This invention relates to devices for dispensing materials semi-liquid, or freely flowing solids, especially powdered or granulated, from cans or containers; and particularly to measuring dispensers of the type particularly suitable for tooth powders, which have a receptacle or recess or spout from which a predetermined quantity of the powder may be released or ejected at a single operation.

Adapted to a specific case, as in a tooth powder can, the invention provides a means of transferring the powder to the brush in quick, easy, simple, direct movement, and of an exact quantity. It avoids the spilling and waste of powder, the uncertainty of amount ejected, and saves time in applying powder to the brush. It removes the unsanitary conditions and extra movements involved in placing the powder in the palm of the hand or on other surface before applying it to the brush.

One object of this invention is to provide a device for dispensing predetermined quantities of tooth powders in a simple, quick and easy manner and so constructed and operated as to permit accurate deposit of the powder on the brush.

Another object of this invention is to provide a powder can or container from which successive portions of powder, as tooth powder or other freely flowing solids, may be positively and smoothly pushed, forced, moved, ejected or discharged through an opening or orifice in the can from which it may wholly and smoothly drop or otherwise be directed to the desired position, without misdirection and waste or spilling of the powder, especially when it is desired to deposit the powder on a relatively small area as that of a toothbrush.

Another object of the invention is to provide a material dispensing device movable in a straight-line direction for pushing the material outside the container to the receiving medium.

Another object of the invention is to provide a material dispensing device movable through more than one opening in the surface of the container.

Other objects will be apparent from the specification and drawings.

In this invention, I provide a material dispensing device for positively pushing or moving or forcing a portion of the material or contents of a container through an opening or orifice therein of suitable size and location, from the inside to the outside of the container where, by reason of the shape and character of the material moving means, the portion freely and readily detaches itself and drops or is applied to the receiving medium. The material is positively pushed through the opening in response to spring, or manual or other force, by a member of such character that the material will readily free itself therefrom by force of gravity. This material pushing member may be a single surface or a cylindrical recess or receptacle open at its functional top and bottom and having slides from which the material will readily slide under force of gravity. The device is movable and may move slidably through openings in opposite sides of the container and subjected to a finger-pressing actuation.

I am aware of the patents to Henry, 1,226,053; Greaza, 1,270,512; Mason, 1,710,233, and Korn, 1,592,980. None of these provide the advantages of my invention.

In the accompanying drawings, there are illustrated tooth powder dispensers embodying this invention:

Figure 1 is a perspective view showing a powder can in closed position and the powder dispensing recess normally inside the powder can.

Figure 2 is a view similar to Figure 1 but showing the powder can in open position and the powder discharge receptacle outside the can in a position discharging powder to the desired spot.

Figure 3 is a view in side elevation of a modification of the slidable powder carrier shown in Figures 1 and 2 but having a powder discharge recess or receptacle at each end thereof.

Figure 4 is a front elevation partly in cross-section of a modification of the carrier device shown in Figures 1 to 3.

Figure 5 is a view, partly in cross-section, showing the powder dispensing device in closed position and arranged lengthwise of the can.

Figure 6 is a view similar to Figure 5 but shows...
ing the powder dispensing device in open position.

Figure 7 is a view of a modified carrier slidably inserted through the top of a powder can.

Figure 8, 9, and 10 are views partly in cross-section, illustrating a powder dispensing device adapted for support, lengthwise of and at the top of the can.

Figure 11 is a cross-sectional view illustrating another modification of the powder dispensing device.

Figure 12 is a view of another modification of the powder dispensing device.

Figure 13 is a view illustrating another modification of dispensing device adapted for pivoted movement.

Figures 14 and 15 are views illustrating respectively open and closed positions of another modification of dispensing device adapted for pivoted movement.

In Figure 1 there is shown a powder can 9 of metal or other suitable material for holding a dry powder, as tooth powder, or other freely flowing solids. The top surface of the can 9 as well as the bottom surface may be flat as shown. The side surfaces of the can 9 may be flat, as shown, or curved or other shape, if desired.

At or adjacent the functional bottom of the can 9 at the base of the powder column, there is a movable member or carrier 10 of metal or other suitable material having a rectangular-shaped powder discharge recess or receptacle 11 open at its functional top and bottom and closed on its four sides, two of which are designated as end-piece 14 and partition 16. The top and bottom openings of the compartment 11 may be, each the same size as shown, or one of them larger at the bottom opening from which the powder drops. The carrier 10 may be solid or hollow excepting compartment 11 which is open at its top and bottom. The carrier 10 is adapted to slide smoothly and without jerks in a longitudinal or straight line direction in relatively close-fitting openings in opposite sides of the can 9 adjacent the bottom thereof as shown.

