The invention provides an amphiphilic siloxane-containing (meth)acrylamide which comprises one sole (meth)acrylamido group, one sole tris(trimethylsiloxy)silyl group, and one polyethylene glycol segment which is either dangling polymer chain or a hydrophilic linker between the (meth)acrylamido group and the tris(trimethylsiloxy)silyl group. The present invention is also related to a polymer, an actinically-crosslinkable silicone-containing prepolymer, a silicone hydrogel polymer material, or a silicone hydrogel contact lens, which comprises monomeric units derived from an amphiphilic siloxane-containing (meth)acrylamido group, one tris(trimethylsiloxy)silyl group of the invention. In addition, the invention provides a method for making silicone hydrogel contact lenses using a water-based lens-forming formulation comprising an amphiphilic siloxane-containing (meth)acrylamido group, one tris(trimethylsiloxy)silyl group of the invention and/or an actinically-crosslinkable silicone-containing prepolymer of the invention.
Amphiphilic Siloxane-Containing (Meth)acrylamides and Uses Thereof

The present invention is related to a class of amphiphilic siloxane-containing (meth)acrylamides having a polyethylene glycol ("PEG") segment and a bulky siloxane group. The present invention is also related to medical devices including contact lenses made from a composition comprising an amphiphilic siloxane-containing (meth)acrylamide of the invention. In addition, the present invention is related to a method for making silicone hydrogel contact lenses.

BACKGROUND

In recent years, soft silicone hydrogel contact lenses become more and more popular because of their high oxygen permeability and comfort. "Soft" contact lenses can conform closely to the shape of the eye, so oxygen cannot easily circumvent the lens. Soft contact lenses must allow oxygen from the surrounding air (i.e., oxygen) to reach the cornea because the cornea does not receive oxygen from the blood supply like other tissue. If sufficient oxygen does not reach the cornea, corneal swelling occurs. Extended periods of oxygen deprivation cause the undesirable growth of blood vessels in the cornea. By having high oxygen permeability, a silicone hydrogel contact lens allows sufficient oxygen permeate through the lens to the cornea and to have minimal adverse effects on corneal health.

Typically, silicone hydrogel contact lenses are produced according to a cast molding technique involving use of disposable or reusable molds and a silicone hydrogel lens formulation (i.e., a mixture of vinylic monomers and/or vinylic macromers). A silicone hydrogel lens formulation often comprises a bulky siloxane-containing vinylic monomer, such as, for example, a vinylic monomer having a tris(trialkylsilyloxy)silylalkyl group (e.g., tris(trimethylsilyloxy)-silylpropyl acrylate, tris(trimethylsilyloxy)-silylpropyl methacrylate, tris(trimethylsilyloxy)-silylpropyl acrylamide, tris(trimethylsilyloxy)silylpropyl acrylamide, etc.). It is reported that such a bulky siloxane-containing vinylic monomer is critical to the elimination of optical defects derived from handling during manufacturing, especially when curing the monomer mixture in a mold within a relatively short time (e.g., less than about 300 seconds) with a UV light. When such a bulky siloxane-containing vinylic monomer is eliminated from a monomer mixture for making silicone hydrogel contact lenses, resultant lenses may develop permanent deformations (optics defects) due to handling. But, when such a bulky siloxane-containing vinylic monomer is present, resultant lenses exhibit a 'healing' effect that eliminated the optical defects (i.e., the folding marks become transient and can disappear after a short time period, e.g., about 15 minutes or less).
However, most of available bulky-siloxane-containing vinylic monomers are hydrophobic and not suitable for making water-based silicone hydrogel lens formulations. In addition, unpolymerized bulky siloxane-containing vinylic monomers must be removed from molded lenses by using an organic solvent in a lens extraction process. Such lens extraction process increases the production cost and is not environmentally friendly.

Therefore, there is still a need for amphiphilic siloxane-containing vinylic monomers which have adequate solubility in water and can be used in an environmentally-friendly lens production process.

SUMMARY OF THE INVENTION

In one aspect, the invention provides an amphiphilic siloxane-containing (meth)acrylamide, which comprises one sole (meth)acrylamido group; one sole bulky siloxane group; and one hydrophilic polyethylene glycol segment which is either a dangling polymer chain or a hydrophilic linker between the (meth)acrylamido group and the bulky siloxane group.

The present invention, in another aspect, provides a polymer (preferably an actinically-crosslinkable prepolymer or silicone hydrogel material) which is a polymerization product of a polymerizable composition comprising an amphiphilic siloxane-containing (meth)acrylamide of the invention.

The present invention, in a further aspect, provides a medical device, preferably an ophthalmic device, more preferably a silicone hydrogel contact lens, which comprises a polymeric material comprising monomeric units derived from an amphiphilic siloxane-containing (meth)acrylamide of the invention.

The present invention, in still a further aspect, provides a method for producing silicone hydrogel contact lenses. The method comprises the steps of: introducing a lens-forming formulation into a mold for making contact lenses, wherein the lens-forming formulation comprises (a) a solvent selected from the group consisting of water, 1,2-propylene glycol, a polyethyleneglycol having a molecular weight of about 400 Daltons or less, and mixtures thereof, (b) at least one amphiphilic siloxane-containing (meth)acrylamide of the invention and/or at least one actinically-crosslinkable prepolymer of the invention, and (c) at least one component selected from the group consisting of a hydrophilic vinylic monomer, a hydrophilized polysiloxane-containing crosslinker, a hydrophilic crosslinker, a photoinitiator, a thermal initiator, a UV-absorbing vinylic monomer, a visibility tinting agent, an antimicrobial agent, a bioactive agent, a leachable lubricant, a leachable tear-stabilizing agent, and mixtures thereof; polymerizing the lens-forming formulation in the mold to form a silicone hydrogel contact lens, wherein the formed silicone hydrogel contact lens has a water content of from about 20% to about 75% (preferably from about 25% to about 70%, more
preferably from about 30% to about 65%) by weight when fully hydrated, an oxygen permeability (Dk) of at least about 40 barrers (preferably at least about 50 barrers, more preferably at least about 60 barrers, and even more preferably at least about 70 barrers), and an elastic modulus of from about 0.1 MPa to about 2.0 MPa, preferably from about 0.2 MPa to about 1.5 MPa, more preferably from about 0.3 MPa to about 1.2 MPa, even more preferably from about 0.4 MPa to about 1.0 MPa.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Generally, the nomenclature used herein and the laboratory procedures are well known and commonly employed in the art. Conventional methods are used for these procedures, such as those provided in the art and various general references. Where a term is provided in the singular, the inventors also contemplate the plural of that term. The nomenclature used herein and the laboratory procedures described below are those well known and commonly employed in the art.

"About" as used herein means that a number referred to as "about" comprises the recited number plus or minus 1-10% of that recited number.

A "medical device" refers to a device having surfaces that contact tissue, blood, or other bodily fluids of patients in the course of their operation. Exemplary medical devices include: (1) extracorporeal devices for use in surgery such as blood oxygenators, blood pumps, blood sensors, tubing used to carry blood and the like which contact blood which is then returned to the patient; (2) prostheses implanted in a human or animal body such as vascular grafts, stents, pacemaker leads, heart valves, and the like that are implanted in blood vessels or in the heart; (3) devices for temporary intravascular use such as catheters, guide wires, and the like which are placed into blood vessels or the heart for purposes of monitoring or repair; and (4) ophthalmic devices.

An "ophthalmic device", as used herein, refers to a contact lens (hard or soft), an intraocular lens, a corneal onlay, other ophthalmic devices (e.g., stents, glaucoma shunt, or the like) used on or about the eye or ocular vicinity.

"Contact Lens" refers to a structure that can be placed on or within a wearer's eye. A contact lens can correct, improve, or alter a user's eyesight, but that need not be the case. A contact lens can be of any appropriate material known in the art or later developed, and can be a soft lens, a hard lens, or a hybrid lens. A "silicone hydrogel contact lens" refers to a contact lens comprising a silicone hydrogel material.

A "hydrogel" or "hydrogel material" refers to a polymeric material which is insoluble in water, but can absorb at least 10 percent by weight of water when it is fully hydrated.
A "silicone hydrogel" refers to a silicone-containing hydrogel obtained by copolymerization of a polymerizable composition comprising at least one silicone-containing monomer or at least one silicone-containing macromer or at least one crosslinkable silicone-containing prepolymer.

"Hydrophilic," as used herein, describes a material or portion thereof that will more readily associate with water than with lipids.

A "vinyl monomer" refers to a compound that has one sole ethylenically unsaturated group and is soluble in a solvent.

The term "soluble", in reference to a compound or material in a solvent, means that the compound or material can be dissolved in the solvent to give a solution with a concentration of at least about 1% by weight at room temperature (i.e., a temperature of about 20°C to about 30°C).

The term "insoluble", in reference to a compound or material in a solvent, means that the compound or material can be dissolved in the solvent to give a solution with a concentration of less than 0.005% by weight at room temperature (as defined above).

As used in this application, the term "ethylenically unsaturated group" is employed herein in a broad sense and is intended to encompass any groups containing at least one >C=C< group. Exemplary ethylenically unsaturated groups include without limitation

\[
\text{(meth)acryloyl} \quad \overset{\text{O}}{\text{CH}}_2\text{CH}_2\text{CH} = \text{CH}, \quad \text{and/or} \quad \overset{\text{O}}{\text{CH}}_2\text{CH} = \text{CH},
\]

and/or \(\text{CH} = \text{CH}, \text{CH} = \text{CH}\), vinylic, styrenyl, or other C=C containing groups.

As used in this application, the term "(meth)acrylamide" refers to methacrylamide and/or acrylamide and the term "(meth)acrylate" refers to methacrylate and/or acrylate.

As used herein, "actinically" in reference to curing, crosslinking or polymerizing of a polymerizable composition, a prepolymer or a material means that the curing (e.g., crosslinked and/or polymerized) is performed by actinic irradiation, such as, for example, UV irradiation, ionizing radiation (e.g. gamma ray or X-ray irradiation), microwave irradiation, and the like. Thermal curing or actinic curing methods are well-known to a person skilled in the art.

As used in this application, the term "hydrophilic vinylic monomer" refers to a vinylic monomer capable of forming a homopolymer that is water-soluble or can absorb at least 10 percent by weight water at room temperature.

As used in this application, the term "hydrophobic vinylic monomer" refers to a vinylic monomer which as a homopolymer typically yields a polymer that is insoluble in water and can absorb less than 10 percent by weight water at room temperature.

As used in this application, "TRIS" refers to a radical of -Si(OSi(CH<sub>3</sub>)<sub>3</sub>), namely the tris(trimethylsilyloxy)silyl group.
As used in this application, a "bulky siloxane group" refers to a monovalent radical of

$$\begin{align*}
\text{Si} & \begin{cases} A_1 \text{ or } A_2 & \\
B_1 \text{ or } B_2 \end{cases} \\
\text{Si} & \begin{cases} A_3 & \\
A_4 \end{cases}
\end{align*}$$

in which B_1 is a trialkylsilox group of

$$\begin{align*}
\text{Si} & \begin{cases} A_1 \text{ or } A_2 & \\
B_1 \text{ or } B_2 \end{cases} \\
\text{Si} & A_3
\end{align*}$$

and B_2 is a monovalent radical of one another are a C_1-C_6 alkyl, phenyl or benzyl; and r_1 is an integer of 2 or 3.

A "prepolymer" refers to a starting polymer which contains two or more ethylenically unsaturated groups and can be cured (e.g., crosslinked) actinically or thermally to obtain a crosslinked polymer having a molecular weight much higher than the starting polymer.

As used in this application, the term "crosslinker" refers to a compound or polymer having at least two ethylenically unsaturated groups and being soluble in a solvent at room temperature. A "crosslinking agent" refers to a crosslinker having a molecular weight of about 700 Daltons or less.

A "polysiloxane" refers to a compound containing one sole polysiloxane segment of

$$\begin{align*}
\text{Si} & \begin{cases} R_1 & \\
R_2 \end{cases} \\
\text{Si} & \begin{cases} R_3 & \\
R_4 \end{cases}
\end{align*}$$

in which R_1, R_2, R_3, R_4, R_5, R_6, R_7, and R_8 independently of one another, are C_1-C_10 alkyl, C_1-C_4 alkyl- or C_1-C_4- alkoxy-substituted phenyl, C_1-C_10 fluoroalkyl, C_1-C_10 fluoroether, C_6-C_{18} aryl radical, -alk-(OC_2H_4)_n-OR in which alk is CrC_6- alkenyle diivalent radical, R_9 is H or C_1-C_4 alkyl and n_1 is an integer from 1 to 10, m_1 and m_2 independently of each other are an integer of from 0 to 50 and (m_1+m_2) is from 1 to 100.

A "chain-extended polysiloxane" refers to a compound containing at least two polysiloxane segments separated by a linkage.

A "polysiloxane-containing crosslinker" refers to a compound having at least two ethylenically unsaturated groups and at least one polysiloxane segment.

