(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/130658 A1l

4 October 2012 (04.10.2012) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 21/00 (2006.01) kind of national protection available). AE, AG, AL, AM,
21) International Apolication Number- AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(2D International Application Number: 12054826 CA. CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
19 March 2012 (19.03.2012) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
- . MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
(26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data:
11160420.3 30 March 2011 (30.03.2011) EP (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant (for all designated States except US): IRDETO GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
CORPORATE B.V. [NL/NL]; 105 Taurus Avenue, NL- UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
2132 LS Hoofddorp (NL). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU
(72) Inventor; and] k] 2]] E]] 2 k] 2 2 2 2
(75) Inventor/Applicant (for US only): DOUMEN, Jeroen LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S, SK,
. : SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
Mathias [NL/NL]; Irdeto Corporate B.V., 105 Taurus Av- GW, ML, MR, NE, SN, TD, TG)
enue, NL-2132 LS Hoofddorp (NL). > S)
(74) Agents: PELLY, Jason Charles et al.; Boult Wade Ten- Published:

nant, Verulam Gardens, 70 Gray's Inn Road, London
WCIX 8BT (GB).

with international search report (Art. 21(3))

(54) Title: ENABLING A SOFTWARE APPLICATION TO BE EXECUTED ON A HARDWARE DEVICE

’101a 24c

Fig.5

102a 103a

wo 2012/130658 A 1[I 000 0 R 0 O

(57) Abstract: The invention provides a method, a hardware circuit and a hardware device for enabling a software application to be
executed on a hardware device in dependence of the hardware circuit, while preventing the execution of a binary copy of the applica-
tion in another hardware device. Challenge data originating from the software application is input to a hardware circuit of the hard -
ware device, wherein the hardware circuit is configured to perform a deterministic function. Response data is generated by the hard -
ware device, which is used to manipulate at least a part of the software application to thereby enable the software application to be
executed.

10

15

20

25

30

WO 2012/130658 PCT/EP2012/054826

Enabling a software application to be executed on a hardware

device

FIELD OF THE INVENTION

The present invention relates to protecting software
applications. More specifically, the invention relates to
enabling a software application to be executed on a hardware

device.

BACKGROUND

Software obfuscation is a known technology for
implementing software programs such that they are hard to
reverse engineer. This technology typically includes the
replacing of software functions with a sequence of table lookup
operations and merging the function lookup with transform
functions that make it substantially infeasible to discover the
function and the function parameters. The resulting secured
software program performs input and/or output operations that
consist of transformed parameters. These transformed parameters
may require specific adaptations in modules interfacing with the
secured software program.

Data and software obfuscation techniques make use of
transformation functions to obfuscate intermediate results. The
concept of transformation functions differs from encryption,
which is clarified in general with reference to Fig.l.

Assume that there exists an input domain ID with a
plurality of data elements in a non-transformed data space. An
encryption function E using some key is defined that is
configured to accept the data elements of input domain ID as an
input to deliver a corresponding encrypted data element in an
output domain OD. By applying a decryption function D using a
key that corresponds to the key used by the encryption function
E, the original data elements of input domain ID can be obtained
by applying the decryption function D to the data elements of
output domain OD. In a non-secure environment (typically
referred to as “whitebox”), an adversary is assumed to know

input and output data elements and have access to internals of

10

15

20

25

30

35

WO 2012/130658 2 PCT/EP2012/054826

encryption function E during execution. Unless extra precautions
are taken in this environment, the key can be derived.

Additional security can be obtained in a non-secured
environment by applying transformation functions to the input
domain ID and output domain OD, i.e. the transformation
functions are input- and output operations. Transformation
function T; maps data elements from the input domain ID to
transformed data elements of transformed input domain ID’ of a
transformed data space. Similarly, transformation function T,
maps data elements from the output domain OD to the transformed
output domain OD’. Transformed encryption and decryption
functions E’ and D’ can now be defined between ID’ and OD’. In
case inverse transformations are to be performed, e.g. when
results are to be communicated to the non-transformed space, T
and T, are injections.

Using transformation functions T;, T;, together with
encryption techniques implies that, instead of inputting data
elements of input domain ID to encryption function E to obtain
encrypted data elements of output domain OD, transformed data
elements of domain ID’ are input to transformed encryption
function E’ by applying transformation function T;. Transformed
encryption function E’ combines the inverse transformation

! and the transformation function T, in the encryption

function T~
operation to protect the confidential information, such as the
key. Then transformed encrypted data elements of domain OD’ are
obtained. Keys for encryption functions E or decryption function
D cannot be retrieved when analyzing input data and output data
in the transformed data space.

One of the transformation functions T;, T, should be a
non-trivial function. In case, T; is a trivial function, the
input domains ID and ID’ are typically the same domain. In case,
T, is a trivial function, the output domains are typically the
same domain.

In general, secured software applications use
transformed intermediate results which are unusable when
intercepted. This property enables the protection of
confidential data in secured software applications. In order to

enable the secured software application to limit its

10

15

20

25

30

35

WO 2012/130658 3 PCT/EP2012/054826

functionality to a few (or one) particular devices, several
technologies are known.

The transformation technology can be used to secure a
wide range of software programs. Fig.2 and Fig.3 illustrate a
known example of how a physical smart card used in a digital TV
environment (see Fig.2) can be replaced by a secured software
implementation of the smart card functionality ({see Fig.3). It
is to be understood that the present invention is not limited to
the field of digital TV.

Fig.2 schematically shows an example of a typical
digital TV receiver 2a that receives encrypted digital TV
content from a head-end 1 and outputs a signal to an output
device 4 for displaying the digital TV content to an end-user.
Arrows indicate a data flow in the direction as indicated. The
head-end 1 transmits the digital TV content to a large number of
receivers 2a. The receiver 2a uses an input module 21 to acquire
the transmitted digital TV signal, which is subsequently
provided to a content processing module 22a. The content
processing module 22a is typically based on a general purpose
processing unit 23a (e.g. using a 32 bit CPU) extended with a
secured electronic circuit 24a to implement security functions
such as encryption, decryption and secure key storage. Such
processing may involve processing steps implemented in a
detachably attached smart card 3. The result of the content
processing is a signal suitable for rendering on the output
device 4 such as a TV set.

The head-end 1, secured circuit 24a and smart card 3
are secured modules that are implemented such that it is
difficult for an attacker to modify its intended operation. The
input module 21, processing unit 23a, output device 4 and the
interfaces between the modules are typically accessible to an
attacker, so their proper operation cannot be relied upon.

