
(19) United States
US 200901 64966A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0164966 A1
Paruthi et al. (43) Pub. Date: Jun. 25, 2009

(54) METHOD AND SYSTEM FOR BUILDING
BINARY DECISION DAGRAMS
EFFICIENTLY IN A STRUCTURAL
NETWORK REPRESENTATION OFA
DIGITAL CIRCUIT

(76) Inventors: Viresh Paruthi, Austin, TX (US);
Christian Jacobi, Boblingen (DE);
Geert Janssen, Putnam Valley, NY
(US); Jiazhao Xu, Mount Kisco,
NY (US); Kai Oliver Weber,
Stuttgart (DE)

Correspondence Address:
DLLON & YUDELL LLP
Suite 2110
8911 North Capital of Texas Highway
Austin, TX 78759 (US)

(21) Appl. No.: 11/963,325

(22) Filed: Dec. 21, 2007

Publication Classification

(51) Int. Cl.
G06F 7/50 (2006.01)

START
200

(52) U.S. Cl. .. 71.6/18

(57) ABSTRACT

A method, system and computer program product for build
ing decision diagrams efficiently in a structural network rep
resentation of a digital circuit using a dynamic resource con
strained and interleaved depth-first-search and modified
breadth-first-search schedule is disclosed. The method
includes setting a first size limit for a first set of one or more
m-ary decision representations describing a logic function
and setting a second size limit for a second set of one or more
m-ary decision representations describing a logic function.
The first set of m-ary decision representations of the logic
function is then built with one of the set of a depth-first
technique or a breadth-first technique until the first size limit
is reached, and a second set of m-ary decision representations
of the logic function is built with the other technique until the
second size limit is reached. In response to determining that a
union of first set and the second set of m-ary decision repre
sentations do not describe the logic function, the first and
second size limits are increased, and the steps of building the
first and second set are repeated. In response to determining
that the union of the first set of m-ary decision representations
and the second set of m-ary decision representations describe
the logic function, the union is reported.

Set odd-size-limit
202

. Build BDDs using DFS schedule
with an uppersize limit of

bdd-size-limit

Build BDDs using BFS schedule
with an upper size limit of

bdid-size-limit
212

BDDs for
a sinks built?

214

lncrease bdd-size-limit
216

Yes

Report
BDOS m

208 O

Yes

Patent Application Publication Jun. 25, 2009 Sheet 1 of 4 US 2009/O164966 A1

DATAPROCESSING SYSTEM
100

LOGIC

SIMULATOR

124
CIRCUIT
MODEL
120

BINARY
DECSON
DAGRAM
BUILDER

126

OPERATING
SYSTEM

130

PROCESSOR
104. OUTPUT APPLICATIONS
rum- TABLE

122 28

STORAGE
106

NETWORK
110

Ea -- USER /O

114

If O CONTROL
08

Tigure 1

Patent Application Publication Jun. 25, 2009 Sheet 2 of 4 US 2009/O164966 A1

START
200

Set bdd-size-limit
202

Build BDDs using DFS schedule
with an uppersize limit of

bdd-size-limit
204

BDDS for
all sinks
built? Yes
206

Build BDDs using BFS schedule Report
with an upper size limit of BODS m

bdd-size-limit 208 N/
212

Yes
BDDS for

all sinks built?
214

lncrease bdd-size-limit
216

Figure 2

Patent Application Publication Jun. 25, 2009 Sheet 3 of 4 US 2009/O164966 A1

Patent Application Publication Jun. 25, 2009 Sheet 4 of 4 US 2009/O164966 A1

Y

S
s VS
S.

S.