A spring 12 is adapted to normally hold the powder discharge recess 11 on the inside of the can 9 as shown in Figure 1. Member 13 fixed to the carrier 10, may serve as a finger button for moving the carrier 10 as well as a stop for limiting the amount of travel of the carrier 10. Member 14 fixed to the opposite end of the carrier 10 adjacent the powder discharge recess 11, may also serve as a stop to prevent the outermost side of the powder discharge recess 11 from sliding within the can 9; and being conformed to the surface of the can 9, the member 14 may also serve as a seal or valve for preventing leakage of powder when the powder discharge recess 11 is normally within the can 9 as shown in Figure 1.

The overall length of the carrier 10 from end 13 to end 14 is approximately that of the distance between the openings in the can 9 plus the width of the powder discharge recess from side 14 to side 16 so that when the button 13 is pressed inwardly, the powder discharge recess 11 will be outside the can 9 and the side 16 thereof in approximate alignment with the surface of the can 9 as shown in Figure 2.

The discharge receptacle 11 is constructed as to width, length and height to permit only the desired amount of powder to drop, thus avoiding waste of powder. All surface elements in contact with powder to be dispensed are uniformly transverse to the direction of motion of the compartment 11 in order that powder therein may readily and smoothly release itself therefrom.

An oblong-shaped powder discharge recess 11 having dimensions about 5/4 wide and 1/4 high as shown in Figure 1, has been found to be satisfactory for use with a toothbrush.

The carrier 10 may be slidably mounted, centrally of the can 9 as shown or otherwise, and adjacent the functional bottom of the can 9 where it may, by force of gravity, perform its function of emptying step by step all the powder from the can 9. If placed at the mechanical top as shown in Figures 5-10, such mechanical top becomes the functional bottom when the can is turned or inverted for use.

The carrier 10 may carry upright rods or pieces (not shown) to disturb the contents of the can as well as to act as stops for the carrier. Shorter pieces not shown may be used to act as stops only. Expanded end pieces 14 employed to act as stops as well as a seal for powder may be employed with or without the upright pieces.

The space or spaces inside the can 9 alongside the carrier 10 may be blocked off to prevent wasting powder that may otherwise be left there.

The operation of the powder ejecting device shown in Figures 1 and 2 is as follows. The can 9 may be held in one hand between the thumb and fingers and the toothbrush 15 may be held in the other hand. Pressing the member 13 of the carrier 10 with, say the middle finger, the powder discharge recess 11 is moved from the inside to the outside of the can 9, permitting the powder therein to drop through the open bottom to a desired spot on the brush 15, as shown in Figure 2. Upon releasing the finger pressure from the member 13, the spring 12 draws the recess 11 within the can 9 where it is again filled with powder through the open top by force of gravity. The operation may be repeated as another application of powder is required on the brush 15. The action is very quick and simple and deposits the powder portions where wanted without rolling, shaking or jarring the can 9 and without wasting the powder.

In Figure 3 is shown a carrier, similar to that shown in Figures 1 and 2, but having two powder discharge recesses 11a instead of one. The retrieving spring 12 is omitted. Each recess 11a alternatively functions to discharge powder from the can 9 as it is moved from the inside to the outside of the can 9 by pressure applications alternately to the end portions 14a. Each recess 11a is open at its functional top and bottom and closed at its sides 16a and 14a and closed on its remaining two sides as shown. The frictional fit of the slidable carrier 10a in the openings in the can 9 is such as to prevent leakage of powder, to hold the carrier against too easy sliding movement and yet permit it to be moved smoothly and without jerks. An indentation (not shown), as made by a punch impression in the bottom surface of the can 9 and the bottom surface of the carrier 10a, in contact therewith, may be added for the same purpose—to hold the carrier 10a against too easy sliding movement.

In Figure 4 there is shown a powder recess 11b as before illustrated but moved by a rod or bar 17. The opening in the can 9 through which the bar 17 passes, is made sufficiently closely fitting to prevent leakage of powder. The spring 12b may be omitted if desired. The operation is simi-
lar to that of the modification shown in Figures 1 and 2.