Fig.3 schematically shows an alternative example of a
known digital TV receiver 2b that receives encrypted digital TV
content from a head-end 1 and outputs a signal to an output
device 4 for displaying the digital TV content to an end-user.
Arrows indicate a data flow in the direction as indicated. The
head-end 1 transmits the digital TV content to a large number of

receivers 2b. The receiver 2b uses an input module 21 to acquire

10

15

20

25

30

35

WO 2012/130658 4 PCT/EP2012/054826

the transmitted digital TV signal, which is subsequently
provided to a content processing module 22b. The content
processing module 22b is typically based on a general purpose
processing unit 23b (e.g. using a 32 bit CPU) extended with a
secured electronic circuit 24b to implement security functions
such as encryption, decryption and secure key storage.

Given the common availability of a secured circuit
module 24b, the smart card 3 of Fig.2 can be replaced by a
secured software implementation running in the content
processing module 22b. Hereto the processing unit 23b is
configured with additional software for the functions that used
to be implemented by the smart card.

As in the example of Fig.2, the head-end 1 and secured
circuit 24b are secured modules that are implemented such that
it is difficult for an attacker to modify its intended
operation. The input module 21, processing unit 23b, output
device 4 and the interfaces between the modules are typically
accessible to an attacker, so their proper operation cannot be
relied upon. In order to secure the smart card functions in the
to the attacker accessible environment of the processing unit
23b, the functions are implemented using secured software
technology. The secured circuit 24b contains a memory for a set
of secret keys that are used together with the output of the
processing unit 23b to derive content keys for use in a
descrambling circuit of the secured circuit 24b. One of the
secret keys is installed during the manufacturing process. This
so called Chip Secret Key is used to securely load other secret
keys. A key loading message is embedded in the secured software
and it is used to load a known secret key in the secure module.
The secured software also has the fixed key encryption routine
to encrypt a content key with the secret key that is stored in
encrypted form in the key loading message. The fixed key
encryption routine in the secured software application limits
the application to execute on the device that can decrypt the
key loading message associated with the secured software
application.

The known technologies for enabling an obfuscated
software application to be executed on a particular hardware

device, also known as node locking, have in common that the

10

15

20

25

30

35

WO 2012/130658 S PCT/EP2012/054826

output of a processing unit running obfuscated software is used
by a secured circuit as an input to one or more security
functions of the secured circuit. If the output of the
processing unit is incorrect, then the secured circuit will not
be able to perform the security function correctly. It is not
prevented though that the software application itself can be
executed. E.g. in the examples of Fig.2 and Fig.3 the output of
the processing unit 23a,23b is used by the secured circuit
24a,24b as an input key enabling the decryption of the digital
TV content or as a qualifier that the receiver 2a,2b has
knowledge about a (secret) key.

It is known that a software application running in a
processing unit may poll predefined memory locations and use the
resulting data in the further execution of the application. If
the resulting data is incorrect then the software application
will stop functioning correctly. The memory location is e.g. a
specific hardware register containing e.g. unique values or
cryptographic keys. The security provided by this polling method
is limited, because the content of the memory locations may be
modified.

It is known that a probing function implemented in a
processing unit may e.g. activate a physically unclonable
function (PUF) that produces a response result based on a
challenge input provided to the function. PUFs are difficult to
implement, because they have an initialisation problem. A
further problem associated with PUFs is that a sender of a
challenge input needs to know the possible response output of
the PUF when triggered by the challenge input beforehand,
because each PUF in each receiver is unique and produces an
unpredictable response to a challenge. The PUF can only be
characterised by a suitably large set of challenge-response
pairs which may be obtained at manufacturing time or at a later
stage in the deployment of the device by measuring responses to
challenges.

There is a need for an improved technology for enabling
the execution of a general purpose software application in a
hardware device, while preventing the execution of the

application or a binary copy of the application in another

10

15

20

25

30

35

WO 2012/130658 6 PCT/EP2012/054826

hardware device, without the above identified drawbacks of the

prior art.

SUMMARY OF THE INVENTION

It is an object of the invention to provide for a
technology enabling a software application to be executed in a
hardware device, while preventing the execution of the
application or a binary copy of the application in another
hardware device.

According to an aspect of the invention a computer-
implemented method is proposed for enabling a software
application to be executed on a hardware device in dependence of
a hardware circuit in the hardware device. The method comprises
inputting challenge data originating from the software
application to a hardware circuit of the hardware device. The
hardware circuit is configured to perform a deterministic
function. The method further comprises generating response data
using function with the challenge data as input to the function.
The method further comprises using the response data to
manipulate at least a part of the software application to
thereby enable the software application to be executed.

According to an aspect of the invention a hardware
circuit is proposed for enabling a software application to be
executed on a hardware device comprising the hardware circuit
and in dependence of the hardware circuit. The hardware circuit
is configured to perform a deterministic function that uses
challenge data originating from the software application as
input to the function to generate response data for manipulating
at least a part of the software application to thereby enable
the software application to be executed.

Deterministic functions differ from non-deterministic
functions such as PUFs. Deterministic functions typically return
the same result any time they are called with a specific set of
input values. Non-deterministic functions typically return
different results each time they are called with a specific set
of input values. Moreover, deterministic functions can typically
be expressed mathematically, whereas a non-deterministic

function such as a PUF cannot be expressed mathematically.

10

15

20

25

30

35

WO 2012/130658 l PCT/EP2012/054826

The operation of the software application (or at least
some aspects of its operation) depends on the presence of the
hardware circuit with the deterministic function. Hence, it is
the presence of the hardware circuit that enables the hardware
device to unlock the use of the software application. Thus, the
execution of a software application is anchored to a hardware
circuit, hereby enabling the software application to be executed
only on the particular hardware device comprising the hardware
circuit with the deterministic function.

It is to be understood that enabling the software
application to be executed means that the software application
can be executed correctly or as intended. The response data from
a hardware circuit that is not intended to be used with the
software application may be used to manipulate the software
application, but in this case the software application will be
manipulated incorrectly, resulting in e.g. the execution of the
software application to produce meaningless output or to be
disruptive.

The embodiments of claims 2 and 15 advantageously
enable the execution of the software application in a limited
number of hardware devices. If the function is unique to one
hardware circuit then only the one hardware device comprising
the hardware circuit with the unique function can execute the
software application. If the function is unique to a group of
hardware circuit then only the hardware devices comprising a
hardware circuit from the group of hardware circuits can execute
the software application.

The embodiments of claims 3-6 and 16 advantageously
enable the use of cryptographic functions embedded in hardware,
which are known as such, in the hardware circuit. Examples of
suitable cryptographic functions are an encryption function, a
decryption function, a keyed hash function and a pseudo random
number generator.

