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(57) ABSTRACT 

A method, system and computer program product for build 
ing decision diagrams efficiently in a structural network rep 
resentation of a digital circuit using a dynamic resource con 
strained and interleaved depth-first-search and modified 
breadth-first-search schedule is disclosed. The method 
includes setting a first size limit for a first set of one or more 
m-ary decision representations describing a logic function 
and setting a second size limit for a second set of one or more 
m-ary decision representations describing a logic function. 
The first set of m-ary decision representations of the logic 
function is then built with one of the set of a depth-first 
technique or a breadth-first technique until the first size limit 
is reached, and a second set of m-ary decision representations 
of the logic function is built with the other technique until the 
second size limit is reached. In response to determining that a 
union of first set and the second set of m-ary decision repre 
sentations do not describe the logic function, the first and 
second size limits are increased, and the steps of building the 
first and second set are repeated. In response to determining 
that the union of the first set of m-ary decision representations 
and the second set of m-ary decision representations describe 
the logic function, the union is reported. 
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METHOD AND SYSTEM FOR BUILDING 
BINARY DECISION DAGRAMS 

EFFICIENTLY IN A STRUCTURAL 
NETWORK REPRESENTATION OFA 

DIGITAL CIRCUIT 

BACKGROUND OF THE INVENTION 

0001 1. Technical Field 
0002 The present invention relates in general to represent 
ing logic functions and in particular to representing a logic 
function in a decision diagram. Still more particularly, the 
present invention relates to a system, method and computer 
program product for building decision diagrams efficiently in 
a structural network representation of a digital circuit, using a 
dynamic, resource-constrained and interleaved depth-first 
search and modified breadth-first-search schedule. 
0003 2. Description of the Related Art 
0004. Many tasks in computer-aided design (CAD), such 
as equivalence checking, property checking, logic synthesis 
and false-paths analysis require Boolean reasoning and 
analysis on problems derived from representations of circuit 
structures. One commonly-used approach to Boolean reason 
ing and analysis for applications operating on representations 
of circuit structures is to represent the underlying logical 
problem structurally (as a circuit graph), and then use Binary 
Decision Diagrams (BDDs) to convert the structural repre 
sentation into a functionally canonical form. 
0005. In such an approach, in which a logical problem is 
represented structurally and binary decision diagrams are 
used to convert the structural representation into a function 
ally canonical form, a set of nodes for which binary decision 
diagrams are required to be built, called "sink nodes, are 
identified. Examples of sink nodes include the output node or 
nodes in an equivalence checking or a false-paths analysis 
context. Examples of sink nodes also include targets in a 
property-checking or model-checking context. 
0006 Following identification of the sink nodes, binary 
decision diagrams for these nodes are built in a topological 
manner, starting at the input variables for a function. The 
process of building binary decision diagrams flows from 
input variables to intermediate nodes in the circuit graph 
representation until, finally, the binary decision diagrams for 
the sink nodes are built. 
0007 Binary decision diagrams provide an effective tool 
for Boolean reasoning and analysis in applications operating 
on representations of circuit structures, but binary decision 
diagrams frequently Suffer from exponential space complex 
ity and associated resource (e.g. memory) consumption. In 
the worst case, exponential complexity and associated 
resource consumption preclude completion of binary deci 
Sion diagrams. 
0008. One reason for resource consumption problems in 
constructing binary decision diagrams relates to reliance on a 
total order in the Boolean variables in the binary decision 
diagrams. Another reason that the construction of binary deci 
sion diagrams is memory intensive relates to the sheer num 
ber of binary decision diagrams that are "alive' at any given 
time. A binary decision diagram is considered alive' if it is 
still needed to build binary decision diagrams for related 
fanout nodes. Notably, the order in which binary decision 
diagrams for the nodes in a circuit graph are built can cause an 
unnecessarily large number of binary decision diagrams to be 
alive at any given time. What is needed is a method to reduce 
the resource consumption in constructing binary decision 
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diagrams by appropriately scheduling construction of binary 
decision diagrams to reduce the number of nodes that are 
alive at any given time. 