As used in this application, the term "polymer" means a material formed by polymerizing/crosslinking one or more monomers or prepolymer.

As used in this application, the term "molecular weight" of a polymeric material (including monomeric or macromeric materials) refers to the weight-average molecular weight unless otherwise specifically noted or unless testing conditions indicate otherwise.

The term "alkyl" refers to a monovalent radical obtained by removing a hydrogen atom from a linear or branched alkane compound. An alkyl group (radical) forms one bond with one other group in an organic compound.

The term "alkylene" refers to a divalent radical obtained by removing one hydrogen atom from an alkyl. An alkylene group (or radical) forms two bonds with other groups in an organic compound.

In this application, the term "substituted" in reference to an alkylene divalent radical or an alkyl radical means that the alkylene divalent radical or the alkyl radical comprises at
least one substituent which replaces one hydrogen atom of the alkylene or alkyl radical and
is selected from the group consisting of hydroxyl, carboxyl, -NH₂, sulfhydryl, C₁-C₄ alkyl, C₁-
C₄ alkoxy, C₁-C₄ alkylthio (alkyl sulfide), C₁-C₄ acylamino, C₁-C₄ alkylamino, di-C₁-C₄ alkylamino, halogen atom (Br or Cl), and combinations thereof.

The term "fluid" as used herein indicates that a material is capable of flowing like a
liquid.

As used herein, the term "multiple" refers to three or more.

A free radical initiator can be either a photoinitiator or a thermal initiator. A
"photoinitiator" refers to a compound that initiates free radical crosslinking/polymerizing
reaction by the use of light. A "thermal initiator" refers to a compound that initiates radical
crosslinking/polymerizing reaction by the use of heat energy.

A "UV-absorbing vinyl monomer" refers to a compound comprising an ethylenically-
unsaturated group and a UV-absorbing moiety which can absorb or screen out UV radiation
in the range from 200 nm to 400 nm as understood by a person skilled in the art.

A "spatial limitation of actinic radiation" refers to an act or process in which energy
radiation in the form of rays is directed by, for example, a mask or screen or combinations
thereof, to impinge, in a spatially restricted manner, onto an area having a well defined
peripheral boundary. A spatial limitation of UV radiation is obtained by using a mask or
screen having a radiation (e.g., UV) permeable region, a radiation (e.g., UV) impermeable
region surrounding the radiation-permeable region, and a projection contour which is the
boundary between the radiation-impermeable and radiation-permeable regions, as
schematically illustrated in the drawings of U.S. Patent Nos. 6,800,225 (Figs. 1-11), and
6,627,124 (Figs. 1-9), 7,384,590 (Figs. 1-6), and 7,387,759 (Figs. 1-6), all of which are
incorporated by reference in their entirety. The mask or screen allows to spatially projects
a beam of radiation (e.g., UV radiation) having a cross-sectional profile defined by the
projection contour of the mask or screen. The projected beam of radiation (e.g., UV
radiation) limits radiation (e.g., UV radiation) impinging on a lens-forming material located in
the path of the projected beam from the first molding surface to the second molding surface
of a mold. The resultant contact lens comprises an anterior surface defined by the first
molding surface, an opposite posterior surface defined by the second molding surface, and a
lens edge defined by the sectional profile of the projected UV beam (i.e., a spatial limitation
of radiation). The radiation used for the crosslinking is radiation energy, especially UV
radiation, gamma radiation, electron radiation or thermal radiation, the radiation energy
preferably being in the form of a substantially parallel beam in order on the one hand to
achieve good restriction and on the other hand efficient use of the energy.

The intrinsic "oxygen permeability", Dk, of a material is the rate at which oxygen will
pass through a material. As used in this application, the term "oxygen permeability (Dk)" in
reference to a hydrogel (silicone or non-silicone) or a contact lens means a measured oxygen permeability (Dk) which is corrected for the surface resistance to oxygen flux caused by the boundary layer effect according to the procedures shown in Examples hereinafter. Oxygen permeability is conventionally expressed in units of barrers, where "barrer" is defined as \( \frac{(\text{cm}^3 \text{oxygen})(\text{mm})}{(\text{cm}^2)(\text{sec})(\text{mm Hg})} \times 10^{10} \).

The "oxygen transmissibility", Dk/t, of a lens or material is the rate at which oxygen will pass through a specific lens or material with an average thickness of t [in units of mm] over the area being measured. Oxygen transmissibility is conventionally expressed in units of barrers/mm, where "barrers/mm" is defined as \( \frac{(\text{cm}^3 \text{oxygen})}{(\text{cm}^2)(\text{sec})(\text{mm Hg})} \times 10^9 \).

The term "water soluble or processable" in reference to a vinylic monomer or a prepolymer of the invention means that the vinylic monomer or prepolymer has a water solubility and/or dispersity of from about 1% to about 70% by weight at room temperature (about 22°C to about 28°C).

The term "water solubility and/or dispersity" in reference to a vinylic monomer or a prepolymer of the invention means the concentration (weight percentage) of the vinylic monomer or prepolymer dissolved and/or dispersed in water at room temperature (about 22°C to about 28°C) to form a transparent aqueous solution or a slightly hazy aqueous solution having a light transmissibility of 85% or greater in the range between 400 to 700 nm.

A "coupling reaction" in this patent application is intended to describe any reaction between a pair of matching functional groups in the presence or absence of a coupling agent to form covalent bonds or linkages under various reaction conditions well known to a person skilled in the art, such as, for example, oxidation-reduction conditions, dehydration condensation conditions, addition conditions, substitution (or displacement) conditions, Diels-Alder reaction conditions, cationic crosslinking conditions, ring-opening conditions, epoxy hardening conditions, and combinations thereof.

Non-limiting examples of coupling reactions under various reaction conditions between a pair of matching co-reactive functional groups selected from the group preferably consisting of amino group (\(-\text{NHR}'\) in which \(R'\) is H or \(\text{CrC}_4\text{alkyl}\)), hydroxyl group, carboxyl group, acid halide group (\(-\text{COX,}\ X=\text{Cl, Br, or I}\)), acid anhydride group, aldehyde group, azlactone group, isocyanate group, epoxy group, aziridine group, and thiol group, are given below for illustrative purposes. An amino group reacts with aldehyde group to form a Schiff base which may further be reduced; an amino group \(-\text{NHR}'\) reacts with an acid chloride or bromide group or with an acid anhydride group to form an amide linkage (\(-\text{CO-NR}'\)- with \(R'\) as defined above); an amino group \(-\text{NHR}'\) reacts with an isocyanate group to form a urea linkage (\(-\text{NR}'\text{-C(O)-NH-}\) with \(R'\) as defined above); an amino group \(-\text{NHR}'\) reacts with an epoxy or aziridine group to form an amine bond (\(-\text{C-NR}'\)- with \(R'\) as defined above); an amino group \(-\text{NHR}'\) reacts (ring-opening) with an azlactone group to form an alkylene-
diamido linkage (-C(0)NH-alkylene-C(0)NR' - with R' as defined above); an amino group \(-\text{NHR}'\) reacts with a carboxylic acid group in the presence of a coupling agent - carbodiimide (e.g., 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), N,N'-dicyclohexylcarbodiimide (DCC), 1-cylohexyl-3-(2-morpholinoethyl)carbodiimide, diisopropyl carbodiimide, or mixtures thereof) to form an amide linkage; an amino group \(-\text{NHR}'\) reacts with a N-hydroxysuccinimide ester group to form an amide linkage; a hydroxyl reacts with an isocyanate to form a urethane linkage; a hydroxyl reacts with an epoxy or aziridine to form an ether linkage \((-\text{O}-)\); a hydroxyl reacts with an acid chloride or bromide group or with an acid anhydride group to form an ester linkage; an hydroxyl group reacts with an azlactone in the presence of a catalyst to form an amidoalkylenecarboxy linkage \((-\text{C(O)NH-alkylene-C(O)-O-})\); a carboxyl group reacts with an epoxy group to form an ester bond; a thiol group \((-\text{SH})\) reacts with an isocyanate to form a thiocarbamate linkage \((-\text{N-C(O)-S-})\); a thiol group reacts with an epoxy or aziridine to form a thioether linkage \((-\text{S-})\); a thiol group reacts with an acid chloride or bromide group or with an acid anhydride group to form a thioester linkage; a thiol group reacts with an azlactone group in the presence of a catalyst to form a linkage \((-\text{C(0)NH-CR3R4-(CH2)p-C(0)-S-})\). A thiol group reacts with a vinyl group based on thiol-ene reaction under thiol-ene reaction conditions to form a thioether linkage \((-\text{S-})\). A thiol group reacts with an acryloyl or methacryloyl group based on Michael Addition under appropriate reaction conditions to form a thioether linkage.

It is also understood that coupling agents with two reactive functional groups may be used in the coupling reactions. A coupling agent having two reactive functional groups can be a diisocyanate, a di-acid halide, a di-carboxylic acid compound, a di-acid halide compound, a di-azlactone compound, a di-epoxy compound, a diamine, or a diol. A person skilled in the art knows well to select a coupling reaction (e.g., anyone described above in this application) and conditions thereof to prepare a polysiloxane terminated with one or more ethylenically unsaturated groups. For example, a diisocyanate, di-acid halide, di-carboxylic acid, di-azlactone, or di-epoxy compound can be used in the coupling of two hydroxyl, two amino groups, two carboxyl groups, two epoxy groups, or combination thereof; a diamine or dihydroxyl compound can be used in the coupling of two isocyanate, epoxy, aziridine, carboxylic acid, acid halide or azlactone groups or combinations thereof.

Any suitable \(\text{C}_4-\text{C}_{24}\) diisocyanates can be used in the invention. Examples of preferred diisocyanates include without limitation isophorone diisocyanate, hexamethyl-1,6-diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, toluene diisocyanate, 4,4'-diphenyl diisocyanate, 4,4'-diphenylmethane diisocyanate, p-phenylene diisocyanate, 1,4-phenylene 4,4'-diphenyl diisocyanate, 1,3-bis-(4,4'-isocyanato methyl) cyclohexane, cyclohexane diisocyanate, and combinations thereof.
Any suitable diamines can be used in the invention. An organic diamine can be a linear or branched \( \text{C}_2-\text{C}_{24} \) aliphatic diamine, a \( \text{C}_5-\text{C}_{24} \) cycloaliphatic or aliphatic-cycloaliphatic diamine, or a \( \text{C}_6-\text{C}_{24} \) aromatic or alkyl-aromatic diamine. A preferred organic diamine is \( \text{N},\text{N}'\)-bis(hydroxyethyl)ethylenediamine, \( \text{N},\text{N}'\)-dimethylethlyenediamine, ethylenediamine, \( \text{N},\text{N}'\)-dimethyl-1,3-propanediamine, \( \text{N},\text{N}'\)-diethyl-1,3-propanediamine, propane-1,3-diamine, butane-1,4-diamine, pentane-1,5-diamine, hexamethylenediamine, and isophorone diamine.

Any suitable diacid halides can be used in the invention. Examples of preferred diacid halide include without limitations fumaryl chloride, suberoyl chloride, succinyl chloride, phthaloyl chloride, isophthaloyl chloride, terephthaloyl chloride, sebacoyl chloride, adipoyl chloride, trimethyladipoyl chloride, azelaoyl chloride, dodecanedioic acid chloride, succinic chloride, glutaric chloride, oxalyl chloride, dimer acid chloride, and combinations thereof.

Any suitable di-epoxy compounds can be used in the invention. Examples of preferred di-epoxy compounds are neopentyl glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerol diglycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, and combinations thereof. Such di-epoxy compounds are available commercially (e.g., those DENACOL series di-epoxy compounds from Nagase Chemtex Corporation).

Any suitable \( \text{C}_2-\text{C}_{24} \) diols (i.e., compounds with two hydroxyl groups) can be used in the invention. Examples of preferred diols include without limitation ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, 1,4-butanediol, various pentanediols, various hexanediols, various cyclohexanediols, and combination thereof.

Any suitable \( \text{C}_3-\text{C}_{24} \) di-carboxylic acid compounds can be used in the invention. Examples of preferred di-carboxylic acid compounds include without limitation a linear or branched \( \text{C}_3-\text{C}_{24} \) aliphatic dicarboxylic acid, a \( \text{C}_5-\text{C}_{24} \) cycloaliphatic or aliphatic-cycloaliphatic dicarboxylic acid, a \( \text{C}_6-\text{C}_{24} \) aromatic or araliphatic dicarboxylic acid, a dicarboxylic acid which contains amino or imido groups or N-heterocyclic rings, and combinations thereof. Examples of suitable aliphatic dicarboxylic acids are: oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, dimethylmalonic acid, octadecylsuccinic acid, trimethyladipic acid, and dimeric acids (dimerisation products of unsaturated aliphatic carboxylic acids, such as oleic acid). Examples of suitable cycloaliphatic dicarboxylic acids are: 1,3-cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3- and 1,4-cyclohexanedicarboxylic acid, 1,3- and 1,4-dicarboxymethylcyclohexane, 4,4'-dicyclohexyldicarboxylic acid. Examples of suitable aromatic dicarboxylic acids are: terephthalic acid, isophthalic acid, o-phthalic acid, 1,3-, 1,4-, 2,6- or 2,7-naphthalenedicarboxylic acids, 4,4'-diphenyldicarboxylic acid, 4,4'-...
diphenylsulphone-dicarboxylic acid, 1,1,3-trimethyl-5-carboxyl-3-(p-carboxyphenyl)-indane, 4,4'-diphenyl ether-dicarboxylic acid, bis-p-(carboxyphenyl)-methane.

