)-undeca-2,4,8-trienylbenzene; (6E)-dodeca-2,6-dienylbenzene; 1-*tert*-butyl-4-(2-methyl-5-phenylpent-3-enyl)benzene; 1-(2,2-dimethyl-5-phenylpent-3-enyl)-4-ethylbenzene; (5,7,7-trimethyloct-2-enyl)benzene; (6-(6-methylheptan-2-yloxy)hex-2-enyl)benzene; (5-(3-*tert*-utylcyclohexyl)pent-2-enyl)benzene; (4-(4-*tert*-pentylcyclohexyl)but-2-enyl)benzene; 2-ethoxy-4-(3-phenylprop-1-enyl)phenol; 4-(3-methyl-5-phenylpent-3-enyl)phenol; 2-ethoxy-4-(3-p-tolylprop-1-enyl)phenol; 2-ethoxy-4-(3-(4-methoxyphenyl)prop-1-enyl)phenol; 1-methoxy-4-(4-methyltridec-2-enyl)benzene; 1-isopropyl-3-(6-(4-methoxyphenyl)hex-4-en-2-yl)benzene; 1-((6E)-dodeca-2,6-dienyl)-4-methoxybenzene; 2-(4-(4-methoxyphenyl)but-2-en-2-yl)naphthalene; 1-*tert*-butyl-4-(5-(4-methoxyphenyl)-2-

methylpent-3-enyl)benzene; 1-methyl-4-(4-methyltridec-2-enyl)benzene; 1-((6*E*)-dodeca-2,6-dienyl)-4-methylbenzene; 1-*tert*-butyl-4-(2-methyl-5-*p*-tolylpent-3-enyl)benzene; 1-methyl-4-((4*E*)-3-methyl-5-(2,6,6-trimethylcyclohex-1-en-1-yl)penta-2,4-dien-1-yl)benzene; 5-(3-*p*-tolylprop-1-enyl)benzo[d][1,3]dioxole; 2-(4-methyltridec-2-enyl)naphthalene; 4-(3-methyl-4-phenylbut-3-enyl)phenol; 2-ethoxy-4-(4-(4-hydroxyphenyl)-2-methylbut-1-enyl)phenol; 2-ethoxy-4-(4-(3-isopropylphenyl)pent-1-enyl)phenol; 2-ethoxy-4-(3-methyldodec-1-enyl)phenol; 2-ethoxy-4-((2-(2-(4-methylcyclohex-3-enyl)propyl)cyclopentylidene)methyl)-phenol; 2-(5-(3-isopropylphenyl)hex-2-en-2-yl)naphthalene; 2-((4*E*,8*Z*)-undeca-2,4,8-trien-2-yl)naphthalene; 2-((6*E*)-dodeca-2,6-dien-2-yl)naphthalene; 2-(4-methyltridec-2-en-2-yl)naphthalene; 2-(5,7,7-trimethyloct-2-en-2-yl)naphthalene; 4-(4-(3-isopropylphenyl)pent-1-enyl)-1,2-dimethoxybenzene; 1,2-dimethoxy-4-(4-(4-methoxyphenyl)-3-methylbut-1-enyl)benzene; 5-(4-(3-isopropylphenyl)pent-1-enyl)benzo[d][1,3]dioxole; 5-(4-(4-methoxyphenyl)-3-methylbut-1-enyl)benzo[d][1,3]dioxole; 5-(4-(4-*tert*-butylphenyl)-3-methylbut-1-enyl)benzo[d][1,3]dioxole; 1-methoxy-4-(3-(*p*-tolyl)prop-1-en-1-yl)benzene; 1-(*tert*-butyl)-4-(4-(4-methoxyphenyl)-2-methylbut-3-en-1-yl)benzene; 4-(4-(4-methoxyphenyl)-3-methylbut-3-en-1-yl)phenol; 1-isopropyl-3-(5-(4-methoxyphenyl)pent-4-en-2-yl)benzene; 1-isobutyl-4-(4-(4-methoxyphenyl)but-3-en-1-yl)benzene; 2-((11*E*)-trideca-2,11-dien-2-yl)naphthalene; 5-(4-phenylbut-1-en-1-yl)benzo[d][1,3]dioxole; 1,2-dimethoxy-4-(3-(4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)allyl)benzene; 2-(5-(*tert*-butyl)phenyl)-4-methylpent-2-en-2-yl)naphthalene; 2-((4*E*)-5,9-dimethyldeca-2,4,8-trien-2-yl)naphthalene; 2-(5-phenylpent-2-en-2-yl)naphthalene; 2-((4*E*)-tetradeca-2,4-dien-2-yl)naphthalene; 3-(3-(4-methoxyphenyl)-2-methylallyl)-2-pentylcyclopentanone; 1-methoxy-4-[(5*E*)-undeca-1,5-dien-1-yl]benzene; 1-methoxy-4-(3-methyldodec-1-en-1-yl)benzene; (1*E*)-1-[(4*Z*)-hepta-1,4-dien-1-yl]-4-methoxybenzene; (1*Z*)-1-[(4*Z*)-hepta-1,4-dien-1-yl]-4-methoxybenzene; and 4-[3-methyl-4-(*m*-tolyl)but-3-en-1-yl]phenol.

The compounds of formula (I) may be prepared starting from the respective fragrant carbonyl compound of formula (II) as hereinabove defined and a phosphorous ylide derived *in situ* from a 1- or 2-arylethyltriphenyl-phosphonium-halogen salt or an aryltriphenyl-phosphonium-halogen salt.

The phosphonium salts may be synthesized from the corresponding alkyl halides and triphenylphosphine. The reaction can be carried out without solvent in a sealed tube or

a round bottom flask at a temperature preferably between about 130-150 °C. Alternatively, the reaction may be conducted in a round bottom flask in a solvent e.g. toluene, THF or MeCN and at a temperature between about 25-140 °C. Benzylic phosphonium salts may also be synthesized from the corresponding benzylalcohols and triphenylphosphine hydrobromide. The reaction is conducted in a solvent e.g. toluene, THF or MeCN and at a temperature between about 25-140 °C. The phosphorous ylides may be prepared from the crude phosphonium salts through deprotonation with a suitable base, e.g. R'Li, NaH, NaOR" or KOR", with R' being e.g. methyl, butyl or t-butyl and R" being e.g. methyl, ethyl, t-amyl or t-butyl. The reaction may be carried out in a solvent, e.g. THF or toluene. The base is added to the phosphonium salt at a temperature between about minus 78 °C to about 25 °C.

The desired fragrant ketone / aldehyde of formula (II) may be added to the in situ prepared phosphorous ylide, preferably at a temperature between about minus 78 °C to about 25 °C and the reaction mixture may be stirred at a temperature between about 0-70°C.

Alternatively, the compounds of formula (I) may be prepared starting from the respective aldehyde / ketone of formula (III) as hereinabove defined and a phosphorous ylide derived in situ from a suitable triphenyl-phosphonium-halogen salt. The desired carbonyl compound of formula (III) may be added to the in situ prepared phosphorous ylide.

The invention is now further described with reference to the following non-limiting examples. These examples are for the purpose of illustration only and it is understood that variations and modifications can be made by one skilled in the art.

Example 1: (3-Methyl-5-(2,6,6-trimethylcyclohex-1-enyl)pent-2-enyl)benzene
A solution of phenethyltriphenylphosphonium bromide (4.40 g, 9.84 mmol, 1.0 equiv.) in THF (20 mL) was cooled to 0 °C. After adding n-BuLi (1.6 M in hexanes, 6.2 mL, 9.84 mmol, 1.0 equiv.) at 0 °C, the red solution was stirred at 60 °C for 1 h. The mixture was re-cooled to 0 °C, 4-(2,6,6-trimethylcyclohex-1-enyl)butan-2-one (1.92 g, 9.84 mmol, 1.0 equiv.) in THF (10 mL) was added, and the mixture was stirred at 70 °C for 20 h. After addition of H2O, the aqueous layer was extracted with cyclohexane (2 x), the combined organic phases were washed with brine, dried (MgSO4), filtered and the

filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ (cyclohexane) to yield 816 mg (29%) of the title compound as a colorless oil.

¹H-NMR (CDCl₃, 400 MHz): 7.32-7.27 (m, 2 H), 7.22-7.17 (m, 3 H), 5.41-5.37 (m, 0.5 H), 5.33-5.30 (m, 0.5 H), 3.39 (t, J = 7.8 Hz, 2 H), 2.22-2.16 (m, 1 H), 2.13-2.08 (m, 3 H), 1.93 (q, J = 6.4 Hz, 2 H), 1.82-1.81 (m, 1.5 H), 1.78-1.77 (m, 1.5 H), 1.67 (s, 1.5 H), 1.62 (s, 1.5 H), 1.61-1.55 (m, 2 H), 1.46-1.41 (m, 2 H), 1.04 (s, 3 H), 1.01 (s, 3 H).
MS (EI): 282 (M⁺, 6), 267 (1), 191 (12), 144 (11), 137 (100), 95 (67), 91 (33), 81 (42), 67 (10), 55 (9), 41 (18).

10

Example 2.1 – 2.22

Following the general procedure as described in Examples 1 the following compounds have been prepared:

15 2.1 (5,9-Dimethyldec-2-enyl)benzene

Starting from phenethyltriphenylphosphonium bromide (3.85 g, 8.61 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 5.4 mL, 8.61 mmol, 1.0 equiv.) and 3,7-dimethyloctanal (2.02 g, 12.9 mmol, 1.5 equiv.), 1.16 g (55%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane).

20

¹H-NMR (CDCl₃, 400 MHz): 7.31-7.28 (m, 2 H), 7.21-7.18 (m, 3 H), 5.65-5.50 (m, 2 H), 3.42 (d, J = 7.1 Hz, 1.7 H), 3.36 (d, J = 6.3 Hz, 0.3 H), 2.20-1.84 (m, 2 H), 1.59-1.49 (m, 2 H), 1.37-1.26 (m, 3 H), 1.19-1.16 (m, 3 H), 0.95-0.85 (m, 9 H).
MS (EI): 244 (M⁺, 17), 216 (1), 188 (1), 174 (5), 132 (8), 117 (41), 104 (100), 91 (67), 71 (47), 57 (67), 43 (46).

25 2.2 (4-Methyltridec-2-enyl)benzene

Starting from phenethyltriphenylphosphonium bromide (3.60 g, 8.05 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 5.0 mL, 8.05 mmol, 1.0 equiv.) and 2-methylundecanal (2.25 g, 12.1 mmol, 1.5 equiv.), 1.33 g (61%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (hexanes).

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): honey, cistus, olibanum, floral.

35

¹H-NMR (CDCl₃, 400 MHz): 7.32-7.27 (m, 2 H), 7.22-7.17 (m, 3 H), 5.53-5.46 (m, 1 H), 5.31-5.25 (m, 1 H), 3.47-3.34 (m, 2 H), 2.62-2.52 (m, 1 H), 1.35-1.25 (m, 16 H), 1.00 (d, J = 6.8 Hz, 3 H), 0.90 (t, J = 6.8 Hz, 3 H).

MS (EI): 272 (M⁺, 7), 180 (3), 160 (4), 145 (33), 129 (13), 117 (50), 104 (100), 97 (24), 5 91 (52), 83 (23), 69 (27), 55 (26), 41 (23).

2.3 (3-(2,4-Dimethylcyclohex-3-enyl)allyl)benzene

Starting from phenethyltriphenylphosphonium bromide (3.67 g, 8.20 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 5.1 mL, 8.20 mmol, 1.0 equiv.) and 2,4-dimethylcyclohex-3-enecarbaldehyde (1.70 g, 12.3 mmol, 1.5 equiv.), 1.14 g (61%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane).

¹H-NMR (CDCl₃, 400 MHz): 7.32-7.28 (m, 2 H), 7.22-7.18 (m, 3 H), 5.63-5.22 (m, 3 H), 15 3.50-3.36 (m, 2 H), 2.33-2.29 (m, 0.2 H), 2.23-2.15 (m, 0.8 H), 2.10-2.01 (m, 1 H), 1.96-1.90 (m, 2 H), 1.73-1.65 (m, 4 H), 1.54-1.43 (m, 1 H), 0.97 (d, J = 7.1 Hz, 2.6 H), 0.92 (d, J = 7.3 Hz, 0.4 H).

MS (EI): 226 (M⁺, 20), 211 (2), 198 (9), 144 (27), 129 (100), 115 (23), 107 (17), 91 (47), 20 82 (93), 67 (49), 53 (8), 41 (14).

20

2.4: ((4E)-5,9-Dimethyldeca-2,4,8-trienyl)benzene

Starting from phenethyltriphenylphosphonium bromide (3.48 g, 7.78 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 4.9 mL, 7.78 mmol, 1.0 equiv.) and (*E*)-3,7-dimethylocta-2,6-dienal (1.78 g, 11.7 mmol, 1.5 equiv.), 0.54 g (29%) of the title compound as a light yellow oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane).

¹H-NMR (CDCl₃, 400 MHz): 7.32-7.28 (m, 2 H), 7.24-7.19 (m, 3 H), 6.68-6.64 (m, 0.1 H), 6.39-6.31 (m, 0.9 H), 6.26-6.23 (m, 0.7 H), 5.92-5.85 (m, 0.3 H), 5.76-5.48 (m, 1 H), 30 5.18-5.11 (m, 1 H), 3.56 (d, J = 6.3 Hz, 1.3 H), 3.47-3.43 (m, 0.7 H), 2.22-2.11 (m, 4 H), 1.87-1.76 (m, 3 H), 1.73-1.71 (m, 3 H), 1.66-1.63 (m, 3 H).

MS (EI): 240 (M⁺, 5), 225 (1), 197 (2), 171 (10), 129 (18), 115 (11), 105 (4), 91 (100), 77 (5), 69 (13), 41 (14).

2.5 (5,9-Dimethyldeca-2,8-dienyl)benzene

Starting from phenethyltriphenylphosphonium bromide (3.48 g, 7.78 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 4.9 mL, 7.78 mmol, 1.0 equiv.) and 3,7-dimethyloct-6-enal (1.80 g, 11.7 mmol, 1.5 equiv.), 0.97 g (51%) of the title compound as a colorless oil 5 was obtained after purification by flash chromatography on SiO₂ (cyclohexane).

¹H-NMR (CDCl₃, 400 MHz): 7.32-7.29 (m, 2 H), 7.22-7.18 (m, 3 H), 5.67-5.52 (m, 2 H), 5.16-5.12 (m, 1 H), 3.43 (d, J = 7.1 Hz, 1.7 H), 3.37 (d, J = 6.3 Hz, 0.3 H), 2.22-1.98 (m, 4 H), 1.71 (d, J = 1.0 Hz, 3 H), 1.64-1.62 (m, 3 H), 1.61-1.51 (m, 1 H), 1.47-1.38 (m, 1 H), 1.26-1.16 (m, 1 H), 0.95 (d, J = 6.6 Hz, 2.5 H), 0.91 (d, J = 6.8 Hz, 0.5 H).
10 MS (EI): 242 (M⁺, 8), 227 (1), 199 (4), 157 (31), 138 (45), 129 (47), 117 (30), 109 (61), 91 (91), 81 (38), 69 (100), 55 (38), 41 (63).

2.6: 1-Isopropyl-3-(6-phenylhex-4-en-2-yl)benzene

15 Starting from phenethyltriphenylphosphonium bromide (5.00 g, 11.2 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 7.0 mL, 11.2 mmol, 1.0 equiv.) and 3-(3-isopropylphenyl)butanal (3.20 g, 16.8 mmol, 1.5 equiv.), 2.54 g (82%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 997:3).

20 Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): floral, green, watery, syringe.

¹H-NMR (CDCl₃, 400 MHz): 7.33-7.14 (m, 5 H), 7.09-7.05 (m, 4 H), 5.58-5.44 (m, 2 H), 25 3.32 (d, J = 6.8 Hz, 1.6 H), 3.28 (d, J = 6.6 Hz, 0.4 H), 2.91-2.85 (m, 1 H), 2.82-2.75 (m, 1 H), 2.47-2.38 (m, 2 H), 1.29 (d, J = 7.1 Hz, 3 H), 1.25-1.23 (m, 6 H).
MS (EI): 278 (M⁺, 7), 263 (1), 187 (2), 147 (100), 131 (8), 115 (7), 105 (19), 91 (22), 77 (5), 43 (13).

2.7: But-2-ene-1,3-diyldibenzene

Starting from phenethyltriphenylphosphonium bromide (3.48 g, 7.78 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 4.9 mL, 7.78 mmol, 1.0 equiv.) and acetophenone (1.40 g, 11.7 mmol, 1.5 equiv.), 0.75 g (46%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane).