The embodiment of claim 7 advantageously enables a
software application to be anchored to the hardware circuit when
being executed in the hardware device. It is possible that the
inverted response data is data enabling the challenge data to be
derived or data wherein the challenge data is already further

processes by e.g. the hardware circuit.

10

15

20

25

30

35

WO 2012/130658 8 PCT/EP2012/054826

The embodiment of claim 8 advantageously enables
cryptographic functions in a software application to be anchored
to the hardware circuit when being executed in the hardware
device.

The embodiment of claim 9 advantageously enables a
software application to be anchored to the hardware circuit
using fixed-key cryptographic functions when being executed in
the hardware device.

The embodiment of claim 10 advantageously enables a
software application to be anchored to the hardware circuit in
an alternative manner when being executed in the hardware
device. The inverse function compares the output of the function
in the hardware device with the output of the further function
in the secured software module and uses the comparison result to
generate the inverted response data. If the comparison result is
incorrect, then the inverted response data will be generated
such that it is different from the challenge data to thereby
disable further execution of the software application.

The embodiment of claim 11 enables an alternative to
the embodiments of claims 7-10.

The embodiment of claim 12 advantageously enables the
decryption of an encrypted software application to be anchored
to the hardware circuit.

According to an aspect of the invention a computer-
implemented method is proposed for adding a random data block to
an encrypted software application. The method comprises dividing
a software image of the encrypted scoftware application into
equal length blocks. The method further comprises determining a
replacement block being one of the blocks to be replaced by the
random data block. The method further comprises applying a block
cipher-based message authentication code (CMAC) function to the
blocks until the replacement block. The method further comprises
applying a reversed block cipher-based message authentication
code (CMAC) function to the blocks starting from the last block
until the block after the replacement block. Tag T equals the
encryption key used to encrypt the encrypted software. The tag T
is decrypted using CMAC key K. The decrypted tag T is added to
CMAC key dependent value V; and the last block to obtain an

intermediate result. The intermediate result is decrypted using

10

15

20

25

30

35

WO 2012/130658 9 PCT/EP2012/054826

the CMAC key K. The decrypted intermediate result is added to
the preceding block to obtain a further intermediate result and
repeating the decrypting and adding of further intermediate
results until the replacement block. The method further
comprises adding the last result from the block cipher-based
message authentication code (CMAC) function to the last result
of the reverse block cipher-based message authentication code
(CMAC) function to obtain the random data block. The method
further comprises replacing the replacement block with the
random data block. The CMAC key K corresponds to a further CMAC
key K in a hardware circuit of an hardware device.

Thus, an encrypted software application can be
obtained, which decryption is anchored to a hardware circuit of
a particular hardware device.

The embodiment of claim 17 advantageously enables the
hardware circuit to be embedded in existing chips or chipsets.

According to an aspect of the invention a hardware
device is proposes comprising a hardware circuit having one or
more of the above described features.

The embodiments of claims 18 and 19 advantageously
enable the software application to be executed on frequently
used hardware devices.

According to an aspect of the invention a software
application is proposed, which, when being executed by a
processor, is adapted to manipulate at least a part of the
software application to thereby enable the software application
to be executed on a hardware device in dependence of a hardware
circuit in the hardware device, by using response data that is
generated using a deterministic function in the hardware circuit
that uses challenge data as input to the function, wherein the
challenge data originates from the software application.

Hereinafter, embodiments of the invention will be
described in further detail. It should be appreciated, however,
that these embodiments may not be construed as limiting the

scope of protection for the present invention.

10

15

20

25

30

35

WO 2012/130658

10 PCT/EP2012/054826

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the invent

ion will be explained in greater

detail by reference to exemplary embodiments shown in the

drawings, in which:
Fig.l is a diagram cl
and encryption in general terms

Fig.2 is a schematic
digital TV receiver system for
content;

Fig.3 is a schematic
digital TV receiver system for
content;

Fig.4 is a schematic

receiver system for processing

arifying transformation functions
illustration of a prior art

processing encrypted digital TV

illustration of another prior art

processing encrypted digital TV

illustration of a digital TV

encrypted digital TV content

according to an exemplary embodiment of the invention;

Fig.5 is a schematic illustration of a software

application that is anchored to

an exemplary embodiment of the

Fig.6 is a schematic illustration of a CMAC function as

used in a hardware circuilt acco

of the invention;

Fig.7 is a schematic illustration of a CMAC function as

used in hardware circuit accord

embodiment of the invention;

Fig.8 is a schematic illustration of a CMAC function as

used in hardware circuit accord

embodiment of the invention;

a hardware circuit according to

invention;

rding to an exemplary embodiment

ing to another exemplary

ing to another exemplary

Fig.9 is a schematic illustration of a software

application that is anchored to
another exemplary embodiment of

Fig.10 is a schematic
application that is anchored to
another exemplary embodiment of

Fig.1l1l is a schematic
application that i1s anchored to

another exemplary embodiment of

a hardware circuit according to
the invention;

illustration of a software

a hardware circuit according to
the invention;

illustration of a software

a hardware circuit according to

the invention;

10

15

20

25

30

35

WO 2012/130658 11 PCT/EP2012/054826

Fig.1l2 is a schematic illustration of a software
application that is anchored to a hardware circuit according to
another exemplary embodiment of the invention;

Fig.1l3 is a schematic illustration of a CMAC function
for creating an encrypted software application that is anchored
to a hardware circuit according to an exemplary embodiment of
the invention;

Fig.1l4 is a schematic illustration of an encryption
function as used in hardware circuit according to an exemplary

embodiment of the invention.

DETATLED DESCRIPTION OF THE DRAWINGS

The invention enables a software application to be
executed in a hardware device, while preventing the execution of
the application or a binary copy of the application in another
hardware device. Challenge data originating from the software
application is input to a hardware circuit of the device. The
challenge data comprises e.g. runtime data such as state
information or parameter values of the application when being
executed in a processing unit. Alternatively the challenge data
comprises at least a part of the software image of the
application itself. The hardware circuit processes the challenge
data using a deterministic function, which is preferably
uniquely defined for a particular hardware circuit, and returns
the response data for further processing of the software
application.

Various techniques can be used to implement the
hardware circuit. The hardware circuit can e.g. be implemented
using a transistor network on a chip. Another example is an
implementation by a separate microcontroller on the same chip or
using software in an isolated process. Another example is an
implementation in a software process using a cryptography co-
processor. Another example is to use a node-locking chip on the
same printed circuit board (PCB), but external to the main chip
containing the CPU. It is to be understood that the
implementation of the hardware circuit is not limited to these
examples and that other known techniques can be used to
implement a hardware circuit that can be configured to perform a

deterministic function.