Any suitable C<sub>10</sub>-C<sub>4</sub> di-azlactone compounds can be used in the invention. Examples of such diazilactone compounds are those described in U.S. Patent No. 4,485,236 (herein incorporated by reference in its entirety).

The reactions conditions for the above described coupling reactions are taught in textbooks and are well known to a person skilled in the art.

The term "ethylenically functionize" or ethylenically functionalization" in reference to a compound or polymer or copolymer having one or more reactive functional groups (e.g., amine, hydroxyl, carboxyl, isocyanate, anhydride, and/or epoxy groups) means a process or product thereof in which one or more ethylenically unsaturated groups are covalently attached to the functional groups of the compound or polymer or copolymer by reacting an ethylenically functionalizing vinylic monomer with the compound or polymer or copolymer under coupling reaction conditions.

An "ethylenically functionalizing vinylic monomer" throughout of this patent application refers to a vinylic monomer having one reactive functional group capable of participating in a coupling (or crosslinking) reaction known to a person skilled in the art. Examples of ethylenically-functionalizing vinylic monomers include without limitation C<sub>2</sub> to C<sub>6</sub> hydroxylalkyi (meth)acrylate, C<sub>2</sub> to C<sub>6</sub> hydroxyalkyi (meth)acrylamide, allylalcohol, allylamine, amino-C<sub>2</sub>-C<sub>6</sub> alkyi (meth)acrylate, C<sub>1</sub>-C<sub>6</sub> alkylamino-C<sub>2</sub>-C<sub>6</sub> alkyi (meth)acrylate, vinylamine, amino-C<sub>2</sub>-C<sub>6</sub> alkyi (meth)acrylamide, C<sub>1</sub>-C<sub>6</sub> alkylamino-C<sub>2</sub>-C<sub>6</sub> alkyi (meth)acrylamide, acrylic acid, C<sub>1</sub>.C<sub>4</sub> alkylacrylic acid (e.g., methacrylic ethylacrylic acid, propylacrylic acid, butylacrylic acid), A/-[tris(hydroxymethyl)-methyl]acrylamide, N,N-2-acrylamidoglycolic acid, beta methyl-acrylic acid (crotonic acid), alpha-phenyl acryl propionic acid, sorbic acid, angelic acid, cinnamic acid, 1-carboxy-4-phenyl butadiene-1,3, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid, maleic acid, fumaric acid, aziridinyl C<sub>1</sub>-C<sub>12</sub> alkyi (meth)acrylate (e.g., 2-(1-aziridinyl) ethyl (meth)acrylate), 3-(1-aziridinyl) propyl (meth)acrylate, 4-(1-aziridinyl) butyl (meth)acrylate, 6-(1-aziridinyl) hexyl (meth)acrylate, or 8-(1-aziridinyl) octyl (meth)acrylate), glycidyl (meth)acrylate, vinyl glycidyl ether, allyl glycidyl ether, (meth)acryloyl halide groups (CH<sub>2</sub>=CH-COX or CH<sub>2</sub>=CCH<sub>3</sub>COX, X=Cl or Br), N-hydroxysuccinimide ester of (meth)acrylic acid, C<sub>1</sub> to C<sub>6</sub> isocyanatoalkyl (meth)acrylate, azlactone-containing vinylic monomers (e.g., 2-vinyl-4,4-dimethyl-1,3-oxazolin-5-one, 2-isopropenyl-4,4-dimethyl-1,3-oxazolin-5-one, 2-vinyl-4-methyl-4-ethyl-1,3-oxazolin-5-one, 2-isopropenyl-4-methyl-4-butyl-1,3-oxazolin-5-one, 2-vinyl-4,4-dibutyl-1,3-oxazolin-5-one, 2-isopropenyl-4-methyl-4-dodecyl-1,3-oxazolin-5-one, 2-isopropenyl-4,4-diphenyl-1,3-oxazolin-5-one, 2-isopropenyl-4,4-pentamethylenel-1,3-oxazolin-5-one, 2-isopropenyl-4,4-tetramethylenel-1,3-oxazolin-5-one, 2-vinyl-4,4-diethyl-1,3-oxazolin-5-one, 2-
vinyl-4-methyl-4-nonyl-1,3-oxazolin-5-one, 2-isopropenyl-4-methyl-4-phenyl-1,3-oxazolin-5-one, 2-isopropenyl-4-methyl-4-benzyl-1,3-oxazolin-5-one, 2-vinyl-4,4-pentamethylene-1,3-oxazolin-5-one, and 2-vinyl-4,4-dimethyl-1,3-oxazolin-5-one (VDMO) and 2-isopropenyl-4,4-dimethyl-1,3-oxazolin-5-one (IPDMO) as preferred azlactone-containing vinlyc monomers), and combinations thereof.

In general, the invention is directed to a class of amphiphilic siloxane-containing (meth)acrylamides and uses in preparing a polymer (preferably an actinically-crosslinkable prepolymer or silicone hydrogel material) and in producing a medical device (preferably an ophthalamic devices, more preferably a silicone hydrogel contact lens). An amphiphilic siloxane-containing (meth)acrylamide of the invention comprises: one sole (meth)acrylamido group (preferably acrylamido group); one sole TRIS group; and one hydrophilic polyethylene glycol segment which is either a dangling polymer chain or a hydrophilic linker between the (meth)acrylamido group and the TRIS group. It is believed that an amphiphilic TRIS-containing (meth)acrylamide of the invention has an adequate solubility in water largely because of its hydrophilic polyethylene glycol segment present in the monomer. It can be used in a manufacturing process for making silicone hydrogel contact lenses in a more environmentally-friendly manner (e.g., using a water-based lens formulation and/or lens extraction with water). Further, a (meth)acrylamido group is less susceptible to hydrolysis than a (meth)acryloyloxy group while is more hydrophilic than a (meth)acryloyloxy group. In addition, because a (meth)acrylamide has a higher reactivity than a (meth)acrylate, a Tris-containing (meth)acrylamide of the invention is more suitable for a UV-polymerization process requiring a short curing time (e.g., within a time period of about 50 seconds or less).

The present invention, in one aspect, provides an amphiphilic siloxane-containing (meth)acrylamide being represented by formula (1) or (2)

\[
\begin{align*}
\text{H}_2\text{C}&=\text{C}\text{C}\text{NHCH}_2\text{Z}_1\text{X}_1\text{R}_{11}\text{Si}^1\{\text{A}_1\}^{3\text{-r}_1}^1 \\
\text{H}_2\text{C}&=\text{C}\text{C}\text{NR'}\text{Z}_3\text{OCH}_2\text{CH}_2_q^3\text{R}_{12}
\end{align*}
\]

(1)

\[
\begin{align*}
\text{H}_2\text{C}&=\text{C}\text{C}\text{NR'}\text{Z}_4\text{X}_2\text{Z}_5\text{OCH}_2\text{CH}_2_q^3\text{Z}_6\text{X}_3\text{R}_{11}\text{Si}^1\{\text{A}_1\}^{3\text{-r}_1}^1 \\
\text{H}_2\text{C}&=\text{C}\text{C}\text{NR'}\text{Z}_3\text{OCH}_2\text{CH}_2_q^3
\end{align*}
\]

(2)

in which

- \(\text{A}_1, \text{A}_2, \text{A}_3\) and \(\text{A}_4\) independent of one another are a \(\text{C}_1\text{-C}_6\) alkyl (preferably methyl), phenyl or benzyl,
- \(\text{r}_1\) is an integer of 2 or 3,
R’ is H or C₁₋₄ alkyl,
R₁₀ is hydrogen or methyl,
R₁₁ is a linear or branched C₂⁻₆ alkylene divalent radical which may be substituted with
one or more hydroxyl groups,
R₁₂ is C₄₋₆ alkylene divalent radical,
z₁ and Z₂ independent of each other are a direct bond or a linear or branched Ci-C₄ alkylene divalent radical,
Z₃ is C₂⁻₄ alkylene divalent radical,
Z₄, Z₅, and Z₆ independent of one another are a direct bond or a linear or branched Ci-C₂₀ alkylene divalent radical which may have one or more ether, thio, amine, carbonyl, or amido linkages in their main chain,
X₁ is -O-CO-NH- or -O-CO-NH-R₁₃-NH-CO-₀- in which R₁₃ is a linear or branched C₂⁻₆ alkylene divalent radical or a C₅₋₆₄₅ cycloaliphatic or aliphatic-cycloaliphatic divalent radical,
X₂ and X₃ independent of each other are selected from the group consisting of direct
q₁ is an integer from 2 to 50, q₂ is an integer from 3 to 20.

In a preferred embodiment, an amphiphilic siloxane-containing (meth)acrylamide of
the invention is represented by formula (1) in which: R’ is hydrogen; R₁₀ is hydrogen or
methyl; R₁₁ is a linear or branched C₂⁻₆ alkylene divalent radical; R₁₂ is Ci-C₆ alkoxy; Z₁
and Z₂ are a direct bond; Z₃ is C₂⁻₄ alkylene divalent radical; X₁ is -O-CO-NH- or -O-CO-NH-R₁₃-NH-CO-₀- in which R₁₃ is a linear or branched C₂⁻₆ alkylene divalent radical or a C₅₋₆₄₅ cycloaliphatic or aliphatic-cycloaliphatic divalent radical; q₁ is an integer from 2 to 50.

In a preferred embodiment, an amphiphilic siloxane-containing (meth)acrylamide of
the invention is represented by any one of formula (2a) to (2d)
in which: $R_0$ is hydrogen or methyl; $R_1$ is a linear or branched $C_2^-$ $C_6$ alkylene divalent radical; $R_4$ is $-CH_2CH_2CH_2$ or $-CH_2CH(CH_3)$; $X_4$ and $X_6$ independent of each other are $-0$, $-NH$, $-CO-NH$, $-NH-CO-NH$, $-CO-0$, $-0-CO-$, $-S$, $-0-CO-NH-R_{13}$, $-NH-CO-0$, or $-NH-CO-NH-R_{13}$ $-NH-CO-NH-$ in which $R_{13}$ is a linear or branched $C_2$-$C_{12}$ alkylene divalent radical or a $C_5$-$C_{45}$ cycloaliphatic or aliphatic-cycloaliphatic divalent radical; $X_5$ is $-NH$, $-CO-NH$, $-NH-CO$, $-NH-CO-NH$, $-CO-0$, $-0-CO-$, $-S$, or $-NH-CO-NH-R_{13}$ $-NH-CO-NH-$ in which $R_{13}$ is a linear or branched $C_2$-$C_{12}$ alkylene divalent radical or a $C_5$-$C_{45}$ cycloaliphatic or aliphatic-cycloaliphatic divalent radical; $q_2$ is an integer from 2 to 50; $n_1$ and $n_3$ independent of each other are an integer from 1 to 3; $n_2$ is an integer 2 or 3.

An amphiphilic siloxane-containing (meth)acrylamide of formula (1) can be prepared from the following starting materials: (1) a (meth)acrylamide having one carboxyl ($-COOH$) group and one hydroxy ($-OH$) group (e.g., (meth)acrylamido glycolic acid or the like); (2) an isocyanatoalkyl- or hydroxyalkyl-tris(trimethylsiloxy)silane or an isocyanato- or hydroxy-containing bulky silane (e.g., OCN-Rn-TRIS, HO-Rn-TRIS, OCN- $R_{11}$- Si(B$_1$)$_3$$(A_1)_{3-11}$, HO-$R_{11}$-$S$[B$_1$]$_3$$(A_1)_{3-11}$ in which $A_1$, $B_1$ and $r_1$ are as defined above, or the like); (3) mono-amine or mono-carboxy terminated polyethylene glycol (i.e., $NH_2$-PEG-OR$_{i_2}$ or $HOOC$-PEG-OR$_{i_2}$) according to coupling methods known to a person skilled in the art. As an illustrative example, Scheme I shows an illustrative scheme for preparing an amphiphilic siloxane-containing (meth)acrylamide of formula (1).
It should be understood that HOOC-PEG-OR12 can substitute NH$_2$-PEG-OR$_i$$_2$ at step II and reacts with (meth)acrylamido glycolic acid N-hydroxysuccinimide ester in the presence of a diamine coupling agent (any one of those described above) to form a diamide linkage (instead of one sole amide linkage as shown in Scheme I). Similarly, OCN- $R_{r_1}$-Si($B_1$)$_r$($A_1$)$_3$. $r_1$ can substitute OCN-R-n-TRIS at step III and reacts with the reaction product of step II; and HO-$R_{r_1}$-TRIS or HO-$R_{r_1}$-Si($B_1$)$_r$($A_1$)$_3$ can substitute OCN-$R_{r_1}$-TRIS at step III and reacts with the reaction product of step II in the presence of a diisocyanate coupling agent (any one of those described above) to form a diurethane linkage (instead of one sole urethane linkage as shown in Scheme I).