s? SF O
N1 ad

s

US 2009/0164966 A1

METHOD AND SYSTEM FOR BUILDING
BINARY DECISION DAGRAMS

EFFICIENTLY IN A STRUCTURAL
NETWORK REPRESENTATION OFA

DIGITAL CIRCUIT

BACKGROUND OF THE INVENTION

0001 1. Technical Field
0002 The present invention relates in general to represent
ing logic functions and in particular to representing a logic
function in a decision diagram. Still more particularly, the
present invention relates to a system, method and computer
program product for building decision diagrams efficiently in
a structural network representation of a digital circuit, using a
dynamic, resource-constrained and interleaved depth-first
search and modified breadth-first-search schedule.
0003 2. Description of the Related Art
0004. Many tasks in computer-aided design (CAD), such
as equivalence checking, property checking, logic synthesis
and false-paths analysis require Boolean reasoning and
analysis on problems derived from representations of circuit
structures. One commonly-used approach to Boolean reason
ing and analysis for applications operating on representations
of circuit structures is to represent the underlying logical
problem structurally (as a circuit graph), and then use Binary
Decision Diagrams (BDDs) to convert the structural repre
sentation into a functionally canonical form.
0005. In such an approach, in which a logical problem is
represented structurally and binary decision diagrams are
used to convert the structural representation into a function
ally canonical form, a set of nodes for which binary decision
diagrams are required to be built, called "sink nodes, are
identified. Examples of sink nodes include the output node or
nodes in an equivalence checking or a false-paths analysis
context. Examples of sink nodes also include targets in a
property-checking or model-checking context.
0006 Following identification of the sink nodes, binary
decision diagrams for these nodes are built in a topological
manner, starting at the input variables for a function. The
process of building binary decision diagrams flows from
input variables to intermediate nodes in the circuit graph
representation until, finally, the binary decision diagrams for
the sink nodes are built.
0007 Binary decision diagrams provide an effective tool
for Boolean reasoning and analysis in applications operating
on representations of circuit structures, but binary decision
diagrams frequently Suffer from exponential space complex
ity and associated resource (e.g. memory) consumption. In
the worst case, exponential complexity and associated
resource consumption preclude completion of binary deci
Sion diagrams.
0008. One reason for resource consumption problems in
constructing binary decision diagrams relates to reliance on a
total order in the Boolean variables in the binary decision
diagrams. Another reason that the construction of binary deci
sion diagrams is memory intensive relates to the sheer num
ber of binary decision diagrams that are "alive' at any given
time. A binary decision diagram is considered alive' if it is
still needed to build binary decision diagrams for related
fanout nodes. Notably, the order in which binary decision
diagrams for the nodes in a circuit graph are built can cause an
unnecessarily large number of binary decision diagrams to be
alive at any given time. What is needed is a method to reduce
the resource consumption in constructing binary decision

Jun. 25, 2009

diagrams by appropriately scheduling construction of binary
decision diagrams to reduce the number of nodes that are
alive at any given time.

SUMMARY OF THE INVENTION

0009. A method, system and computer program product
for building decision diagrams efficiently in a structural net
work representation of a digital circuit using a dynamic
resource constrained and interleaved depth-first-search and
modified breadth-first-search schedule is disclosed. The
method includes setting a first size limit for a first set of one or
more m-ary decision representations describing a logic func
tion and setting a second size limit for a second set of one or
more m-ary decision representations describing a logic func
tion. The first set of m-ary decision representations of the
logic function is then built with one of the set of a depth-first
technique or a breadth-first technique until the first size limit
is reached, and a second set of m-ary decision representations
of the logic function is built with the other technique until the
second size limit is reached. In response to determining that a
union of first set and the second set of m-ary decision repre
sentations do not describe the logic function, the first and
second size limits are increased, and the steps of building the
first and second set are repeated. In response to determining
that the union of the first set of m-ary decision representations
and the second set of m-ary decision representations describe
the logic function, the union is reported.

BRIEF DESCRIPTION OF THE DRAWINGS

0010. The novel features believed characteristic of the
invention are set forth in the appended claims. The invention
itself, however, as well as a preferred mode of use, further
objects and advantages thereof, will best be understood by
reference to the following detailed descriptions of an illustra
tive embodiment when read in conjunction with the accom
panying drawings, wherein:
0011 FIG. 1 depicts a block diagram of a data processing
system equipped with a computer program product for build
ing binary decision diagrams efficiently in a structural net
work representation of a digital circuit using a dynamic,
resource-constrained and interleaved depth-first-search and
modified breadth-first-search schedule, in accordance with a
preferred embodiment of the present invention;
0012 FIG. 2 is a high-level logical flowchart of a process
for building binary decision diagrams efficiently in a struc
tural network representation of a digital circuit using a
dynamic resource-constrained and interleaved depth-first
search and modified breadth-first-search schedule, in accor
dance with a preferred embodiment of the present invention;
0013 FIG. 3 represents an exemplary circuit, which is
analyzed in accordance with a preferred embodiment of the
present invention; and
0014 FIG. 4 is an exemplary binary decision diagram
constructed in accordance with a preferred embodiment of
the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

0015 The present invention alleviates the problems of
exponential complexity and associated resource consumption
by presenting a method and system that compute a heuristi
cally-optimized schedule for efficiently building binary deci
sion diagrams for nodes in a circuit-graph representation of a