10

15

20

25

30

35

WO 2012/130658 12 PCT/EP2012/054826

Deterministic functions differ from non-deterministic
functions such as PUFs. Deterministic functions typically return
the same result any time they are called with a specific set of
input values. Non-deterministic functions typically return
different results each time they are called with a specific set
of input wvalues. Moreover, deterministic functions can typically
be expressed mathematically, whereas a non-deterministic
function such as a PUF cannot be expressed mathematically. It is
known that the output of PUFs may be made deterministic by
applying e.g. error correction mechanisms to the output, but
this does not make the PUF itself deterministic.

Both secured and non-secured software applications can
benefit from the invention, but for optimal results the software
application is secured using e.g. software obfuscation
techniques as non-secured software applications could be
modified to ignore the hardware circuit.

In case of the execution of a secured software
application a first module of the secured software application
sends runtime data as challenge data to the hardware circuit.
The hardware circuit processes the challenge data using the
preferably unique function and returns the response data to a
second module of the secured software application to perform an
inverse operation of the preferably unique function to undo the
effects of the hardware circuit. Herewith the software
application is effectively anchored to the hardware circuit.

In case of the challenge data comprising at least a
part of the software image of the application itself, the
challenge data is input to the hardware circuit. The hardware
circuit processes the data using the preferably unique function
and returns the response data, which, possibly after some
conversion operation, is used as a decryption key to decrypt the
software image. Herewith the software application is effectively
anchored to the hardware circuit.

The unique properties of the hardware circuit and the
associated further processing of its output make it
substantially impossible to run the software application on a

different device than the device it is intended for.

10

15

20

25

30

35

WO 2012/130658 13 PCT/EP2012/054826

The hardware circuit can be included in a wide range of
CPU’s (including embedded devices), GPU’s and programmable I/O
peripherals.

Fig.4 schematically shows an example of how the
invention can be used in a digital TV environment. It is to be
understood that the present invention is not limited to the
field of digital TV and may be used to anchor any software
application to a CPU containing the hardware circuit. The
hardware circuit allows whitebox attack resistant software to be
strongly coupled to a single device. The invention extends the
uniqueness of the hardware circuit to the software application
that effectively is anchored to the hardware circuit. Such
anchored software applications can be used in e.g. embedded
devices such as digital TV receivers or in e.g. PC’s, tablet
PC’s, smart phones, Internet (cloud) servers, graphics cards, or
any other I/0 device.

In the example of Fig.4, a digital TV receiver 2c
receives encrypted digital TV content from a head-end 1 and
outputs a signal to an output device 4 for displaying the
digital TV content to an end-user. Arrows indicate a data flow
in the direction as indicated. The head-end 1 transmits the
digital TV content to a large number of receivers 2c. The
receiver 2c uses an input module 21 to acquire the transmitted
digital TV signal, which is subsequently provided to a content
processing module 22c. The content processing module 22c is
based on a general purpose processing unit 23c (e.g. using a 32
bit CPU) extended or embedded with a hardware circuit 24c. A
secured software application for processing the encrypted
digital TV content runs in the processing unit 23c. The result
of the content processing is a signal suitable for rendering on
the output device 4 such as a TV set.

The head-end 1 and hardware circuit 24c are implemented
such that it is difficult for an attacker to modify or observe
its operation. The input module 21, software executing on the
processing unit 23c, output device 4 and the interfaces between
the modules are typically accessible to an attacker, so their
proper operation cannot be relied upon.

The hardware circuit 24c implements a unique function

that processes challenge data containing e.g. state information

10

15

20

25

30

35

WO 2012/130658 14 PCT/EP2012/054826

from the secured software application. The inverse operation of
the function implemented by the hardware circuit 24c is
implemented in a module of the secured software application to
recover the initial state. Alternatively, data enabling the
initial state to be derived or data wherein the initial state is
further processed is output by the module. The secured software
module inherits the uniqueness of the function implemented by
the secured circuit 24c. As the secured software module is
preferably unique, other devices with a different hardware
circuit are not capable of executing a binary copy of the
software application. Replacing the secured software module with
another implementation requires knowledge of the preferably
unique function implemented by the hardware circuit 24c or the
knowledge of the inverse function implemented by the secured
software module. Both types of knowledge can only be acquired by
reverse engineering. As the implementation of both the hardware
circuit 24c and the secured software module is very hard to
reverse engineer, it will be very difficult to execute a copy or
modified copy of the application on another device.

Fig.5 shows an exemplary embodiment of a software
application that is anchored to a hardware circuit. The software
application, or a part of the software application, is
implemented as a sequence of secured software modules, i.e.
secured software module i indicated by 10la and secured software
module i+1 indicated by 103a in Fig.5. Each secured software
module 10la,103a exchanges parameters and/or state information
in a transformed domain. The secured software application is
anchored to a specific device by anchoring the application to
the hardware circuit 24c of the device.

The hardware circuilt 24c is configured with a
preferably unique function or preferably unique secret data that
drives a common function that corresponds to an inverse function
implemented in an inverse secured software module 102a. As the
interfaces between the secured software modules are protected by
transformations, the secured software application will not
operate correctly if the output of secured software module 1
10la is input directly into the inverse secured software module

102a. In other words, bypassing the hardware anchor is not

10

15

20

25

30

35

WO 2012/130658 15 PCT/EP2012/054826

possible as it results in a non-functional secured software
application.

The inverse secured software module 102a and the
secured software module i+1 103a can be implemented as a single
module combining the functionalities of the two.

In an alternative exemplary embodiment, which is not
shown in a fiqure, the order of the hardware circuit 24c and the
inverse secured software module 102a is reversed. In this
embodiment the inverse secured software module performs the
function of the hardware circuit 24c and the hardware circuit
performs the function of the inverse secured software module
102a. In this embodiment the inverse secured software module and
the secured software module i 10la can be implemented as a
single module combining the functionalities of the two.

The hardware circuit can be realised using e.g. an
existing crypto coprocessor with an integrated block cipher such
as AES. A keyed hash function, also known as message
authentication code (MAC), can be used as an anchor function.
These and other cryptographic functions are made unique by
putting a unique (or uniquely derivable) key in each individual
chipset during the personalization of hardware circuits. Other
key loading mechanisms are possible as well. A block cipher-
based MAC function such as Cipher-based MAC (CMAC) is
particularly suitable. The CMAC standard works with any block
cipher, such as e.g. AES. The CMAC standard is also known as
REFC-4493.