SUMMARY OF THE INVENTION 

0009. A method, system and computer program product 
for building decision diagrams efficiently in a structural net 
work representation of a digital circuit using a dynamic 
resource constrained and interleaved depth-first-search and 
modified breadth-first-search schedule is disclosed. The 
method includes setting a first size limit for a first set of one or 
more m-ary decision representations describing a logic func 
tion and setting a second size limit for a second set of one or 
more m-ary decision representations describing a logic func 
tion. The first set of m-ary decision representations of the 
logic function is then built with one of the set of a depth-first 
technique or a breadth-first technique until the first size limit 
is reached, and a second set of m-ary decision representations 
of the logic function is built with the other technique until the 
second size limit is reached. In response to determining that a 
union of first set and the second set of m-ary decision repre 
sentations do not describe the logic function, the first and 
second size limits are increased, and the steps of building the 
first and second set are repeated. In response to determining 
that the union of the first set of m-ary decision representations 
and the second set of m-ary decision representations describe 
the logic function, the union is reported. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0010. The novel features believed characteristic of the 
invention are set forth in the appended claims. The invention 
itself, however, as well as a preferred mode of use, further 
objects and advantages thereof, will best be understood by 
reference to the following detailed descriptions of an illustra 
tive embodiment when read in conjunction with the accom 
panying drawings, wherein: 
0011 FIG. 1 depicts a block diagram of a data processing 
system equipped with a computer program product for build 
ing binary decision diagrams efficiently in a structural net 
work representation of a digital circuit using a dynamic, 
resource-constrained and interleaved depth-first-search and 
modified breadth-first-search schedule, in accordance with a 
preferred embodiment of the present invention; 
0012 FIG. 2 is a high-level logical flowchart of a process 
for building binary decision diagrams efficiently in a struc 
tural network representation of a digital circuit using a 
dynamic resource-constrained and interleaved depth-first 
search and modified breadth-first-search schedule, in accor 
dance with a preferred embodiment of the present invention; 
0013 FIG. 3 represents an exemplary circuit, which is 
analyzed in accordance with a preferred embodiment of the 
present invention; and 
0014 FIG. 4 is an exemplary binary decision diagram 
constructed in accordance with a preferred embodiment of 
the present invention. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

0015 The present invention alleviates the problems of 
exponential complexity and associated resource consumption 
by presenting a method and system that compute a heuristi 
cally-optimized schedule for efficiently building binary deci 
sion diagrams for nodes in a circuit-graph representation of a 