In Figures 5 and 6, a carrier and powder recess 11c, similar to that shown in Figure 4, is shown adapted for movement lengthwise of the can 18 which has a counterbunk bottom 19 within which are the finger button 13c and retrieving spring 12c. The finger button 13c is connected by a rod 17c to the back-piece 16c of the power receptacle 11c. The end piece 14c of the recep-tacle 11c is similar to the end piece 14 of Figs. 1 and 2, 14a of Fig. 3, and 14b of Fig. 4.

Figure 5 illustrates the normal position of the recess 11c within the can 18 when the can is held in inverted position for use. When the finger button 13c is pressed, the recess 11c moves outside the can 18, as shown in Figure 6, and discharges powder to the desired spot.

In Figure 7, there is shown a modification in which a powder discharge recess or spout 13d is adapted to move through oppositely disposed side openings in a constricted portion at the top of a can 20. The recess 11d comprises a back-piece or partition 16d and an end piece 14d and also two side ends 16d and 16d like the receptacles 11, 11a, 11b, 11c shown in Figs. 1 to 6 inclusive. The can 20 is inverted for use when the powder that has fallen in the recep-tacle 11d may be dispersed by pressing the finger on the finger button 13d and thereby mov-ing the powder within the measuring receptacle 11d from the inside of the can 20 to the outside thereof where such powder may drop to the de-sired receiving medium as before described. In Fig. 7, the dispenser 14d is shown of the single type as the measuring dispenser 11 of Figs. 1 and 2 or 1b of Fig. 4 but it may be of the dual type as the two dispensers 1a of Fig. 3.

In Figs. 1 to 7 incl., all of the powder receptacles 11, 11a, 11b, 11c, and 14d are alike. Each is cube-shaped or oblong-shaped as shown but may be of other configurations as cylindrical. Each is open at its top and bottom and closed on its sides which are preferably smooth and of such shape as to permit the powder to readily detach itself therefrom and drop from its func-tional bottom opening without agitation of the cans 9, 19 or 20 to release the powder. The sides 16, 16a, 16b, 16c and 16d thereof are partitions and act to push or force the powder through the opening into the can. The sides 16, 16a, 16b, 16c and 16d thereof conform to the shapes of the respective can openings and act as valves or seals to prevent leakage of powder when nor-mally in contact with the respective can openings.

In Figure 8, the can 30 includes a slidable car-rier 31 which has a cylindrical powder-discharge receptacle or recess 32 similar to that recess 11 shown in Figures 1-7 inclusive, open at both its ends 33 and 34 and closed on all sides 35. The recess 32 is adapted to be slidably moved from a position inside the can 30 to a position outside the can 30 as shown in Figure 8, where the inside sides or walls 35 of the recess 32 are in align-ment with the orifices 39 and 37 which prefer-ably are larger than the openings 33 and 34. The alignment position may be determined by the stops 38. The width and height of the receptacle stops 32 as in the case of receptacle 11 of Figures 1 to 7 inclusive are made as to readily drop the desired quantity of powder on the brush 15. The receptacle 32 may be circular or square-shaped or of other cross-section.

In operation, the carrier 31 is moved inside the can 30 and the recess 32 allowed to fill with loose powder. Holding the can 30 in one hand, the first finger and thumb may be used to move the carrier 31 outwardly from the can 30 in the position shown in Figure 8. When the recess 32 is aligned with the orifice 37, the powder therein drops onto the brush 15 held in the other hand. The sharp-edged orifices, being in alignment with the sides 35 of the receptacle 32 and preferably larger than the end openings 33, 34, do not inter-fere with the normal and smooth dropping of the powder to the brush 15.

Figure 9 shows a modification similar to Figure 8 but adapted to fill the recess 32 through orifice 35 and aligned orifice 37 and 41.

Figure 10 shows a modification which dispenses with all sharp edged orifices and alignment therewith. The recess 32 is filled with powder when the carrier 31 is moved inside the can 30. Upon withdrawal of the carrier 31 to the position shown in Figure 10, the powder drops, without shaking or jarring the can, from the bottom opening 34 of the recess 32 onto the brush 15.

Figure 11 shows a modified form of powder dis-charge recess and a valve, either or both of which may be adapted to any of the cans or carriers shown in Figures 1 to 10.

In Figure 11, the dispensing member 40 is as before, open at its top and bottom and closed at two sides 16 and 41 but open at its two remaining sides. In other words, the member 40 consists of two movable, transverse plates, a partition 16 of square, circular or other shape, and an end closure member 41 for normally closing the opening 42 in the can 9a. A rod bar 43 or other connecting means joins partition 16 with closure member 41 that they may move together. A series of partitions 16 (not shown) along the rod 17, 43 may be employed. The partition 16 may be of dimensions smaller than those of the opening 42 for convenience in assembly. The end closure member may be in the form of a self-centering beveled valve as shown, or similar to the member 41 shown in Figure 1.