US 2009/01 64966 A1

problem. The technique of the present invention manages
available resources more efficiently than conventional tech
niques, and the present invention reduces the number of live
binary decision diagrams, thereby reducing overall memory
consumption.
0016. With reference now to the figures, and in particular
with reference to FIG. 1, a block diagram of a data processing
system equipped with computer program product for building
binary decision diagrams efficiently in a structural network
representation of a digital circuit using a dynamic, resource
constrained and interleaved depth-first-search and modified
breadth-first-search schedule, in accordance with a preferred
embodiment of the present invention, is depicted. A data
processing system 100 contains a processing storage unit
(e.g., RAM 102) and a processor 104. Data processing system
100 also includes non-volatile storage 106 such as a hard disk
drive or other direct access storage device. An Input/Output
(I/O) controller 108 provides connectivity to a network 110
through a wired or wireless link, such as a network cable 112.
I/O controller 108 also connects to user I/O devices 114 such
as a keyboard, a display device, a mouse, or a printer through
wired or wireless link 116, such as cables or a radio-frequency
connection. System interconnect 118 connects processor
104, RAM 102, storage 106, and I/O controller 108.
0017. Within RAM 102, data processing system 100
stores several items of data and instructions, while operating
in accordance with a preferred embodiment of the present
invention. These include a circuit model 120 and an output
table 122 for interaction with a logic simulator 124, contain
ing a binary decision diagram builder 126. Other applications
128 and logic simulator 124 interface with processor 104,
RAM 102, I/O control 108, and storage 106 through operat
ing system 130. One skilled in the data processing arts will
quickly realize that additional components of data processing
system 100 may be added to or substituted for those shown
without departing from the scope of the present invention.
0018 Processor 104 executes instructions from programs,
often stored in RAM 102, in the course of performing the
present invention. In a preferred embodiment of the present
invention, processor 104 executes logic simulator 124. Logic
simulator 124 performs the creation of binary decision dia
grams through the operation of binary decision diagram
builder 126 on the circuit specifications contained in circuit
model 120, which contains instructions for modeling a simu
lated item of logical hardware.
0019 Logic simulator 124 includes a computer program
product, stored in RAM 102 and executed on processor 104.
which provides a series of tools for activities such as equiva
lence checking, property checking, logic synthesis and false
paths analysis. Generally speaking, logic simulator 124 con
tains rule-based instructions for predicting the behavior of
logically modeled items of hardware. Logic simulator 124
uses the series of rules contained in its own instructions, in
conjunction with circuit model 120, to represent the underly
ing logical problem structurally (as a circuit graph), and uses
binary decision diagram builder 126 to construct binary deci
sion diagrams, thereby converting the structural representa
tion into a functionally canonical form.
0020 Circuit model 120 may model the designs of many
different kinds of logical hardware, but preferably provides a
software representation of components such as microproces
sors and application specific integrated circuits (ASICs).
0021 Binary decision diagram builder 126 records binary
decision diagrams to output table 122, a result recording file.

Jun. 25, 2009

Logic simulator 124 may also report the contents of output
table 122 or the status selected indicators of the status of
circuit model 120 to user I/O 114 or applications 128. Addi
tionally, all or part of logic simulator 124, operating system
130, circuit model 120, and output table 122 may, at times, be
stored in storage 106 or in RAM 102.
0022. A netlist graph is a popular means of compactly
representing problems derived from circuit structures in com
puter-aided design of digital circuits. Such a representation is
non-canonical and offers limited ability to analyze the func
tion from the nodes in the graph. Binary decision diagrams
are a popular choice for efficiently applying Boolean reason
ing to problems derived from circuit structures, which are
frequently represented in net list graphs. Binary decision
diagrams offer a compact and canonical representation of the
Boolean function of a graph node, which expedites reasoning
regarding a node's function. Unfortunately, the size of binary
decision diagrams, and hence the complexity of manipulating
them, is very sensitive to the order in which variables appear
in the binary decision diagrams. Binary decision diagrams
suffer from exponential complexity in the worst case. Binary
decision diagram packages, such as a binary decision diagram
builder 126, which implement binary decision diagram build
ing and manipulation algorithms, use Dynamic Variable
Ordering (DVO) algorithms to periodically reduce the num
ber binary decision diagram nodes. These algorithms tend to
be expensive in both time and space complexity and binary
decision diagram packages rely on heuristics to compute a
local minimum size, as opposed to a preferable global mini
mum. Generally, computing a global minimum is prohibi
tively expensive for use in reducing the number of binary
decision diagram nodes. Hence, starting with a reasonable
initial size and computing a good order when the number of
binary decision diagram nodes is relatively small, is strongly
Suggested.
0023. A set of nodes for which binary decision diagrams
are needed, called sinks, are identified. A natural way to build
binary decision diagrams for sink nodes is to use a depth-first
search (DFS) schedule, which builds binary decision dia
grams for each sink node successively. For each sink node, the
technique of the preferred embodiment traverses the circuit
graph in a depth-first-search manner and builds binary deci
sion diagrams for nodes in a bottom-up fashion, starting at the
inputs.
0024. The present invention includes a method and sys
tem, which employ a combination of depth-first and modified
breadth-first methods, working in tight integration and in a
resource-constrained manner, to build binary decision dia
grams of logical functions and the sub-functions of logical
functions. In a preferred embodiment of the present inven
tion, binary decision diagrams are efficiently built by binary
decision diagram builder 126 for designated sink nodes con
tained within a structural graph representation of a problem
derived from circuit structure. By switching between depth
first and modified breadth-first methods for building binary
decision diagrams, the method of the preferred embodiment
dynamically adjusts resource utilization parameters to con
verge on a heuristically-optimized schedule.
0025. The method of the preferred embodiment allows
binary decision diagram builder 126 to suspend construction
of a given binary decision diagram by either of a depth-first or
a breadth-first method, when the binary decision diagram
under construction exceeds a certain pre-determined size
threshold, and return later, with higher resource limits, to