¹H-NMR (CDCl₃, 400 MHz): 7.42-7.13 (m, 10 H), 5.97 (tq, J = 7.4, 1.4 Hz, 0.25 H), 5.65 (tq, J = 7.6, 1.5 Hz, 0.75 H), 3.57 (d, J = 7.3 Hz, 0.5 H), 3.32 (d, J = 7.6 Hz, 1.5 H), 2.14-2.14 (m, 0.75 H), 2.08-2.07 (q, J = 1.3 Hz, 2.25 H).

MS (EI): 208 (M⁺, 67), 193 (56), 178 (28), 165 (11), 130 (24), 115 (100), 103 (10), 91 (42), 77 (17), 65 (12), 51 (12), 39 (5).

2.8: (3,7-Dimethylocta-2,6-dienyl)benzene

Starting from phenethyltriphenylphosphonium bromide (3.48 g, 7.78 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 4.9 mL, 7.78 mmol, 1.0 equiv.) and 6-methylhept-5-en-2-one (1.48 g, 11.7 mmol, 1.5 equiv.), 0.29 g (17%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane).

¹H-NMR (CDCl₃, 400 MHz): 7.31-7.27 (m, 2 H), 7.21-7.17 (m, 3 H), 5.39-5.34 (m, 1 H), 5.19-5.11 (m, 1 H), 3.38 (d, J = 7.3 Hz, 2 H), 2.20-2.06 (m, 4 H), 1.77-1.76 (m, 1.7 H), 1.73 (br. s, 1.3 H), 1.71 (s, 3 H), 1.64 (s, 1.7 H), 1.62 (s, 1.3 H).

MS (EI): 214 (M⁺, 11), 171 (17), 157 (9), 143 (37), 129 (57), 123 (23), 117 (29), 109 (6), 103 (14), 91 (57), 77 (13), 69 (100), 53 (11), 41 (71).

2.9: ((4E)-3-Methyl-5-(2,6,6-trimethylcyclohex-1-enyl)penta-2,4-dienyl)benzene

Starting from phenethyltriphenylphosphonium bromide (4.44 g, 9.93 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 6.3 mL, 10.1 mmol, 1.0 equiv.) and (*E*)-4-(2,6,6-trimethylcyclohex-1-enyl)but-3-en-2-one (2.86 g, 14.9 mmol, 1.5 equiv.), 1.69 g (61%) of the title compound as a light yellow oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 98:2).

¹H-NMR (CDCl₃, 400 MHz): 7.32-7.27 (m, 2 H), 7.22-7.17 (m, 3 H), 6.55 (d, J = 16.2 Hz, 1 H), 6.19 (d, J = 16.2 Hz, 1 H), 5.63-5.59 (m, 0.45 H), 5.53-5.49 (m, 0.55 H), 3.53 (d, J = 7.6 Hz, 2 H), 2.04-1.99 (m, 2 H), 1.93-1.92 (m, 1.65 H), 1.91-1.91 (m, 1.35 H), 1.73 (d, J = 1.0 Hz, 1.65 H), 1.70 (s, 1.35 H), 1.66-1.59 (m, 2 H), 1.50-1.44 (m, 2 H), 1.05 (s, 3 H), 1.03 (s, 3 H).

MS (EI): 280 (M⁺, 12), 265 (2), 237 (1), 189 (6), 133 (15), 119 (100), 105 (17), 91 (53), 77 (10), 65 (6), 55 (13), 41 (13).

2.10: 5-(3-Methyl-5-phenylpent-3-enyl)benzo[d][1,3]dioxole

Starting from phenethyltriphenylphosphonium bromide (1.82 g, 4.07 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 2.6 mL, 4.07 mmol, 1.0 equiv.) and 4-(benzo[d][1,3]dioxol-5-yl)butan-2-one (1.17 g, 6.10 mmol, 1.5 equiv.), 0.35 g (30%) of the title compound as a 5 colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 99:1).

¹H-NMR (CDCl₃, 400 MHz): 7.29-7.25 (m, 2 H), 7.20-7.16 (m, 1 H), 7.12-7.10 (m, 2 H), 10 6.75-6.61 (m, 3 H), 5.92 (s, 2 H), 5.38-5.32 (m, 1 H), 3.35 (d, *J* = 7.3 Hz, 1 H), 3.26 (d, *J* = 7.3 Hz, 1 H), 2.70-2.63 (m, 2 H), 2.42-2.38 (m, 1 H), 2.33-2.29 (m, 1 H), 1.79-1.78 (m, 1.5 H), 1.76-1.75 (m, 1.5 H).

MS (EI): 280 (M⁺, 14), 135 (100), 128 (3), 115 (3), 105 (5), 91 (8), 77 (15), 65 (4), 51 (8).

15 2.11: ((4E)-3,4-Dimethyl-5-(2,6,6-trimethylcyclohex-2-enyl)penta-2,4-dienyl)benzene

Starting from phenethyltriphenylphosphonium bromide (2.80 g, 6.26 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 3.9 mL, 6.26 mmol, 1.0 equiv.) and (*E*)-3-methyl-4-(2,6,6-trimethylcyclohex-2-enyl)but-3-en-2-one (1.94 g, 9.39 mmol, 1.5 equiv.), 0.36 g (20%) of the title compound as a colorless oil was obtained after purification by flash 20 chromatography on SiO₂ (cyclohexane/EtOAc 995:5).

¹H-NMR (CDCl₃, 400 MHz): 7.30-7.27 (m, 2 H), 7.22-7.15 (m, 3 H), 5.38-5.35 (m, 1 H), 5.30-5.26 (m, 1 H), 5.04-5.00 (m, 1 H), 3.37 (d, *J* = 7.3 Hz, 2 H), 2.50 (d, *J* = 10.9 Hz, 1 H), 2.03-1.99 (m, 2 H), 1.82-1.81 (m, 6 H), 1.63-1.59 (m, 3 H), 1.48-1.39 (m, 1 H), 1.22-25 1.16 (m, 1 H), 0.93 (s, 3 H), 0.83 (s, 3 H).

MS (EI): 294 (M⁺, 2), 238 (11), 223 (3), 171 (12), 147 (100), 119 (9), 105 (10), 91 (27), 77 (6), 65 (4), 55 (6), 41 (9).

2.12 (4E,8Z)-Undeca-2,4,8-trienylbenzene

30 Starting from phenethyltriphenylphosphonium bromide (3.05 g, 6.82 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 4.3 mL, 6.82 mmol, 1.0 equiv.) and (2*E*,6*Z*)-nona-2,6-dienal (1.41 g, 10.2 mmol, 1.5 equiv.), 0.94 g (61%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 995:5).

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): green, fatty, watery, dark tea, nonadienal, floral, mimosa, cassie, violet.

¹H-NMR (CDCl₃, 400 MHz): 7.32-7.27 (m, 2 H), 7.21-7.18 (m, 3 H), 6.49-6.42 (m, 1 H), 5.12-6.04 (m, 1 H), 5.80-5.73 (m, 1 H), 5.52-5.32 (m, 3 H), 3.53 (d, J = 7.6 Hz, 1.5 H), 3.41 (d, J = 6.8 Hz, 0.5 H), 2.23-1.99 (m, 6 H), 0.97 (t, J = 7.6 Hz, 2.25 H), 0.96 (t, J = 7.3 Hz, 0.75 H).
MS (EI): 226 (M⁺, 2), 211 (1), 197 (3), 157 (8), 129 (15), 115 (17), 91 (100), 79 (8), 65 (5), 41 (11).

10

2.13: (6E)-Dodeca-2,6-dienylbenzene

Starting from phenethyltriphenylphosphonium bromide (3.20 g, 7.15 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 4.5 mL, 7.15 mmol, 1.0 equiv.) and (*E*)-dec-4-enal (1.66 g, 10.7 mmol, 1.5 equiv.), 1.08 g (62%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 997:3).

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): aldehydic, green, honey, floral, citrus.

¹H-NMR (CDCl₃, 400 MHz): 7.31-7.27 (m, 2 H), 7.21-7.17 (m, 3 H), 5.61-5.51 (m, 2 H), 5.46-5.39 (m, 2 H), 3.41 (d, J = 6.6 Hz, 1.7 H), 3.34 (d, J = 6.1 Hz, 0.3 H), 2.26-1.95 (m, 6 H), 1.39-1.23 (m, 6 H), 0.90 (t, J = 7.0 Hz, 3 H).
MS (EI): 242 (M⁺, 2), 171 (5), 158 (17), 138 (35), 130 (100), 115 (31), 104 (25), 91 (96), 82 (26), 69 (74), 55 (53), 41 (44).

25

2.14: 2-(4-Phenylbut-2-en-2-yl)naphthalene

Starting from phenethyltriphenylphosphonium bromide (2.30 g, 5.14 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 3.2 mL, 5.14 mmol, 1.0 equiv.) and 1-(naphthalen-2-yl)ethanone (1.22 g, 7.20 mmol, 1.4 equiv.), 0.71 g (54%) of the title compound as a yellow oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 995:5).

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): floral, honey, orange flower, mimosa, acacia.

35

¹H-NMR (CDCl₃, 400 MHz): 7.86-7.17 (m, 12 H), 6.18-6.13 (m, 0.35 H), 5.79-5.75 (m, 0.65 H), 3.65 (d, J = 7.3 Hz, 0.7 H), 3.39 (d, J = 7.3 Hz, 1.3 H), 2.28-2.27 (m, 1.05 H), 2.19-2.18 (m, 1.95 H).

MS (EI): 258 (M⁺, 94), 243 (65), 228 (20), 215 (12), 180 (27), 165 (100), 152 (30), 141 (16), 128 (28), 115 (68), 91 (52), 77 (13), 65 (6), 51 (11).

2.15 (4,8-Dimethylnona-2,7-dienyl)benzene

Starting from phenethyltriphenylphosphonium bromide (3.20 g, 7.15 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 4.5 mL, 7.15 mmol, 1.0 equiv.) and 2,6-dimethylhept-5-enal (1.51 g, 10.7 mmol, 1.5 equiv.), 1.21 g (74%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 997:3).

¹H-NMR (CDCl₃, 400 MHz): 7.31-7.28 (m, 2 H), 7.21-7.18 (m, 3 H), 5.57-5.48 (m, 1 H), 5.42-5.26 (m, 1 H), 5.15-5.09 (m, 1 H), 3.47-3.34 (m, 2 H), 2.63-2.55 (m, 1 H), 2.04-1.93 (m, 2 H), 1.70 (d, J = 1.3 Hz, 3 H), 1.61 (s, 3 H), 1.35-1.25 (m, 2 H), 1.01 (d, J = 6.6 Hz, 3 H).

MS (EI): 228 (M⁺, 7), 213 (1), 185 (21), 157 (16), 143 (39), 137 (20), 129 (42), 117 (38), 109 (41), 104 (20), 91 (100), 81 (64), 69 (52), 55 (59), 41 (70).

20

2.16: 1-Methoxy-4-(3-phenylprop-1-enyl)benzene

Starting from phenethyltriphenylphosphonium bromide (3.16 g, 7.06 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 4.4 mL, 7.06 mmol, 1.0 equiv.) and 4-methoxybenzaldehyde (1.44 g, 10.6 mmol, 1.5 equiv.), 1.36 g (86%) of the title compound as a light yellow oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 99:1).

30

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): floral, aldehydic, anisic like, and honey, linden blossom.

¹H-NMR (CDCl₃, 400 MHz): 7.36-7.21 (m, 7 H), 6.95-6.83 (m, 2 H), 6.57-6.53 (m, 0.25 H), 6.44-6.40 (m, 0.75 H), 6.27-6.20 (m, 0.75 H), 5.83-5.76 (m, 0.25 H), 3.83 (s, 0.75 H), 3.81 (s, 2.25 H), 3.70 (dd, J = 7.5, 1.4 Hz, 0.5 H), 3.55 (d, J = 7.1 Hz, 1.5 H).

MS (EI): 224 (M⁺, 100), 209 (23), 193 (31), 178 (20), 165 (20), 121 (24), 115 (365), 103 (13), 91 (32), 77 (20), 65 (11), 51 (13).

2.17: 1-*tert*-Butyl-4-(2-methyl-5-phenylpent-3-enyl)benzene

Starting from phenethyltriphenylphosphonium bromide (3.00 g, 6.71 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 4.2 mL, 6.71 mmol, 1.0 equiv.) and 3-(4-*tert*-butylphenyl)-2-methylpropanal (2.05 g, 10.1 mmol, 1.5 equiv.), 1.35 g (69%) of the title compound as a 5 colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 997:3).

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): floral, green, muguet, watery, lily-like, and green, honey, aldehydic, syringe.

10

¹H-NMR (CDCl₃, 400 MHz): 7.33-6.99 (m, 9 H), 5.62-5.59 (m, 0.1 H), 5.49-5.47 (m, 0.1 H), 5.46-5.39 (m, 0.9 H), 5.36-5.31 (m, 0.9 H), 3.31-3.13 (m, 2 H), 2.89-2.80 (m, 1 H), 2.62-2.54 (m, 2 H), 1.31 (s, 9 H), 1.03 (d, J = 6.6 Hz, 3 H).

MS (EI): 292 (M⁺, 8), 277 (3), 235 (4), 201 (8), 147 (100), 132 (19), 117 (44), 105 (15), 15 91 (39), 77 (6), 57 (33), 41 (11).

2.18: 1-(2,2-Dimethyl-5-phenylpent-3-enyl)-4-ethylbenzene

Starting from phenethyltriphenylphosphonium bromide (2.23 g, 4.98 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 3.1 mL, 4.98 mmol, 1.0 equiv.) and 3-(4-ethylphenyl)-2,2-dimethylpropanal (1.42 g, 7.48 mmol, 1.5 equiv.), 0.71 g (51%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 997:3).

¹H-NMR (CDCl₃, 400 MHz): 7.30-7.10 (m, 9 H), 5.47-5.38 (m, 2 H), 3.44 (d, J = 4.6 Hz, 25 1.4 H), 3.39 (d, J = 5.8 Hz, 0.6 H), 2.81-2.63 (m, 4 H), 1.28-1.18 (m, 9 H).

MS (EI): 278 (M⁺, 2), 187 (39), 159 (77), 143 (20), 129 (14), 117 (100), 103 (10), 91 (54), 77 (10), 65 (8), 43 (9).

2.19: (5,7,7-Trimethyloct-2-enyl)benzene

30 Starting from phenethyltriphenylphosphonium bromide (2.80 g, 6.26 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 3.9 mL, 6.26 mmol, 1.0 equiv.) and 3,5,5-trimethylhexanal (1.33 g, 9.39 mmol, 1.5 equiv.), 0.94 g (65%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 997:3).

35

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): natural honey, woody aspects, dry strawberry aspects.

¹H-NMR (CDCl₃, 400 MHz): 7.31-7.28 (m, 2 H), 7.21-7.18 (m, 3 H), 5.66-5.46 (m, 2 H), 5.41 (d, J = 7.1 Hz, 1.7 H), 3.36 (d, J = 6.3 Hz, 0.3 H), 2.19-1.98 (m, 2 H), 1.68-1.57 (m, 1 H), 1.36-1.27 (m, 1 H), 1.14-1.05 (m, 1 H), 1.00-0.85 (m, 12 H).
 MS (EI): 230 (M⁺, 6), 174 (12), 132 (4), 117 (14), 104 (20), 91 (30), 57 (100), 41 (14).

2.20: (6-(6-Methylheptan-2-yloxy)hex-2-enyl)benzene

Starting from phenethyltriphenylphosphonium bromide (2.20 g, 4.92 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 3.1 mL, 4.92 mmol, 1.0 equiv.) and 4-(6-methylheptan-2-yloxy)butanal (0.86 g, 4.29 mmol, 0.9 equiv.), 0.42 g (27%) of the title compound as a yellow oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 997:3).
 15
¹H-NMR (CDCl₃, 400 MHz): 7.31-7.28 (m, 2 H), 7.20-7.17 (m, 3 H), 5.62-5.51 (m, 2 H), 3.54-3.34 (m, 5 H), 2.27-2.21 (m, 2 H), 1.71-1.64 (m, 2 H), 1.55-1.49 (m, 2 H), 1.40-1.26 (m, 3 H), 1.20-1.15 (m, 2 H), 1.13 (d, J = 6.1 Hz, 3 H), 0.87 (d, J = 6.6 Hz, 6 H).
 MS (EI): 288 (M⁺, 1), 273 (1), 203 (8), 176 (6), 158 (31), 143 (24), 129 (73), 117 (67), 20 104 (17), 91 (100), 71 (40), 57 (56), 43 (40).