The following examples show an implementation of a
hardware anchor using the CMAC standard. It is to be understood
that the invention is not limited to keyed hash functions such
as CMAC and that the invention is not limited to the AES block
cipher.

Fig.6 shows an example of a flow chart of a CMAC
calculation for a b-bit message M, i.e. the block size of the
cipher is b and the message M has a length of b bits. The output
of the CMAC is called a tag T. As the block cipher is used as
basic building block, the tag T will also be b bits in size. The
message M is added to a key-dependent value V; using add function

@ and then encrypted with a key K using an Encrypt function.

10

15

20

25

30

35

WO 2012/130658 le PCT/EP2012/054826

If the message block is shorter than b bits, the
message M is padded as shown in Fig.7. The padding bits are
indicated by 10--0. In this case, a different key-dependent value
V, is used.

With reference to Fig.8, to calculate the CMAC for an
arbitrary-length input message M, the message is first divided
into message blocks M; of length b. In the example of Fig.8
message M has a length of 1xb bits and the message M is thus
divided into message blocks My, M; - M;. Each block M; is
encrypted by the chosen block cipher under the same key K, with
the output of the Encrypt function being added to the next
message block. For the final block M;, the key-dependent value V;
is also added before this encryption.

If the length of the message M is not an exact multiple
of b, then the last message block M; is padded as shown in Fig.7.
In this case, the key-dependent value V, will be used instead of
Vi.

The derivation of V; and V., are defined as follows,
wherein ‘Encryptg’ denotes an encryption (e.g. AES-128
encryption) using key K, ‘0 denotes an all-zero vector of b-
bits, ‘MSB’ denotes the most significant bit, ‘<<’ denotes a

leftwards bit rotation, and @ denotes an exclusive-OR.

Let L = Encryptg(0?)
If MSB(L)=0, then V; = L << 1 ;

Else V; = (L << 1) @ Ry
3. If MSB(V1)=O, then V, = V; << 1
Else V, = (V; << 1) & Ry

In step 1, AES-128 with key K is applied to the all-
zero input block. In step 2, V; is derived through the following
operation: If the most significant bit of L is equal to O, V; is
the left-shift of L by 1 bit. Otherwise, V; is the exclusive-OR
of Ry, and the left-shift of L by 1 bit. In step 3, V; is derived
through the following operation: If the most significant bit of
V; is equal to 0, V, is the left-shift of V; by 1 bit. Otherwise,
V, 1s the exclusive-OR of Ry and the left-shift of V; by 1 bit.
Herein R, is a constant predefined in the CMAC standard. For
example for b=128 Ri,5=0%°10000111.

10

15

20

25

30

35

WO 2012/130658 17 PCT/EP2012/054826

As V; and V,; only depend on the key K, they can be pre-
computed once and subsequently used for many CMAC calculations.
V; and V,; can e.g. be stored in non-volatile memory or computed
once on first use.

Key K must be securely available to the hardware
circuit implementing the cryptographic function such as e.g. the
CMAC function. It is to be understood that the invention is not
limited to the following examples and that other alternative
solutions may be used to securely make the key K available to
the hardware circuit.

Key K can be implemented as an additional key,
personalized into the silicon. Alternatively, key K can be
derivable from an existing unique chipset key (CSUK) in some
fashion, for instance by using a Davies-Meyer type of
construction. Alternatively, the key K can be provided to the
hardware circuit using a key ladder solution known from securely
sending control words to a descrambler module using a session
key, which key ladder is adapted to securely send the key K to
the hardware circuit instead. Alternatively, a key transport
protocol can be used as disclosed in applicant’s co-pending
European patent application titled “Key Transport Protocol” and
having reference number 15464, which is herewith incorporated by
reference in its entirety.

The key transport protocol enables a sender to transmit
a key loading message to the receiver. Next, the key is loaded
onto the receiver. To create the key loading message, the sender
first generates a virtual key, denoted as K*. Second, the sender
secures the virtual key to protect the virtual key’s
authenticity and confidentiality, thereby producing a secured
virtual key. The secured virtual key is then transported as part
of a key loading message from the sender to the receiver. The
virtual key may be encrypted using a public key associated with
the receiver. The secured virtual key may be created by adding a
signature using a signature key associated with the sender. The
virtual key K* generated by the sender and a signature
verification key associated with the sender are used as inputs
to a cryptographic function to produce an output. The

cryptographic function is typically a part of the cryptographic

10

15

20

25

30

35

WO 2012/130658 18 PCT/EP2012/054826

function of the hardware circuit. Said output includes the key
K.

Fig.1l4 shows an example of a flow chart of a
calculation of an output value T for a b-bit message M, which is
a simplified version of the example of Fig.6. The b-bit message
M is directly encrypted with a key K using an Encrypt function.
The big advantage of this variant is that it can be supported on
existing silicon, by leveraging a memory-to-memory encryption
using the standard key ladder. However, it is less flexible as
it cannot handle an arbitrary-length input.

In the following example a secured part of a software
application is anchored to a hardware circuit using lookup
tables as used in e.g. AES cryptography. The hardware circuit
anchor is realised using CMAC and an AES crypto coprocessor. The
invention is not limited to AES. Any other block cipher may be
used in the crypto coprocessor.

Software obfuscation typically implements cryptographic
functions as a sequence of lookup tables. With reference to
Fig.5, in this example the hardware anchor 24c is implemented as
an additional lookup table, between two “regular” secured
software tables 101la and 103a. This effectively binds the
secured software to the hardware uniquely.

Secured software table i 10la and secured software
table i+1 103a represent a part of the secured software
application that is anchored to the hardware. The output from
secured software table i 10la is used as challenge data to the
hardware anchor 24c, which provides a wider output. In this
example the response data from secured software table i 10la is
8 bits and the output of the hardware anchor 24c is 128 bits.
The secured software table i+1 103a of the secured software
implementation is expanded with an inverse secured software
table 102a, which transforms the wide output of the anchor 24c
back to the expected input.

The inverse secured software table 102a and secured
software table i+1 103a are preferably integrated to obtain a
higher level of obfuscation.

Each secured software application i1s personalized
according to the coupled hardware circuit 24c that contains a

unique hardware key K. It would also be possible to give a batch

10

15

20

25

WO 2012/130658 19 PCT/EP2012/054826

of hardware circuits the same key. This action reduces the
number of unique implementations.

With the hardware anchor 24c having an input of 8 bits
and an output of 128 bits, the inverse table 102a has a table
size of 2'?%8x8.