Alternatively, an amphiphilic siloxane-containing (meth)acrylamide of formula (1) can be prepared from the following starting materials: (1) a compound having one amino group (-NHR’ with R’ as defined above), one carboxyl group and one hydroxy group (e.g., serine, threonine, L-3-Homoserine, L-3-homothreonine, L-3-Homohydroxyproline, or the like); (2) (meth)acrylic acid N-hydroxysuccinimide ester (commercially available from Sigma-Aldrich); (3) an isocyanatoalkyl- or bromo- or chloro-alkyl- or hydroxyalkyl- tris(trimethylsiloxy)silane or an isocyanatoalkyl- or bromo- or chloro-alkyl- or hydroxyalkyl-containing bulky silane; (4) mono-functional polyethylene glycol according to coupling methods known to a person skilled in the art. As an illustrative example, Scheme II shows another illustrative scheme for preparing an amphiphilic siloxane-containing (meth)acrylamide of formula (1) from serine.
Step III

It is understood that serine can be replaced by threonine, L-3-Homoserine, L-β-homothreonine, L-3-Homohydroxyproline in Scheme II for preparing an amphiphilic siloxane-containing (meth)acrylamide of formula (1). HOOC-PEG-OR12 can substitute NH₂-PEG-ORi₂ at step III and reacts with the reaction product of step II in the presence of a diamine coupling agent (any one of those described above) to form a diamide linkage (instead of one sole amide linkage as shown in Scheme II). Similarly, OCN-Rn-Si(Bi)₁₁(A₁)₃₋₁ can substitute OCN-Rn-TRIS at step IV and reacts with the reaction product of step III; and HO-Rn-TRIS or HO-Rii-Si(Bi)₁₁(A₁)₃₋₁ can substitute OCN-Rn-TRIS at step IV and reacts with the reaction product of step III in the presence of a disocyanate coupling agent (any one of those described above) to form a diurethane linkage (instead of one sole urethane linkage as shown in Scheme II).

An amphiphilic siloxane-containing (meth)acrylamide of formula (2) can be prepared from the following starting materials: (1) an amino-containing or carboxy-containing (meth)acrylamide (e.g., N-(2-aminoethyl)methacrylamide hydrochloride, N-(3-aminopropyl)methacrylamide hydrochloride, N-(2-carboxypropyl)methacrylamide (2-CPMA), N-(3-carboxypropyl)methacrylamide (3-CPMA), N,N-2-acrylamidoglycolic acid, or the like); (2) a heterobifunctional polyethylene glycol (e.g., HO-PEG-COOH, HO-PEG-NH₂, NH₂-PEG-COOH, HS-PEG-COOH, HS-PEG-NH₂, Boc-NH-PEG-NHS, Boc-NH-PEG-NH₂, Boc-NH-PEG-NHS, in which Boc stands for amino protecting group - tert-Butyl carbamate, all of which are available from Creative PEGWORKs); (3) a tris(trimethylsiloxy)silane having a
reactive functional group selected from the group consisting of amino, carboxy, isocyanato, and hydroxy group (e.g., aminopropyl-tris(trimethylsiloxy)silane, isocyanatopropyl-tris(trimethylsiloxy)silane, hydroxyethoxypropyl-tris(trimethylsiloxy)silane, chloropropyl-tris(trimethylsiloxy)silane, the Michael reaction product of carboxy-containing mercaptane (e.g., 2-mercapto propionic acid, thioglycolic acid, thiolactic acid, or the like) with vinyl tris(trimethylsiloxy)silane).

As an illustrative example, Scheme III shows an illustrative scheme for preparing an amphiphilic siloxane-containing (meth)acrylamide of formula (2a).

**Scheme III**

It is understood that NH$_2$-PEG-COOH can be replaced by NH$_2$-PEG-OH or NH$_2$-PEG-SH or NH$_2$-PEG-NH-B0C in Scheme III step I to obtain a (meth)acrylamido-terminated, hydroxy-terminated (or HS-terminated or Boc-terminated polyethylene glycol). Where the functional group of the reaction product of step I in Scheme III is hydroxy group, it can react with an isocyanatoalkyl tris(trimethylsiloxy)silane to form a (meth)acrylamide of formula (2a), or alternatively it can react with hydroxyethoxypropyl tris(trimethylsiloxy)silane in the presence of a diisocyanate coupling agent (any one of those described above) under coupling reaction conditions (Tin catalyst, heating). Where the functional group of the reaction product of step I in Scheme III is Boc, Boc can be removed to recover NH$_2$ group which then can react with an isocyanatoalkyl tris(trimethylsiloxy)silane, with a carboxy-containing tris(trimethylsiloxy)silane in the presence of EDC and hydroxysuccinimide (HO-NHS), or with aminoalkyl-tris(trimethylsiloxy)silane in the presence of a diacid coupling agent (anyone of those described above) or a diacid chloride (anyone of those described above) or a diisocyanate coupling agent (any one of those described above) under coupling reaction conditions (Tin catalyst, heating), to form a (meth)acrylamide of formula (2a). Where the functional group of the reaction product of step I in Scheme III is thiol group, it can react with
an isocyanatoalkyl tris(trimethylsiloxy)silane or with a vinyl tris(trimethylsiloxy)silane under Michael Addition reaction conditions, to form a (meth)acrylamide of formula (2a).

Scheme IV illustrate a scheme for preparing an amphiphilic siloxane-containing (meth)acrylamide of formula (2b).

**Step I**

\[
\text{R}_{10}\text{NHCOOH} + \text{HO-N} \rightarrow \text{R}_{10}\text{NHCOO-N}
\]

**Step II**

\[
\text{R}_{10}\text{NHCOOH} + \text{NH}_{2}\text{-PEG-COOH} \rightarrow \text{R}_{10}\text{NHCOO-PEG-COOH}
\]

**Step III**

\[
\text{R}_{10}\text{NHCOO-PEG-COOH} + \text{HO-N} \rightarrow \text{R}_{10}\text{NHCOO-PEG-CO-O-N}
\]

**Step IV**

\[
\text{R}_{10}\text{NHCOO-PEG-CO-O-N} + \text{NH}_{2}\text{-R}_{11}\text{-TRIS} \rightarrow \text{R}_{10}\text{NHCOO-PEG-CO-O-NH-R}_{11}\text{-TRIS}
\]

**Scheme IV**

It is understood that NH\textsubscript{2}-PEG-COOH can be replaced by NH\textsubscript{2}-PEG-NH-Boc or NH\textsubscript{2}-PEG-SH in Scheme IV step I to obtain a (meth)acrylamido-terminated, Boc-terminated (or HS-terminated) polyethylene glycol. Where the functional group of the reaction product of step I in Scheme IV is Boc, Boc can be removed to recover NH\textsubscript{2} group which then can react with an isocyanatoalkyl tris(trimethylsiloxy)silane or with a carboxy-containing tris(trimethylsiloxy)silane in the presence of EDC and hydroxysuccinimide (HO-NHS), or with aminoalkyl-tris(trimethylsiloxy)silane in the presence of a diacid coupling agent (anyone of those described above) or a diisocyanate coupling agent (any one of those described above) under coupling reaction conditions, to form a (meth)acrylamide of formula (2b). Where the functional group of the reaction product of step I in Scheme IV is thiol group, it can react with an isocyanatoalkyl tris(trimethylsiloxy)silane or with a vinyl tris(trimethylsiloxy)silane under Michael Addition reaction conditions, to form a (meth)acrylamide of formula (2b).

Scheme V illustrates a scheme for preparing an amphiphilic siloxane-containing (meth)acrylamide of formula (2c).
It is understood that HO-PEG-NHS can be replaced by NHS-PEG-NH-Boc or NHS-PEG-SH in Scheme V step I to obtain a (meth)acrylamido-terminated, Boc-terminated (or HS-terminated) polyethylene glycol. Where the functional group of the reaction product of step I in Scheme V is Boc, Boc can be removed by well-known hydrolysis to recover NH₂ group which then can react with an isocyanatoalkyl tris(trimethylsiloxy)silane or with a carboxy-containing tris(trimethylsiloxy)silane in the presence of EDC and N-hydroxysuccinimide (HO-NHS), or with aminoalkyl-tris(trimethylsiloxy)silane in the presence of a diacid coupling agent (anyone of those described above) or a diisocyanate coupling agent (any one of those described above) under coupling reaction conditions, to form a (meth)acrylamide of formula (2c). Where the functional group of the reaction product of step I in Scheme V is thiol group, it can react with an isocyanatoalkyl tris(trimethylsiloxy)silane or with a vinyl tris(trimethylsiloxy)silane under Michael Addition reaction conditions, to form a (meth)acrylamide of formula (2c).

An amphiphilic siloxane-containing (meth)acrylamide of formula (2d) can be prepared according to Scheme IV from any carboxy-containing (meth)acrylamide (e.g., N-(2-carboxypropyl)methacrylamide (2-CPMA), N-(3-carboxypropyl)methacrylamide (3-CPMA)) which replaces (meth)acrylamido glycolic acid in Scheme IV.

In a preferred embodiment, an amphiphilic siloxane-containing (meth)acrylamide of any one of formula (1), (2), and (2a) to (2d) has a water solubility or dispersibility of at least about 5%, preferably at least about 10%, more preferably at least about 20% by weight in water.

An amphiphilic siloxane-containing (meth)acrylamide of formula (1) or (2) (including those preferred embodiments described above) as defined above can find particular use in preparing a polymer, preferably a silicone-containing actinically-crosslinkable prepolymer or a silicone hydrogel polymeric material, which is another aspect of the invention. A person skilled in the art knows how to prepare a polymer, an actinically-crosslinkable silicone containing prepolymer, or a silicone hydrogel polymeric material from a polymerizable
composition according to any known polymerization mechanism.

In this aspect of the invention, a polymer can be a copolymer soluble or insoluble in a solvent, preferably an actinically-crosslinkable prepolymer or a silicone hydrogel material.

Various embodiments of amphiphilic siloxane containing vinylic monomers of formula (I) can be used in a polymerizable composition for preparing a polymer, a prepolymer or a silicone hydrogel material of the invention. It is understood that a polymerizable composition for preparing a polymer, an actinically-crosslinkable silicone-containing prepolymer or a silicone hydrogel polymeric material of the invention may optionally comprise a hydrophilized siloxane-containing (meth)acrylamide having at least one hydrophilic moiety selected from the group consisting of a short hydrophilic polymeric chain with a molecular weight of up to about 1000 Daltons (preferably about 800 Dalton or less, even more preferably about 500 Daltons or less), a pendant hydroxyl group, an amide linkage, a urethane linkage (or carbamate linkage), a diurethane linkage, a 2-hydroxy-substituted propyleneoxide linkage, and combinations thereof. Examples of hydrophilized siloxane-containing vinylic monomers include without limitation those described in US patent Nos. 4,711,943, 5,070,215, 5,760,100 (Macromer C), 5,981,615, 5,998,498, 7,071,274, 7,112,641, 8,071,703, 8,044,111, and 8,048,968; in PCT patent application publication WO0059970; and in US patent application Nos. 2010/0120939 A1, 2010/0298446 A1, 2012/008843 A1, 2012/008844 A1, and 2012/008861 A1, all of which are herein incorporated by reference in their entireties.

A person skilled in the art knows how to prepare a polymer, an actinically-crosslinkable silicone-containing prepolymer, or a silicone hydrogel material from a polymerizable composition according to any known free-radical polymerization mechanism. The polymerizable composition for preparing a polymer, an intermediary copolymer for preparing an actinically-crosslinkable silicone containing prepolymer, or a silicone hydrogel polymeric material of the invention can be a melt, a solventless liquid in which all necessary components are blended together, or a solution in which all necessary component is dissolved in an inert solvent, such as water, an organic solvent, or mixture thereof, as known to a person skilled in the art.