US 2009/01 64966 A1 

problem. The technique of the present invention manages 
available resources more efficiently than conventional tech 
niques, and the present invention reduces the number of live 
binary decision diagrams, thereby reducing overall memory 
consumption. 
0016. With reference now to the figures, and in particular 
with reference to FIG. 1, a block diagram of a data processing 
system equipped with computer program product for building 
binary decision diagrams efficiently in a structural network 
representation of a digital circuit using a dynamic, resource 
constrained and interleaved depth-first-search and modified 
breadth-first-search schedule, in accordance with a preferred 
embodiment of the present invention, is depicted. A data 
processing system 100 contains a processing storage unit 
(e.g., RAM 102) and a processor 104. Data processing system 
100 also includes non-volatile storage 106 such as a hard disk 
drive or other direct access storage device. An Input/Output 
(I/O) controller 108 provides connectivity to a network 110 
through a wired or wireless link, such as a network cable 112. 
I/O controller 108 also connects to user I/O devices 114 such 
as a keyboard, a display device, a mouse, or a printer through 
wired or wireless link 116, such as cables or a radio-frequency 
connection. System interconnect 118 connects processor 
104, RAM 102, storage 106, and I/O controller 108. 
0017. Within RAM 102, data processing system 100 
stores several items of data and instructions, while operating 
in accordance with a preferred embodiment of the present 
invention. These include a circuit model 120 and an output 
table 122 for interaction with a logic simulator 124, contain 
ing a binary decision diagram builder 126. Other applications 
128 and logic simulator 124 interface with processor 104, 
RAM 102, I/O control 108, and storage 106 through operat 
ing system 130. One skilled in the data processing arts will 
quickly realize that additional components of data processing 
system 100 may be added to or substituted for those shown 
without departing from the scope of the present invention. 
0018 Processor 104 executes instructions from programs, 
often stored in RAM 102, in the course of performing the 
present invention. In a preferred embodiment of the present 
invention, processor 104 executes logic simulator 124. Logic 
simulator 124 performs the creation of binary decision dia 
grams through the operation of binary decision diagram 
builder 126 on the circuit specifications contained in circuit 
model 120, which contains instructions for modeling a simu 
lated item of logical hardware. 
0019 Logic simulator 124 includes a computer program 
product, stored in RAM 102 and executed on processor 104. 
which provides a series of tools for activities such as equiva 
lence checking, property checking, logic synthesis and false 
paths analysis. Generally speaking, logic simulator 124 con 
tains rule-based instructions for predicting the behavior of 
logically modeled items of hardware. Logic simulator 124 
uses the series of rules contained in its own instructions, in 
conjunction with circuit model 120, to represent the underly 
ing logical problem structurally (as a circuit graph), and uses 
binary decision diagram builder 126 to construct binary deci 
sion diagrams, thereby converting the structural representa 
tion into a functionally canonical form. 
0020 Circuit model 120 may model the designs of many 
different kinds of logical hardware, but preferably provides a 
software representation of components such as microproces 
sors and application specific integrated circuits (ASICs). 
0021 Binary decision diagram builder 126 records binary 
decision diagrams to output table 122, a result recording file. 
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Logic simulator 124 may also report the contents of output 
table 122 or the status selected indicators of the status of 
circuit model 120 to user I/O 114 or applications 128. Addi 
tionally, all or part of logic simulator 124, operating system 
130, circuit model 120, and output table 122 may, at times, be 
stored in storage 106 or in RAM 102. 
0022. A netlist graph is a popular means of compactly 
representing problems derived from circuit structures in com 
puter-aided design of digital circuits. Such a representation is 
non-canonical and offers limited ability to analyze the func 
tion from the nodes in the graph. Binary decision diagrams 
are a popular choice for efficiently applying Boolean reason 
ing to problems derived from circuit structures, which are 
frequently represented in net list graphs. Binary decision 
diagrams offer a compact and canonical representation of the 
Boolean function of a graph node, which expedites reasoning 
regarding a node's function. Unfortunately, the size of binary 
decision diagrams, and hence the complexity of manipulating 
them, is very sensitive to the order in which variables appear 
in the binary decision diagrams. Binary decision diagrams 
suffer from exponential complexity in the worst case. Binary 
decision diagram packages, such as a binary decision diagram 
builder 126, which implement binary decision diagram build 
ing and manipulation algorithms, use Dynamic Variable 
Ordering (DVO) algorithms to periodically reduce the num 
ber binary decision diagram nodes. These algorithms tend to 
be expensive in both time and space complexity and binary 
decision diagram packages rely on heuristics to compute a 
local minimum size, as opposed to a preferable global mini 
mum. Generally, computing a global minimum is prohibi 
tively expensive for use in reducing the number of binary 
decision diagram nodes. Hence, starting with a reasonable 
initial size and computing a good order when the number of 
binary decision diagram nodes is relatively small, is strongly 
Suggested. 
0023. A set of nodes for which binary decision diagrams 
are needed, called sinks, are identified. A natural way to build 
binary decision diagrams for sink nodes is to use a depth-first 
search (DFS) schedule, which builds binary decision dia 
grams for each sink node successively. For each sink node, the 
technique of the preferred embodiment traverses the circuit 
graph in a depth-first-search manner and builds binary deci 
sion diagrams for nodes in a bottom-up fashion, starting at the 
inputs. 
0024. The present invention includes a method and sys 
tem, which employ a combination of depth-first and modified 
breadth-first methods, working in tight integration and in a 
resource-constrained manner, to build binary decision dia 
grams of logical functions and the sub-functions of logical 
functions. In a preferred embodiment of the present inven 
tion, binary decision diagrams are efficiently built by binary 
decision diagram builder 126 for designated sink nodes con 
tained within a structural graph representation of a problem 
derived from circuit structure. By switching between depth 
first and modified breadth-first methods for building binary 
decision diagrams, the method of the preferred embodiment 
dynamically adjusts resource utilization parameters to con 
verge on a heuristically-optimized schedule. 
0025. The method of the preferred embodiment allows 
binary decision diagram builder 126 to suspend construction 
of a given binary decision diagram by either of a depth-first or 
a breadth-first method, when the binary decision diagram 
under construction exceeds a certain pre-determined size 
threshold, and return later, with higher resource limits, to 
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building the abandoned binary decision diagram. In this man 
ner, by building Smaller binary decision diagrams first, the 
preferred embodiment enables use of Dynamic Variable 
Ordering (DVO) algorithms, which attempt to compute a 
variable order that reduces the number of live binary decision 
diagram nodes, to converge on the best order needed for 
building all of the binary decision diagrams needed for a 
particular circuit. The method of building binary decision 
diagrams of the present invention is optimized by building 
Smaller binary decision diagrams before building larger 
binary decision diagrams. Building Smaller builder decision 
diagrams before building larger builder decision diagrams 
significantly reduces overall runtime and memory require 
mentS. 