It is possible to use CMAC to produce shorter outputs
T, e.g. by using the 32 most significant bits instead of the
full 128 bits. This would lead to a smaller inverse table 102a,
i.e. an inverse table size of 2°?x8 (» 4096 megabytes) in the
above example. Even smaller inverse table sizes may be used with
even shorter outputs. The following table illustrates the table

size for different output sizes (in bits) and inputs of 8 bits.

Input | Output | Table size
8 10 21%8 ~ 1 kilobytes

8 12 2%2%8 ~ 4 kilobytes

8 14 2¥x%8 ~ 16 kilobytes

8 16 2%x8 ~ 64 kilobytes
8 32 2%?x8 ~ 4096 megabytes

It is possible to optimize the inverse table 102a. For
an 8-bit input, there are only 28 possible (128-bit) output
vectors. This means that the inverse table 102a only needs to
contain those 128-bit vectors, together with their 8-bit
original inputs. In this way, the inverse table size becomes
28% (128+8) bits, or about 4.25 kilobytes. The following table
illustrates the table size for different input sizes (in bits)

and outputs of 128 bits.

Input | Output | Table size

8 128 2% x (128+8) bits ~ 4 kilobytes

10 128 219 x (128+10) bits ~ 17 kilobytes
12 128 2% x (128+12) bits =~ 70 kilobytes
14 128 21 x (128+14) bits ~ 284 kilobytes
16 128 2% x (128+16) bits ~ 1152 kilobytes

Fig.9 shows an exemplary embodiment of an obfuscated

software application comprising a secured software part that is

10

15

20

25

30

35

WO 2012/130658 20 PCT/EP2012/054826

anchored to a hardware circuit 24d which is used during runtime.
Arrows indicate data flows.

An original secured software application consisting of
a first part 101lb and a second part 103b is split at an
arbitrary point. At this point, the execution of the first part
101b of the original secured software application is halted, and
b=128 bits (in case of AES in the hardware anchor 24d) of its
output are extracted and fed as challenge data to the hardware
anchor 24d. The rest of the output of the original secured
software application is kept as-is, which is shown as arrow 104.
In order to invert the response data of the hardware anchor 24d,
instead of a lookup table as shown in Fig.5 an inverse fixed-key
secured software module 102b is used. After this process, the
execution continues with the second part 103b of the original
secured software application using the output of the first part
101b as reconstructed by the inverse fixed-key secured software
module 102b combined with the rest of the internal state 104.

For increase security, preferably the transformation
space between the first part 10l1b and the hardware anchor 24d
differs from the transformation space between the inverse fixed-
key secured software module 102b and the second part 103b.

Fig. 10 shows an alternative exemplary embodiment of a
secured software application comprising a secured software part
that is anchored to a hardware circuit 24d which is used during
runtime. Arrows indicate data flows.

An original secured software application consisting of
a first secured software part 101b and a second secured software
part 103b is split at an arbitrary point. At this point, the
execution of the first secured software part 101b of the
original secured software application is halted, and its state
is extracted and input as challenge data to the hardware anchor
24d. The state is further input to a software CMAC secured
software module 105. In order to invert the response data of the
hardware anchor 24d, a property-dependent transform (PDT) module
102¢c or any other known comparison mechanism is used, which
compares the output of the CMAC secured software module 105 with
the response data of the hardware anchor 25d. After this

process, the execution continues in the second part 103b of the

10

15

20

25

30

35

WO 2012/130658 21 PCT/EP2012/054826

original secured software application using the state of the
first part 101lb as received from the PDT transform module 102c.

The advantage of the example of Fig.1l0 is that any size
of state vector can be handled as input. To do this, the whole
CMAC construction of Fig.8 is incorporated into the CMAC secured
software module 105, which repeatedly calls a secured software
encryption module just like the hardware circuit 24d.

In the end, both the CMAC secured software module 105
and the hardware circuit 24d have computed the tag T. In order
to compare the result, the property-dependent transform (PDT) or
other comparison mechanism is used.

It is to be understood that the state that is fed as
challenge data to the hardware circuit 24d can be in a
transformed form. There is no need for the hardware to learn the
clear (non-transformed) values.

Fig. 11 shows an exemplary embodiment enabling a secure
transmission or storage of a (secured) software application in
encrypted form, wherein the hardware circuit 24e is used to
compute the software-application-unique decryption key for
decrypting the encrypted part of the software application.

The software application comprises a loader code part
101lc and an encrypted software part 103c and is created to be
used on a particular device with a hardware circuit 24e. The
software application is e.g. downloaded or bought from an app
store.

A part of or the complete loader code 10lc is input as
challenge data to the hardware anchor 24d. The resulting device-
unique response data is used as the decryption key for
decrypting the encrypted software part 103c. When an AES
coprocessor is used as shown in the previous exemplary
embodiments, the decryption key will be a 128-bit value.

Fig. 12 shows an alternative exemplary embodiment
enabling a secure transmission or storage of a software
application in encrypted form, wherein the hardware circuit 24e
is used to compute the software-application-unique decryption
key for decrypting the encrypted part of the software
application.

The software application comprises a loader code part

106 and an encrypted software part 103c and is created to be

10

15

20

25

30

35

WO 2012/130658 22 PCT/EP2012/054826

used on a particular device with a hardware circuit 24e. A
random data block 107 is part of the encrypted software part
103c, making the encrypted software part 103c unique.

A part of or the complete encrypted software part 103c
is input to the hardware circuit 24d. When an AES coprocessor is
used as shown in the previous exemplary embodiments, the
decryption key will be a 128-bit wvalue.

The random data block 107 in the encrypted software
part 103c can be created by the provider of the encrypted
software application as follows. Initially the encryption key is
picked at random, and then it is backtracked what the
(ciphertext) wvalue of the random data block 107 should be.

Fig.1l3 shows an example of a calculation of the random
data block 107 by a provider. As example, assume that a second
block C; of the software application is to be used as random data
block 107 to insert an arbitrary ciphertext block and pick the
key T. It is to be understood that any and multiple blocks may
be used as random data block 107.

The first block C; is processed similar to block M; as
shown in Fig.8. For the other blocks C,; - C;, the calculation is
reversed compared to Fig.8: first the key T (with which the
software is encrypted) is decrypted with the hardware anchor key
K, which is then added to the key-dependent value V; and the last
block of the encrypted software. The result is decrypted again,
and added to the previous block of the encrypted software, and
so on. In this way, the two calculations meet and are added up
to produce the “missing” block C;. The thus calculated block C;
is inserted in the encrypted software part 103c as random data
block 107.