US 2009/0164966 A1

building the abandoned binary decision diagram. In this man
ner, by building Smaller binary decision diagrams first, the
preferred embodiment enables use of Dynamic Variable
Ordering (DVO) algorithms, which attempt to compute a
variable order that reduces the number of live binary decision
diagram nodes, to converge on the best order needed for
building all of the binary decision diagrams needed for a
particular circuit. The method of building binary decision
diagrams of the present invention is optimized by building
Smaller binary decision diagrams before building larger
binary decision diagrams. Building Smaller builder decision
diagrams before building larger builder decision diagrams
significantly reduces overall runtime and memory require
mentS.

0026. Additionally, by completing all of the less challeng
ing binary decision diagrams, the number of alive binary
decision diagram nodes is minimized. Furthermore, efficient
constant propagation is guaranteed by the preferred embodi
ment's resource-constrained method. The overall scheme
interleaves a depth-first approach, which computes a sched
ule from the output toward the inputs, with a topologically
adhered breadth-first approach. The combination of breadth
first and depth-first construction operates from the inputs
toward the outputs in a levelized manner, combining the
strengths and advantages of both depth-first and breadth-first
operations.
0027. The present invention combines both the depth-first
search and the breadth-first-search schemes into a novel
scheme that takes advantage of the benefits of both, and
alleviates some of the drawbacks of each, through combina
tion. In particular, the method of the present invention sets a
size threshold on the sizes of binary decision diagrams that
can be built at any given stage, this threshold is progressively
increased until binary decision diagrams for all sink nodes
have been built. The algorithm starts by building binary deci
sion diagrams for graph nodes in a depth-first search manner.
As soon as the size of a binary decision diagram exceeds a
specified size threshold, the method of the present invention
temporarily abandons building the binary decision diagram
for this node and moves on to the next node in the depth-first
search schedule. Once binary decision diagram building for
all nodes has been attempted, the method of the preferred
embodiment switches to a breadth-first-search schedule.
After attempting to build binary decision diagrams up to the
specified size threshold with a breadth-first-search schedule,
the method of the present invention resets the size threshold
and again attempts a depth-first search schedule with the
higher threshold.
0028. This process is continued until binary decision dia
grams for all sink nodes have been built though the method
may be abandoned if the specified overall resources (e.g.,
upper limit on the number of binary decision diagram nodes)
are exhausted. Such an interleaved depth-first search/breadth
first-search, resource-constrained scheme has several advan
tages.
0029. With reference now to FIG. 2, there is depicted a
high-level logical flowchart of a process for building binary
decision diagrams efficiently in a structural network repre
sentation of a digital circuit using a dynamic, resource-con
strained and interleaved depth-first-search and modified
breadth-first-search schedule, in accordance with a preferred
embodiment of the present invention.
0030 The process begins at step 200, which depicts acti
Vating a computer program product for building binary deci