0026. Additionally, by completing all of the less challeng 
ing binary decision diagrams, the number of alive binary 
decision diagram nodes is minimized. Furthermore, efficient 
constant propagation is guaranteed by the preferred embodi 
ment's resource-constrained method. The overall scheme 
interleaves a depth-first approach, which computes a sched 
ule from the output toward the inputs, with a topologically 
adhered breadth-first approach. The combination of breadth 
first and depth-first construction operates from the inputs 
toward the outputs in a levelized manner, combining the 
strengths and advantages of both depth-first and breadth-first 
operations. 
0027. The present invention combines both the depth-first 
search and the breadth-first-search schemes into a novel 
scheme that takes advantage of the benefits of both, and 
alleviates some of the drawbacks of each, through combina 
tion. In particular, the method of the present invention sets a 
size threshold on the sizes of binary decision diagrams that 
can be built at any given stage, this threshold is progressively 
increased until binary decision diagrams for all sink nodes 
have been built. The algorithm starts by building binary deci 
sion diagrams for graph nodes in a depth-first search manner. 
As soon as the size of a binary decision diagram exceeds a 
specified size threshold, the method of the present invention 
temporarily abandons building the binary decision diagram 
for this node and moves on to the next node in the depth-first 
search schedule. Once binary decision diagram building for 
all nodes has been attempted, the method of the preferred 
embodiment switches to a breadth-first-search schedule. 
After attempting to build binary decision diagrams up to the 
specified size threshold with a breadth-first-search schedule, 
the method of the present invention resets the size threshold 
and again attempts a depth-first search schedule with the 
higher threshold. 
0028. This process is continued until binary decision dia 
grams for all sink nodes have been built though the method 
may be abandoned if the specified overall resources (e.g., 
upper limit on the number of binary decision diagram nodes) 
are exhausted. Such an interleaved depth-first search/breadth 
first-search, resource-constrained scheme has several advan 
tages. 
0029. With reference now to FIG. 2, there is depicted a 
high-level logical flowchart of a process for building binary 
decision diagrams efficiently in a structural network repre 
sentation of a digital circuit using a dynamic, resource-con 
strained and interleaved depth-first-search and modified 
breadth-first-search schedule, in accordance with a preferred 
embodiment of the present invention. 
0030 The process begins at step 200, which depicts acti 
Vating a computer program product for building binary deci 
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sion diagrams efficiently in a structural network representa 
tion of a digital circuit using a dynamic resource constrained 
interleaved depth-first-search and modified breadth-first 
search Schedule. This will typically happen when logic simu 
lator 124 in RAM 102 receives an instruction to build a binary 
decision diagram from a structural representation of a logical 
function and invokes binary decision diagram builder 126. 
0031. The process then proceeds to step 202, which 
depicts binary decision diagram builder 126 setting an upper 
limit for the size of a binary decision diagram. Because both 
depth-first construction and breadth-first construction are 
used, the upper limit for the size of a binary decision diagram 
is specified by one or more variables, a first variable repre 
senting the size limit in depth-first operations and the same or 
a second variable representing the size limit in breadth-first 
operations. In order to set the upper size limit, binary decision 
diagram builder 126 will first mark the cone of influence of all 
sink nodes, and then obtain a schedule by determining the 
order in which nodes of the binary decision diagrams will be 
built. Scheduling of nodes is achieved by means of a depth 
first and breadth first search on the circuit represented by a 
netlist graph in circuit model 120. Binary decision diagram 
builder 126 then declares binary decision diagram variables 
for variables in the cone-of-influence of the sink nodes. Set 
ting the upper limit for a binary decision diagram regulates 
the resources that logic simulator 124 allows binary decision 
diagram builder 126 to use for building binary decision dia 
grams in later stages of the process depicted in FIG. 2. 
0032. The process then moves to step 204, which depicts 
binary decision diagram builder 126 building binary decision 
diagrams using a depth-first schedule with an upper size limit 
set by logic simulator 204. Binary decision diagram builder 
126 creates binary decision diagrams for nodes using a depth 
first search schedule with an upper limit on the binary deci 
sion diagram size equal to binary decision diagram upper 
size-limit. If the binary decision diagram size exceeds this 
limit, binary decision diagram builder 126 moves to the next 
node in the schedule. During the building process, logic simu 
lator 124 checks to see if binary decision diagrams of all 
fanouts of a given node have been built. If so, logic simulator 
124 frees the binary decision diagram for the nodes. 
0033. Once the binary decision diagrams for all the 
fanouts of a node have been built, the binary decision diagram 
for that node can be freed ordereferenced. Freeing unneeded 
binary decision diagrams keeps the number of binary deci 
sion diagram nodes in binary decision diagram builder 126 to 
a minimum, Such that expensive binary decision diagram 
operations such as DVO are not impacted by the presence of 
spurious nodes. Moreover, many applications set an upper 
limit on the number of binary decision diagram nodes allowed 
to exist at any one time. A limit on nodes prevents a "run 
away' binary decision diagram operation, and the presence of 
spurious binary decision diagrams may cause Such limit to be 
reached prematurely and inaccurately. Reaching the limit 
prematurely and inaccurately may prohibit completion of a 
computation that might otherwise be completed. Even if an 
application does not set an upper limit, there may be an upper 
limit on the number of binary decision diagram nodes that can 
exist at any point in time inabinary decision diagram package 
due to the data structures used, or due to the available memory 
on the machine. 
0034. An advantage of the depth-first style of building 
binary decision diagrams is a reduced peak or maximum in 
the number of alive binary decision diagram nodes. Because 