Example of suitable solvents includes without limitation, water, tetrahydrofuran, tripropylene glycol methyl ether, dipropylene glycol methyl ether, ethylene glycol n-butyl ether, ketones (e.g., acetone, methyl ethyl ketone, etc.), diethylene glycol n-butyl ether, diethylene glycol methyl ether, ethylene glycol phenyl ether, propylene glycol methyl ether, propylene glycol methyl ether acetate, dipropylene glycol methyl ether acetate, propylene glycol n-propyl ether, dipropylene glycol n-propyl ether, tripropylene glycol n-butyl ether, propylene glycol n-butyl ether, dipropylene glycol n-butyl ether, tripropylene glycol n-butyl ether, propylene glycol phenyl ether dipropylene glycol dimethyl ether, polyethylene glycols, polypropylene glycols, ethyl acetate, butyl acetate, amyl acetate, methyl lactate, ethyl
lactate, i-propyl lactate, methylene chloride, 2-butanol, 1-propanol, 2-propanol, menthol, 
cyclohexanol, cyclopentanol and exonorborneol, 2-pentanol, 3-pentanol, 2-hexanol, 3-
hexanol, 3-methyl-2-butanol, 2-heptanol, 2-octanol, 2-nonanol, 2-decanol, 3-octanol, 
norborneol, tert-butanol, tert-amyl, alcohol, 2-methyl-2-pentanol, 2,3-dimethyl-2-butanol, 3-
methyl-3-pentanol, 1-methylcyclohexanol, 2-methyl-2-hexanol, 3,7-dimethyl-3-octanol, 1-
chloro-2-methyl-2-propanol, 2-methyl-2-heptanol, 2-methyl-2-octanol, 2-2-methyl-2-nonanol, 
2-methyl-2-decanol, 3-methyl-3-hexanol, 3-methyl-3-heptanol, 4-methyl-4-heptanol, 3-
methyl-3-octanol, 4-methyl-4-octanol, 3-methyl-3-nonanol, 4-methyl-4-nonanol, 3-methyl-3-
octanol, 3-ethyl-3-hexanol, 3-methyl-3-heptanol, 4-ethyl-4-heptanol, 4-propyl-4-heptanol, 4-
isopropyl-4-heptanol, 2,4-dimethyl-2-pentanol, 1-methylcyclopentanol, 1-ethylcyclopentanol, 
1-ethylcyclopentanol, 3-hydroxy-3-methyl-1-butene, 4-hydroxy-4-methyl-1-cyclopentanol, 2-
phenyl-2-propanol, 2-methoxy-2-methyl-2-propanol, 2,3,4-trimethyl-3-pentanol, 3,7-dimethyl-
3-octanol, 2-phenyl-2-butanol, 2-methyl-1-phenyl-2-propanol and 3-ethyl-3-pentanol, 1-
ethoxy-2-propanol, 1-methyl-2-propanol, t-amyl alcohol, isopropanol, 1-methyl-2-pyrrolidone, 
N,N-dimethylpropionamide, dimethyl formamide, dimethyl acetamide, dimethyl 
propionamide, N-methyl pyrrolidinone, and mixtures thereof.

The copolymerization of a polymerizable composition for preparing a polymer, an 
actinically-crosslinkable silicone containing prepolymer (i.e., an intermediary copolymer for 
the prepolymer), or a silicone hydrogel polymeric material of the invention may be induced 
photochemically or thermally.

Suitable photoinitiators are benzoin methyl ether, diethoxyacetophenone, a 
benzoylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone and Darocur and Irgacure 
types, preferably Darocur 1173®, Irgacure 369®, Irgacure 379®, and Irgacure 2959®. 
Examples of benzoylphosphine oxide initiators include 2,4,6-
trimethylbenzoyl diphenylphosphine oxide (TPO); bis-(2,6-dichlorobenzoyl)-4-N-
propylphenylphosphine oxide; and bis-(2,6-dichlorobenzoyl)-4-N-butylphenylphosphine 
oxide. Reactive photoinitiators which can be incorporated, for example, into a macromer or 
can be used as a special monomer are also suitable. Examples of reactive photoinitiators 
are those disclosed in EP 632 329, herein incorporated by reference in its entirety. The 
polymerization can then be triggered off by actinic radiation, for example light, in particular 
UV light of a suitable wavelength. The spectral requirements can be controlled accordingly, if 
appropriate, by addition of suitable photosensitizers.

Suitable thermal polymerization initiators are known to the skilled artisan and 
comprise, for example peroxides, hydroperoxides, azo-bis(alkyl- or cycloalkynitriles), 
persulfates, percarbonates or mixtures thereof. Examples are benzoylperoxide, tert.-butyl 
peroxide, di-tert.-butyl-diperoxylphthalate, tert.-butyl hydroperoxide, azo-bis(isobutyronitrile) 
(AIBN), 1,1-azodiisobutyramidine, 1,1'-azo-bis (1-cyclohexanecarbonitrile), 2,2'-azo-bis(2,4-
dimethylvaleronitrile) and the like. The polymerization is carried out conveniently in an above-mentioned solvent at elevated temperature, for example at a temperature of from 25 to 100°C and preferably 40 to 80°C. The reaction time may vary within wide limits, but is conveniently, for example, from 1 to 24 hours or preferably from 2 to 12 hours. It is advantageous to previously degas the components and solvents used in the polymerization reaction and to carry out said copolymerization reaction under an inert atmosphere, for example under a nitrogen or argon atmosphere.

Generally, a polymer of the invention is obtained by polymerizing thermally or actinically a polymerizable composition including an amphiphilic siloxane-containing (meth)acrylamide of formula (1) or (2) as defined above and one or more polymerizable components selected from the group consisting of a hydrophilic vinylic monomer, a hydrophobic vinylic monomer, a polysiloxane-containing vinylic monomer, a polysiloxane-containing crosslinker, a non-silicone crosslinker, a hydrophilic prepolymer, a UV-absorbing vinylic monomer, and combinations thereof. Various embodiments of all of the above-described polymerizable components are discussed below.

In accordance with the invention, any suitable hydrophilic vinylic monomers can be used in a polymerizable composition for preparing a polymer of the invention. Examples of preferred hydrophilic vinylic monomers include without limitation N-vinylpyrrolidone, N,N-dimethyl (meth)acrylamide, (meth)acrylamide, hydroxylethyl (meth)acrylamide, hydroxyethyl (meth)acrylate, glycerol methacrylate (GMA), polyethylene glycol (meth)acrylate, polyethylene glycol C₁₋C₄-alkyl ether (meth)acrylate having a weight average molecular weight of up to 1500, N-vinyl formamide, N-vinyl acetamide, N-vinyl isopropylamide, N-vinyl-N-methyl acetamide, N-methyl-3-methylene-2-pyrrolidonone, 1-ethyl-3-methylene-2-pyrrolidone, 1-methyl-5-methylene-2-pyrrolidonone, 1-ethyl-5-methylene-2-pyrrolidonone, 5-methyl-3-methylene-2-pyrrolidonone, 5-ethyl-3-methylene-2-pyrrolidonone, (meth)acrylic acid, ethylacrylic acid, and combinations thereof.

Any suitable hydrophobic vinylic monomers can be used in a polymerizable composition for making a polymer of the invention. By incorporating a certain amount of hydrophobic vinylic monomer in a monomer mixture, the mechanical properties (e.g., modulus of elasticity) of the resultant polymer may be improved. Examples of preferred hydrophobic vinylic monomers include methylacrylate, ethyl-acrylate, propylacrylate, isopropylacrylate, cyclohexylacrylate, 2-ethylhexylacrylate, methylmethacrylate, ethylmethacrylate, propylmethacrylate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valerate, styrene, chloroprene, vinyl chloride, vinylidene chloride, acrylonitrile, 1-butene, butadiene, methacrylonitrile, vinyl toluene, vinyl ethyl ether, perfluorohexylethyl-thiocarbonyl-aminoethyl-methacrylate, isobornyl methacrylate, trifluoroethyl methacrylate, hexafluoro-isopropyl methacrylate, hexafluorobutyl methacrylate.
Any suitable polysiloxane-containing (meth)acrylamide (each comprising at least one polysiloxane segment and one sole ethylenically unsaturated group) can be used in a polymerizable composition for preparing a polymer of the invention. Preferred examples of such vinylic monomers are mono-(meth)acrylated polydimethylsiloxanes of various molecular weight (e.g., mono-3-methacryloxypropyl terminated, mono-Ci-C₄ alkyl terminated polydimethylsiloxane, or mono-(3-methacryloxy-2-hydroxypropyloxy)propyl terminated, mono-Ci-C₄ alkyl terminated polydimethylsiloxane). Alternatively, monoethylenically functionalized polysiloxanes can be obtained by ethylenically functionalizing of a monofunctionalized polysiloxanes (i.e., with one sole terminal functional group, such as, e.g., -NH₂, -OH, -COOH, epoxy group, halide, etc.) as described above. Suitable monofunctionalized polysiloxanes are commercially available, e.g., from Aldrich, ABCR GmbH & Co., Fluorochem, or Gelest, Inc, Morrisville, PA.

preferred embodiment, a polysiloxane-containing crosslinker used in a polymerizable composition for preparing a polymer, an acrylinically-crosslinkable silicone containing prepolymer, or a silicone hydrogel polymeric material of the invention is hydrophilized, namely a crosslinker containing at least one polysiloxane segment and at least one pendant hydrophilic polymer chain. Examples of hydrophilized polysiloxane-containing crosslinkers include without limitation those described in US patent application Nos. 2010/0120939 A1, 2010/0298446 A1, 2012/0088843 A1, 2012/0088844 A1, and 2012/0088861 A1, all of which are herein incorporated by reference in their entireties.

Any suitable non-silicone crosslinkers can be used in a polymerizable composition for preparing a polymer of the invention. Examples of preferred non-silicone crosslinkers include without limitation tetraethylene glycol di-(meth)acrylate, triethylene glycol di-(meth)acrylate, ethylene glycol di-(meth)acrylate, diethylene glycol di-(meth)acrylate, bisphenol A dimethacrylate, vinyl methacrylate, ethylenediamine di(meth)acrylamide, glycerol dimethacrylate, allyl(meth)acrylate, N,N'-methylenebis(meth)acrylamide, N,N'-ethylenebis(meth)acrylamide, N,N'-dihydroxyethylene bis(meth)acrylamide, a product of diamine (preferably selected from the group consisting of N,N'-bis(hydroxyethyl)ethylenediamine, N,N'-dimethylethylenediamine, ethylenediamine, N,N'-dimethyl-1,3-propanediamine, N,N'-diethyl-1,3-propanediamine, propane-1,3-diamine, butane-1,4-diamine, pentane-1,5-diamine, hexamethylenediamine, isophorone diamine, and combinations thereof) and epoxy-containing vinylic monomer (preferrably selected from the group consisting of glycidyl (meth)acrylate, vinyl glycidyl ether, allyl glycidyl ether, and combinations thereof), combinations thereof. A more preferred crosslinker to be used in the preparation of a polymer, an acrylinically-crosslinkable silicone containing prepolymer, or a silicone hydrogel polymeric material of the invention is a hydrophilic crosslinker selected from the group consisting of tetra(ethyleneglycol) diacrylate, tri(ethyleneglycol) diacrylate, ethyleneglycol diacrylate, di(ethyleneglycol) diacrylate, glycerol dimethacrylate, allyl(meth)acrylate, N,N'-methylene bis(meth)acrylamide, N,N'-ethylen bis(meth)acrylamide, N,N'-dihydroxyethylene bis(meth)acrylamide, and combinations thereof.

Examples of hydrophilic prepolymer with multiple acryloyl or methacryloyl groups include, but are not limited to, a water-soluble crosslinkable polyvinyl alcohol prepolymer described in U.S. Patent Nos. 5,583,163 and 6,303,687; a water-soluble vinyl group-terminated polyurethane prepolymer described in U.S. Patent Application Publication No. 2004/0082680; derivatives of a polyvinyl alcohol, polyethyleneimine or polyvinylamine, which are disclosed in U.S. Patent No. 5,849,841; a water-soluble crosslinkable polyurea prepolymer described in U.S. Patent No. 6,479,587 and in U.S. Published Application No. 2005/0113549; crosslinkable polyacrylamide; crosslinkable statistical copolymers of vinyl lactam, MMA and a comonomer, which are disclosed in EP 655,470 and U.S. Patent No.

Any suitable UV-absorbing vinylic monomers can be used in a polymerizable composition for preparing a polymer of the invention. Preferred UV absorbing vinylic monomers include without limitation 2-(2-hydroxy-5-vinylphenyl)-2H-benzotriazole, 2-(2-hydroxy-5-acyrloxyphenyl)-2H-benzotriazole, 2-(2-hydroxy-3-methacrylamido methyl-5-tert octylphenyl)benzotriazole, 2-(2'-hydroxy-5'-methacrylamidophenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy-5'-methacrylamidophenyl)-5-methoxybenzotriazole, 2-(2'-hydroxy-5'-methacryloxypropyl-3'-t-butyphenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy-5'-methacryloxyethylphenyl)benzotriazole, 2-(2'-hydroxy-5'-methacryloxypropylphenyl) benzotriazole, 2-hydroxy-4-acryloxy alkoxy benzophenone, 2-hydroxy-4-methacryloxy alkoxy benzophenone, allyl-2-hydroxybenzophenone, 2-hydroxy-4-methacryloxy benzophenone. In accordance with the invention, the polymerizable composition comprises about 0.2% to about 5.0%, preferably about 0.3% to about 2.5%, more preferably about 0.5% to about 1.8%, by weight of a UV-absorbing vinylic monomer.