In operation, pressure on finger button 13 moves partition 16 and valve 41. The partition 16 pushes the powder in the recess 43 through the opening 42 onto the brush 15. The spring 12, if employed, retrieves the recess 48 to its position shown in Figure 11.

In Figure 12, there is illustrated another modifi-cation in which the partition 16 secured to the rod or bar 11 normally closes the opening 42 adjacent the functional bottom of the can 9b. The member 50, secured to the bottom of the can 9b acts as a bearing for the rod 17 slidable through an opening therein, and also as an abutment for the spring 12 if used. This arrangement may be adapted to an opening in the mechanical top of a can of the type 18 shown in Figs 5 and 6 or 42 shown in Figs. 8 to 10, inclusive.

Referring to Figure 12, in operation, the finger button 13 is pressed inwardly in a direction to-ward the can 9b for a short distance, say ½ to ¾". The partition 16 compresses the spring 12. A portion of powder falls into the recess between the partition 16 and the opening 42 and upon releasing the finger pressure, is pushed out through the opening 42 onto the receiving medi-um or brush 15. The valve or partition 15 nor-mally sears or closes the opening 42.

In Figure 13, there is illustrated a powder dis-pensing device similar to that shown in Fig. 1, but adapted to move arcuately by rotation rather than by a purely slidable motion as shown in Fig. 75.
1. The container $9c$, as heretofore described, may be of metal, paper, or other suitable material and has an opening therein at any convenient position, preferably adjacent its functional bottom as shown in Fig. 13.

Movable and fitting within the opening in the can $9c$, from the closed position as shown in cross-section in Fig. 13 to the open position as in dotted lines, there is provided a powder receptacle 61 of metal or other suitable material, similar to the can functional top and bottom and closed on its sides. The sides 62 and 64 of the receptacle 61 are shown converging and constituting a cylinder having an open bottom that is larger in area than that of its open top and having an axis transverse to its arcuate direction of motion.

The shape of the receptacle 61 as viewed in a direction toward the open top or bottom may be a rectangular, square-shaped, circular or otherwise as desired as in the case of the receptacles 11 or 35 as described in connection with Figs. 1 to 10. As shown in Fig. 13, it is rectangular and has a mean length from side partition 16 to side 62 of approximately $\frac{3}{4}$", a height and width of approximately $\frac{3}{4}$"x$\frac{4}{4}$" and freely moves in a square opening approximately $\frac{3}{4}$"x$\frac{4}{4}$" in the side of the can $9c$. These dimensions have been found satisfactory for dispensing tooth powder to a tooth brush.

The size of the receptacle may be modified as desired to suit the receiving medium.

The member 62, to which is secured the dispensing receptacle 61, is pivoted at a fulcrum 63 secured to the can $9c$ and may have a finger tab 64 for moving the dispensing receptacle 61 from positions inside to outside the can $9c$ and vice versa. Or it may have a member 66 having a finger button 67 secured thereto for the same purpose. The can $9c$ may have a countersunk portion 68 in order that the operating member 66 and its finger button 67 may be in alignment with the surface of the can $9c$ when the dispensing receptacle 61 is in normal position as shown in cross-section in Fig. 13. Or the countersunk portion 68 may be omitted (not shown) and the operating member 66 arranged oblique to the surface of the can $9c$ for closed position of the dispensing receptacle 61.

A spring (not shown), flat, spiral, or otherwise, may be provided in a manner that is obvious to those skilled in the art, for holding and retrieving the receptacle 61 to normally closed position.

The portion 69 of the can $9c$ may be omitted and the member 62 adapted to fill the open area thereof when the receptacle 61 is in normally closed position as shown in Fig. 13.

Instead of being operated by the finger tab 64 or by the control lever member 66, the receptacle 61 may be operated by a plunger pivotally secured to the side partition 16 (not shown) and extending through a close-fitting opening in the opposite side of the can $9c$ similar to that shown in Fig. 4, for example. The plunger finger button may, if desired, move in a countersunk portion of the can $9c$ to avoid protrusion beyond the outermost surface of the can $9c$.