2.21 (5-(3-*tert*-Butylcyclohexyl)pent-2-enyl)benzene

Starting from phenethyltriphenylphosphonium bromide (2.60 g, 5.81 mmol, 1.0 equiv.), *n*-BuLi (1.3 M in hexanes, 4.5 mL, 5.81 mmol, 1.0 equiv.) and 3-(3-*tert*-butylcyclohexyl)propanal (1.45 g, 7.39 mmol, 1.3 equiv.), 1.01 g (61%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane).
 25

¹H-NMR (CDCl₃, 400 MHz): 7.31-7.28 (m, 2 H), 7.21-7.17 (m, 3 H), 5.61-5.48 (m, 2 H), 30 3.42 (d, J = 6.1 Hz, 1.7 H), 3.34 (d, J = 6.1 Hz, 0.3 H), 2.24-2.04 (m, 2 H), 1.83-1.73 (m, 4 H), 1.49-1.15 (m, 4 H), 1.02-0.54 (m, 13 H).
 MS (EI): 284 (M⁺, 1), 269 (1), 227 (35), 192 (6), 145 (11), 137 (13), 131 (47), 117 (31), 104 (43), 91 (100), 81 (38), 67 (25), 57 (92), 41 (37).

2.22: (4-(4-*tert*-Pentylcyclohexyl)but-2-enyl)benzene

Starting from phenethyltriphenylphosphonium bromide (2.00 g, 4.47 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 2.8 mL, 4.47 mmol, 1.0 equiv.) and 2-(4-*tert*-pentylcyclohexyl)acetaldehyde (1.32 g, 6.71 mmol, 1.5 equiv.), 0.62 g (48%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane).

¹H-NMR (CDCl₃, 400 MHz): 7.33-7.28 (m, 2 H), 7.22-7.17 (m, 3 H), 5.63-5.48 (m, 2 H), 3.44-3.34 (m, 2 H), 2.21-2.02 (m, 2 H), 1.91-1.64 (m, 4 H), 1.49-1.41 (m, 2 H), 1.30-1.20 (m, 2 H), 1.18-0.88 (m, 4 H), 0.81-0.74 (m, 9 H).
MS (EI): 284 (M⁺, 4), 269 (1), 255 (11), 214 (11), 131 (21), 117 (26), 104 (33), 97 (23), 91 (51), 83 (17), 71 (100), 55 (28), 43 (47).

Example 3: 2-Ethoxy-4-(3-phenylprop-1-enyl)phenol

a) Phenethyltriphenylphosphonium bromide (4.74 g, 10.6 mmol, 1.0 equiv.) in THF (20 mL), was cooled to 0 °C. After adding *n*-BuLi (1.6 M in hexanes, 6.6 mL, 10.6 mmol, 1.0 equiv.) at 0 °C, the red solution was stirred at 70 °C for 1 h. The mixture was re-cooled to 0 °C, 4-(*tert*-butyldimethylsilyloxy)-3-ethoxybenzaldehyde (2.98 g, 10.6 mmol, 1.0 equiv.) in THF (10 mL) was added, and the mixture was stirred at 70 °C for 14 h. After addition of H₂O, the aqueous layer was extracted with cyclohexane (2 x), the combined organic phases were washed with brine, dried (MgSO₄), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ (cyclohexane/EtOAc 98:2) to yield 3.12 g (80%) of a yellow oil, containing *tert*-butyl(2-ethoxy-4-(3-phenylprop-1-enyl)phenoxy)-dimethylsilane.
b) To a solution of *tert*-butyl(2-ethoxy-4-(3-phenylprop-1-enyl)phenoxy)-dimethylsilane (3.12 g, 8.46 mmol, 1.0 equiv.), in THF (17 mL), *n*-Bu₄NF (10.2 mL, 10.2 mmol, 1.2 equiv., 1.0 M in THF) was added, and the mixture was stirred at 25 °C for 1 h. After addition of H₂O, the aqueous layer was extracted with MTBE (2 x), the combined organic phases were washed with brine, dried (MgSO₄), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ (cyclohexane/EtOAc 95:5) to yield 1.60 g (74%) of the title compound as a yellow oil.

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): floral, spicy, vanilla, green, honey.

¹H-NMR (CDCl₃, 400 MHz): 7.36-7.30 (m, 2 H), 7.28-7.23 (m, 3 H), 6.98-6.79 (m, 3 H), 6.54-6.50 (m, 0.4 H), 6.40-6.35 (m, 0.6 H), 6.22-6.15 (m, 0.6 H), 5.82-5.75 (m, 0.4 H), 5.70 (s, 0.4 H), 5.68 (s, 0.6 H), 4.11 (q, J = 7.1 Hz, 1.2 H), 4.05 (q, J = 7.0 Hz, 0.8 H), 3.69 (dd, J = 7.6, 1.3 Hz, 0.8 H), 3.53 (d, J = 6.8 Hz, 1.2 H), 1.44 (t, J = 7.1 Hz, 1.8 H), 5 1.42 (t, J = 7.1 Hz, 1.2 H).

MS (EI): 254 (M⁺, 100), 237 (2), 225 (26), 207 (23), 197 (10), 179 (26), 165 (17), 152 (11), 131 (13), 115 (46), 103 (13), 91 (41), 77 (15), 65 (11).

Example 4.1 – 4.3:

10 Following the general procedure as described in Example 3 the following compounds have been prepared:

4.1: 4-(3-Methyl-5-phenylpent-3-enyl)phenol

15 a) First starting from phenethyltriphenylphosphonium bromide (5.27 g, 11.8 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 7.4 mL, 11.8 mmol, 1.0 equiv.) and 4-(*tert*-butyldimethylsilyloxy)phenylbutan-2-one (3.94 g, 14.1 mmol, 1.2 equiv.), 1.86 g (43%) of a light yellow oil, containing *tert*-butyldimethyl(4-(3-methyl-5-phenylpent-3-enyl)phenoxy)silane, was obtained after purification by flash chromatography on SiO₂ (hexanes/EtOAc 99:1).

20 b) Starting from *tert*-butyldimethyl(4-(3-methyl-5-phenylpent-3-enyl)phenoxy)silane (1.86 g, 5.07 mmol, 1.0 equiv.) and *n*-Bu₄NF (6.1 mL, 6.09 mmol, 1.2 equiv., 1.0 M in THF), 0.78 g (61%) of the title compound as a light yellow oil was obtained after purification by flash chromatography on SiO₂ (hexanes/EtOAc 95:5 → 9:1).

25 ¹H-NMR (CDCl₃, 400 MHz): 7.33-7.28 (m, 2 H), 7.24-7.19 (m, 1 H), 7.16-7.06 (m, 4 H), 6.80-6.75 (m, 2 H), 5.41-5.35 (m, 1 H), 4.92 (d, J = 7.6 Hz, 1 H), 3.39 (d, J = 7.3 Hz, 1 H), 3.28 (d, J = 7.3 Hz, 1 H), 2.74-2.68 (m, 2 H), 2.46-2.42 (m, 1 H), 2.37-2.33 (m, 1 H), 1.82 (q, J = 1.8 Hz, 1.5 H), 1.79 (d, J = 0.5 Hz, 1.5 H).

MS (EI): 252 (M⁺, 11), 145 (4), 129 (5), 107 (100), 103 (2), 91 (9), 77 (10).

30

4.2: 2-Ethoxy-4-(3-*p*-tolylprop-1-enyl)phenol

a) Starting from *p*-methylphenethyltriphenylphosphonium bromide (3.90 g, 8.45 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 5.3 mL, 8.45 mmol, 1.0 equiv.) and 4-(*tert*-butyldimethylsilyloxy)-3-ethoxybenzaldehyde (2.37 g, 8.45 mmol, 1.0 equiv.), 2.72 g (84%) of a light yellow oil, containing (*E*)-*tert*-butyl(2-ethoxy-4-(3-*p*-tolylprop-1-

enyl)phenoxy)dimethylsilane, was obtained after purification by flash chromatography on SiO_2 (hexanes/EtOAc 997:3).

5 b) Starting from (*E*)-*tert*-butyl(2-ethoxy-4-(3-*p*-tolylprop-1-enyl)phenoxy)dimethylsilane (2.72 g, 7.11 mmol, 1.0 equiv.) and *n*-Bu₄NF (8.5 mL, 8.53 mmol, 1.2 equiv., 1.0 M in THF), 1.53 g (80%) of the title compound as a viscous yellow oil was obtained after purification by flash chromatography on SiO_2 (hexanes/EtOAc 19:1 → 9:1).

10 Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): powdery vanilla, floral, slightly spicy, carnation.

15 ¹H-NMR (CDCl₃, 400 MHz): 7.19-7.09 (m, 4 H), 6.95-6.81 (m, 3 H), 6.51-6.48 (m, 0.35 H), 6.39-6.34 (m, 0.65 H), 6.21-6.13 (m, 0.65 H), 5.80-5.74 (m, 0.35 H), 5.66 (s, 0.35 H), 5.63 (s, 0.65 H), 4.11 (q, J = 7.1 Hz, 1.3 H), 4.06 (q, J = 7.1 Hz, 0.7 H), 3.65 (dd, J = 7.5, 1.4 Hz, 0.7 H), 3.49 (dd, J = 7.1, 1.0 Hz, 1.3 H), 2.34 (s, 3 H), 1.47-1.41 (m, 3 H).
MS (EI): 268 (M⁺, 100), 253 (9), 239 (19), 223 (17), 207 (20), 193 (15), 178 (22), 165 (18), 152 (12), 129 (32), 115 (26), 105 (30), 91 (23), 77 (17), 65 (11), 55 (10), 29 (14).

4.3: 2-Ethoxy-4-(3-(4-methoxyphenyl)prop-1-enyl)phenol

20 a) First starting from *p*-methoxyphenethyltriphenylphosphonium bromide (3.90 g, 8.17 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 5.1 mL, 8.17 mmol, 1.0 equiv.) and 4-(*tert*-butyldimethylsilyloxy)-3-ethoxybenzaldehyde (2.29 g, 8.17 mmol, 1.0 equiv.), 2.50 g (77%) of a yellow oil, containing (*E*)-*tert*-butyl(2-ethoxy-4-(3-(4-methoxyphenyl)prop-1-enyl)phenoxy)dimethylsilane, was obtained after purification by flash chromatography on SiO_2 (hexanes/EtOAc 99:1).

25 b) Then, starting from (*E*)-*tert*-butyl(2-ethoxy-4-(3-(4-methoxyphenyl)prop-1-enyl)phenoxy)dimethylsilane (2.50 g, 6.27 mmol, 1.0 equiv.) and *n*-Bu₄NF (7.5 mL, 7.53 mmol, 1.2 equiv., 1.0 M in THF), 1.25 g (70%) of the title compound as a viscous yellow oil was obtained after purification by flash chromatography on SiO_2 (hexanes/EtOAc 19:1 → 9:1).

30 ¹H-NMR (CDCl₃, 400 MHz): 7.19-7.13 (m, 2 H), 6.95-6.81 (m, 5 H), 6.51-6.47 (m, 0.35 H), 6.37-6.33 (m, 0.65 H), 6.20-6.13 (m, 0.65 H), 5.79-5.72 (m, 0.35 H), 5.67 (s, 0.35 H), 5.64 (s, 0.65 H), 4.11 (q, J = 6.8 Hz, 1.3 H), 4.06 (q, J = 7.1 Hz, 0.7 H), 3.80-3.80 (m, 3 H), 3.63 (dd, J = 7.3, 1.5 Hz, 0.7 H), 3.47 (d, J = 6.6 Hz, 1.3 H), 1.47-1.41 (m, 3 H).

MS (EI): 284 (M⁺, 100), 267 (5), 255 (22), 239 (19), 227 (11), 209 (11), 195 (9), 165 (18), 145 (35), 134 (18), 121 (45), 115 (19), 103 (10), 91 (23), 77 (22), 65 (10), 55 (11), 29 (16).

5 **Example 5: 1-Methoxy-4-(4-methyltridec-2-enyl)benzene**

p-Methoxyphenethyltriphenylphosphonium bromide (3.40 g, 7.12 mmol, 1.0 equiv.) in THF (14 mL), was cooled to 0 °C. After adding *n*-BuLi (1.6 M in hexanes, 4.5 mL, 7.12 mmol, 1.0 equiv.) at 0 °C, the red solution was stirred at 65 °C for 1 h. The mixture was re-cooled to 0 °C, 2-methylundecanal (1.97 g, 10.7 mmol, 1.5 equiv.) in THF (6 mL) 10 was added, and the mixture was stirred at 70 °C for 14 h. After addition of H₂O, the aqueous layer was extracted with cyclohexane (2 x), the combined organic phases were washed with brine, dried (MgSO₄), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ (cyclohexane/EtOAc 98:2) to yield 1.36 g (63%) of the title compound as a light yellow oil.

15

¹H-NMR (CDCl₃, 400 MHz): 7.13-7.09 (m, 2 H), 6.85-6.82 (m, 2 H), 5.49-5.43 (m, 1 H), 5.28-5.22 (m, 1 H), 3.79 (s, 3 H), 3.40-3.26 (m, 2 H), 2.58-2.50 (m, 1 H), 1.33-1.25 (m, 16 H), 0.98 (d, J = 6.6 Hz, 3 H), 0.89 (t, J = 6.8 Hz, 3 H).

MS (EI): 302 (M⁺, 13), 194 (3), 175 (10), 147 (100), 134 (50), 121 (71), 108 (11), 91 (9), 20 82 (10), 67 (5), 55 (9), 41 (12).

Example 6.1 – 6.4

Following the general procedure as described in Example 5 the following compounds have been prepared:

25

6.1: 1-Isopropyl-3-(6-(4-methoxyphenyl)hex-4-en-2-yl)benzene

Starting from *p*-methoxyphenethyltriphenylphosphonium bromide (1.20 g, 2.51 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 1.6 mL, 2.51 mmol, 1.0 equiv.) and 3-(3-isopropylphenyl)butanal (0.72 g, 3.77 mmol, 1.5 equiv.), 0.20 g (26%) of the title 30 compound as a yellow oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 99:1).

¹H-NMR (CDCl₃, 400 MHz): 7.25-7.21 (m, 1 H), 7.10-6.98 (m, 5 H), 6.83-6.79 (m, 2 H), 5.55-5.43 (m, 2 H), 3.79 (s, 3 H), 3.27 (d, J = 7.1 Hz, 1.6 H), 3.23 (d, J = 6.3 Hz, 0.4 H),

2.93-2.86 (m, 1 H), 2.83-2.76 (m, 1 H), 2.47-2.37 (m, 2 H), 1.31 (d, J = 7.1 Hz, 3 H), 1.27-1.22 (m, 6 H).

MS (EI): 308 (M^+ , 16), 161 (9), 147 (100), 131 (6), 121 (19), 105 (21), 91 (17), 77 (16), 43 (19).

5

6.2: 1-((6E)-Dodeca-2,6-dienyl)-4-methoxybenzene

Starting from *p*-methoxyphenethyltriphenylphosphonium bromide (3.12 g, 6.54 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 4.1 mL, 6.54 mmol, 1.0 equiv.) and (*E*)-dec-4-enal (1.51 g, 9.80 mmol, 1.5 equiv.), 0.85 g (48%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (hexanes/EtOAc 992:8).

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): aldehydic, green, watery, floral, anisic.

15

¹H-NMR (CDCl₃, 400 MHz): 7.13-7.09 (m, 2 H), 6.85-6.81 (m, 2 H), 5.56-5.39 (m, 4 H), 3.79 (s, 3 H), 3.34 (d, J = 6.6 Hz, 1.7 H), 3.27 (d, J = 5.8 Hz, 0.3 H), 2.22-1.96 (m, 6 H), 1.35-1.25 (m, 6 H), 0.91-0.87 (m, 3 H).

MS (EI): 272 (M^+ , 7), 173 (7), 161 (32), 147 (19), 134 (100), 129 (14), 121 (51), 91 (21), 77 (9), 69 (11), 55 (16), 41 (21).

6.3: 2-(4-(4-Methoxyphenyl)but-2-en-2-yl)naphthalene

Starting from *p*-methoxyphenethyltriphenylphosphonium bromide (3.15 g, 6.60 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 4.2 mL, 6.60 mmol, 1.0 equiv.) and 1-(naphthalen-2-yl)ethanone (1.69 g, 9.90 mmol, 1.5 equiv.), 0.92 g (48%) of the title compound as a yellow oil was obtained after purification by flash chromatography on SiO₂ (hexanes/EtOAc 995:5 → 99:1).