In a preferred embodiment, a polymer of the invention is a silicone-containing actinically-crosslinkable prepolymer, which preferably comprises: (1) monomeric units derived from an amphiphilic siloxane-containing (meth)acrylamide of any one of formula (1), (2), and (2a) to (2d) as defined above; (2) crosslinking units derived from at least one polysiloxane-containing crosslinker as described above (preferably a hydrophilized polysiloxane-containing crosslinker as described above) and/or polysiloxane units derived from a polysiloxane-containing vinylic monomer as described above; (3) hydrophilic units derived from at least one hydrophilic vinylic monomer as described above; (4) polymerizable units derived from a chain transfer agent having a first reactive functional group other than thiol group and/or a vinylic monomer having a second reactive functional group other than ethylenically-unsaturated group, wherein the polymerizable units each comprise an ethylenically unsaturated group covalently attached to one polymerizable unit through the first or second reactive functional group; (5) optionally non-silicone crosslinking units derived from at least one non-silicone crosslinker as described above (preferably a non-silicone, hydrophilic crosslinker as described above); and (6) optionally UV-absorbing units derived from a UV-absorbing vinylic monomer as described above. Such a prepolymer is capable of
being actinically crosslinked, in the absence of one or more vinylic monomers, to form a silicone hydrogel contact lens having a water content of from about 20% to about 75% (preferably from about 25% to about 70%, more preferably from about 30% to about 65%) by weight when fully hydrated, and an oxygen permeability (Dk) of at least about 40 barrers (preferably at least about 50 barrers, more preferably at least about 60 barrers, and even more preferably at least about 70 barrers). Preferably, such a prepolymer is water soluble or processable. A non-silicone crosslinker as described above

Such a prepolymer is obtained by first polymerizing a polymerizable composition including all polymerizable components specified above, to form an intermediary copolymer and then by ethylenically functionalizing the intermediary copolymer with an ethylenically functionalizing vinylic monomer having a third reactive functional group capable of reacting with the first and/or second reactive functional group to form a linkage in a coupling reaction in the presence or absence of a coupling agent to form the prepolymer, wherein the first, second and third reactive functional groups independent of one another are selected from the group consisting of amino group, hydroxyl group, carboxyl group, acid halide group, azlactone group, isocyanate group, epoxy group, aziridine group, and combination thereof.


In accordance with the invention, the polymerizable units each comprise a basic monomeric unit being a part of a polymer chain of the prepolymer and a pendant or terminal, ethylenically-unsaturated group attached thereon, wherein each basic monomeric unit is derived from a first ethylenically functionalizing vinylic monomer having a second reactive functional group, wherein the pendant or terminal ethylenically unsaturated group is derived from a second ethylenically functionalizing vinylic monomer having a third reactive functional group which reacts with one second reactive functional in the presence or absence of a crosslinking agent to form a covalent linkage. The second and third reactive functional groups are selected from the group consisting of amino group, hydroxyl group, carboxyl group, azlactone group, isocyanate group, epoxy group, aziridine group, acid chloride, and combination thereof. Examples of such vinylic monomers are those ethylenically functionalizing vinylic monomers described above. Preferably, the first ethylenically functionalizing vinylic monomer is selected from the group consisting of hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxyethyl (meth)acrylamide, hydroxypropyl (meth)acrylamide, allyl alcohol, aminoethyl (meth)acrylate, aminopropyl (meth)acrylate,
aminoethyl (meth)acrylamide, aminopropyl (meth)acrylamide, allyl amine, (meth)acrylic acid, ethylacrylic acid, propylacrylic acid, butylacrylic acid, glycidyl (meth)acrylate, vinyl glycidyl ether, allyl glycidyl ether, isocynatoethyl (meth)acrylate, 2-(1-aziridinyl) ethyl (meth)acrylate, 3-(1-aziridinyl) propyl (meth)acrylate, 4-(1-aziridinyl) butyl (meth)acrylate, 2-vinyl-4,4-dimethyl-1,3-oxazolin-5-one (VDMO), 2-isopropenyl-4,4-dimethyl-1,3-oxazolin-5-one (IPDMO), and combination thereof. Most preferably, the first ethylenically functionalizing vinylic monomer is selected from the group consisting of hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxyethyl (meth)acrylamide, hydroxypropyl (meth)acrylamide, allyl alcohol, aminopropyl (meth)acrylate, aminopropyl (meth)acrylate, aminoethyl (meth)acrylamide, aminopropyl (meth)acrylamide, allyl amine, and combinations thereof.

In accordance with the invention, the content of the polymerizable units are determined based on weight percentage of the ethylenically functionalizing vinylic monomer present in the polymerizable composition for making an water-processable intermediary copolymer relative to the total weight of polymerizable components in the polymerizable composition or the weight percentage of the ethylenically functionalizing vinylic monomer used in ethylenically functionalizing the intermediary copolymer to form the prepolymer of the invention, relative to the weight of the prepolymer.

A chain transfer agent (containing at least one thiol group) is used to control the molecular weight of the resultant intermediary copolymer. Where a chain transfer has a reactive functional group such as amine, hydroxyl, carboxyl, epoxy, isocyanate, aziactone, or aziridine group, it can provide terminal or pendant functionality (amine, hydroxyl, carboxyl, epoxy, isocyanate, aziaactone, or aziridine group) for subsequent ethylenical functionalization of the resultant intermediary copolymer.

In a preferred embodiment, an actinically-crosslinkable silicone-containing prepolymer of the invention is a water-processable prepolymer that has a high water solubility or dispersibility of at least about 5%, preferably at least about 10%, more preferably at least about 20% by weight in water. The prepolymer is capable of being actinically crosslinked, in the absence of one or more vinylic monomers, to form a silicone hydrogel contact lens having a water content of from about 20% to about 75% (preferably from about 25% to about 70%, more preferably from about 30% to about 65%) by weight when fully hydrated, an oxygen permeability (Dk) of at least about 40 barrers (preferably at least about 50 barrers, more preferably at least about 60 barrers, and even more preferably at least about 70 barrers). A water-processable prepolymer of the invention can find particular use in preparing silicone hydrogel ophthalmic lenses, in particular contact lenses.

In another aspect, the invention provides a soft contact lens. The soft contact lens of the invention comprises: a silicone hydrogel material that is obtained by curing a lens-
forming material in a mold, wherein the lens-forming formulation (or material) comprises at least one amphiphilic siloxane-containing (meth)acrylamide of the invention (as described above in detail) and/or at least one actinically-crosslinkable silicone-containing prepolymer of the invention (as described above in detail), wherein the contact lens has a water content of from about 20% to about 75% (preferably from about 25% to about 70%, more preferably from about 30% to about 65%) by weight when fully hydrated, an oxygen permeability (Dk) of at least about 40 barrers (preferably at least about 50 barrers, more preferably at least about 60 barrers, and even more preferably at least about 70 barrers), and an elastic modulus of from about 0.1 MPa to about 2.0 MPa, preferably from about 0.2 MPa to about 1.5 MPa, more preferably from about 0.3 MPa to about 1.2 MPa, even more preferably from about 0.4 MPa to about 1.0 MPa. The lens-forming formulation for obtaining a soft contact lens of the invention can further comprise one or more components selected from the group consisting of a hydrophilic vinylic monomer, a polysiloxane-containing crosslinker, a non-silicone crosslinker, a photoinitiator, a thermal initiator, a UV-absorbing vinylic monomer, a visibility tinting agent (e.g., dyes, pigments, or mixtures thereof), antimicrobial agents (e.g., preferably silver nanoparticles), a bioactive agent, leachable lubricants, leachable tear-stabilizing agents, and mixtures thereof.

Various embodiments of amphiphilic siloxane-containing vinylic monomers of formula (I), polysiloxane-containing crosslinkers, non-silicone crosslinkers, actinically-crosslinkable silicone containing prepolymers of the inventions, hydrophilic vinylic monomers, UV-absorbing vinylic monomers, solvents, photoinitiators, and thermal initiators are described above and can be used in this aspect of the invention.

The bioactive agent incorporated in the polymeric matrix is any compound that can prevent a malady in the eye or reduce the symptoms of an eye malady. The bioactive agent can be a drug, an amino acid (e.g., taurine, glycine, etc.), a polypeptide, a protein, a nucleic acid, or any combination thereof. Examples of drugs useful herein include, but are not limited to, rebamipide, ketotifen, olaptidine, cromoglycate, cyclosporine, nedocromil, levocabastine, lodoxamide, ketotifen, or the pharmaceutically acceptable salt or ester thereof. Other examples of bioactive agents include 2-pyrrolidone-5-carboxylic acid (PCA), alpha hydroxyl acids (e.g., glycolic, lactic, malic, tartaric, mandelic and citric acids and salts thereof, etc.), linoleic and gamma linoleic acids, and vitamins (e.g., B5, A, B6, etc.).

Examples of leachable lubricants include without limitation mucin-like materials (e.g., polyglycolic acid) and non-crosslinkable hydrophilic polymers (i.e., without ethylenically unsaturated groups). Any hydrophilic polymers or copolymers without any ethylenically unsaturated groups can be used as leachable lubricants. Preferred examples of non-crosslinkable hydrophilic polymers include, but are not limited to, polyvinyl alcohols (PVAs), polyamides, polyimides, polylactone, a homopolymer of a vinyl lactam, a copolymer of at
least one vinyl lactam in the presence or in the absence of one or more hydrophilic vinylic comonomers, a homopolymer of acrylamide or methacrylamide, a copolymer of acrylamide or methacrylamide with one or more hydrophilic vinylic monomers, polyethylene oxide (i.e., polyethylene glycol (PEG)), a polyoxyethylene derivative, poly-N-N-dimethylacrylamide, polyacrylic acid, poly 2 ethyl oxazoline, heparin polysaccharides, polysaccharides, and mixtures thereof. The weight-average molecular weight $M_w$ of the non-crosslinkable hydrophilic polymer is preferably from 5,000 to 500,000, more preferably from 10,000 to 300,000, even more preferably from 20,000 to 100,000.

Examples of leachable tear-stabilizing agents include, without limitation, phospholipids, monoglycerides, diglycerides, triglycerides, glycolipids, glyceroglycolipids, sphingolipids, sphingo-glycolipids, fatty alcohols, fatty acids, mineral oils, and mixtures thereof. Preferably, a tear stabilizing agent is a phospholipid, a monoglyceride, a diglyceride, a triglyceride, a glycolipid, a glyceroglycolipid, a sphingolipid, a sphingo-glycolipid, a fatty acid having 8 to 36 carbon atoms, a fatty alcohol having 8 to 36 carbon atoms, or a mixture thereof.

In accordance with the invention, a lens-forming formulation (or material) is a fluid composition, which can be a solution or a melt at a temperature from about 20°C to about 85°C. A lens-forming formulation can be prepared by dissolving all of the desirable components in any suitable solvent known to a person skilled in the art, e.g., any one solvent described above. Preferably, a lens-forming material is a solution of all the desirable components in water, 1,2-propylene glycol, a polyethyleneglycol having a molecular weight of about 400 Daltons or less, or a mixture thereof.

Lens molds for making contact lenses are well known to a person skilled in the art and, for example, are employed in cast molding or spin casting. For example, a mold (for cast molding) generally comprises at least two mold sections (or portions) or mold halves, i.e., first and second mold halves. The first mold half defines a first molding (or optical) surface and the second mold half defines a second molding (or optical) surface. The first and second mold halves are configured to receive each other such that a lens forming cavity is formed between the first molding surface and the second molding surface. The molding surface of a mold half is the cavity-forming surface of the mold and in direct contact with lens-forming material.

Methods of manufacturing mold sections for cast-molding a contact lens are generally well known to those of ordinary skill in the art. The process of the present invention is not limited to any particular method of forming a mold. In fact, any method of forming a mold can be used in the present invention. The first and second mold halves can be formed through various techniques, such as injection molding or lathing. Examples of suitable processes for forming the mold halves are disclosed in U.S. Patent Nos. 4,444,711...
to Schad; 4,460,534 to Boehm et al.; 5,843,346 to Morrill; and 5,894,002 to Boneberger et al., which are also incorporated herein by reference.

Virtually all materials known in the art for making molds can be used to make molds for making contact lenses. For example, polymeric materials, such as polyethylene, polypropylene, polystyrene, PMMA, Topas® COC grade 8007-S10 (clear amorphous copolymer of ethylene and norbornene, from Ticona GmbH of Frankfurt, Germany and Summit, New Jersey), or the like can be used. Other materials that allow UV light transmission could be used, such as quartz glass and sapphire.

In accordance with the invention, the lens-forming formulation (or composition) can be introduced (dispensed) into a cavity formed by a mold according to any known methods. After the lens-forming composition is dispensed into the mold, it is polymerized to produce a contact lens. Crosslinking may be initiated thermally or actinically, preferably by exposing the lens-forming composition in the mold to a spatial limitation of actinic radiation to crosslink the polymerizable components in the lens-forming composition.