US 2009/0164966 A1 

binary decision diagrams for a single sink are built serially, 
binary decision diagrams for only those circuit graph nodes 
that lie in the cone-of-influence of a given sink are required to 
be built simultaneously. Unfortunately, the advantage in 
reduction of the peak or maximum in the number of alive 
binary decision diagram nodes must be balanced against the 
need to retain binary decision diagrams for nodes that lie in 
the cone-of-influence of other sink nodes. 
0035. The failure to retain binary decision diagrams for 
nodes that lie in the cone-of-influence of other sink nodes may 
potentially free binary decision diagrams for those nodes, 
only to require binary decision diagram builder 126 to build 
them again later. Rebuilding binary decision diagrams for 
nodes that lie in the cone-of-influence of other sink nodes 
wastes time and resources through repetition. Additionally, a 
depth-first search technique may use unnecessary resources 
and time as it builds binary decision diagrams for a single sink 
node at a time, especially if binary decision diagrams for 
nodes that lie in the cone-of-influence of more than one sink 
node are recomputed (in an attempt to keep memory usage 
low, as explained above) when computing the binary decision 
diagram for each sink node. 
0036. The process then proceeds from step 204 to step 
206, which depicts binary decision diagram builder 126 
determining whether all binary decision diagrams for all 
sinks were completed. If binary decision diagrams for all 
sinks have been built, the process then moves to step 208, 
which depicts binary decision diagram builder 126 reporting 
the completed binary decision diagrams. Reporting may 
include recording binary decision diagrams to output table 
122, a result recording file. Logic simulator 124 may also 
report the contents of output table 122 the status selected 
indicators of the status of circuit model 120 to user I/O 114 or 
applications 128. After reporting is finished in step 208, the 
process ends at step 210. 
0037. If, in step 206, binary decision diagram builder 126 
determines that binary decision diagrams for all sink nodes 
have not been completed, the process then proceeds to step 
212, which depicts binary decision diagram builder 126 
building binary decision diagrams on a breadth-first-search 
routine until reaching the upper limit set by discussed above. 
Binary decision diagram builder 126 creates binary decision 
diagrams for nodes using a breadth-first-search Schedule with 
an upper limit on the binary decision diagram size equal to an 
upper size limit of the binary decision diagram. If the binary 
decision diagram size exceeds this limit, logic simulator 124 
moves on the next node in the schedule. During the building 
process, logic simulator 124 checks to see if binary decision 
diagrams of all fanouts of the fanins of a completed node have 
been built, and if so, frees the resources used for the node. 
0038 Logic simulator 124 employs a topologically 
adhered breadth-first-search (BFS) schedule to build binary 
decision diagrams for the designated sink nodes in a levelized 
manner, starting at the inputs. The level of a node (V) in a 
circuit graph is defined as follows: 

level (v)=0, if v is an input 

max(level of all the fanins of the node)+1 

0039. In a breadth-first-search technique, nodes at differ 
ent levels are gathered together. The binary decision diagrams 
are then built progressively at each level, starting at the inputs. 
As in the depth-first search approach, once binary decision 
diagrams for all fanouts of a node have been built, the binary 
decision diagram for that node can be freed. The breadth-first 
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search scheme offers the advantage of speed, because binary 
decision diagrams for all sink nodes are built in a single pass. 
Unfortunately, a breadth-first-search can become expensive 
in terms of space, compared to a depth-first search style of 
building binary decision diagrams, because the breadth-first 
search requires that the binary decision diagram for a node be 
kept alive until binary decision diagrams for all fanout nodes 
of the first node have been built. As can be expected, a 
breadth-first search scheme may involve a higher peak num 
ber of binary decision diagram nodes. Many binary decision 
diagrams are later"multiplexed away as fanouts of nodes are 
processed, and Subsequently binary decision diagrams of 
nodes at lower levels are freed. The fanouts of a node may 
span many levels. 
0040. The process then proceeds from step 212 to step 
214, which depicts logic simulator 124 determining whether 
all whether binary decision diagrams for all sinks were com 
pleted. If binary decision diagrams for all sinks have been 
built, the process then moves to step 208, which depicts logic 
simulator 124 reporting the completed binary decision dia 
grams, as described above. After reporting is finished in step 
208, the process ends at step 210. 
0041) If, in step 214, logic simulator 124 determines that 
binary decision diagrams for all sink nodes have not been 
completed, the process then proceeds to step 216, which 
depicts logic simulator 124 increasing the upper size limit for 
binary decision diagrams. The process then returns to step 
204, which depicts binary decision diagram builder 126 
building binary decision diagrams on a depth-first schedule 
with an upper size limit set by logic simulator 204, as 
described above. 
0042 Turning now to FIG.3, an exemplary circuit, which 