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): floral, orange flower, natural, cassie.

¹H-NMR (CDCl₃, 400 MHz): 7.86-7.39 (m, 7 H), 7.23-7.19 (m, 0.8 H), 7.11-7.07 (m, 1.2 H), 6.90-6.82 (m, 2 H), 6.16-6.11 (m, 0.4 H), 5.77-5.72 (m, 0.6 H), 3.81 (s, 1.2 H), 3.80 (s, 1.8 H), 3.59 (d, J = 7.3 Hz, 0.8 H), 3.33 (d, J = 7.3 Hz, 1.2 H), 2.27-2.26 (m, 1.2 H), 2.18-2.17 (m, 1.8 H).

MS (EI): 288 (M⁺, 79), 273 (55), 258 (8), 215 (12), 180 (39), 165 (100), 152 (27), 145 (48), 128 (20), 121 (54), 115 (22), 91 (16), 77 (15), 65 (7), 51 (7).

6.4: 1-*tert*-Butyl-4-(5-(4-methoxyphenyl)-2-methylpent-3-enyl)benzene

5 Starting from *p*-methoxyphenethyltriphenylphosphonium bromide (3.10 g, 6.49 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 4.1 mL, 6.49 mmol, 1.0 equiv.) and 3-(4-*tert*-butylphenyl)-2-methylpropanal (1.99 g, 9.74 mmol, 1.5 equiv.), 1.07 g (44%) of the title compound as a light yellow oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 997:3).

10 ¹H-NMR (CDCl₃, 400 MHz): 7.32-7.29 (m, 2 H), 7.13-7.10 (m, 2 H), 6.94-6.91 (m, 2 H), 6.79-6.76 (m, 2 H), 5.47-5.31 (m, 2 H), 3.77 (s, 3 H), 3.23-3.09 (m, 2 H), 2.90-2.83 (m, 1 H), 2.60-2.57 (m, 2 H), 1.33 (s, 9 H), 1.04 (d, J = 6.6 Hz, 3 H).

15 MS (EI): 322 (M⁺, 26), 201 (34), 175 (100), 160 (12), 147 (83), 134 (25), 121 (100), 105 (12), 91 (26), 77 (9), 57 (14), 41 (11).

Example 7: 1-Methyl-4-(4-methyltridec-2-enyl)benzene

p-Methylphenethyltriphenylphosphonium bromide (2.90 g, 6.29 mmol, 1.0 equiv.) in THF (12 mL), was cooled to 0 °C. After adding *n*-BuLi (1.6 M in hexanes, 3.9 mL, 6.29 mmol, 1.0 equiv.) at 0 °C, the red solution was stirred at 65 °C for 1 h. The mixture was re-cooled to 0 °C, 2-methylundecanal (1.74 g, 9.43 mmol, 1.5 equiv.) in THF (5 mL) was added, and the mixture was stirred at 65 °C for 16 h. After addition of H₂O, the aqueous layer was extracted with cyclohexane (2 x), the combined organic phases were washed with brine, dried (MgSO₄), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ (cyclohexane/EtOAc 997:3) to yield 1.24 g (69%) of the title compound as a colorless oil.

Odor description (dry-down after 24 hours on a smelling strip): fresh, clean, aldehydic, resinous.

30 ¹H-NMR (CDCl₃, 400 MHz): 7.13-7.07 (m, 4 H), 5.50-5.44 (m, 1 H), 5.29-5.23 (m, 1 H), 3.42-3.29 (m, 2 H), 2.57-2.53 (m, 1 H), 2.32 (s, 3 H), 1.33-1.21 (m, 16 H), 0.98 (d, J = 6.8 Hz, 3 H), 0.91-0.87 (m, 3 H).

35 MS (EI): 286 (M⁺, 8), 159 (21), 131 (82), 118 (100), 105 (62), 91 (9), 83 (7), 69 (14), 55 (18), 41 (21).

Example 8.1 – 8.3

Following the general procedure as described in Example 7 the following compounds have been prepared:

5

8.1: 1-((6E)-Dodeca-2,6-dienyl)-4-methylbenzene

Starting from *p*-methylphenethyltriphenylphosphonium bromide (2.90 g, 6.29 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 3.9 mL, 6.29 mmol, 1.0 equiv.) and (*E*)-dec-4-enal (1.45 g, 9.43 mmol, 1.5 equiv.), 0.92 g (57%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 997:3).

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): aldehydic, green, sharp, watery.

15

¹H-NMR (CDCl₃, 400 MHz): 7.13-7.07 (m, 4 H), 5.60-5.40 (m, 4 H), 3.37 (d, J = 6.8 Hz, 1.7 H), 3.30 (d, J = 6.1 Hz, 0.3 H), 2.33 (s, 3 H), 2.25-1.98 (m, 6 H), 1.39-1.25 (m, 6 H), 0.92-0.88 (m, 3 H).

MS (EI): 256 (M⁺, 2), 241 (1), 185 (3), 145 (58), 129 (45), 118 (100), 105 (58), 91 (17), 20 79 (11), 69 (22), 55 (22), 41 (26).

8.2: 1-*tert*-Butyl-4-(2-methyl-5-*p*-tolylpent-3-enyl)benzene

Starting from *p*-methylphenethyltriphenylphosphonium bromide (5.04 g, 9.91 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 6.2 mL, 9.91 mmol, 1.0 equiv.) and 3-(4-*tert*-butylphenyl)-2-methylpropanal (3.04 g, 14.9 mmol, 1.5 equiv.), 1.26 g (42%) of the title compound as a light yellow oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 997:3).

¹H-NMR (CDCl₃, 400 MHz): 7.34-7.30 (m, 2 H), 7.15-7.11 (m, 2 H), 7.07 (d, J = 7.8 Hz, 2 H), 6.94 (d, J = 8.0 Hz, 2 H), 5.51-5.33 (m, 2 H), 3.31-3.13 (m, 2 H), 2.93-2.86 (m, 1 H), 2.62-2.55 (m, 2 H), 2.33 (s, 3 H), 1.36 (s, 9 H), 1.06 (d, J = 6.7 Hz, 3 H).
MS (EI): 306 (M⁺, 16), 291 (2), 249 (2), 201 (11), 159 (95), 147 (100), 131 (36), 117 (44), 105 (50), 91 (28), 77 (9), 57 (55), 41 (13).

35

8.3: 5-(3-p-Tolylprop-1-enyl)benzo[d][1,3]dioxole

Starting from *p*-methylphenethyltriphenylphosphonium iodide, which has been synthesized from 1-(2-iodoethyl)-4-methylbenzene and PPh_3 , (2.54 g, 5.00 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 3.1 mL, 5.00 mmol, 1.0 equiv.) and 5 benzo[d][1,3]dioxole-5-carbaldehyde (0.98 g, 6.50 mmol, 1.3 equiv.), 0.50 g (40%) of the title compound as a light yellow oil was obtained after purification by flash chromatography on SiO_2 (cyclohexane/EtOAc 997:3).

¹H-NMR (CDCl_3 , 400 MHz): 7.14-7.11 (m, 4 H), 6.91-6.73 (m, 3 H), 6.48 (dt, J = 11.5, 1.6 Hz, 0.3 H), 6.37 (d, J = 15.7 Hz, 0.7 H), 6.18 (dt, J = 15.7, 6.8 Hz, 0.7 H), 5.96 (s, 0.6 H), 5.94 (s, 1.4 H), 5.77 (dt, J = 11.4, 7.6 Hz, 0.3 H), 3.63 (dd, J = 7.5, 1.6 Hz, 0.6 H), 3.49 (dd, J = 6.9, 1.1 Hz, 1.4 H), 2.34 (s, 3 H).
MS (EI): 252 (M^+ , 100), 237 (31), 222 (20), 207 (35), 193 (12), 179 (38), 165 (12), 152 (11), 135 (13), 129 (14), 115 (27), 103 (20), 89 (18), 77 (26), 63 (12), 51 (12).

15

Example 9: 2-(4-Methyltridec-2-enyl)naphthalene

A solution of naphthaleneethyltriphenylphosphonium bromide which has been synthesized from 2-(2-bromoethyl)-2-naphthalene and PPh_3 , (3.36 g, 6.76 mmol, 1.0 equiv.) in THF (14 mL), was cooled to 0 °C. After adding *n*-BuLi (1.6 M in hexanes, 4.2 mL, 6.76 mmol, 1.0 equiv.) at 0 °C, the red-brown suspension was stirred at 65 °C for 1 h. The mixture was re-cooled to 0 °C, 2-methylundecanal (1.87 g, 10.1 mmol, 1.5 equiv.) in THF (5 mL) was added, and the mixture was stirred at 65 °C for 16 h. After addition of H_2O , the aqueous layer was extracted with cyclohexane (2 x), the combined organic phases were washed with brine, dried (MgSO_4), filtered and the 20 filtrate was concentrated. The residue was purified by flash chromatography on SiO_2 (cyclohexane) to yield 0.31 g (14%) of the title compound as a light yellow oil.

¹H-NMR (CDCl_3 , 400 MHz): 7.84-7.35 (m, 7 H), 7.37-7.35 (m, 1 H), 5.63-5.57 (m, 1 H), 5.39-5.33 (m, 1 H), 3.64-3.51 (m, 2 H), 2.68-2.60 (m, 1 H), 1.39-1.25 (m, 16 H), 1.04 (d, 30 J = 6.6 Hz, 3 H), 0.91 (t, J = 6.8 Hz, 3 H).
MS (EI): 322 (M^+ , 26), 196 (2), 179 (18), 167 (73), 154 (100), 141 (90), 128 (50), 115 (14), 95 (11), 82 (17), 69 (12), 55 (20), 43 (22).

35 Example 10: (3-Methyldodec-1-enyl)benzene

A suspension of benzyltriphenylphosphonium bromide (3.20 g, 7.38 mmol, 1.0 equiv.) in THF (14 mL), was cooled to 0 °C. After adding *n*-BuLi (1.6 M in hexanes, 4.6 mL, 7.38 mmol, 1.0 equiv.) at 0 °C, the red suspension was stirred at 65 °C for 1 h. The mixture was re-cooled to 0 °C, 2-methylundecanal (2.04 g, 11.1 mmol, 1.5 equiv.) in 5 THF (5 mL) was added, and the mixture was stirred at 65 °C for 18 h. After addition of H₂O, the aqueous layer was extracted with cyclohexane (2 x), the combined organic phases were washed with brine, dried (MgSO₄), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ (cyclohexane) to yield 1.45 g (76%) of the title compound as a colorless oil.

10

¹H-NMR (CDCl₃, 400 MHz): 7.37-7.17 (m, 5 H), 6.39-6.32 (m, 1 H), 6.10 (dd, J = 15.9, 7.8 Hz, 0.7 H), 6.10 (dd, J = 11.6, 10.4 Hz, 0.3 H), 2.79-2.69 (m, 0.3 H), 2.34-2.24 (m, 0.7 H), 1.41-1.23 (m, 16 H), 1.08 (d, J = 6.8 Hz, 2.1 H), 1.04 (d, J = 6.6 Hz, 0.9 H), 0.89 (t, J = 6.8 Hz, 3 H).

15

MS (EI): 258 (M⁺, 7), 243 (1), 131 (100), 115 (8), 104 (26), 91 (26), 55 (4), 41 (8).

Example 11: 4-(3-Methyl-4-phenylbut-3-enyl)phenol

To a suspension of benzyltriphenylphosphonium bromide (10.9 g, 25.1 mmol, 1.2 equiv.) in THF (35 mL), was added potassium-*t*-amylat (1.7 M in toluene, 20 mL, 34.0 mmol, 1.7 equiv.) at 25 °C. 4-(4-Hydroxyphenyl)butan-2-one (3.3 g, 20.1 mmol, 1.0 equiv.) in THF (5 mL) was added to the red suspension, and the mixture was stirred at 70 °C for 30 min. After addition of 20% aq. AcOH-solution (10 mL) at 25 °C, the aqueous layer was diluted with hexanes (50 mL). The organic phase was washed with H₂O (2 x 30 mL) and MeOH/ H₂O (8:2, 2 x 20 mL) and concentrated. The residue was purified by flash chromatography on SiO₂ to yield 2.10 g (44%) of the title compound as a white solid.

¹H-NMR (CDCl₃, 400 MHz): 7.31-7.25 (m, 2 H), 7.20-7.11 (m, 3 H), 7.07-7.04 (m, 1.2 H), 7.00-6.97 (m, 0.8 H), 6.75-6.68 (m, 2 H), 6.31 (s, 0.4 H), 6.23 (s, 0.6 H), 5.09 (s, 1 H), 2.76-2.69 (m, 2 H), 2.49-2.45 (m, 0.8 H), 2.43-2.39 (m, 1.2 H), 1.91 (d, J = 1.3 Hz, 1.2 H), 1.87 (d, J = 1.3 Hz, 1.8 H).
MS (EI): 238 (M⁺, 9), 131 (23), 115 (11), 107 (100), 91 (17), 77 (13).

Example 12: 2-Ethoxy-4-(4-(4-hydroxyphenyl)-2-methylbut-1-enyl)phenol

a) To a solution of 4-(*tert*-butyldimethylsilyloxy)-3-ethoxybenzaldehyde (12.7 g, 45.4 mmol, 1.0 equiv.) in EtOH (50 mL), NaBH₄ (868 mg, 22.7 mmol, 0.5 equiv.) was added at 0 °C, and the mixture was stirred at 0 °C for 2 h. After slow addition of sat. aq. NaHCO₃-solution, the aqueous layer was extracted with EtOAc (2 x). The combined organic phases were washed with brine, dried (MgSO₄), filtered and the filtrate was concentrated to yield 12.6 g (98%) of (4-(*tert*-butyldimethylsilyloxy)-3-ethoxyphenyl)methanol as a light yellow oil.

5 b) To a solution of (4-(*tert*-butyldimethylsilyloxy)-3-ethoxyphenyl)methanol (12.5 g, 44.4 mmol, 1.0 equiv.) in CH₂Cl₂ (45 mL), PBr₃ (5.0 mL, 53.2 mmol, 1.2 equiv.) was added at 0 °C, and the mixture was stirred at 0 °C for 30 min. After slow addition of sat. aq. NaHCO₃-solution, the aqueous layer was extracted with CH₂Cl₂ (2 x). The combined organic phases were washed with brine, dried (MgSO₄), filtered and the filtrate was concentrated to yield 14.5 g (94%) of (4-(bromomethyl)-2-ethoxyphenoxy)(*tert*-butyl)dimethylsilane as a light yellow oil.

10 c) To a solution of (4-(bromomethyl)-2-ethoxyphenoxy)(*tert*-butyl)dimethylsilane (14.5 g, 41.8 mmol, 1.0 equiv.) in toluene (84 mL), PPh₃ (11.0 g, 41.8 mmol, 1.0 equiv.) was added. The mixture was stirred at 25 °C for 20 h and concentrated to yield 25.1 g (99%) of (4-(*tert*-Butyldimethylsilyloxy)-3-ethoxyphenyl)methyltriphenylphosphonium bromide as a white solid.

15 d) A solution of (4-(*tert*-Butyldimethylsilyloxy)-3-ethoxyphenyl)methyltriphenylphosphonium bromide (28.7 g, 41.6 mmol, 1.0 equiv.) in THF (90 mL), was cooled to 0 °C. After adding *n*-BuLi (1.6 M in hexanes, 26 mL, 41.6 mmol, 1.0 equiv.) at 0 °C, the red suspension was stirred at 0 °C for 15 min. 4-(*Tert*-butyldimethylsilyloxy)phenyl)butan-2-one (12.9 g, 41.6 mmol, 1.0 equiv.) in THF (30 mL) was added, and the mixture was stirred at 0 °C → 70 °C for 16 h. After addition of H₂O at 25 °C, the aqueous layer was extracted with hexanes (2 x), the combined organic phases were washed with brine, dried (MgSO₄), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ (cyclohexane/EtOAc 98:2) to give *tert*-butyl(4-(4-(4-((*tert*-butyldimethylsilyl)oxy)-3-ethoxyphenyl)-3-methylbut-3-en-1-yl)phenoxy)dimethylsilane as a colorless oil.