Where the lens-forming composition comprises a UV-absorbing vinylic monomer, a benzoylphosphine oxide photoinitiator is preferably used as the photoinitiator in the invention. Preferred benzoylphosphine oxide photoinitiators include without limitation 2,4,6-trimethylbenzoyldiphenylophosphine oxide; bis-(2,6-dichlorobenzoyl)-4-N-propylphenylphosphine oxide; and bis-(2,6-dichlorobenzoyl)-4-N-butylphenylphosphine oxide. It is understood that any photoinitiators other than benzoylphosphine oxide initiators can be used in the invention.

Opening of the mold so that the molded article can be removed from the mold may take place in a manner known perse.

The molded contact lens can be subject to lens extraction to remove unpolymerized polymerizable components. The extraction solvent can be any solvent known to a person skilled in the art. Examples of suitable extraction solvent are those described above. Preferably, water or an aqueous solution is used as extraction solvent. After extraction, lenses can be hydrated in water or an aqueous solution of a wetting agent (e.g., a hydrophilic polymer).

The molded contact lenses can further subject to further processes, such as, for example, surface treatment, packaging in lens packages with a packaging solution which can contain about 0.005% to about 5% by weight of a wetting agent (e.g., a hydrophilic polymer described above or the like known to a person skilled in the art) and/or a viscosity-enhancing agent (e.g., methyl cellulose (MC), ethyl cellulose, hydroxymethylcellulose, hydroxyethyl cellulose (HEC), hydroxypropylcellulose (HPC), hydroxypropylmethyl cellulose (HPMC), or a mixture thereof); sterilization such as autoclave at from 118 to 124°C for at least about 30 minutes; and the like.
In a further aspect, the invention provides a method for making silicone hydrogel contact lenses. The method comprises the steps of: introducing a lens formulation into a mold for making contact lenses, wherein the lens-forming formulation comprises (a) a solvent selected from the group consisting of water, 1,2-propylene glycol, a polyethyleneglycol having a molecular weight of about 400 Daltons or less, and mixtures thereof, (b) at least one amphiphilic siloxane-containing (meth)acrylamide of formula (1) or (2) (as described above in detail) and/or at least one actinically-crosslinkable silicone containing prepolymer of the invention as described above in detail, and (c) at least one component selected from the group consisting of a hydrophilic vinylic monomer (as described above in detail), a hydrophilized polysiloxane-containing crosslinker (as described above in detail), a hydrophilic crosslinker (as described above in detail), a photoinitiator (as described above in detail), a thermal initiator (as described above in detail), a UV-absorbing vinylic monomer (as described above in detail), a visibility tinting agent (e.g., dyes, pigments, or mixtures thereof), antimicrobial agents (e.g., preferably silver nanoparticles), a bioactive agent (as described above in detail), leachable lubricants (as described above in detail), leachable tear-stabilizing agents (as described above in detail), and mixtures thereof; polymerizing the lens formulation in the mold to form a silicone hydrogel contact lens, wherein the formed silicone hydrogel contact lens has a water content of from about 20% to about 75% (preferably from about 25% to about 70%, more preferably from about 30% to about 65%) by weight when fully hydrated, an oxygen permeability (Dk) of at least about 40 barrers (preferably at least about 50 barrers, more preferably at least about 60 barrers, and even more preferably at least about 70 barrers), and an elastic modulus of from about 0.1 MPa to about 2.0 MPa, preferably from about 0.2 MPa to about 1.5 MPa, more preferably from about 0.3 MPa to about 1.2 MPa, even more preferably from about 0.4 MPa to about 1.0 MPa.

Various embodiments of amphiphilic siloxane-containing vinylic monomers of formula (1) or (2), actinically-crosslinkable silicone containing prepolymers of the invention, lens forming formulations, hydrophilic vinylic monomers, hydrophilized polysiloxane-containing crosslinkers, hydrophilic crosslinkers, solvents, UV-absorbing vinylic monomers, photoinitiators, thermal initiators, visibility tinting agents, antimicrobial agents, bioactive agents, leachable lubricants, leachable tear-stabilizing agents, molds, polymerizing techniques, and post molding processes are described above and can be used in this aspect of the invention.

In a preferred embodiment, the resultant silicone hydrogel contact lens is extracted with water or an aqueous solution.

In another preferred embodiment, the mold is a reusable mold and the lens-forming composition is cured (i.e., polymerized) actinically under a spatial limitation of actinic
radiation to form a silicone hydrogel contact lens. Examples of preferred reusable molds are those disclosed in U.S. patent Nos. 6,627,124, 6,800,225, 7,384,590, and 7,387,759, which are incorporated by reference in their entireties. Reusable molds can be made of quartz, glass, sapphire, CaF$_2$, a cyclic olefin copolymer (such as for example, Topas® COC grade 8007-S10 (clear amorphous copolymer of ethylene and norbornene) from Ticona GmbH of Frankfurt, Germany and Summit, New Jersey, Zeonex® and Zeonor® from Zeon Chemicals LP, Louisville, KY), polymethylmethacrylate (PMMA), polyoxymethylene from DuPont (Delrin), Ultem® (polyetherimide) from G.E. Plastics, PrimoSpire®, and combinations thereof.

Example 1

The apparent oxygen permeability of a lens and oxygen transmissibility of a lens material is determined according to a technique similar to the one described in U.S. Patent No. 5,760,100 and in an article by Winterton et al., (The Cornea: Transactions of the World Congress on the Cornea 111, H.D. Cavanagh Ed., Raven Press: New York 1988, pp273-280), both of which are herein incorporated by reference in their entireties. Oxygen fluxes (J) are measured at 34°C in a wet cell (i.e., gas streams are maintained at about 100% relative humidity) using a Dk1000 instrument (available from Applied Design and Development Co., Norcross, GA), or similar analytical instrument. An air stream, having a known percentage of oxygen (e.g., 21%), is passed across one side of the lens at a rate of about 10 to 20 cm$^3$/min., while a nitrogen stream is passed on the opposite side of the lens at a rate of about 10 to 20 cm$^3$/min. A sample is equilibrated in a test media (i.e., saline or distilled water) at the prescribed test temperature for at least 30 minutes prior to measurement but not more than 45 minutes. Any test media used as the overlayer is equilibrated at the prescribed test temperature for at least 30 minutes prior to measurement but not more than 45 minutes. The stir motor’s speed is set to 1200±50 rpm, corresponding to an indicated setting of 400±15 on the stepper motor controller. The barometric pressure surrounding the system, $P_{\text{measured}}$, is measured. The thickness (t) of the lens in the area being exposed for testing is determined by measuring about 10 locations with a Mitotoya micrometer VL-50, or similar instrument, and averaging the measurements. The oxygen concentration in the nitrogen stream (i.e., oxygen which diffuses through the lens) is measured using the DK1000 instrument. The apparent oxygen permeability of the lens material, Dk$_{\text{app}}$, is determined from the following formula:

$$Dk_{\text{app}} = \frac{Jt}{P_{\text{oxygen}}}$$

where $J$=oxygen flux [microliters O$_2$/cm$^2$.minute]

$P_{\text{oxygen}} = (P_{\text{measured}} - P_{\text{water vapor}}) = (%O_2$ in air stream) [mm Hg]=partial pressure of oxygen in the air stream
$P_{\text{measured barometric pressure (mm Hg)}}$

$P_{\text{water vapor}} = 0 \text{ mm Hg at } 34 \degree C \text{ (in a dry cell)} \text{ (mm Hg)}$

$P_{\text{water vapor}} = 40 \text{ mm Hg at } 34 \degree C \text{ (in a wet cell)} \text{ (mm Hg)}$

$t = \text{average thickness of the lens over the exposed test area (mm)}$

$Dk_{\text{app}}$ is expressed in units of barrers.

The apparent oxygen transmissibility ($Dk/t$) of the material may be calculated by dividing the apparent oxygen permeability ($Dk_{\text{app}}$) by the average thickness ($t$) of the lens.

The above described measurements are not corrected for the so-called boundary layer effect which is attributable to the use of a water or saline bath on top of the contact lens during the oxygen flux measurement. The boundary layer effect causes the reported value for the apparent $Dk$ of a silicone hydrogel material to be lower than the actual intrinsic $Dk$ value. Further, the relative impact of the boundary layer effect is greater for thinner lenses than with thicker lenses. The net effect is that the reported $Dk$ appear to change as a function of lens thickness when it should remain constant.

The intrinsic $Dk$ value of a lens can be estimated based on a $Dk$ value corrected for the surface resistance to oxygen flux caused by the boundary layer effect as follows.

Measure the apparent oxygen permeability values (single point) of the reference lotrafilcon A (Focus® N&D® from CIBA VISION CORPORATION) or lotrafilcon B (AirOptix™ from CIBA VISION CORPORATION) lenses using the same equipment. The reference lenses are of similar optical power as the test lenses and are measured concurrently with the test lenses.

Measure the oxygen flux through a thickness series of lotrafilcon A or lotrafilcon B (reference) lenses using the same equipment according to the procedure for apparent $Dk$ measurements described above, to obtain the intrinsic $Dk$ value ($Dk_i$) of the reference lens. A thickness series should cover a thickness range of approximately $100 \mu m$ or more. Preferably, the range of reference lens thicknesses will bracket the test lens thicknesses. The $Dk_{\text{app}}$ of these reference lenses must be measured on the same equipment as the test lenses and should ideally be measured contemporaneously with the test lenses. The equipment setup and measurement parameters should be held constant throughout the experiment. The individual samples may be measured multiple times if desired.

Determine the residual oxygen resistance value, $R_r$, from the reference lens results using equation 1 in the calculations.

$$R_r = \frac{\sum \left( \frac{t}{Dk_{\text{app}}} - \frac{t}{Dk_i} \right)}{n}$$

in which $t$ is the thickness of the test lens (i.e., the reference lens too), and $n$ is the number
of the reference lenses measured. Plot the residual oxygen resistance value, \( R_r \) vs. \( t \) data and fit a curve of the form \( Y = a + bX \) where, for the \( j \)th lens, \( Y_j = (\Delta P / J)_j \) and \( X = t_j \). The residual oxygen resistance, \( R_r \), is equal to \( a \).

Use the residual oxygen resistance value determined above to calculate the correct oxygen permeability \( Dk_c \) (estimated intrinsic \( Dk \)) for the test lenses based on Equation 2.

\[
Dk_c = t / [(t / Dka) - R_r]
\]  

(2)

The estimated intrinsic \( Dk \) of the test lens can be used to calculate what the apparent \( Dk \) (\( Dka_{stg} \)) would have been for a standard thickness lens in the same test environment based on Equation 3. The standard thickness (\( t_{stg} \)) for lotrafilcon A = 85 \( \mu \) m. The standard thickness for lotrafilcon B = 60 \( \mu \) m.

\[
Dk_{a-stg} = t_{stg} / [(t_{stg} / Dk) + R_{r-stg}]
\]  

(3)

**Ion Permeability Measurements.**

The ion permeability of a lens is measured according to procedures described in U.S. Patent No. 5,760,100 (herein incorporated by reference in its entirety. The values of ion permeability reported in the following examples are relative ionoflux diffusion coefficients (\( D/Dre_j \)) in reference to a lens material, Alsacon, as reference material. Alsacon has an ionoflux diffusion coefficient of \( 0.314 \times 10^{-3} \) mm\(^2\)/minute.

**Folding Mark Determination.** A Contact Lens Optical Quality Analyzer (CLOQA) is developed to determine optical distortions caused by surface deformations and other defects in the contact lens, based on the principle of the Foucault knife-edge test. A person skilled in the art understands how to select, align and arrange various optics elements to create collimating light, to illuminate a contact lens, and to capture an image with a device (for example, such as, a CCD camera). The test involves illuminating the contact lens with a near-collimated light, placing a Foucault knife edge near the focal point, moving the knife-edge to block off most of the focused light, and capturing the image of contact lens with a device, for example CCD camera behind the Foucault knife edge. Where there is no optical distortion in the contact lens, all light rays passing through the contact lens come to focus at the knife edge and most of the well-focused light will be blocked off. For areas outside the optical zone which has no focusing function, the knife-edge will block the light from half of the lens to make it dark, while the other half appear bright. If the contact lens has no optical distortions in its optical zone, the whole optical zone will be uniformly dark or bright depending on how much light is blocked by the knife-edge. Where there are optical distortions on the contact lens, light passing through such areas in general does not fall into the main focus and may be either blocked by the knife edge (appearing dark) or pass through freely (appearing bright). The level of contrast not only depends on the amplitude of the distortion, but also depends on the fine position of the knife-edge. The defective areas appear as contrast features in the CLOQA image. The knife-edge test with CLOQA is
designed as a qualitative testing device for optical distortions in the optical zone.