The correct decryption key can be derived by the end-
user device with the hardware circuit 24d that is configured
with the hardware anchor key K.

It is to be understood that runtime protection such as
e.g. shown in Fig.9 and Fig.1l0 may be applied in conjunction
with the decryption protection such as e.g. shown in Fig.1ll and
Fig.12.

In the exemplary embodiments shown Figs. 5, 9 and 10
the hardware circuit 24c,24d and inverse module 102a,102b,102c

are used in between two parts of the software application. It is

10

15

20

WO 2012/130658 23 PCT/EP2012/054826

to be understood that the hardware circuit and inverse module
may be used at the very beginning or at the very end of the
software application. If located at the very beginning, e.g. a
first input to the software application is used as challenge
data. If located at the very end, e.g. a final output of the
software application is used as challenge data.

One embodiment of the invention may be implemented as a
program product for use with a computer system. The program(s)
of the program product define functions of the embodiments
(including the methods described herein) and can be contained on
a variety of non-transitory computer-readable storage media.
Illustrative computer-readable storage media include, but are
not limited to: (i) non-writable storage media (e.g., read-only
memory devices within a computer such as CD-ROM disks readable
by a CD-ROM drive, ROM chips or any type of solid-state non-
volatile semiconductor memory) on which information is
permanently stored; and (ii) writable storage media (e.g., flash
memory, floppy disks within a diskette drive or hard-disk drive
or any type of solid-state random-access semiconductor memory)

on which alterable information is stored.

10

15

20

25

30

35

WO 2012/130658 24 PCT/EP2012/054826

CLAIMS

1. A computer-implemented method for enabling a software
application to be executed on a hardware device in dependence of
a hardware circuit in the hardware device, the method
comprising:

inputting challenge data originating from the software
application to the hardware circuit of the hardware device,
wherein the hardware circuit is configured to perform a
deterministic function;

generating response data using the function with the
challenge data as input to the function; and

using the response data to manipulate at least a part of the
software application to thereby enable the software application

to be executed.

2. The method according to claim 1, wherein the function

is unique to one or more hardware circuits

3. The method according to claim 1 or claim 2, wherein the

function is a cryptographic function.

4. The method according to claim 3, wherein the
cryptographic function uses a key that is one of a key
preconfigured in a memory of the hardware circuit and a key
derived from a unique key preconfigured in a memory of the

hardware circuit.

5. The method according to claim 4, wherein the
cryptographic function uses a key derived from a key loading

message received from an external source.

6. The method according to claim 5, wherein the key

loading mechanism is unique to the hardware device.

7. The method according to any one of the claims 1-6,
wherein the software application comprises a first secured
software part, a second secured software part and an inverse

module configured to perform an inverse function to inverse the

10

15

20

25

30

35

WO 2012/130658 25 PCT/EP2012/054826

function of the hardware circuit, wherein the challenge data
comprises at least a part of runtime data of the software
application at the end of the first secured software part when
being executed in a processing unit, and wherein the using of
the response data comprises:

inputting the response data to the inverse function in the
inverse module to thereby obtain an inverted response data,
wherein the inverted response data is equal to the challenge
data if the inverse function in the inverse module matched the
function in the hardware circuit; and

providing the inverted response data to the second secured

software part for further execution of the software application.

8. The method according to claim 7, wherein the first
secured software part comprises a first part of a cryptographic
function, wherein the second secured software part comprises a
second part of the cryptographic function, and wherein the
runtime data represents an intermediate result of the
cryptographic function as output by the first part of the

cryptographic function.

9. The method according to claim 7, wherein the function
in the hardware circuit comprises a fixed-key cryptographic
function configured to use a fixed key, and wherein the inverse
function comprises an inverse fixed-key cryptographic function

configured to use the fixed key.

10. The method according to claim 7, wherein the software
application further comprises a secured software module
configured to perform a further function identical to the
function in the hardware circuit, the method further comprising:

inputting the challenge data to the secured software module;

generating further response data from the further function
using the challenge data as input to the further function; and

inputting the further response data to the inverse function
in the inverse module to thereby obtain a further inverted
response data, wherein the further inverted response data is

equal to the challenge data if the inverse function in the

10

15

20

25

30

35

WO 2012/130658 26 PCT/EP2012/054826

inverse module matched the further function in the secured
software module,
and wherein the inverse function comprises a comparison function

to compare the response data with the further response data.

11. The method according to any one of the claims 7-10,
wherein the order of the hardware circuit and the inverse module
is reversed, wherein the hardware circuit is configured to
perform the inverse function, and wherein the inverse module is

configured to perform the deterministic function.

12. The method according to any one of the claims 1-6,
wherein the software application is an encrypted software
application, wherein the challenge data comprises as least a
part of a software image of the software application, and
wherein the using of the response data comprises:

using the response data as a decryption key to decrypt at

least a part of the encrypted software application.

13. A computer-implemented method for adding a random data
block to an encrypted software application, the method
comprising:

dividing a software image of the encrypted software
application into equal length blocks;

determining a replacement block being one of the blocks to
be replaced by the random data block;

applying a block cipher-based message authentication code
(CMAC) function to the blocks until the replacement block;

applying a reversed block cipher-based message
authentication code (CMAC) function to the blocks starting from
the last block until the block after the replacement block,
wherein tag T equals the encryption key used to encrypt the
encrypted software, wherein the tag T is decrypted using CMAC
key K, wherein the decrypted tag T is added to CMAC key
dependent value V; and the last block to obtain an intermediate
result, wherein the intermediate result is decrypted using the
CMAC key K, wherein the decrypted intermediate result is added

to the preceding block to obtain a further intermediate result

10

15

20

25

30

35

WO 2012/130658 27 PCT/EP2012/054826

and repeating the decrypting and adding of further intermediate
results until the replacement block;

adding the last result from the block cipher-based message
authentication code (CMAC) function to the last result of the
reverse block cipher-based message authentication code (CMAC)
function to obtain the random data block; and

replacing the replacement block with the random data block,
wherein the CMAC key K corresponds to a further CMAC key K in a

hardware circuit of an hardware device.

14. A hardware circuit for enabling a software application
to be executed on a hardware device comprising the hardware
circuit and in dependence of the hardware circuit, wherein the
hardware circuit is configured to perform a deterministic
function that uses challenge data originating from the software
application as input to the function to generate response data
for manipulating at least a part of the software application to

thereby enable the software application to be executed.

15. The hardware circuit according to claim 14, wherein the
function is unique to one or more hardware circuits of
respective hardware devices to enable the software application

to be executed on the respective hardware devices.