is analyzed in accordance with the preferred embodiment of 
the present invention, is depicted. As illustrated, circuit 300 
contains a collection of interconnected AND gates 302-330. 
Inverted inputs 332 and 334 provide one signal to each of 
AND gates 318 and 324. Circuit 300 takes data at input nodes 
A-J and outputs results at nodes K-Z. Of result nodes K-Z. 
node V and node X represent final outputs, which are sinks of 
the functions represented by circuit 300. 
0043. With reference now to FIG. 4, an exemplary binary 
decision diagram of circuit 400 constructed in accordance 
with a preferred embodiment of the present invention is 
depicted. As illustrated, binary decision diagram 400 contains 
a collection of input nodes A-J and result nodes K-Z. Each of 
result nodes K-Z corresponds to the output node of one of the 
set of AND gates 302-330 depicted in FIG. 3. Because of 
inverted inputs 332 and 334, node M receives an input from 
node C that is inverted at inversion edge 402, and node 0 
receives an input from node E that is inverted at inversion 
edge 404. As in FIG. 3, Node V and node X represent final 
outputs, which are sinks of the functions represented by 
binary decision diagram 400. 
0044) Given a representation of a circuit 300 in circuit 
model 120, binary decision diagram builder 126 builds binary 
decision diagram 400 through the series of steps shown in 
FIG. 2 and described above. First, logic simulator 124 in 
RAM 102 receives an instruction to build a binary decision 
diagram 400 from a structural representation of circuit 300 
and invokes binary decision diagram builder 126. Then binary 
decision diagram builder 126 setting an upper limit for the 
size of a binary decision diagram. In the example represented 
with respect to FIG. 4, the binary decision diagram size limit 
(bdd-size-limit) is set to 2 for exemplary simplicity, though 
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one skilled in the art will quickly realize that actual embodi 
ments typically use much larger binary decision diagram size 
limits. 