20 e) *tert*-Butyl(4-(4-(4-((*tert*-butyldimethylsilyl)oxy)-3-ethoxyphenyl)-3-methylbut-3-en-1-yl)phenoxy)dimethylsilane was dissolved in THF (30 mL), *n*-Bu₄NF (30 mL, 30.0 mmol, 0.7 equiv., 1.0 M in THF) was added, and the mixture was stirred at 25 °C for 1 h. After

addition of H₂O, the aqueous layer was extracted with MTBE (2 x), the combined organic phases were washed with brine, dried (MgSO₄), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ (cyclohexane/EtOAc 9:1 → 4:1) to yield 5.87 g (48% over 2 steps) of the title compound
5 as a light yellow oil.

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): sweet, raspberry, vanillin, plummy.

10 ¹H-NMR (CDCl₃, 400 MHz): 7.10-7.07 (m, 1.12 H), 7.04-7.00 (m, 0.88 H), 6.88 (d, J = 8.1 Hz, 0.56 H), 6.85 (d, J = 8.1 Hz, 0.44 H), 6.79-6.61 (m, 4 H), 6.24 (s, 0.44 H), 6.17 (s, 0.56 H), 5.64 (s, 0.56 H), 5.63 (s, 0.44 H), 4.82 (d, J = 2.0 Hz, 1 H), 4.11 (q, J = 7.0 Hz, 1.12 H), 4.02 (q, J = 7.0 Hz, 0.88 H), 2.77-2.71 (m, 2 H), 2.52-2.48 (m, 0.88 H), 2.43-2.39 (m, 1.12 H), 1.91 (d, J = 1.4 Hz, 1.32 H), 1.89 (d, J = 1.3 Hz, 1.68 H), 1.45 (t, 15 J = 7.0 Hz, 1.68 H), 1.41 (t, J = 7.0 Hz, 1.32 H).
MS (EI): 298 (M⁺, 10), 191 (16), 163 (3), 145 (100), 117 (14), 107 (26), 91 (8), 77 (11).

Example 13: 2-Ethoxy-4-(4-(3-isopropylphenyl)pent-1-enyl)phenol

(4-(*tert*-Butyldimethylsilyloxy)-3-ethoxyphenyl)methyltriphenylphosphonium bromide
20 (1.15 g, 1.89 mmol, 1.0 equiv.) in THF (8 mL), was cooled to 0 °C. After adding *n*-BuLi (1.6 M in hexanes, 1.2 mL, 1.89 mmol, 1.0 equiv.) at 0 °C, the red solution was stirred at 65 °C for 1 h. The mixture was re-cooled to 0 °C, 3-(3-isopropylphenyl)butanal (541 mg, 2.84 mmol, 1.5 equiv.) in THF (3 mL) was added, and the mixture was stirred at 65 °C for 18 h. After addition of H₂O, the aqueous layer was extracted with cyclohexane (2 x), the combined organic phases were washed with brine, dried (MgSO₄), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ (cyclohexane/EtOAc 98:2) to yield a colorless oil which was dissolved in THF (10 mL). *n*-Bu₄NF (1.0 M in THF, 2.3 mL, 2.27 mmol, 1.2 equiv.) was added, and the mixture was stirred at 25 °C for 1 h. After addition of H₂O, the aqueous
25 layer was extracted with EtOAc (2 x), the combined organic phases were washed with brine, dried (MgSO₄), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ (cyclohexane/EtOAc 19:1 → 9:1) to yield 0.33 g (54% over 2 steps) of the title compound as a yellow oil.
30

¹H-NMR (CDCl₃, 400 MHz): 7.27-7.21 (m, 1 H), 7.08-7.02 (m, 3 H), 6.89-6.74 (m, 3 H), 6.35-6.28 (m, 1 H), 5.98 (ddd, J = 15.7, 7.8, 6.6 Hz, 0.6 H), 5.65 (s, 0.4 H), 5.63 (s, 0.6 H), 5.52 (dt, J = 11.8, 7.1 Hz, 0.4 H), 4.16-4.05 (m, 2H), 2.93-2.80 (m, 2 H), 2.64-2.35 (m, 2 H), 1.46-1.42 (m, 3 H), 1.31-1.24 (m, 9 H).

5 MS (EI): 324 (M⁺, 6), 177 (36), 147 (11), 131 (100), 117 (5), 103 (23), 91 (10), 77 (6), 43 (12).

Example 14.1 – 14.2

Following the general procedure as described in Example 13 the following compounds
10 have been prepared:

14.1: 2-Ethoxy-4-(3-methyldodec-1-enyl)phenol

Starting from (4-(*tert*-butyldimethylsilyloxy)-3-ethoxyphenyl)methyltriphenyl-
15 phosphonium bromide (2.14 g, 3.52 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes,
2.2 mL, 3.52 mmol, 1.0 equiv.) and 2-methylundecanal (0.97 g, 5.28 mmol, 1.5 equiv.),
a colorless oil was obtained after purification by flash chromatography on SiO₂
(hexanes/EtOAc 97:3) which was dissolved in THF. After treatment of that solution with
n-Bu₄NF (1.0 M in THF, 3.0 mL, 2.97 mmol, 1.2 equiv.), 0.63 g (56% over 2 steps) of
20 the title compound as a light yellow oil was obtained after purification by flash
chromatography on SiO₂ (hexanes/EtOAc 98:2 → 9:1).

¹H-NMR (CDCl₃, 400 MHz): 6.88-6.77 (m, 3 H), 6.28-6.22 (m, 1 H), 5.91 (dd, J = 15.8,
8.0 Hz, 0.7 H), 5.61 (s, 0.3 H), 5.61 (s, 0.7 H), 5.33 (dd, J = 11.6, 10.4 Hz, 0.3 H), 4.16-
4.08 (m, 2 H), 2.77-2.69 (m, 0.3 H), 2.28-2.19 (m, 0.7 H), 1.47-1.43 (m, 3 H), 1.36-1.23
25 (m, 16 H), 1.06 (d, J = 6.6 Hz, 2.1 H), 1.03 (d, J = 6.8 Hz, 0.9 H), 0.90-0.86 (m, 3 H).
MS (EI): 318 (M⁺, 22), 303 (2), 191 (69), 164 (6), 145 (100), 117 (18), 91 (9), 77 (5), 55
(12), 43 (21).

14.2: 2-Ethoxy-4-((2-(2-(4-methylcyclohex-3-enyl)propyl)cyclopentylidene)methyl)-
30 phenol)

Starting from (4-(*tert*-butyldimethylsilyloxy)-3-ethoxyphenyl)methyltriphenyl-
phosphonium bromide (2.30 g, 3.79 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes,
2.4 mL, 3.79 mmol, 1.0 equiv.) and 2-(2-(4-methylcyclohex-3-enyl)propyl)cyclo-
35 pentanone (1.17 g, 5.30 mmol, 1.4 equiv.), a light yellow oil was obtained after
purification by flash chromatography on SiO₂ (hexanes/EtOAc 99:1) which was

dissolved in THF. After treatment of that solution with *n*-Bu₄NF (1.0 M in THF, 2.5 mL, 2.46 mmol, 1.2 equiv.), 0.19 g (14% over 2 steps) of the title compound as a viscous yellow oil was obtained after purification by flash chromatography on SiO₂ (hexanes/EtOAc 97:3 → 9:1).

5

¹H-NMR (CDCl₃, 400 MHz): 6.89-6.79 (m, 3 H), 6.22-6.15 (m, 1 H), 5.58 (s, 1 H), 5.39-5.33 (m, 1 H), 4.15-4.06 (m, 2 H), 2.60-2.54 (m, 2 H), 2.00-1.14 (m, 21 H), 0.93-0.86 (m, 3 H).

MS (EI): 354 (M⁺, 100), 257 (25), 229 (10), 217 (35), 171 (45), 151 (24), 121 (18).

10

Example 15: 2-(5-(3-Isopropylphenyl)hex-2-en-2-yl)naphthalene

A solution of 1-(2-naphthyl)ethyltriphenylphosphonium bromide (2.30 g, 4.62 mmol, 1.0 equiv.) in THF (16 mL), was cooled to 0 °C. After adding *n*-BuLi (1.6 M in hexanes, 2.9 mL, 4.62 mmol, 1.0 equiv.) at 0 °C, the red-brown suspension was stirred at 0 °C for 15 min. 3-(3-Isopropylphenyl)butanal (1.32 g, 6.94 mmol, 1.5 equiv.) in THF (2 mL) was added, and the mixture was stirred at 0 °C → 70 °C for 18 h. After addition of H₂O, the aqueous layer was extracted with hexanes (2 x), the combined organic phases were washed with brine, dried (MgSO₄), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ (cyclohexane/EtOAc 997:3) to yield 0.57 g (38%) of the title compound as a colorless viscous oil.

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): floral, watery, powdery.

25

¹H-NMR (CDCl₃, 400 MHz): 7.84-7.73 (m, 4 H), 7.54-7.40 (m, 3 H), 7.28-7.18 (m, 1 H), 7.13-6.93 (m, 3 H), 5.94-5.90 (m, 0.75 H), 5.54-5.50 (m, 0.25 H), 2.97-2.73 (m, 2 H), 2.57-2.52 (m, 1.5 H), 2.36-2.23 (m, 0.5 H), 2.09-2.07 (m, 3 H), 1.38-1.20 (m, 9 H).
MS (EI): 328 (M⁺, 6), 181 (100), 165 (27), 147 (19), 115 (5), 105 (9), 91 (6), 77 (2), 43 (10).

30

Example 16.1 – 16.5

Following the general procedure as described in Example 15 the following compounds have been prepared:

16.1: 2-((4E,8Z)-undeca-2,4,8-trien-2-yl)naphthalene

Starting from (1-(2-naphthyl)ethyltriphenylphosphonium bromide (2.40 g, 4.83 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 3.0 mL, 4.83 mmol, 1.0 equiv.) and (2*E*,6*Z*)-Nona-2,6-dienal (1.00 g, 7.24 mmol, 1.5 equiv.), and after stirring the mixture at 25 °C

5 for 3 h, 0.90 g (67%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 997:3).

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): floral, green, watery, fatty, dark tea, mimosa.

10

¹H-NMR (CDCl₃, 400 MHz): 7.85-7.78 (m, 4 H), 7.70-7.64 (m, 1 H), 7.50-7.39 (m, 2 H), 6.63-6.51 (m, 1.6 H), 6.22-6.15 (m, 0.4 H), 5.93-5.86 (m, 0.8 H), 5.76-5.69 (m, 0.2 H), 5.50-5.26 (m, 2 H), 2.31-2.20 (m, 6 H), 2.13-1.96 (m, 3 H), 1.00 (t, J = 7.6 Hz, 2.3 H), 0.93 (t, J = 7.5 Hz, 0.7 H).

15

MS (EI): 276 (M⁺, 25), 261 (1), 207 (100), 192 (57), 179 (45), 165 (40), 152 (13), 141 (11), 128 (8), 115 (9), 77 (9), 41 (18).

16.2: 2-((6*E*)-Dodeca-2,6-dien-2-yl)naphthalene

Starting from (1-(2-naphthyl)ethyltriphenylphosphonium bromide (4.50 g, 9.05 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 5.7 mL, 9.05 mmol, 1.0 equiv.) and (*E*)-dec-4-enal (2.09 g, 13.6 mmol, 1.5 equiv.), and after stirring the mixture at 25 °C for 3 h, 1.16 g (44%) of the title compound as a light yellow oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane).

25

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): floral, orange, flowery, powdery, aldehydic, sharp green.

30

¹H-NMR (CDCl₃, 400 MHz): 7.85-7.77 (m, 4 H), 7.64-7.58 (m, 1 H), 7.50-7.41 (m, 2 H), 5.99-5.95 (m, 0.6 H), 5.58-5.31 (m, 2.4 H), 2.37-1.95 (m, 9 H), 1.42-1.21 (m, 6 H), 0.91-0.87 (m, 3 H).

MS (EI): 292 (M⁺, 5), 181 (100), 165 (28), 153 (5), 141 (5), 128 (2), 115 (2), 41 (5).

16.3: 2-(4-Methyltridec-2-en-2-yl)naphthalene

Starting from (1-(2-naphthyl)ethyltriphenylphosphonium bromide (6.40 g, 12.9 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 8.0 mL, 12.9 mmol, 1.0 equiv.) and 2-

methylundecanal (3.56 g, 19.3 mmol, 1.5 equiv.), and after stirring the mixture at 25 °C for 3 h, 0.94 g (23%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane).

5 Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): floral, orange flower, soft, aldehydic.

¹H-NMR (CDCl₃, 400 MHz): 7.84-7.77 (m, 4 H), 7.64-7.60 (m, 1 H), 7.50-7.40 (m, 2 H), 5.73 (dd, J = 9.5, 1.4 Hz, 0.75 H), 5.29 (dd, J = 10.2, 1.4 Hz, 0.25 H), 2.65-2.55 (m, 10 0.75 H), 2.27-2.22 (m, 0.25 H), 2.16 (d, J = 1.3 Hz, 2.25 H), 2.10 (d, J = 1.5 Hz, 0.75 H), 1.41-1.20 (m, 16 H), 1.07 (d, J = 6.6 Hz, 2.25 H), 0.95 (d, J = 6.6 Hz, 0.75 H), 0.91-0.88 (m, 3 H).
MS (EI): 322 (M⁺, 13), 307 (3), 195 (100), 179 (14), 165 (24), 155 (13), 141 (9), 128 (4), 115 (2), 43 (8).

15

16.4: 2-(5,7,7-Trimethyloct-2-en-2-yl)naphthalene

Starting from (1-(2-naphthyl)ethyltriphenylphosphonium bromide (2.80 g, 5.63 mmol, 1.0 equiv.), *n*-BuLi (1.6 M in hexanes, 3.5 mL, 5.63 mmol, 1.0 equiv.) and 3,5,5-trimethylhexanal (1.20 g, 8.44 mmol, 1.5 equiv.), and after stirring the mixture at 25 °C for 3 h, 0.73 g (46%) of the title compound as a colorless oil was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 997:3).

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): floral, orange, flowery, slightly sweet, medicinal.

25

¹H-NMR (CDCl₃, 400 MHz): 7.84-7.78 (m, 4 H), 7.63-7.60 (m, 1 H), 7.48-7.41 (m, 2 H), 6.01-5.96 (m, 0.75 H), 5.60-5.55 (m, 0.25 H), 2.30-1.86 (m, 5 H), 1.78-1.55 (m, 1 H), 1.40-1.35 (m, 1 H), 1.18-1.13 (m, 1 H), 1.03 (d, J = 6.6 Hz, 2.25 H), 0.95 (s, 6.7 H), 0.89 (d, J = 6.6 Hz, 0.75 H), 0.85 (s, 2.3 H).
MS (EI): 280 (M⁺, 13), 265 (1), 181 (100), 165 (26), 155 (8), 141 (3), 128 (3), 115 (3), 57 (14), 41 (8).

16.5: 2-[(11*E*)-trideca-2,11-dien-2-yl]naphthalene

Starting from (1-(2-naphthyl)ethyltriphenylphosphonium bromide (49.7 g, 100 mmol, 1.0 equiv.) in THF (400 mL), K^tBuO (110 mL, 110 mmol, 1.1 equiv., 1 M in THF) and

(*E*)-undec-9-enal (16.8 g, 120 mmol, 1.2 equiv.) in THF (100 mL), 16.6 g (53%) of the title compound was obtained after purification by flash chromatography on SiO₂ (hexane) as a light yellow oil.

5 Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): soft aldehydic metallic, floral.

10 ¹H-NMR (CDCl₃, 400 MHz): 7.86 - 7.79 (m, 4 H), 7.66 - 7.61 (m, 1 H), 7.50 - 7.42 (m, 2 H), 5.99 (ddd, *J* = 1.0, 7.2, 7.2 Hz, 0.7 H), 5.58 (ddd, *J* = 1.2, 7.4, 7.4 Hz, 0.3 H), 5.51 - 5.38 (m, 2 H), 2.32 - 2.26 (m, 2 H), 2.18 - 2.15 (m, 3 H), 2.11 - 1.93 (m, 3 H), 1.69 - 1.61 (m, 2 H), 1.56 - 1.25 (m, 10 H).