Jun. 25, 2009

sion diagrams efficiently in a structural network representa
tion of a digital circuit using a dynamic resource constrained
interleaved depth-first-search and modified breadth-first
search Schedule. This will typically happen when logic simu
lator 124 in RAM 102 receives an instruction to build a binary
decision diagram from a structural representation of a logical
function and invokes binary decision diagram builder 126.
0031. The process then proceeds to step 202, which
depicts binary decision diagram builder 126 setting an upper
limit for the size of a binary decision diagram. Because both
depth-first construction and breadth-first construction are
used, the upper limit for the size of a binary decision diagram
is specified by one or more variables, a first variable repre
senting the size limit in depth-first operations and the same or
a second variable representing the size limit in breadth-first
operations. In order to set the upper size limit, binary decision
diagram builder 126 will first mark the cone of influence of all
sink nodes, and then obtain a schedule by determining the
order in which nodes of the binary decision diagrams will be
built. Scheduling of nodes is achieved by means of a depth
first and breadth first search on the circuit represented by a
netlist graph in circuit model 120. Binary decision diagram
builder 126 then declares binary decision diagram variables
for variables in the cone-of-influence of the sink nodes. Set
ting the upper limit for a binary decision diagram regulates
the resources that logic simulator 124 allows binary decision
diagram builder 126 to use for building binary decision dia
grams in later stages of the process depicted in FIG. 2.
0032. The process then moves to step 204, which depicts
binary decision diagram builder 126 building binary decision
diagrams using a depth-first schedule with an upper size limit
set by logic simulator 204. Binary decision diagram builder
126 creates binary decision diagrams for nodes using a depth
first search schedule with an upper limit on the binary deci
sion diagram size equal to binary decision diagram upper
size-limit. If the binary decision diagram size exceeds this
limit, binary decision diagram builder 126 moves to the next
node in the schedule. During the building process, logic simu
lator 124 checks to see if binary decision diagrams of all
fanouts of a given node have been built. If so, logic simulator
124 frees the binary decision diagram for the nodes.
0033. Once the binary decision diagrams for all the
fanouts of a node have been built, the binary decision diagram
for that node can be freed ordereferenced. Freeing unneeded
binary decision diagrams keeps the number of binary deci
sion diagram nodes in binary decision diagram builder 126 to
a minimum, Such that expensive binary decision diagram
operations such as DVO are not impacted by the presence of
spurious nodes. Moreover, many applications set an upper
limit on the number of binary decision diagram nodes allowed
to exist at any one time. A limit on nodes prevents a "run
away' binary decision diagram operation, and the presence of
spurious binary decision diagrams may cause Such limit to be
reached prematurely and inaccurately. Reaching the limit
prematurely and inaccurately may prohibit completion of a
computation that might otherwise be completed. Even if an
application does not set an upper limit, there may be an upper
limit on the number of binary decision diagram nodes that can
exist at any point in time inabinary decision diagram package
due to the data structures used, or due to the available memory
on the machine.
0034. An advantage of the depth-first style of building
binary decision diagrams is a reduced peak or maximum in
the number of alive binary decision diagram nodes. Because

US 2009/0164966 A1

binary decision diagrams for a single sink are built serially,
binary decision diagrams for only those circuit graph nodes
that lie in the cone-of-influence of a given sink are required to
be built simultaneously. Unfortunately, the advantage in
reduction of the peak or maximum in the number of alive
binary decision diagram nodes must be balanced against the
need to retain binary decision diagrams for nodes that lie in
the cone-of-influence of other sink nodes.
0035. The failure to retain binary decision diagrams for
nodes that lie in the cone-of-influence of other sink nodes may
potentially free binary decision diagrams for those nodes,
only to require binary decision diagram builder 126 to build
them again later. Rebuilding binary decision diagrams for
nodes that lie in the cone-of-influence of other sink nodes
wastes time and resources through repetition. Additionally, a
depth-first search technique may use unnecessary resources
and time as it builds binary decision diagrams for a single sink
node at a time, especially if binary decision diagrams for
nodes that lie in the cone-of-influence of more than one sink
node are recomputed (in an attempt to keep memory usage
low, as explained above) when computing the binary decision
diagram for each sink node.
0036. The process then proceeds from step 204 to step
206, which depicts binary decision diagram builder 126
determining whether all binary decision diagrams for all
sinks were completed. If binary decision diagrams for all
sinks have been built, the process then moves to step 208,
which depicts binary decision diagram builder 126 reporting
the completed binary decision diagrams. Reporting may
include recording binary decision diagrams to output table
122, a result recording file. Logic simulator 124 may also
report the contents of output table 122 the status selected
indicators of the status of circuit model 120 to user I/O 114 or
applications 128. After reporting is finished in step 208, the
process ends at step 210.
0037. If, in step 206, binary decision diagram builder 126
determines that binary decision diagrams for all sink nodes
have not been completed, the process then proceeds to step
212, which depicts binary decision diagram builder 126
building binary decision diagrams on a breadth-first-search
routine until reaching the upper limit set by discussed above.
Binary decision diagram builder 126 creates binary decision
diagrams for nodes using a breadth-first-search Schedule with
an upper limit on the binary decision diagram size equal to an
upper size limit of the binary decision diagram. If the binary
decision diagram size exceeds this limit, logic simulator 124
moves on the next node in the schedule. During the building
process, logic simulator 124 checks to see if binary decision
diagrams of all fanouts of the fanins of a completed node have
been built, and if so, frees the resources used for the node.
0038 Logic simulator 124 employs a topologically
adhered breadth-first-search (BFS) schedule to build binary
decision diagrams for the designated sink nodes in a levelized
manner, starting at the inputs. The level of a node (V) in a
circuit graph is defined as follows:

level (v)=0, if v is an input

max(level of all the fanins of the node)+1

0039. In a breadth-first-search technique, nodes at differ
ent levels are gathered together. The binary decision diagrams
are then built progressively at each level, starting at the inputs.
As in the depth-first search approach, once binary decision
diagrams for all fanouts of a node have been built, the binary
decision diagram for that node can be freed. The breadth-first