16. The hardware circuit according to claim 14 or claim 15,
wherein the function is a cryptographic function using a key
that is one of

a key preconfigured in a memory of the hardware circuit,

a key derived from a unique key preconfigured in a memory of
the hardware circuit, and

a key derived from a key loading message received from an

external source.

17. The hardware circuit according to any one of the claims
14-16, wherein the hardware circuit is embedded in one of a CPU,

a GPU and programmable I/0 peripheral.

18. A hardware device comprising a hardware circuit

according to any one of the claims 14-17.

10

WO 2012/130658 28 PCT/EP2012/054826

19. The hardware device according to claim 18, wherein the
hardware device is one of a digital TV receiver, a PC, a tablet
PC, a smart phone, an Internet (cloud) server and a graphics

card.

20. A software application which, when being executed by a
processor, is adapted to manipulate at least a part of the
software application to thereby enable the software application
to be executed on a hardware device in dependence of a hardware
circuit in the hardware device, by using response data that is
generated using a deterministic function in the hardware circuit
that uses challenge data as input to the function, wherein the

challenge data originates from the software application.

PCT/EP2012/054826

WO 2012/130658

1/8

(3xe zotad)
1°bTa

ad

aoedg
ejeq
pauuojsuel |

b
1 soedg
eleq

WO 2012/130658

2/8
2
/7 /
! 2T [T s~ eda 7
> —H—- — -n
T _——— |
Yy’
Fig.2
(prior art)
2b
// /
! 2 [T mb - 23dp 7
D= —|—|> —> i
I |
Fig.3
(prior art)
/2c ——————— 74/
L 21 [—c23c |
1 _ﬂ'D 24c |
: (— |

PCT/EP2012/054826

WO 2012/130658 PCT/EP2012/054826

3/8
101a 24c 102a 103a
I V4
Fig.5
M M 10--0
A4 v
Vi—] | Vo— |
A 4 \ 4
~—K—» Encrypt —-K—>» Encrypt

<———
<“——-—

Fig.6 Fig.7

WO 2012/130658 PCT/EP2012/054826
4/8
b bits
A
‘

My M. M

l v

—_>D_..____)D <«—V—
\ 4 \ 4
—K¥» Encrypt —K>» Encrypt —K¥»{ Encrypt

Fig.8

«— A

WO 2012/130658 PCT/EP2012/054826

5/8
101b 104 /103b
7 / V4
5 7
—> —>
vV
/|]
24d
Fig.9
101b 105 /103b
/ l -7/7 r 7
— Ty -
(NI
102c
/
/
24d

Fig.10

WO 2012/130658 PCT/EP2012/054826

6/8
/103c /lOlc
/ /
L/
Fig.11 246/
103c 107 106
/ /
7 7
[7]
NI :J B
v/
Fig.12 /

24e

WO 2012/130658

7/8

PCT/EP2012/054826

Encrypted software

A 4
—— K, Encrypt — K{ Decrypt

Fig.13

— Kp

WO 2012/130658

8/8

———K—p Encrypt

<« 4

Fig.14

PCT/EP2012/054826

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2012/054826

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 2005/064433 Al (KONINKL PHILIPS 1-6,
ELECTRONICS NV [NL]; GIDALOV NIKOLCO [NL]) 12-20
14 July 2005 (2005-07-14)
Y page 1, line 2 - Tine 4 7-11
page 2, line 22 - line 25
page 8, line 6 - Tine 24
page 9, line 5 - Tine 10
page 9, line 30 - line 31
page 10, Tine 25 - page 11, line 5
page 11, Tine 15 - page 12, line 4
figures 4,5
X US 6 480 959 B1 (GRANGER MARK J [US] ET 1-6,
AL) 12 November 2002 (2002-11-12) 13-2
Y column 4, line 1 - line 62; figures 1A, 1B 7-11
A column 5, line 26 - line 36 12
column 6, line 14 - line 65
column 9, line 61 - column 11, Tine 21
- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

1 June 2012

Date of mailing of the international search report

18/06/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Vinck, Bart

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2012/054826

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 5 473 692 A (DAVIS DEREK L [US])

5 December 1995 (1995-12-05)

column 1, line 59 - column 2, line 7
column 2, line 58 - column 3, line 31
column 9, line 2 - line 31; figure 7C
JH SONG R POOVENDRAN UNIVERSITY OF
WASHINGTON J LEE SAMSUNG ELECTRONICS T
IWATA NAGOYA UNIVERSITY: "The AES-CMAC
Algorithm; rfc4493.txt",

20060601,

1 June 2006 (2006-06-01), XP015054998,
ISSN: 0000-0003

the whole document

US 2008/263366 Al (G MAURUTHI [IN])

23 October 2008 (2008-10-23)

paragraph [0062] - paragraph [0070];
figures 10,11

US 2007/113103 Al (YE HANG J [CN] ET AL)
17 May 2007 (2007-05-17)

abstract

claim 1

paragraph [0007] - paragraph [0009]
paragraph [0012] - paragraph [0022]

5,6

13

1-12,
14-20

1-12,
14-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

International application No.
INTERNATIONAL SEARCH REPORT PCT/EP2012/054826
BoxNo.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. |:| Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. |:| Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

—_

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

o

3. |:| As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

|:| No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

International Application No. PCT/ EP2012/ 054826

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-12, 14-20

how to Timit the execution of a software application to a
particular hardware device, in an alternative manner

2. claim: 13

how to protect a long-term cryptographic key against
unauthorised disclosure through cryptanalysis

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2012/054826
Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 2005064433 Al 14-07-2005 CN 1898623 A 17-01-2007
EP 1700181 Al 13-09-2006
JP 2007515723 A 14-06-2007
KR 20060127007 A 11-12-2006
US 2007198857 Al 23-08-2007
WO 2005064433 Al 14-07-2005

US 6480959 Bl 12-11-2002 NONE

US 5473692 A 05-12-1995 AU 3583295 A 27-03-1996
EP 0780039 Al 25-06-1997
JP 4294728 B2 15-07-2009
JP H10507324 A 14-07-1998
RU 2147790 (C1 20-04-2000
US 5473692 A 05-12-1995
US 5568552 A 22-10-1996
WO 9608092 Al 14-03-1996

US 2008263366 Al 23-10-2008 NONE

US 2007113103 Al 17-05-2007 CN 1904793 A 31-01-2007
US 2007113103 Al 17-05-2007
US 2009019290 Al 15-01-2009

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report
	Page 39 - wo-search-report
	Page 40 - wo-search-report
	Page 41 - wo-search-report
	Page 42 - wo-search-report