15 MS (EI): 306 (M⁺, 21), 291 (1), 181 (100), 168 (59), 155 (30), 141 (20), 128 (10), 115 (5), 55 (17), 41 (12).

15 Example 17: 4-(4-(3-Isopropylphenyl)pent-1-enyl)-1,2-dimethoxybenzene

A solution of (3,4-dimethoxyphenyl)methyltriphenylphosphonium bromide (4.93 g, 10.0 mmol, 1.0 equiv.) in THF (10 mL), was cooled to 0 °C. After adding *n*-BuLi (1.6 M in hexanes, 6.3 mL, 10.0 mmol, 1.0 equiv.) at 0 °C, the red suspension was stirred at 0 °C for 20 min. 3-(3-Isopropylphenyl)butanal (2.09 g, 11.0 mmol, 1.1 equiv.) in THF (11 mL) was added, and the mixture was stirred at 0 °C → 25 °C for 16 h. After addition of H₂O at 25 °C, the aqueous layer was extracted with hexanes (2 x), the combined organic phases were dried (MgSO₄), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ (hexanes/EtOAc 99:1 → 4:1) to yield 2.67 g (82%) of the title compound as a colorless oil.

25 ¹H-NMR (CDCl₃, 400 MHz): 7.30-7.24 (m, 1 H), 7.12-7.05 (m, 3 H), 6.91-6.81 (m, 3 H), 6.42-6.34 (m, 1 H), 6.10-6.02 (m, 0.5 H), 5.59 (td, *J* = 11.6, 7.1 Hz, 0.5 H), 3.91-3.89 (m, 6 H), 2.97-2.86 (m, 2 H), 2.68 (dt, *J* = 7.2, 1.8 Hz, 1 H), 2.60-2.53 (m, 0.5 H), 2.48-2.41 (m, 0.5 H), 1.36-1.27 (m, 9 H).

30 MS (EI): 324 (M⁺, 6), 177 (100), 147 (9), 131 (7), 115 (5), 103 (5), 91 (8), 77 (3), 43 (7).

Example 18.1: 5-(4-(3-Isopropylphenyl)pent-1-enyl)benzo[d][1,3]dioxole
A solution of (benzo[d][1,3]dioxol-5-ylmethyl)triphenylphosphonium bromide (4.77 g, 10.0 mmol, 1.0 equiv.) in THF (20 mL), was cooled to 0 °C. After adding *n*-BuLi (1.6 M in hexanes, 6.3 mL, 10.0 mmol, 1.0 equiv.) at 0 °C, the dark red suspension was stirred

at 0 °C for 10 min. 3-(3-Isopropylphenyl)butanal (1.90 g, 10.0 mmol, 1.0 equiv.) in THF (10 mL) was added, and the mixture was stirred at 0 °C → 25 °C for 16 h. After addition of H₂O at 25 °C, the aqueous layer was extracted with hexanes and MTBE, the combined organic phases were dried (MgSO₄), filtered and the filtrate was 5 concentrated. The residue was purified by flash chromatography on SiO₂ (hexanes/EtOAc 4:1) to yield 2.35 g (75%) of the title compound as a yellow oil.

¹H-NMR (CDCl₃, 400 MHz): 7.29-7.24 (m, 1 H), 7.11-7.04 (m, 3 H), 6.88 (br. s, 0.6 H), 10 6.81-6.72 (m, 2.4 H), 6.36-6.30 (m, 1 H), 6.04-5.98 (m, 0.6 H), 5.97 (s, 0.8 H), 5.94 (s, 1.2 H), 5.55 (td, J = 11.7, 7.0 Hz, 0.4 H), 2.96-2.84 (m, 2 H), 2.65-2.38 (m, 2 H), 1.34-1.27 (m, 9 H).

MS (EI): 308 (M⁺, 13), 161 (88), 147 (28), 131 (100), 117 (6), 103 (45), 91 (11), 77 (16), 15 43 (16).

18.2: 5-(4-(4-Methoxyphenyl)-3-methylbut-1-enyl)benzo[d][1,3]dioxole

Potassium *t*-pentylat (1.7 M in toluene, 6.5 mL, 11.0 mmol, 1.1 equiv.) was added to a 20 solution of (benzo[d][1,3]dioxol-5-ylmethyl)triphenylphosphonium bromide (4.77 g, 10.0 mmol, 1.0 equiv.) in THF (20 mL) at 25 °C. After the dark red suspension was stirred at 25 °C for 15 min, 3-(4-methoxyphenyl)-2-methylpropanal (1.78 g, 10.0 mmol, 1.0 equiv.) in THF (10 mL) was added, and the mixture was stirred at 70 °C for 1.5 h. After addition of 20% aq. AcOH-solution (10 mL) at 25 °C, the aqueous layer was extracted with MTBE, the combined organic phases were dried (MgSO₄), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ (hexanes/EtOAc 19:1) to yield 2.20 g (74%) of the title compound as a yellow oil.

25

¹H-NMR (CDCl₃, 400 MHz): 7.13-7.05 (m, 2 H), 6.91-6.60 (m, 5 H), 6.30-6.23 (m, 1 H), 6.03 (dd, J = 15.8, 7.0 Hz, 0.8 H), 5.95 (s, 0.4 H), 5.94 (s, 1.6 H), 5.43 (dd, J = 11.6, 10.4 Hz, 0.2 H), 3.81 (s, 2.3 H), 3.80 (s, 0.7 H), 3.05-2.97 (m, 0.2 H), 2.78-2.53 (m, 2.8 H), 1.09 (d, J = 6.3 Hz, 2.3 H), 1.05 (d, J = 6.6 Hz, 0.7 H).

30 MS (EI): 296 (M⁺, 9), 175 (90), 145 (100), 121 (23), 115 (51), 91 (14), 77 (11).

18.3: 5-(4-(4-*tert*-Butylphenyl)-3-methylbut-1-enyl)benzo[d][1,3]dioxole

Potassium *t*-butylat (1 M in THF, 11 mL, 11.0 mmol, 1.1 equiv.) was added to a solution 35 of (benzo[d][1,3]dioxol-5-ylmethyl)triphenylphosphonium bromide (4.77 g, 10.0 mmol, 1.0 equiv.) in THF (20 mL) at 25 °C. After the dark red suspension was stirred at 25 °C

for 10 min, 3-(4-*tert*-butylphenyl)-2-methylpropanal (2.04 g, 10.0 mmol, 1.0 equiv.) in THF (10 mL) was added, and the mixture was stirred at 70 °C for 1.5 h. After addition of 20% aq. AcOH-solution (10 mL) at 25 °C, the aqueous layer was extracted with hexanes, the combined organic phases were dried (MgSO_4), filtered and the filtrate was 5 concentrated. The residue was purified by flash chromatography on SiO_2 (hexanes/EtOAc 19:1) to yield 2.83 g (88%) of the title compound as a yellow oil.

¹H-NMR (CDCl_3 , 400 MHz): 7.29-7.24 (m, 2 H), 7.09-7.02 (m, 2 H), 6.86- 6.48 (m, 3 H), 6.24-6.20 (m, 1 H), 6.01 (dd, J = 15.9, 7.1 Hz, 0.8 H), 5.89 (s, 2 H), 5.39 (dd, J = 11.5, 10.4 Hz, 0.2 H), 2.99-2.91 (m, 0.2 H), 2.75-2.49 (m, 2.8 H), 1.30-1.26 (m, 9 H), 1.04 (d, J = 6.4 Hz, 2.3 H), 1.00 (d, J = 6.6 Hz, 0.7 H).
MS (EI): 322 (M^+ , 5), 175 (100), 145 (97), 127 (6), 117 (34), 91 (13).

Example 19: 1-(*tert*-Butyl)-4-[4-(4-methoxyphenyl)-2-methylbut-3-en-1-yl]benzene
15 A solution of (4-methoxyphenyl)methyltriphenylphosphonium bromide (2.40 g, 5.18 mmol, 1.0 equiv.) in THF (10 mL), was cooled to 0 °C. After adding *n*-BuLi (1.6 M in hexanes, 3.2 mL, 5.18 mmol, 1.0 equiv.) at 0 °C, the red suspension was stirred at 0 °C for 15 min. 3-(4-*tert*-Butylphenyl)-2-methylpropanal (1.59 g, 7.77 mmol, 1.5 equiv.) in THF (4 mL) was added, and the mixture was stirred at 0 °C → 25 °C for 12 h. After 20 addition of H_2O at 25 °C, the aqueous layer was extracted with hexanes, the combined organic phases were dried (MgSO_4), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO_2 (cyclohexane/EtOAc 995:5 → 99:1) to yield 1.33 g (83%) of the title compound as a colorless oil.

25 ¹H NMR (CDCl_3 , 400 MHz): 7.32 - 7.28 (m, 3 H), 7.14 - 7.03 (m, 3 H), 6.87 - 6.81 (m, 2 H), 6.32 - 6.28 (m, 1 H), 6.09 (dd, J = 15.9, 7.1 Hz, 0.6 H), 5.45 (dd, J = 11.4, 10.4 Hz, 0.4 H), 3.82 (s, 3 H), 3.06 - 2.98 (m, 0.4 H), 2.80 - 2.54 (m, 2.6 H), 1.33 (s, 5.4 H), 1.32 (s, 3.6 H), 1.09 (d, J = 6.6 Hz, 1.8 H), 1.04 (d, J = 6.6 Hz, 1.2 H).
MS (EI): 308 (M^+ , 2), 293 (1), 161 (100), 146 (5), 131 (5), 117 (8), 91 (8).

30
Example 20: 1-[4Z)-hepta-1,4-dien-1-yl]-4-methoxybenzene
Following the general procedure as described in Example 19, starting from *cis*-3-hexenyltriphenylphosphonium iodide (6.50 g, 13.8 mmol, 1.0 equiv.), *n*-BuLi (9.5 mL, 15.1 mmol, 1.0 equiv., 1.6 M in hexane) and 4-methoxybenzaldehyde (2.25 g, 35 16.5 mmol, 1.2 equiv.), 2.60 g (93%) of the title compound (ratio (1E)-isomer: (1Z)-

isomer = 9:1) was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 99:1) as a colorless oil.

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip):
5 green floral natural, mimosa linden blossom.

1H NMR (CDCl₃, 400 MHz): 7.31 - 7.23 (m, 2 H), 6.90 - 6.83 (m, 2 H), 6.41 - 6.32 (m, 1 H), 6.07 (dd, J = 15.9, 6.6 Hz, 0.9 H), 5.59 - 5.40 (m, 2.1 H), 3.81 (s, 3 H), 3.08 - 2.87 (m, 2 H), 2.15 - 2.03 (m, 2 H), 1.01 (t, J = 7.6 Hz, 2.7 H), 0.98 (t, J = 7.6 Hz, 0.3 H).
10 MS (EI): 202 (M⁺, 33), 173 (56), 158 (33), 134 (100), 128 (17), 121 (40), 115 (29), 103 (11), 91 (26), 77 (17), 65 (10), 51 (8), 39 (10).

Example 21: 1-Isopropyl-3-[5-(4-methoxyphenyl)pent-4-en-2-yl]benzene

Potassium *t*-butylat (17.1 mL, 17.1 mmol, 1.0 equiv., 1 M in THF) was added to a
15 solution of (4-methoxyphenyl)methyltriphenylphosphonium bromide (7.90 g, 17.1 mmol,
1.0 equiv.) in THF (17 mL) at 25 °C. After the dark red suspension was stirred at 25 °C
for 10 min, 3-(3-isopropylphenyl)butanal (3.24 g, 17.1 mmol, 1.0 equiv.) in THF (8.5 mL)
was added, and the mixture was stirred at 25 °C 12 h. After addition of 20% aq. AcOH-
20 solution at 25 °C, the aqueous layer was extracted with hexane. The combined organic
phases were washed with MeOH/H₂O (4:1; 2-3x), dried (MgSO₄), filtered and the filtrate
was concentrated. The residue was purified by flash chromatography on SiO₂
(cyclohexane/EtOAc 995:5 → 99:1) to yield 4.03 g (80%) of the title compound as a
light yellow oil.

25 Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip):
green, floral, florhydral-like.

¹H-NMR (CDCl₃, 400 MHz): 7.27 - 7.18 (m, 3 H), 7.09 - 7.03 (m, 3 H), 6.89 - 6.82 (m, 2 H), 6.38 - 6.32 (m, 1 H), 6.02 (ddd, J = 15.8, 8.0, 6.6 Hz, 0.55 H), 5.54 (dt, J = 11.6, 7.1
30 Hz, 0.45 H), 3.83 (s, 1.4 H), 3.81 (s, 1.6 H), 2.94 - 2.81 (m, 2 H), 2.64 - 2.37 (m, 2 H),
1.32 - 1.25 (m, 9 H).

MS (EI): 294 (M⁺, 4), 147 (100), 131 (4), 115 (10), 105 (5), 91 (13), 77 (3), 43 (6).

Example 22.1 – 22.2

Following the general procedure as described in Example 21 the following compounds have been prepared:

5 22.1: 1-Methoxy-4-[(5E)-undeca-1,5-dien-1-yl]benzene

Starting from (4-methoxyphenyl)methyltriphenylphosphonium bromide (14.0 g, 30.2 mmol, 1.0 equiv.), KtBuO (34 mL, 34.0 mmol, 1.1 equiv., 1 M in THF) and (E)-dec-4-enal (5.59 g, 36.3 mmol, 1.2 equiv.), 5.59 g (72%) of the title compound was obtained after purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 99:1) as a light 10 yellow oil.

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): green, fatty, floral, (E)-dec-4-enal-like.

15 ¹H-NMR (CDCl₃, 400 MHz): 7.30 - 7.22 (m, 2 H), 6.90 - 6.83 (m, 2 H), 6.38 - 6.33 (m, 1 H), 6.10 (dt, J = 15.8, 6.7 Hz, 0.6 H), 5.58 (dt, J = 11.6, 7.1 Hz, 0.4 H), 5.47 - 5.41 (m, 2 H), 3.82 (s, 1.2 H), 3.81 (s, 1.8 H), 2.40 (dq, J = 7.3, 1.8 Hz, 0.8 H), 2.29 - 2.21 (m, 1.2 H), 2.18 - 2.12 (m, 2 H), 2.02 - 1.96 (m, 2 H), 1.40 - 1.25 (m, 6 H), 0.91 - 0.88 (m, 3 H).
MS (EI): 258 (M⁺, 4), 147 (100), 132 (4), 115 (10), 103 (5), 91 (13), 78 (3), 41 (5).

20

22.2: 1-Methoxy-4-(3-methylundec-1-en-1-yl)benzene

Starting from (4-methoxyphenyl)methyltriphenylphosphonium bromide (6.00 g, 13.0 mmol, 1.0 equiv.), KtBuO (14 mL, 14.2 mmol, 1.1 equiv., 1 M in THF) and 2-methylundecanal (2.86 g, 15.5 mmol, 1.2 equiv.), 1.98 g (53%) of the title compound 25 was obtained after purification by flash chromatography on SiO₂ (hexane/EtOAc 99:1) as a colorless oil.

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): ciste, incense, aldehydic (2-methylundecanal-like).

30

¹H-NMR (CDCl₃, 400 MHz): 7.32 - 7.29 (m, 2 H), 6.89 - 6.83 (m, 2 H), 6.32 - 6.27 (m, 1 H), 5.97 (dd, J = 15.9, 7.8 Hz, 0.8 H), 5.36 (dd, J = 11.4, 10.4 Hz, 0.2 H), 3.83 (s, 0.6 H), 3.82 (s, 2.4 H), 2.78 - 2.71 (m, 0.2 H), 2.32 - 2.21 (m, 0.8 H), 1.45 - 1.25 (m, 16 H), 1.08 (d, J = 6.6 Hz, 2.4 H), 1.05 (d, J = 6.8 Hz, 0.6 H), 0.90 (t, J = 6.8 Hz, 3 H).

MS (EI): 288 (M⁺, 9), 273 (1), 161 (100), 146 (5), 134 (6), 121 (14), 115 (4), 91 (6), 43 (5).

Example 23: 4-[3-Methyl-4-(m-tolyl)but-3-en-1-yl]phenol

5 Potassium *t*-butylat (45 mL, 45 mmol, 1.0 equiv., 1 M in THF) and 4-[4-(*tert*-butyldimethylsilyloxy)phenyl]butan-2-one (12.5 g, 45 mmol, 1.0 equiv.) in THF (23 mL) were added simultaneously to a solution of (*m*-tolyl)methyltriphenylphosphonium bromide (20.1 g, 45 mmol, 1.0 equiv.) in THF (45 mL) at 70 °C. The mixture was stirred at 70 °C for 16 h. After addition of 20% aq. AcOH-solution at 25 °C, the aqueous layer 10 was extracted with hexane. The combined organic phases were washed with MeOH/H₂O (4:1; 2-3x), dried (MgSO₄), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ (cyclohexane/EtOAc 99:1) to yield *tert*-butyl[4-[4-(4-methoxyphenyl)-3-methylbut-3-en-1-yl]phenoxy]-dimethylsilane 15 as a light yellow oil. This compound was dissolved in THF (32 mL), *n*-Bu₄NF (35 mL, 35 mmol, 0.8 equiv., 1.0 M in THF) was added, and the mixture was stirred at 25 °C for 1 h. After addition of H₂O, the aqueous layer was extracted with MTBE (2 x), the combined organic phases were washed with brine, dried (MgSO₄), filtered and the filtrate was concentrated. The residue was purified by flash chromatography on SiO₂ 20 (hexane/EtOAc 9:1 → 4:1) to yield 7.40 g (65% over 2 steps) of the title compound as a light yellow oil.