Jun. 25, 2009

search scheme offers the advantage of speed, because binary
decision diagrams for all sink nodes are built in a single pass.
Unfortunately, a breadth-first-search can become expensive
in terms of space, compared to a depth-first search style of
building binary decision diagrams, because the breadth-first
search requires that the binary decision diagram for a node be
kept alive until binary decision diagrams for all fanout nodes
of the first node have been built. As can be expected, a
breadth-first search scheme may involve a higher peak num
ber of binary decision diagram nodes. Many binary decision
diagrams are later"multiplexed away as fanouts of nodes are
processed, and Subsequently binary decision diagrams of
nodes at lower levels are freed. The fanouts of a node may
span many levels.
0040. The process then proceeds from step 212 to step
214, which depicts logic simulator 124 determining whether
all whether binary decision diagrams for all sinks were com
pleted. If binary decision diagrams for all sinks have been
built, the process then moves to step 208, which depicts logic
simulator 124 reporting the completed binary decision dia
grams, as described above. After reporting is finished in step
208, the process ends at step 210.
0041) If, in step 214, logic simulator 124 determines that
binary decision diagrams for all sink nodes have not been
completed, the process then proceeds to step 216, which
depicts logic simulator 124 increasing the upper size limit for
binary decision diagrams. The process then returns to step
204, which depicts binary decision diagram builder 126
building binary decision diagrams on a depth-first schedule
with an upper size limit set by logic simulator 204, as
described above.
0042 Turning now to FIG.3, an exemplary circuit, which

is analyzed in accordance with the preferred embodiment of
the present invention, is depicted. As illustrated, circuit 300
contains a collection of interconnected AND gates 302-330.
Inverted inputs 332 and 334 provide one signal to each of
AND gates 318 and 324. Circuit 300 takes data at input nodes
A-J and outputs results at nodes K-Z. Of result nodes K-Z.
node V and node X represent final outputs, which are sinks of
the functions represented by circuit 300.
0043. With reference now to FIG. 4, an exemplary binary
decision diagram of circuit 400 constructed in accordance
with a preferred embodiment of the present invention is
depicted. As illustrated, binary decision diagram 400 contains
a collection of input nodes A-J and result nodes K-Z. Each of
result nodes K-Z corresponds to the output node of one of the
set of AND gates 302-330 depicted in FIG. 3. Because of
inverted inputs 332 and 334, node M receives an input from
node C that is inverted at inversion edge 402, and node 0
receives an input from node E that is inverted at inversion
edge 404. As in FIG. 3, Node V and node X represent final
outputs, which are sinks of the functions represented by
binary decision diagram 400.
0044) Given a representation of a circuit 300 in circuit
model 120, binary decision diagram builder 126 builds binary
decision diagram 400 through the series of steps shown in
FIG. 2 and described above. First, logic simulator 124 in
RAM 102 receives an instruction to build a binary decision
diagram 400 from a structural representation of circuit 300
and invokes binary decision diagram builder 126. Then binary
decision diagram builder 126 setting an upper limit for the
size of a binary decision diagram. In the example represented
with respect to FIG. 4, the binary decision diagram size limit
(bdd-size-limit) is set to 2 for exemplary simplicity, though

US 2009/0164966 A1

one skilled in the art will quickly realize that actual embodi
ments typically use much larger binary decision diagram size
limits.

0045 Binary decision diagram builder 126 then builds
binary decision diagram 400 using a depth-first schedule with
an upper size limit set of two. For each node, if the binary
decision diagram size exceeds this limit, binary decision dia
gram builder 126 moves to the next node in the schedule.
During the building process, logic simulator 124 checks to
see if binary decision diagrams of all fan-outs of a given node
have been built. If so, logic simulator 124 frees the binary
decision diagram for the nodes. Building nodes on the depth
first-Schedule builds a first binary decision diagram group
406 containing nodes K=A&B, L=C&B, M=NOT(C)&D,
N=E&F, O=NOT(E)&F, P=G&H, and Q=I&J. Logic simu
lator 124 then checks to see if binary decision diagrams of all
fan-outs of nodes A-J have been built. Because all fan-outs of
nodes A-J have been built, logic simulator 124 frees the
binary decision diagrams for nodes A-J. Because binary deci
sion diagram builder 126 has not completed building binary
decision diagrams for nodes V and X, binary decision dia
gram construction continues with a breadth-first method.
0046 Binary decision diagram builder 126 then builds
binary decision diagram 400 using a breadth-first schedule
with an upper size limit set of four. For each node, if the binary
decision diagram size exceeds this limit, binary decision dia
gram builder 126 moves to the next node in the schedule.
During the building process, logic simulator 124 checks to
see if binary decision diagrams of all fan-outs of a given node
have been built. If so, logic simulator 124 frees the binary
decision diagram for the nodes. Building nodes on the
breadth-first-schedule builds a second binary decision dia
gram group 408 containing nodes R=A&B&C&D,
S=F&E&C&D, T=NOT(C)&D&NOT(E)&F,
U=G&H&I&J, W=0, X=0. Logic simulator 124 then checks
to see if binary decision diagrams of all fan-outs of nodes
K-Whave been built. Because all fan-outs of nodes K, L, M,
N. P. Q, S, T, and Whave been built, logic simulator 124 frees
the binary decision diagrams for nodes K, L, M, N, P, Q, S, T,
and W. Because binary decision diagram builder 126 has not
completed building binary decision diagrams for node V.
binary decision diagram construction continues with a depth
first method after the maximum size of a depth-first binary
decision diagram 400 is increased to six.
0047 Binary decision diagram builder 126 then builds
binary decision diagram 400 using a depth-first schedule with
an upper size limit set of six. For each node, if the binary
decision diagram size exceeds this limit, binary decision dia
gram builder 126 moves to the next node in the schedule.
During the building process, logic simulator 124 checks to
see if binary decision diagrams of all fan-outs of a given node
have been built. If so, logic simulator 124 frees the binary
decision diagram for the nodes. Building nodes on the depth
first-Schedule builds a third binary decision diagram group
containing node V=A&B&C&D&E&F. Because node V is
the last node of binary decision diagram 400, binary decision
diagram builder can then report the completed binary deci
sion diagram 400 to output table 122.
0048. The present invention ameliorates the problems of
exponential complexity and associated resource consumption
by presenting a method and system that compute a heuristi
cally-optimized schedule for efficiently building binary deci
sion diagrams for nodes in a circuit-graph representation of a
problem. The technique of the present invention manages