Folding mark study is carried out as follows. Three autoclaved and/or not autoclaved contact lenses are used in the study. First, images of the contact lenses are taken with the CLOQA. Second, each lens is folded with fingers twice (creating two perpendicular fold lines) and then its image is taken immediately with the CLOQA. Third, the image of each contact lens about 15 minutes after folding is taken with the CLOQA. Three types of CLOQA images are obtained: original one (i.e., without folding), immediately after folding, and about 15 minutes after folding. The folding mark study allows to determine the appearance of the folding line changing over time.
What is claimed is:

1. An amphiphilic siloxane-containing (meth)acrylamide, defined by formula (1) or (2)

   ![Formula 1](image)

   ![Formula 2](image)

   in which

   - $A_1$, $A_2$, $A_3$ and $A_4$ independent of one another are a C$_1$-C$_6$ alkyl (preferably methyl), phenyl or benzyl,
   - $r_1$ is an integer of 2 or 3,
   - $R'$ is H or C$_1$-C$_4$ alkyl,
   - $R_{10}$ is hydrogen or methyl,
   - $R_{11}$ is a linear or branched C$_2$-C$_6$ alkylene divalent radical which may be substituted with one or more hydroxyl groups,
   - $R_{12}$ is C$_1$-C$_4$ alkoxy,
   - $Z_1$ and $Z_2$ independent of each other are a direct bond or a linear or branched C$_1$-C$_4$ alkylene divalent radical,
   - $Z_3$ is C$_2$-C$_4$ alkylene divalent radical,
   - $Z_4$, $Z_5$, and $Z_6$ independent of one another are a direct bond or a linear or branched C$_1$-C$_{20}$ alkylene divalent radical which may have one or more ether, thio, amine, carbonyl, or amid linkages in their main chain,
   - $X_1$ is -O-CO-NH- or -O-CO-NH-R$_{13}$-NH-CO-0- in which R$_{13}$ is a linear or branched C$_2$-C$_{12}$ alkylene divalent radical or a C$_5$-C$_{45}$ cycloaliphatic or aliphatic-cycloaliphatic divalent radical,
   - $X_2$ and $X_3$ independent of each other are selected from the group consisting of direct bond, -O-, -NR-, -CO-N, R'-, -NR'-CO-, -O-CO-NH-, -NH-CO-O-, -NR'-CO-NH-, -NH-CO-NH-R'-, -S-CO-N, H-, -NH-CO-S-, -S-, -CO-O-, -CO-, -CO-NH-R$_{13}$-NH-CO-0-, and -NH-CO-NH-R$_{13}$-NH-CO-NH-, in which $R'$ and R$_{13}$ are as defined above,
   - $q_1$ is an integer from 2 to 50, $q_2$ is an integer from 3 to 20.

2. The amphiphilic siloxane-containing (meth)acrylamide of claim 1, being represented by formula (1) as defined in claim 1.
3. The amphiphilic siloxane-containing (meth)acrylamide of claim 2, wherein R' is hydrogen; R_{i_0} is hydrogen or methyl; R_{i_11} is a linear or branched C_{2-6} alkyene divalent radical; R_{i_12} is C_{1-6} alkoxy; Z_1 and Z_2 are a direct bond; Z_3 is C_{2-4} alkyene divalent radical; X_1 is -O-CO-NH- or -O-CO-NH-R_{i_13}-NH-CO-O- in which R_{i_13} is a linear or branched C_{2-6} alkyene divalent radical or a C_{5-45} cycloaliphatic or aliphatic-cycloaliphatic divalent radical; q_1 is an integer from 2 to 50.

4. The amphiphilic siloxane-containing (meth)acrylamide of claim 1, being represented by formula (1) as defined in claim 1.

5. The amphiphilic siloxane-containing (meth)acrylamide of claim 4, being represented by any one of formula (2a) to (2d)

\[
\begin{align*}
&H_2C\equiv C-NH\left(CH_2CH_2O\right)_{n_1}\left(CH_2\right)_{q_2}X_4-R_{i_11}-Si\left[O-Si-CH_3\right]_3 \\
&H_2C\equiv C-NH\left(CH_2CH_2O\right)_{n_1}\left(CH_2\right)_{q_2}X_5-R_{i_11}-Si\left[O-Si-CH_3\right]_3 \\
&H_2C\equiv C-NH-R_{i_14}-C-NH\left(CH_2CH_2O\right)_{n_1}\left(CH_2\right)_{q_2}X_6-R_{i_11}-Si\left[O-Si-CH_3\right]_3
\end{align*}
\] (2a) (2b) (2c) (2d)

in which:
R_{i_0} is hydrogen or methyl; R_{i_11} is a linear or branched C_{2-6} alkyene divalent radical; R_{i_14} is -CH(CH_2CH_2) or -CH(CH_3); X_4 and X_5 independent of each other are -O-, -NH-, -CO-NH-, -NH-CO-, -O-CO-NH-, -NH-CO-NH-, -CO-O-, -O-CO-, -S-, -0-CO-NH-R_{13}-NH-CO-O-, or -NH-CO-NH-R_{13}-NH-CO-NH- in which R_{i_13} is a linear or branched C_{2-6} alkyene divalent radical or a C_{5-45} cycloaliphatic or aliphatic-cycloaliphatic divalent radical; X_5 is -NH-, -CO-NH-, -NH-CO-, -NH-CO-NH-, -CO-O-, -O-CO-, -S-, or -NH-CO-NH-R_{13}-NH-CO-NH- in which R_{i_13} is as defined above; q_2 is an integer from 2 to 50; n_1 and n_3 independent of each other are an integer from 1 to 3; n_2 is an integer 2 or 3.

6. The amphiphilic siloxane-containing (meth)acrylamide of any one of claims 1 to 5, wherein the amphiphilic siloxane-containing (meth)acrylamide has a water solubility or dispersibility of at least about 5%, preferably at least about 10%, more preferably at least about 20% by weight in water.
7. A polymer comprising monomeric units derived from an amphiphilic siloxane-containing
(meth)acrylamide of any one of claims 1 to 6.

8. The polymer of claim 7, wherein the polymer is an actinically-crosslinkable silicone-
containing prepolymer which further comprises: (1) crosslinking units derived from at
least one polysiloxane-containing crosslinker and/or at least one non-silicone
crosslinker; (2) hydrophilic units derived from at least one hydrophilic vinylic monomer;
(3) polymerizable units derived from a chain transfer agent having a first reactive
functional group other than thiol group and/or a vinylic monomer having a second
reactive functional group other than ethylenically-unsaturated group, wherein the
polymerizable units each comprise an ethylenically unsaturated group covalently
attached to one polymerizable unit through the first or second reactive functional group;
and (4) optionally UV-absorbing units derived from a UV-absorbing vinylic monomer,
wherein the prepolymer is capable of being actinically crosslinked, in the absence of
one or more vinylic monomers, to form a silicone hydrogel contact lens having a water
content of from 20% to 75% (preferably from 25% to 70%, more preferably from 30% to
65%) by weight when fully hydrated, and an oxygen permeability (Dk) of at least 40
barrers (preferably at least 50 barrers, more preferably at least 60 barrers, and even
more preferably at least 70 barrers).

9. The polymer of claim 8, wherein the prepolymer has a high water solubility or
dispersibility of at least about 5%, preferably at least about 10%, more preferably at
least about 20% by weight in water, wherein the crosslinking units are derived from at
least one hydrophilized polysiloxane-containing crosslinker and/or at least one non-
silicone hydrophilic crosslinker.

10. A soft contact lens comprising a silicone hydrogel material obtained by curing a lens-
forming material in a mold, wherein the lens-forming formulation comprises at least one
amphiphilic siloxane-containing (meth)acrylamide of any one of claims 1-6 and/or at
least one actinically-crosslinkable silicone-containing prepolymer of claim 8 or 9,
wherein the contact lens has a water content of from 20% to 75% (preferably from 25%
to 70%, more preferably from 30% to 65%) by weight when fully hydrated, an oxygen
permeability (Dk) of at least 40 barrers (preferably at least 50 barrers, more preferably
at least 60 barrers, and even more preferably at least 70 barrers), and an elastic
modulus of from 0.1 MPa to 2.0 MPa, preferably from 0.2 MPa to 1.5 MPa, more
preferably from 0.3 MPa to 1.2 MPa, even more preferably from 0.4 MPa to 1.0 MPa.

11. The soft contact lens of claim 10, wherein the lens-forming formulation further
comprises one or more components selected from the group consisting of a hydrophilic
vinylic monomer, a polysiloxane-containing crosslinker, a non-silicone crosslinker, a
photoinitiator, a thermal initiator, a UV-absorbing inylic monomer, a visibility tinting
agent, antimicrobial agents, a bioactive agent, leachable lubricants, leachable tear-
stabilizing agents, and mixtures thereof.

12. A method for making silicone hydrogel contact lenses, comprising the steps of:
   introducing a lens-forming formulation into a mold for making contact lenses, wherein
   the lens-forming formulation comprises (a) a solvent selected from the group consisting
   of water, 1,2-propylene glycol, a polyethylene glycol having a molecular weight of about
   400 Daltons or less, and mixtures thereof, (b) at least one amphiphilic siloxane-
   containing (meth)acrylamide of any one of claims 1-6 and/or at least one actinically-
crosslinked silicone containing prepolymer of claim 8 or 9, and (c) at least one
   component selected from the group consisting of a hydrophilic vinylic monomer, a
   hydrophilized polysiloxane-containing crosslinker, a hydrophilic crosslinker, a
   photoinitiator, a thermal initiator, a UV-absorbing vinylic monomer, a visibility tinting
   agent, an antimicrobial agent, a bioactive agent, a leachable lubricant, a leachable
   tear-stabilizing agent, and mixtures thereof; polymerizing the lens-forming formulation
   in the mold to form a silicone hydrogel contact lens, wherein the formed silicone
   hydrogel contact lens has a water content of from 20% to 75% (preferably from 25% to
   70%, more preferably from 30% to 65%) by weight when fully hydrated, an oxygen
   permeability (Dk) of at least 40 barrers (preferably at least 50 barrers, more preferably
   at least 60 barrers, and even more preferably at least 70 barrers), and an elastic
   modulus of from 0.1 MPa to 2.0 MPa, preferably from 0.2 MPa to 1.5 MPa, more
   preferably from 0.3 MPa to 1.2 MPa, even more preferably from 0.4 MPa to 1.0 MPa.

13. The method of claim 12, further comprising the step of extracting the molded silicone
   hydrogel contact lens with water or an aqueous solution.

14. The method of claim 12 or 13, wherein the mold is a reusable mold and the lens-
   forming composition is cured (i.e., polymerized) actinically under a spatial limitation of
   actinic radiation to form the silicone hydrogel contact lens.
**INTERNATIONAL SEARCH REPORT**

**PCT/US2013/074906**

**A. CLASSIFICATION OF SUBJECT MATTER**

INV. C08F220/58 C08F220/60 C08F230/08 G02B1/04 C07F7/02

**B. FIELDS SEARCHED**

- **Minimum documentation searched (classification system followed by classification symbols)**
  - C07F C08F G02B

**Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched**

**Electronic database consulted during the international search (name of data base and where practicable, search terms used)**

EPO-Internal , WPI Data

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

- **Further documents are listed in the continuation of Box C.**

| X | See patent family annex. |

**Date of the actual completion of the international search**

21 March 2014

**Date of mailing of the international search report**

31/03/2014

**Name and mailing address of the ISA/AL**

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Gi ani, Elena

**Form PCT/ISA/210 (second sheet) (April 2005)**
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 2005213698</td>
<td>25-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0507620</td>
<td>03-07-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2556167</td>
<td>25-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1989426</td>
<td>27-06-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1716436</td>
<td>02-11-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1098536</td>
<td>13-04-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007526364</td>
<td>13-09-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070007798</td>
<td>16-01-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005176911</td>
<td>11-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007167592</td>
<td>19-07-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005078482</td>
<td>25-08-2005</td>
</tr>
<tr>
<td>US 2004249180 Al</td>
<td>09-12-2004</td>
<td>AU 2001292336 B2</td>
<td>26-06-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1439181</td>
<td>21-07-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004249180 Al</td>
<td>09-12-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03042222</td>
<td>22-05-2003</td>
</tr>
<tr>
<td>WO 2011116210 A2</td>
<td>22-09-2011</td>
<td>AU 2011227188 Al</td>
<td>27-09-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2011227192 Al</td>
<td>27-09-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2793393</td>
<td>22-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2793395</td>
<td>21-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102803273</td>
<td>28-11-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103025745</td>
<td>03-04-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2547688</td>
<td>23-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2547689 A2</td>
<td>23-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011197196 A</td>
<td>06-10-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013525512 A</td>
<td>20-06-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013527262 A</td>
<td>27-06-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130016295 A</td>
<td>14-02-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130034021 A</td>
<td>04-04-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 183956</td>
<td>30-10-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 183957</td>
<td>30-10-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011230589 Al</td>
<td>22-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011237766 Al</td>
<td>29-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013178594 Al</td>
<td>11-07-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013197176 Al</td>
<td>01-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013260066 Al</td>
<td>03-10-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011116210 A2</td>
<td>22-09-2011</td>
</tr>
</tbody>
</table>