Odor description (dry-down of a 10% DPG solution after 24 hours on a smelling strip): raspberry, fruity, floral.

25 ¹H-NMR (CDCl₃, 400 MHz): 7.24 - 7.18 (m, 1 H), 7.12 - 6.94 (m, 5 H), 6.80 - 6.74 (m, 2 H), 6.31 (s, 0.4 H), 6.24 (s, 0.6 H), 4.67 (s, 0.6 H), 4.66 (s, 0.4 H), 2.80 - 2.74 (m, 2 H), 2.52 - 2.48 (m, 0.8 H), 2.46 - 2.42 (m, 1.2 H), 2.36 (s, 1.8 H), 2.34 (s, 1.2 H), 1.94 (d, *J* = 1.5 Hz, 1.2 H), 1.91 (d, *J* = 1.3 Hz, 1.8 H).

MS (EI): 252 (M⁺, 15), 145 (57), 129 (14), 115 (13), 107 (100), 91 (6), 77 (14).

30

Example 24: Stability tests

The stability of the compounds has been measured in standard consumer product bases (LD = liquid detergent base, FS = fabric conditioner, SH = shampoo). Therefore, the consumer product containing the compound of formula (I) were stored at room 35 temperature for one day and then at 37°C for up to three months. Samples have been

taken after one day, one month and three months respectively. They have been diluted with acetone, and analyzed for the amount of unchanged compound (i.e. the amount of compound of formula (I)) left in the sample with HPLC, indicated as mol% recovery. The results are given in Table 1 below.

Table 1: Storage stability in liquid detergents, fabric softener and shampoo bases

Compound	base	1 day	1 month	3 months
Precursor Ex. 2.2	LD	100	94	93
	FS	100	95	97
	SH	100	97	94
Precursor Ex. 3	LD	100	97	95
	SH	98	100	
Precursor Ex. 2.6	LD	100	98	98
	SH	100	97	97
Precursor Ex. 12	LD	76	77	72
Precursor Ex. 6.1	LD	88	89	87
	SH	85	86	85
Precursor Ex. 2.14	LD	99	98	93
	SH	100	100	93
Precursor Ex. 4.2	LD	100	96	98
	SH	100	89	89
Precursor Ex. 6.3	LD	100	100	97
	SH	100	94	90
Precursor Ex. 2.16	LD	100	95	92
	SH	96	94	88
Precursor Ex. 2.17	LD	100	96	96
	SH	97	97	91
Precursor Ex. 16.2	LD	--	100	100
	SH	--	88	86
Precursor Ex. 16.3	LD	--	99	100
	SH	--	97	95

Example 25: Application in liquid detergent

To a non fragranced heavy duty liquid detergent base (pH 8.4) was added 0.1% wt/wt of either, a compound of formula (I) or the corresponding free fragrant aldehyde/ketone and, when olfactively pure available, together with the corresponding carbonyl compound. A sample of this base (34 g) was used to wash a load of 5 cotton terry towels (ca. 200 g dry weight each, about 1 kg total load) in a standard frontloading European washing machine. The wash cycle was carried out at 40°C, followed by two cold rinse cycles and spinning at 1000 rpm. The washed towels were assessed blind by a panel of experienced evaluators for fragrance intensity at T₀ (wet if not otherwise stated) and after 24 h line dry at room temperature. The intensity was indicated according to the following scale: 0 (odorless), 1 (very weak), 2 (weak), 3 (medium), 4 (strong), 5 (very strong). The results are given in Table 2 below.

Table 2: Fragrance intensity of the free fragrant and a precursor releasing said fragrant

Ingredient:	Free fragrant Precursor	mean intensity at T ₀	mean intensity after 24 hours
Ethylvanillin		1.3	0.6
Precursor Ex. 3		3.4	2.3
Nonadienal		1.3	1.4
Precursor Ex. 2.12		3.8	3.4
Oranger Crist		3.1	1.2
Precursor Ex. 6.3		2.8	2.4
trans-4-Decenal		2.2	0.7
Precursor Ex. 8.1		3.0	2.6
Ethylvanillin + Raspberry Ketone		2.6	1.1
Precursor Ex. 12		3.2	2.0
Benzaldehyde + Raspberry Ketone		1.2	0.5
Precursor Ex. 11		2.5	2.4
Oranger Crist + 2-methylundecanal		3.2	1.0
Precursor Ex. 16.3		1.8	2.4
Heliotropine + Lilial		2.8	1.2
Precursor Ex. 18.3		2.4	2.0

As can be seen from the results given in the Table 2 above, the compounds of formula (I) showed higher odor scores on dry clothes compared to the free aldehydes/ketones, thereby demonstrating a desired controlled release effect. For some of the dry clothes additional assessment was carried out after 5 days and the towels washed with the 5 compounds of the present invention still showed perceivable odors whereas those washed with the free aldehydes / ketones were in general odorless.

Example 26: Application in fabric conditioner

To a non fragranced fabric conditioner, containing 12% of the ester-quat type cationic 10 surfactant Rewoquat WE18, was added 2% wt/wt of either, a compound of formula (I) or the corresponding free fragrant aldehyde/ketone as a 10% solution in dipropylene glycol (DPG).

A mixed load of fabric containing 4 cotton terry towels was rinsed with the fabric 15 conditioner preparations described above (35 g). The washed towels were assessed wet (T_0) and after 24 hours line drying at room temperature for fragrance intensity by a panel experienced evaluators. The coded towels were assessed blind. The intensity was indicated according to the following scale: 0 (odorless), 2 (very weak), 4 (weak), 6 (medium), 8 (strong), 10 (very strong). The results are given in Table 3 below.

20

Table 3: Fragrance intensity of the free fragrant and a precursor releasing said fragrant

Ingredient: Free fragrant Precursor	mean intensity at T_0	mean intensity after 24 hours	mean intensity after 7 days
Ethylvanillin	5.5	7.4	--
Precursor Ex. 1	4.9	7.9	--
2,6-Nonadienal	7.5	2.8	1.0
Precursor Ex. 2.12	6.4	6.4	4.0
Raspberry Ketone	4.9	6.4	--
Precursor Ex. 12	5.8	8.0	--
Oranger Crist	7.0	3.9	1.0
Precursor Ex. 16.3	3.0	4.0	5.0
Ethylvanillin	7.2	7.5	4.0
Precursor Ex. 4.2	5.5	6.8	6.0

Florhydral	6.4	4.2	—
Precursor Ex. 2.6	3.0	5.3	—
Oranger Crist	7.0	3.9	1.0
Precursor Ex. 16.2	3.6	7.0	3.5

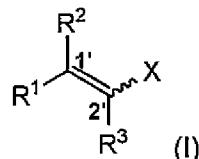
The compounds of formula (I) showed higher odour scores on dry clothes compared to the free aldehydes/ketones, thereby demonstrating a desired controlled release effect. Furthermore, several towels were reassessed after 7 days and a further increase in 5 fragrance intensity was noted for some of them.

Example 27: Application in powder detergent

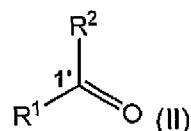
To a non fragranced bleach powder detergent base was added 0.1% wt/wt of either, a 10 compound of formula (I) or the corresponding free fragrant aldehyde/ketone, as a 10% solution in DPG. The samples were stored at 37 °C for one month.

A mixed load of fabric (total 2.5 kg) containing 4 cotton terry towels for evaluation was washed in a standard frontloading washing machine using the above prepared powder detergent base (90 g). The wash cycle was carried out at 40 °C, followed by two cold 15 rinse cycles and spinning. The washed towels were assessed by a panel of 5 experienced evaluators for fragrance intensity after tumble drying and after 24 h line drying at room temperature. The intensity was indicated according to the following scale: 0 (odorless) to 10 (very strong). The coded towels were assessed blind. The results are given in Table 4 below.

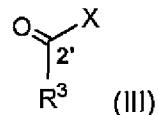
20 Table 4: Fragrance intensity of the free fragrant and a precursor releasing said fragrant


Ingredient:	Free fragrant	mean intensity			
		Tumble dry		line dry	
		Precursor	24 h	7d	24 h
	Ethylvanillin	3.0	1.3	1.5	1.3
	Precursor Ex. 3	7.0	4.3	6.0	4.0
	Ethylvanillin + Raspberry Ketone	1.0	1.3	2.3	0.8
	Precursor Ex. 12	5.3	3.0	6.0	4.0

The compounds of the present invention showed higher odour scores on dry clothes after 24 hours and one week respectively compared to the free aldehyde / ketone,


thereby demonstrating a desired controlled release effect. Almost all the performance of the raw materials was lost on storage, whereas the compounds of formula (I) largely maintained its level of performance.

Claims


1. The use of a compound of formula (I)

as precursor for generating a ketone or aldehyde of the formula (II)

and a carbonyl compound of the formula (III)

wherein

R¹ is selected from the group consisting of

C₅ – C₁₄ alkyl, C₅ – C₁₄ alkenyl,

C₅ – C₆ cycloalkyl, C₅ – C₈ cycloalkyl substituted with 1, 2, or 3 groups selected from C₁ – C₆ alkyl and C₂ – C₄ alkylidene,

C₅ – C₈ cycloalkenyl, C₅ – C₈ cycloalkenyl wherein the cycloalkenyl-ring is substituted with 1, 2, or 3 groups selected from C₁ – C₄ alkyl, C₂ – C₄ alkylidene, and C₃–C₅ cycloalkyl,

(C₁ – C₃)alkyl(C₅ – C₆)cycloalkyl wherein the cycloalkyl-ring is optionally substituted with one group selected from –OH group and ≈O group, and/or one or two ether group(s), and/or up to four C₁–C₅ alkyl groups,

(C₁ – C₄)alkyl(C₅ – C₆)cycloalkenyl wherein the cycloalkenyl-ring is optionally substituted one –OH group, and/or one or two ether group(s), and/or up to four C₁–C₅ alkyl groups,

(C₂ – C₃)alkenyl(C₅ – C₆)cycloalkenyl wherein the cycloalkenyl-ring is optionally substituted with one –OH group, and/or one or two ether group(s), and/or up to four C₁–C₅ alkyl groups,

C₆ – C₁₄ aryl,

$C_6 - C_{14}$ aryl wherein the aryl-ring is substituted with up to 3 groups selected from $C_1 - C_4$ alkyl, $-O - CH_2 - O -$, and $-OR^{11}$ wherein R^{11} is independently selected from hydrogen and $C_1 - C_4$ alkyl,

$(C_1 - C_3)alkyl(C_6 - C_{14})aryl$,

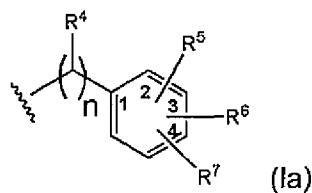
$(C_1 - C_3)alkyl(C_6 - C_{14})aryl$ wherein the aryl-ring is substituted with up to 2 groups selected from $C_1 - C_4$ alkyl, $-O - CH_2 - O -$, and $-OR^{12}$ wherein R^{12} is independently selected from hydrogen and $C_1 - C_4$ alkyl,

$(C_2 - C_8)alkenyl(C_6 - C_{14})aryl$,

$(C_2 - C_8)alkenyl(C_6 - C_{14})aryl$ wherein the aryl-ring is substituted with up to 2 groups selected from $C_1 - C_4$ alkyl, $-O - CH_2 - O -$, and $-OR^{13}$ wherein R^{13} is independently selected from hydrogen and $C_1 - C_4$ alkyl, and

bi-, tri, or tetracyclic hydrocarbon ring comprising $C_8 - C_{12}$ carbon atoms optionally substituted with up to 6 groups selected from $C_1 - C_4$ alkyl, $-O - CH_2 - O -$, and $-OR^{14}$ wherein R^{14} is independently selected from hydrogen and $C_1 - C_4$ alkyl;

R^2 is selected from hydrogen, $C_1 - C_5$ alkyl, and $C_2 - C_5$ alkenyl;


or

R^1 and R^2 form together with the carbon atom to which they are attached

- a) a 5 to 7 membered hydrocarbon ring(s), the ring(s) may contain up to two ether groups, and /or the ring(s) may optionally be substituted with $C_1 - C_5$ alkyl groups
- b) 2-(2-(4-methylcyclohex-3-en-1-yl)propyl)cyclopent-1-ylidene, or
- c) a 14 – 17 membered hydrocarbon ring, the ring may be substituted with a methyl group;

R^3 is hydrogen or methyl; and

X means a radical of formula (Ia)

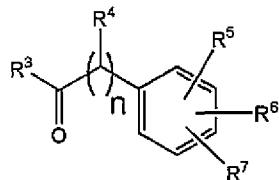
wherein n is 0 or 1;

R^4 is hydrogen or methyl;

R^5 is hydrogen or methyl;

R^6 is selected from hydrogen, $C_1 - C_5$ alkyl, vinyl, hydroxyl, methoxy or ethoxy; and

R^7 is selected from hydrogen, $C_1 - C_5$ alkyl, vinyl, hydroxyl, methoxy or ethoxy; with the proviso that if one of R^6 and R^7 is hydroxyl then the other is selected from methoxy or ethoxy;


or

R^6 and R^7 form together with the carbon atoms to which they are attached a 5 or 6 membered ring containing up to two oxygen atoms, wherein the ring may optionally be substituted with up to 6 methyl groups;

with the proviso that

- a) if $n = 0$, R^1 is not a group selected from aryl and aryl substituted with an $-OR^{11}$ wherein R^{11} is C_1-C_4 alkyl; and
- b) if R^3 is hydrogen and R^1 is selected from the group consisting of alkenyl, alkenylcycloalkenyl, alkenylaryl and cycloalkenyl in which no sp^3 -hybridised C-atom is between C-1' and the nearest C-C double bond of R^1 , then $n = 1$.

2. A method of generating a carbonyl compound of the formula

wherein n is 0 or 1;

R^3 is hydrogen or methyl;

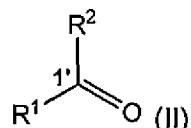
R^4 is hydrogen or methyl;

R^5 is hydrogen or methyl;

R^6 is selected from hydrogen, $C_1 - C_5$ alkyl, vinyl, hydroxyl, methoxy or ethoxy; and

R^7 is selected from hydrogen, $C_1 - C_5$ alkyl, vinyl, hydroxyl, methoxy or ethoxy;

with the proviso that if one of R^6 and R^7 is hydroxyl then the other is selected from methoxy or ethoxy (e.g. if $R^6 = OH$, then $R^7 =$ methoxy or ethoxy);


or

R^6 and R^7 form together with the carbon atoms to which they are attached a 5 or 6 membered ring containing up to two oxygen atoms, wherein the ring may optionally be substituted with up to 6 methyl groups

characterized in that a compound of formula (I) as defined by claim 1 is exposed to oxygen.

3. A method according to claim 2 wherein the carbonyl compound is selected from ethylvanillin, vanillin, 1-(naphthalen-2-yl)ethanone, acetophenone, 1,3-benzodioxole-5-carboxaldehyde, anisic aldehyde, veratric aldehyde, phenylacetic aldehyde, 4-methyl phenylacetaldehyde, benzaldehyde, 3-methyl-benzaldehyde, 1-(4-methoxyphenyl)ethanone, 4-(1-methylethyl)-benzenacetaldehyde, 2,4-(di-(1,1-dimethylethyl))-5-methoxy-benzaldehyde, 4-isopropyl-benzaldehyde, 1-(2,4-dimethylphenyl)ethanone, 5,5,7,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalene-2-carbaldehyde, 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)ethanone, 1-(5,6,7,8-tetrahydronaphthalen-2-yl)ethanone, 1-(1,1,2,3,3,6-hexamethyl-2,3-dihydro-1H-inden-5-yl)ethanone, 2-(4-isopropylphenyl)propanal, 3,5,5,6,7,8,8-heptamethyl-5,6,7,8-tetrahydronaphthalene-2-carbaldehyde, 2,3,3-trimethyl-2,3-dihydro-1H-inden-1-one, and mixtures thereof.