Jun. 25, 2009

available resources efficiently, and the present invention
minimizes the number of live binary decision diagrams,
thereby reducing overall memory consumption.
0049 Among the specific advantages of the method
described with respect to FIG. 2, resource-constrained inter
leaving handles constant propagation efficiently. Individu
ally, both the depth-first search and breadth-first-search algo
rithms described above suffer from a drawback where
constants are not fully employed. More specifically, situa
tions occur, which involve a function at a sink node is a
constant due to a fan-in node function (e.g., a case involving
an AND gate with one input permanently at 0, leaving the
function at the AND gate at 0), but previous algorithms
would expend resources computing the binary decision dia
grams of the other fan-in nodes. The resource-constrained
scheme of the preferred embodiment imposes a size limit on
the number of nodes that a binary decision diagram for a
circuit graph node can employ. If the limit is exceeded, the
scheme Suspends building the binary decision diagrams for a
node and progresses to the next node in the schedule. Hence,
with regard to the example of an AND gate with a constant
input at 0, the preferred embodiment progresses to the fan-in
node of the gate that is a constant quickly. The resource limit
ideally tends to be set to a small value at early stages of the
process, which causes the gate function to be computed (a
constant 0 for the AND gate) without the need to compute
binary decision diagrams of the other fan-in nodes.
0050. In the preferred embodiment, the peak number of
binary decision diagram nodes in the binary decision diagram
package will be much lower than in prior art approaches. The
interleaved depth-first-search and breadth-first-search
resource-constrained scheme detailed above ensures that
nodes that have Small binary decision diagrams can be com
puted early in the process, and Subsequently freed, to make
resources available for larger binary decision diagrams. Later,
extensive binary decision diagram operations, such as DVO
or Garbage Collection that check for nodes that can be freed,
benefit from a reduced number of alive binary decision dia
gram nodes reducing overall runtime and memory require
mentS.

0051. The interleaved scheme brings together both a
depth-first search and a breadth-first-search scheme in tight
integration combining the advantages of both. The new
scheme works in a “push-pull manner by going back and
forth between the two schemes ensuring that the benefit of
each scheme is realized during the respective phase, and
giving the best overall performance. Indeed, the depth-first
search or the “pull uncovers any paths building binary deci
sion diagrams along which building the binary decision dia
gram for a sink node may suffice, while the “push” or the
levelized breadth-first-search traversal causes binary decision
diagrams to be propagated quickly from the inputs towards
the outputs with a tight control on consumed resources. The
resource limit further ensures that the overall algorithm does
not get stuck in any one computation that does not contribute
to the final result. The order of breadth first and depth-first
searching can be reversed from that described above without
departing from the scope of the invention.
0.052 While this invention has been particularly shown as
described with reference to a preferred embodiment, it will be
understood by those skilled in the art that various changes in
form and detail may be made therein without departing from
the spirit and scope of the invention. It is also important to
note that although the present invention has been described in