0045 Binary decision diagram builder 126 then builds 
binary decision diagram 400 using a depth-first schedule with 
an upper size limit set of two. For each node, if the binary 
decision diagram size exceeds this limit, binary decision dia 
gram builder 126 moves to the next node in the schedule. 
During the building process, logic simulator 124 checks to 
see if binary decision diagrams of all fan-outs of a given node 
have been built. If so, logic simulator 124 frees the binary 
decision diagram for the nodes. Building nodes on the depth 
first-Schedule builds a first binary decision diagram group 
406 containing nodes K=A&B, L=C&B, M=NOT(C)&D, 
N=E&F, O=NOT(E)&F, P=G&H, and Q=I&J. Logic simu 
lator 124 then checks to see if binary decision diagrams of all 
fan-outs of nodes A-J have been built. Because all fan-outs of 
nodes A-J have been built, logic simulator 124 frees the 
binary decision diagrams for nodes A-J. Because binary deci 
sion diagram builder 126 has not completed building binary 
decision diagrams for nodes V and X, binary decision dia 
gram construction continues with a breadth-first method. 
0046 Binary decision diagram builder 126 then builds 
binary decision diagram 400 using a breadth-first schedule 
with an upper size limit set of four. For each node, if the binary 
decision diagram size exceeds this limit, binary decision dia 
gram builder 126 moves to the next node in the schedule. 
During the building process, logic simulator 124 checks to 
see if binary decision diagrams of all fan-outs of a given node 
have been built. If so, logic simulator 124 frees the binary 
decision diagram for the nodes. Building nodes on the 
breadth-first-schedule builds a second binary decision dia 
gram group 408 containing nodes R=A&B&C&D, 
S=F&E&C&D, T=NOT(C)&D&NOT(E)&F, 
U=G&H&I&J, W=0, X=0. Logic simulator 124 then checks 
to see if binary decision diagrams of all fan-outs of nodes 
K-Whave been built. Because all fan-outs of nodes K, L, M, 
N. P. Q, S, T, and Whave been built, logic simulator 124 frees 
the binary decision diagrams for nodes K, L, M, N, P, Q, S, T, 
and W. Because binary decision diagram builder 126 has not 
completed building binary decision diagrams for node V. 
binary decision diagram construction continues with a depth 
first method after the maximum size of a depth-first binary 
decision diagram 400 is increased to six. 
0047 Binary decision diagram builder 126 then builds 
binary decision diagram 400 using a depth-first schedule with 
an upper size limit set of six. For each node, if the binary 
decision diagram size exceeds this limit, binary decision dia 
gram builder 126 moves to the next node in the schedule. 
During the building process, logic simulator 124 checks to 
see if binary decision diagrams of all fan-outs of a given node 
have been built. If so, logic simulator 124 frees the binary 
decision diagram for the nodes. Building nodes on the depth 
first-Schedule builds a third binary decision diagram group 
containing node V=A&B&C&D&E&F. Because node V is 
the last node of binary decision diagram 400, binary decision 
diagram builder can then report the completed binary deci 
sion diagram 400 to output table 122. 
0048. The present invention ameliorates the problems of 
exponential complexity and associated resource consumption 
by presenting a method and system that compute a heuristi 
cally-optimized schedule for efficiently building binary deci 
sion diagrams for nodes in a circuit-graph representation of a 
problem. The technique of the present invention manages 
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available resources efficiently, and the present invention 
minimizes the number of live binary decision diagrams, 
thereby reducing overall memory consumption. 
0049 Among the specific advantages of the method 
described with respect to FIG. 2, resource-constrained inter 
leaving handles constant propagation efficiently. Individu 
ally, both the depth-first search and breadth-first-search algo 
rithms described above suffer from a drawback where 
constants are not fully employed. More specifically, situa 
tions occur, which involve a function at a sink node is a 
constant due to a fan-in node function (e.g., a case involving 
an AND gate with one input permanently at 0, leaving the 
function at the AND gate at 0), but previous algorithms 
would expend resources computing the binary decision dia 
grams of the other fan-in nodes. The resource-constrained 
scheme of the preferred embodiment imposes a size limit on 
the number of nodes that a binary decision diagram for a 
circuit graph node can employ. If the limit is exceeded, the 
scheme Suspends building the binary decision diagrams for a 
node and progresses to the next node in the schedule. Hence, 
with regard to the example of an AND gate with a constant 
input at 0, the preferred embodiment progresses to the fan-in 
node of the gate that is a constant quickly. The resource limit 
ideally tends to be set to a small value at early stages of the 
process, which causes the gate function to be computed (a 
constant 0 for the AND gate) without the need to compute 
binary decision diagrams of the other fan-in nodes. 
0050. In the preferred embodiment, the peak number of 
binary decision diagram nodes in the binary decision diagram 
package will be much lower than in prior art approaches. The 
interleaved depth-first-search and breadth-first-search 
resource-constrained scheme detailed above ensures that 
nodes that have Small binary decision diagrams can be com 
puted early in the process, and Subsequently freed, to make 
resources available for larger binary decision diagrams. Later, 
extensive binary decision diagram operations, such as DVO 
or Garbage Collection that check for nodes that can be freed, 
benefit from a reduced number of alive binary decision dia 
gram nodes reducing overall runtime and memory require 
mentS. 

0051. The interleaved scheme brings together both a 
depth-first search and a breadth-first-search scheme in tight 
integration combining the advantages of both. The new 
scheme works in a “push-pull manner by going back and 
forth between the two schemes ensuring that the benefit of 
each scheme is realized during the respective phase, and 
giving the best overall performance. Indeed, the depth-first 
search or the “pull uncovers any paths building binary deci 
sion diagrams along which building the binary decision dia 
gram for a sink node may suffice, while the “push” or the 
levelized breadth-first-search traversal causes binary decision 
diagrams to be propagated quickly from the inputs towards 
the outputs with a tight control on consumed resources. The 
resource limit further ensures that the overall algorithm does 
not get stuck in any one computation that does not contribute 
to the final result. The order of breadth first and depth-first 
searching can be reversed from that described above without 
departing from the scope of the invention. 
0.052 While this invention has been particularly shown as 
described with reference to a preferred embodiment, it will be 
understood by those skilled in the art that various changes in 
form and detail may be made therein without departing from 
the spirit and scope of the invention. It is also important to 
note that although the present invention has been described in 
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the context of a fully functional computer system, those 
skilled in the art will appreciate that the mechanisms of the 
present invention are capable of being distributed as a pro 
gram product in a variety of forms, and that the present 
invention applies equally regardless of the particular type of 
signal bearing media utilized to actually carry out the distri 
bution. Examples of signal bearing media include, without 
limitation, recordable type media such as floppy disks or CD 
ROMs and transmission type media Such as analog or digital 
communication links. 
What is claimed is: 
1. A computer program product in a computer-readable 

medium for efficiently producing a description of a logic 
function in m-ary decision representations, said computer 
program product comprising: 

a tangible computer-readable storage medium; 
instructions on the tangible computer-readable storage 
medium, when executed by a computer, for setting a first 
size limit for a first set of one or more m-ary decision 
representations describing a logic function; 

instructions on the tangible computer-readable storage 
medium, when executed by a computer, for setting a 
second size limit for a second set of one or more m-ary 
decision representations describing a logic function; 