4. A method of generating a fragrant aldehyde or ketone of the formula (II)

wherein

R^1 is selected from the group consisting of

$C_5 - C_{14}$ alkyl, $C_5 - C_{14}$ alkenyl,

$C_5 - C_6$ cycloalkyl, $C_5 - C_8$ cycloalkyl substituted with 1, 2, or 3 groups selected from $C_1 - C_6$ alkyl and $C_2 - C_4$ alkylidene,

$C_5 - C_8$ cycloalkenyl, $C_5 - C_8$ cycloalkenyl wherein the cycloalkenyl-ring is substituted with 1, 2, or 3 groups selected from $C_1 - C_4$ alkyl, $C_2 - C_4$ alkylidene and $C_3 - C_5$ cycloalkyl,

(C₁ – C₃)alkyl(C₅ – C₆)cycloalkyl wherein the cycloalkyl-ring is optionally substituted with one group selected from –OH group and =O group, and/or one or two ether group(s), and/or up to four C₁-C₅ alkyl groups,

(C₁ – C₄)alkyl(C₅ – C₆)cycloalkenyl wherein the cycloalkenyl-ring is optionally substituted with one –OH group, and/or one or two ether group(s), and/or up to four C₁-C₅ alkyl groups,

(C₂ – C₃)alkenyl(C₅ – C₆)cycloalkenyl wherein the cycloalkenyl-ring is optionally substituted with one –OH group, and/or one or two ether group(s), and/or up to four C₁-C₅ alkyl groups,

C₆ – C₁₄ aryl,

C₆ – C₁₄ aryl wherein the aryl-ring is substituted with up to 3 groups selected from C₁ – C₄ alkyl, –O – CH₂ – O –, and –OR¹¹ wherein R¹¹ is independently selected from hydrogen and C₁ – C₄ alkyl,

(C₁ – C₃)alkyl(C₆ – C₁₄)aryl,

(C₁ – C₃)alkyl(C₆ – C₁₄)aryl wherein the aryl-ring is substituted with up to 2 groups selected from C₁ – C₄ alkyl, –O – CH₂ – O –, and –OR¹² wherein R¹² is independently selected from hydrogen and C₁ – C₄ alkyl,

(C₂ – C₈)alkenyl(C₆ – C₁₄)aryl,

(C₂ – C₈)alkenyl(C₆ – C₁₄)aryl wherein the aryl ring is substituted with up to 2 groups selected from C₁ – C₄ alkyl, –O – CH₂ – O –, and –OR¹³ wherein R¹³ is independently selected from hydrogen and C₁ – C₄ alkyl, and

bi-, tri, or tetracyclic hydrocarbon ring comprising C₈ – C₁₂ carbon atoms optionally substituted with up to 6 groups selected from C₁ – C₄ alkyl, –O – CH₂ – O –, and –OR¹⁴ wherein R¹⁴ is independently selected from hydrogen and C₁ – C₄ alkyl;

R² is selected from hydrogen, C₁ – C₅ alkyl, and C₂ – C₅ alkenyl,

or

R¹ and R² form together with the carbon atom to which they are attached

- a) a 5 to 7 membered hydrocarbon ring(s), the ring(s) may contain up to two ether groups, and/or the ring(s) may optionally be substituted with C₁-C₅ alkyl groups
- b) 2-(2-(4-methylcyclohex-3-en-1-yl)propyl)cyclopent-1-ylidene, or

c) a 14 – 17 membered hydrocarbon ring, the ring may be substituted with a methyl group; and

R^3 is hydrogen or methyl;

characterized in that a compound of formula (I) as defined by claim 1 is exposed to oxygen.

5. A method according to claim 4 wherein the generated fragrant aldehyde is selected from benzaldehyde, 2,6,10-trimethylundec-9-enal, 8,8-dimethyl-1,2,3,4,5,6,7,8-octahydro-naphthalene-2-carbaldehyde, (4-isopropyl-phenyl)-ethanal, 2,4-dimethyl-cyclohex-3-ene-1-carbaldehyde, 1,3,5-trimethyl-cyclohex-1-ene-4-carbaldehyde, 4-(4-hydroxy-4-methylpentyl)-cyclohex-3-ene-1-carbaldehyde, hex-2-enal, hex-3-enal, 3-(3-tert-butylcyclohexyl)propanal, 2-(4-tert-pentylcyclohexyl)acetaldehyde, 3,5,5-trimethyl-hexanal, heptanal, 2,6-dimethyl-hept-5-enal, decanal, dec-9-enal, dec-4-en-1-al, 2-methyl-decanal, undec-10-en-1-al, undecanal, dodecanal, 2-methyl-undecanal, tridecanal, tridec-2-enal, octanal, nonanal, non-2-enal, undec-9-enal, 2-phenyl-propanal, 2-(4-methyl-phenyl)-ethanal, 2-(4-methoxyphenyl)acetaldehyde, 3,7-dimethyl-octanal, 3,7,11-trimethyldodeca-6,10-dienal, 7-hydroxy-3,7-dimethyl-octanal, 2,6-dimethyl-oct-5-en-1-al, 3-(3-isopropyl-phenyl)-butanal, 4-(4-methyl-pent-3-enyl)-cyclohex-3-ene-1-carbaldehyde, 2,3,5,5-tetramethyl-hexanal, decahydro-4,8,8-trimethyl-1,4-methanoazulene-9-carboxaldehyde, 2-methyl-3-(4-tert-butylphenyl)-propanal, 3-(4-tert-butyl-phenyl)-propanal, 3-(4-isobutyl-phenyl)-propanal, 3-(benzo[1,3]dioxol-5-yl)-2-methyl-propanal, 3,7-dimethyl-oct-6-ene-1-al, 3,7-dimethyl-octanal, 2-methyl-3-(4-isopropylphenyl)-propanal, 4-tert-butyl-cyclohexane-1-carbaldehyde, 4-(octahydro-4,7-methano-5H-inden-5-ylidene)-butanal, (3,7-dimethyl-oct-6-enyloxy)-ethanal, 2 (E),6 (Z)-nonadienal, 2,4-dimethyl-2,6-heptadienal, (E)-dec-2-enal, dodec-2-enal, 3,7-dimethyl-octa-2,6-dienal, 2,4-diethyl-hepta-2,6-dienal, 3,7-dimethyl-nona-2,6-dienal, 2-propyl-hept-2-enal, 3-(4-methoxyphenyl)-2-methylpropanal, 4-methoxybenzaldehyde, 1,3-benzodioxole-5-carboxaldehyde, 2,6,6-trimethylcyclohexa-1,3-dienecarbaldehyde, 4-((6-methylheptan-2-yl)oxy)butanal, 3-(4-ethylphenyl)-2,2-dimethylpropanal, (E)-2-benzylideneheptanal, cinnamaldehyde, 3-(3,3-dimethyl-2,3-dihydro-1H-inden-5-yl)propanal, 2-methyl-4-(2,6,6-trimethylcyclohex-2-en-1-yl)butanal, 4-isopropenyl-cyclohex-1-ene-1-carbaldehyde, and mixtures thereof.

6. A method according to claim 4 wherein the generated fragrant ketone is selected from 4-(4-hydroxyphenyl)butan-2-one, alpha-Ionone, dihydro alpha-Ionone, dihydro beta-Ionone, 1-(2,6,6-trimethyl-2-cyclohexen-1-yl)-1,6-heptadien-3-one, beta-Ionone, 1-(2,6,6-trimethylcyclohex-2-en-1-yl)pent-1-en-3-one, 2-methyl-1-(2,6,6-trimethylcyclohex-2-en-1-yl)pent-1-en-3-one, 3-methyl-4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-3-en-2-one, 2-(2-(4-methylcyclohex-3-en-1-yl)propyl)cyclopentanone, 3-(2-oxopropyl)-2-pentylcyclopentanone, acetophenone, 1-(naphthalen-2-yl)ethanone, 4-(benzo[d][1,3]dioxol-5-yl)butan-2-one, and mixtures thereof.

7. A compound of formula (I) as defined in claim 1 selected from the list of (3-methyl-5-(2,6,6-trimethylcyclohex-1-enyl)pent-2-enyl)benzene; (5,9-dimethyldec-2-enyl)benzene; (4-methyltridec-2-enyl)benzene; (3-(2,4-dimethylcyclohex-3-enyl)allyl)benzene; (4-methyldodec-2-enyl)benzene; 1-isopropyl-3-(6-phenylhex-4-en-2-yl)benzene; but-2-ene-1,3-diyldibenzene; ((4E)-3-methyl-5-(2,6,6-trimethylcyclohex-1-enyl)penta-2,4-dienyl)benzene; (3-methyldodec-2-enyl)benzene; 5-(3-methyl-5-phenylpent-3-enyl)benzo[d][1,3]dioxole; ((4E)-3,4-dimethyl-5-(2,6,6-trimethylcyclohex-2-enyl)penta-2,4-dienyl)benzene; (4E,8Z)-undeca-2,4,8-trienylbenzene; (6E)-dodeca-2,6-dienylbenzene; 1-*tert*-butyl-4-(2-methyl-5-phenylpent-3-enyl)benzene; 1-(2,2-dimethyl-5-phenylpent-3-enyl)-4-ethylbenzene; (5,7,7-trimethyloct-2-enyl)benzene; (6-(6-methylheptan-2-yloxy)hex-2-enyl)benzene; (5-(3-*tert*-utylcyclohexyl)pent-2-enyl)benzene; (4-(4-*tert*-pentylcyclohexyl)but-2-enyl)benzene; 2-ethoxy-4-(3-phenylprop-1-enyl)phenol; 4-(3-methyl-5-phenylpent-3-enyl)phenol; 2-ethoxy-4-(3-p-tolylprop-1-enyl)phenol; 2-ethoxy-4-(3-(4-methoxyphenyl)prop-1-enyl)phenol; 1-methoxy-4-(4-methyltridec-2-enyl)benzene; 1-isopropyl-3-(6-(4-methoxyphenyl)hex-4-en-2-yl)benzene; 1-((6E)-dodeca-2,6-dienyl)-4-methoxybenzene; 2-(4-(4-methoxyphenyl)but-2-en-2-yl)naphthalene; 1-*tert*-butyl-4-(5-(4-methoxyphenyl)-2-methylpent-3-enyl)benzene; 1-methyl-4-(4-methyltridec-2-enyl)benzene; 1-((6E)-dodeca-2,6-dienyl)-4-methylbenzene; 1-*tert*-butyl-4-(2-methyl-5-p-tolylpent-3-enyl)benzene; 1-methyl-4-((4E)-3-methyl-5-(2,6,6-trimethylcyclohex-1-en-1-yl)penta-2,4-dien-1-yl)benzene; 5-(3-p-tolylprop-1-enyl)benzo[d][1,3]dioxole; 2-(4-methyltridec-2-enyl)naphthalene; 4-(3-methyl-4-phenylbut-3-enyl)phenol; 2-ethoxy-4-(4-(4-hydroxyphenyl)-2-methylbut-1-enyl)phenol; 2-ethoxy-4-(4-(3-isopropylphenyl)pent-1-enyl)phenol; 2-ethoxy-4-(3-methyldodec-1-enyl)phenol; 2-ethoxy-4-((2-(2-(4-methylcyclohex-3-enyl)propyl)cyclopentylidene)methyl)-phenol; 2-(5-(3-isopropylphenyl)hex-2-en-2-yl)naphthalene; 2-((4E,8Z)-undeca-2,4,8-trien-2-

yl)naphthalene; 2-((6*E*)-dodeca-2,6-dien-2-yl)naphthalene; 2-(4-methyltridec-2-en-2-yl)naphthalene; 2-(5,7,7-trimethyloct-2-en-2-yl)naphthalene; 4-(4-(3-isopropylphenyl)pent-1-enyl)-1,2-dimethoxybenzene; 1,2-dimethoxy-4-(4-(4-methoxyphenyl)-3-methylbut-1-enyl)benzene; 5-(4-(3-isopropylphenyl)pent-1-enyl)benzo[*d*][1,3]dioxole; 5-(4-(4-methoxyphenyl)-3-methylbut-1-enyl)benzo[*d*][1,3]dioxole; 5-(4-(4-*tert*-butylphenyl)-3-methylbut-1-enyl)benzo[*d*][1,3]dioxole; 1-methoxy-4-(3-(*p*-tolyl)prop-1-en-1-yl)benzene; 1-(*tert*-butyl)-4-(4-(4-methoxyphenyl)-2-methylbut-3-en-1-yl)benzene; 4-(4-(4-methoxyphenyl)-3-methylbut-3-en-1-yl)phenol; 1-isopropyl-3-(5-(4-methoxyphenyl)pent-4-en-2-yl)benzene; 1-isobutyl-4-(4-(4-methoxyphenyl)but-3-en-1-yl)benzene; 2-((11*E*)-trideca-2,11-dien-2-yl)naphthalene; 5-(4-phenylbut-1-en-1-yl)benzo[*d*][1,3]dioxole; 1,2-dimethoxy-4-(3-(4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)allyl)benzene; 2-(5-(4-(*tert*-butylphenyl)-4-methylpent-2-en-2-yl)naphthalene; 2-((4*E*)-5,9-dimethyldeca-2,4,8-trien-2-yl)naphthalene; 2-(5-phenylpent-2-en-2-yl)naphthalene; 2-((4*E*)-tetradeca-2,4-dien-2-yl)naphthalene; 3-(3-(4-methoxyphenyl)-2-methylallyl)-2-pentylcyclopentanone; 1-methoxy-4-[(5*E*)-undeca-1,5-dien-1-yl]benzene; 1-methoxy-4-(3-methyldodec-1-en-1-yl)benzene; (1*E*)-1-[(4*Z*)-hepta-1,4-dien-1-yl]-4-methoxybenzene; (1*Z*)-1-[(4*Z*)-hepta-1,4-dien-1-yl]-4-methoxybenzene; and 4-[3-methyl-4-(*m*-tolyl)but-3-en-1-yl]phenol.

8. A consumer product comprising a compound of formula (I) as defined by claim 1 and a product base.

9. A product according to claim 8 wherein the consumer product is selected from home care products, personal care products and cleaning products.

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2011/074003

A. CLASSIFICATION OF SUBJECT MATTER				
INV.	C07C45/34	C07C47/575	C07C47/21	C07C47/228
	C07C49/245	C07C49/788	C07C15/44	C07C15/50
	C07C43/23	C07C43/215	C07D317/50	C07D317/54
				C11D3/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07C C07D C11D C11B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>P.A. GANESHPURE, S. SATISH: "Oxygenation of (E)-4-stilbenols catalysed by cobalt(II) schiff base chelates", TETRAHEDRON LETTERS., vol. 29, no. 50, 1988, pages 6629-6632, XP002672764, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM., NL ISSN: 0040-4039 page 6631; figure</p> <p>-----</p> <p style="text-align: center;">-/-</p>	1-5

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
2 April 2012	18/04/2012

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Kardinal, Siegmar
--	---

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2011/074003

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	ATHULA B. ATTYGALLE ET AL: "Reaction gas chromatography without solvent for identification of nanogram quantities of natural products", ANALYTICAL CHEMISTRY, vol. 55, no. 8, 1 July 1983 (1983-07-01), pages 1379-1384, XP55023273, ISSN: 0003-2700, DOI: 10.1021/ac00259a043 page 1381; table I -----	1-5
X	HIROKAZU TSUKAMOTO ET AL: "Palladium(0)-catalyzed direct cross-coupling reaction of allyl alcohols with aryl- and vinyl-boronic acids", CHEMICAL COMMUNICATIONS, no. 10, 1 January 2004 (2004-01-01), pages 1200-1201, XP55023458, ISSN: 1359-7345, DOI: 10.1039/b402256d page 1200; compound 4bA -----	7
A	WO 2009/030600 A1 (UNILEVER PLC [GB]; UNILEVER NV [NL]; UNILEVER HINDUSTAN [IN]; BATCHELO) 12 March 2009 (2009-03-12) page 3 - page 5, line 26 page 15, line 17 - page 19, line 6 claims -----	1,7,8
A	JP 2001 072637 A (KAO CORP) 21 March 2001 (2001-03-21) cited in the application abstract -----	1,7,8
1		

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2011/074003

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 2009030600	A1	12-03-2009	AR 068211 A1 CN 101855333 A EP 2188362 A1 ES 2364386 T3 US 2010216679 A1 WO 2009030600 A1	11-11-2009 06-10-2010 26-05-2010 01-09-2011 26-08-2010 12-03-2009
JP 2001072637	A	21-03-2001	JP 3792450 B2 JP 2001072637 A	05-07-2006 21-03-2001