US 2009/0164966 A1

the context of a fully functional computer system, those
skilled in the art will appreciate that the mechanisms of the
present invention are capable of being distributed as a pro
gram product in a variety of forms, and that the present
invention applies equally regardless of the particular type of
signal bearing media utilized to actually carry out the distri
bution. Examples of signal bearing media include, without
limitation, recordable type media such as floppy disks or CD
ROMs and transmission type media Such as analog or digital
communication links.
What is claimed is:
1. A computer program product in a computer-readable

medium for efficiently producing a description of a logic
function in m-ary decision representations, said computer
program product comprising:

a tangible computer-readable storage medium;
instructions on the tangible computer-readable storage
medium, when executed by a computer, for setting a first
size limit for a first set of one or more m-ary decision
representations describing a logic function;

instructions on the tangible computer-readable storage
medium, when executed by a computer, for setting a
second size limit for a second set of one or more m-ary
decision representations describing a logic function;

instructions on the tangible computer-readable storage
medium, when executed by a computer, for building said
first set of m-ary decision representations of said logic
function with one of the set of a depth-first technique or
a breadth-first technique until said first size limit is
reached;

instructions on the tangible computer-readable storage
medium, when executed by a computer, for building a
second set of m-ary decision representations of said
logic function with the other of the set of a depth-first
technique or a breadth-first technique until said second
size limit is reached;

instructions on the tangible computer-readable storage
medium, when executed by a computer, for, in response
to determining that a union of first set and said second set
of m-ary decision representations do not describe said
logic function,
for increasing said first size limit,
for increasing said second size limit, and
for repeating said instructions for building said first set

and said instructions for building said second set; and
instructions on the tangible computer-readable storage
medium, when executed by a computer, for, in response
to determining that said union of said first set of m-ary
decision representations and said second set of m-ary
decision representations describes said logic function,
reporting the union of said first set of m-ary decision
representations and said second set of m-ary decision
representations to an output file.

2. The computer program product of claim 1, further com
prising:

instructions on the tangible computer-readable storage
medium, when executed by a computer, for, in response
to determining, during execution of one of the set of said
instructions for building said first set of m-ary decision
representations or said instructions for building said sec
ond set m-ary decision representations, that the union of
said first set of m-ary decision representations and said
second set of m-ary decision representations describes
said logic function, Suspending execution of said one of

Jun. 25, 2009

the set of said instructions for building said first set of
m-ary decision representations or said instructions for
building said second set m-ary decision representations
and reporting the union of said first set of said first set of
m-ary decision representations and said second set of
m-ary decision representations.

3. The computer program product of claim 1, wherein:
said instructions for increasing said first size limit further

instructions on the tangible computer-readable storage
medium, when executed by a computer, for doubling
said first size limit; and

said instructions for increasing said second size limit fur
ther comprise instructions on the tangible computer
readable storage medium, when executed by a computer,
for doubling said second size limit.

4. The computer program product of claim 1, wherein:
said instructions for building said first set of m-ary decision

representations of said logic function further comprise
instructions on the tangible computer-readable storage
medium, when executed by a computer, for building a
first set of binary decision representations of said logic
function; and

said instructions for building said second set of m-ary
decision representations of said logic function further
comprise instructions on the tangible computer-readable
storage mediums when executed by a computer, for
building a second set of binary decision representations
of said logic function.

5. The computer program product of claim 1, wherein:
said instructions for building said first set of m-ary decision

representations of said logic function further comprise
instructions on the tangible computer-readable storage
medium, when executed by a computer, for building a
first set of m-ary decision diagrams of said logic func
tion; and

said instructions for building said second set of m-ary
decision representations of said logic function further
comprise instructions on the tangible computer-readable
storage medium when executed by a computer, for
building a second set of m-ary decision diagrams of said
logic function.

6. The computer program product of claim 1, wherein:
said instructions for determining that said union of said

first set of m-ary decision representations and said sec
ond set of m-ary decision representations describes said
logic function further comprise instructions on the tan
gible computer-readable storage medium, when
executed by a computer, for determining that said union
of said first set of m-ary decision representations and
said second set of m-ary decision representations con
tains binary decision diagrams for all sinks in said logic
function.

7. The computer program product of claim 1, wherein:
said instructions for building a second set of m-ary decision

representations of said logic function with the other of
the set of a depth-first technique or a breadth-first tech
nique until said second size limit is reached further com
prise instructions on the tangible computer-readable
storage medium, when executed by a computer, for, in
response to determining that said first set does not
describe said logic function, building a second set of
m-ary decision representations of said logic function

US 2009/01 64966 A1

with the other of the set of a depth-first technique or a
breadth-first technique until said second size limit is
reached.

8. The computer program product of claim 1, wherein:
said instructions for determining that said first set do not

describe said logic function further comprise instruc
tions on the tangible computer-readable storage
medium, when executed by a computer, for determining
that said first set of m-ary decision representations does
not contain binary decision diagrams for all sinks in said
logic function; and

Jun. 25, 2009

said instructions for determining that a union of first set and
said second set of m-ary decision representations do not
describe said logic function further comprise instruc
tions on the tangible computer-readable storage
medium, when executed by a computer, for determining
that said union of said first set of m-ary decision repre
sentations and said second set of m-ary decision repre
sentations does not contain binary decision diagrams for
all sinks in said logic function.

ck ck ck ck ck