instructions on the tangible computer-readable storage 
medium, when executed by a computer, for building said 
first set of m-ary decision representations of said logic 
function with one of the set of a depth-first technique or 
a breadth-first technique until said first size limit is 
reached; 

instructions on the tangible computer-readable storage 
medium, when executed by a computer, for building a 
second set of m-ary decision representations of said 
logic function with the other of the set of a depth-first 
technique or a breadth-first technique until said second 
size limit is reached; 

instructions on the tangible computer-readable storage 
medium, when executed by a computer, for, in response 
to determining that a union of first set and said second set 
of m-ary decision representations do not describe said 
logic function, 
for increasing said first size limit, 
for increasing said second size limit, and 
for repeating said instructions for building said first set 

and said instructions for building said second set; and 
instructions on the tangible computer-readable storage 
medium, when executed by a computer, for, in response 
to determining that said union of said first set of m-ary 
decision representations and said second set of m-ary 
decision representations describes said logic function, 
reporting the union of said first set of m-ary decision 
representations and said second set of m-ary decision 
representations to an output file. 

2. The computer program product of claim 1, further com 
prising: 

instructions on the tangible computer-readable storage 
medium, when executed by a computer, for, in response 
to determining, during execution of one of the set of said 
instructions for building said first set of m-ary decision 
representations or said instructions for building said sec 
ond set m-ary decision representations, that the union of 
said first set of m-ary decision representations and said 
second set of m-ary decision representations describes 
said logic function, Suspending execution of said one of 
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the set of said instructions for building said first set of 
m-ary decision representations or said instructions for 
building said second set m-ary decision representations 
and reporting the union of said first set of said first set of 
m-ary decision representations and said second set of 
m-ary decision representations. 

3. The computer program product of claim 1, wherein: 
said instructions for increasing said first size limit further 

instructions on the tangible computer-readable storage 
medium, when executed by a computer, for doubling 
said first size limit; and 

said instructions for increasing said second size limit fur 
ther comprise instructions on the tangible computer 
readable storage medium, when executed by a computer, 
for doubling said second size limit. 

4. The computer program product of claim 1, wherein: 
said instructions for building said first set of m-ary decision 

representations of said logic function further comprise 
instructions on the tangible computer-readable storage 
medium, when executed by a computer, for building a 
first set of binary decision representations of said logic 
function; and 

said instructions for building said second set of m-ary 
decision representations of said logic function further 
comprise instructions on the tangible computer-readable 
storage mediums when executed by a computer, for 
building a second set of binary decision representations 
of said logic function. 

5. The computer program product of claim 1, wherein: 
said instructions for building said first set of m-ary decision 

representations of said logic function further comprise 
instructions on the tangible computer-readable storage 
medium, when executed by a computer, for building a 
first set of m-ary decision diagrams of said logic func 
tion; and 

said instructions for building said second set of m-ary 
decision representations of said logic function further 
comprise instructions on the tangible computer-readable 
storage medium when executed by a computer, for 
building a second set of m-ary decision diagrams of said 
logic function. 

6. The computer program product of claim 1, wherein: 
said instructions for determining that said union of said 

first set of m-ary decision representations and said sec 
ond set of m-ary decision representations describes said 
logic function further comprise instructions on the tan 
gible computer-readable storage medium, when 
executed by a computer, for determining that said union 
of said first set of m-ary decision representations and 
said second set of m-ary decision representations con 
tains binary decision diagrams for all sinks in said logic 
function. 

7. The computer program product of claim 1, wherein: 
said instructions for building a second set of m-ary decision 

representations of said logic function with the other of 
the set of a depth-first technique or a breadth-first tech 
nique until said second size limit is reached further com 
prise instructions on the tangible computer-readable 
storage medium, when executed by a computer, for, in 
response to determining that said first set does not 
describe said logic function, building a second set of 
m-ary decision representations of said logic function 
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with the other of the set of a depth-first technique or a 
breadth-first technique until said second size limit is 
reached. 

8. The computer program product of claim 1, wherein: 
said instructions for determining that said first set do not 

describe said logic function further comprise instruc 
tions on the tangible computer-readable storage 
medium, when executed by a computer, for determining 
that said first set of m-ary decision representations does 
not contain binary decision diagrams for all sinks in said 
logic function; and 
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said instructions for determining that a union of first set and 
said second set of m-ary decision representations do not 
describe said logic function further comprise instruc 
tions on the tangible computer-readable storage 
medium, when executed by a computer, for determining 
that said union of said first set of m-ary decision repre 
sentations and said second set of m-ary decision repre 
sentations does not contain binary decision diagrams for 
all sinks in said logic function. 
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