Normally the receptacle 61 is positioned inside the can $9c$ where it fills with powder. Upon lifting the finger tab 64 or pressing the finger button 67 or pushing the plunger (not shown) previously referred to, the receptacle 61 moves in an arcuate path about a center of rotation 65, to a position outside the can $9c$. A stop member 70 may stop the movement, if desired. As the receptacle 61 so moves, the innermost side 16 operates as before described to push powder through the opening in the can $9c$ onto the brush 15. In the position shown in Fig. 13, the width of the receptacle 61 and its corresponding opening in the can $9c$ are less than the width of the brush to avoid spilling the powder.

Figures 14 and 15 illustrate, respectively, the open and closed positions of a powder dispensing receptacle 81 which is movable in an arcuate path by rotation about the pivot 63 from a position inside to a position outside the can $9d$. The receptacle 81 may have a finger tab 64 for this purpose. Also it may have a stop extension 70.

The receptacle 81 is in the shape of a partly enclosed sector, open at its arcuate portion, enclosed at its sides 82 and 83 and enclosed at its innermost side 16 and its outermost side 85. A portion 85 of the can $9d$ may extend down into the recess to limit the quantity of powder that may be moved through the opening in the can $9d$ for avoiding the spilling of powder. The width of the receptacle 81 from side 82 to side 83 is preferably less than the width of the opening in the receptacle 81.

A portion 88 about $\frac{4}{4}$" is satisfactory for use with a tooth brush.

The receptacle 81 is normally within the can $9d$ as shown in Fig. 15. By lifting the finger tab 64 or by pushing a plunger (not shown) similar to that shown as 13, Fig. 4, the receptacle 81 is rotated on the pivot 63 to a position shown in Fig. 14. The partition or innermost side of the receptacle 81 functions to push a portion of powder through the opening in the can where, in the position shown in Fig. 14, it rests on the surface 84. By tilting the can $9d$, the powder will slide to the receiving medium placed below the outer edge 86 of the surface 84.

While I have illustrated the invention in these embodiments, such modifications as may occur to a person skilled in the art are intended to be included within the scope of the claims.

I claim:

1. A powder dispensing device having a viewable dispensing side opening at an end in the powder container part thereof, and movable dispensing pressure-operated powder dispensing means including a finger piece and also including operatively viewable flat smooth-surfaced means of uniform thickness disposed perpendicular to the direction of its motion and having a powder entrance port normally facing the other end of said device for pushing powder portions viewably through said viewable dispensing opening and for normally closing said dispensing opening in non-dispensing position, said device being elongated and having such side to side width as to permit being operatively held in one hand only and said dispensing means having such size, shape and movable relation with respect to said device as to permit pressure to be applied to said finger piece by a finger of said hand to move said powder pushing means with respect to said dispensing side opening.

2. A powder dispensing device having a viewable dispensing side opening at an end thereof, and movable dispensing pressure-operated powder dispensing means including a finger piece and also including operatively viewable flat smooth-surfaced means of uniform thickness disposed perpendicular to the direction of its motion and having a powder entrance portion facing the other end of said device for pushing powder portions viewably through said viewable disp
5 dispensing opening and for normally closing said dispensing opening in non-dispensing position, said device being elongated and having such side to side width as to permit being operatively held in one hand only and said dispensing means having such side, shape and movable relation with respect to said device as to permit pressure to be applied to said finger piece by a finger of said same hand to move said powder pushing means with respect to said dispensing side opening.

3. A powder dispensing device having a viewable dispensing opening, and dispensively pressure-operated dispensing means including an operatively viewable measuring dispensing walled spout having viewable separate inter-connecting entrance and discharge openings of area not greater than the brush surface of a toothbrush and being viewably movable through said dispensing opening and axially disposed perpendicular to the direction of motion of said spout, said dispensing means being so disposed with respect to said device as to permit said spout openings to move completely through said dispensing opening.

4. A powder dispensing device having a viewable dispensing side opening at an end in the powder containing part thereof, and dispensively pressure-operated dispensing means including an operatively viewable measuring dispensing spout having viewably interconnecting separate entrance and discharge openings viewably and completely movable through said dispensing opening to the outside of said device, said entrance and discharge openings being axially disposed perpendicular to the direction of motion of said spout, and said discharge opening having at least one dimension not greater than the smallest brush surface dimension of a toothbrush.

5. A powder dispensing device having a viewable dispensing side opening at an end thereof, and dispensively pressure-operated dispensing means of substantially uniform exterior cross-section substantially through the length thereof and including an operatively viewable measuring dispensing walled spout having viewable separate interconnecting entrance and discharge openings viewably movable through said dispensing opening and axially disposed perpendicular to the direction of motion of said spout, and having at least one dimension not greater than the smallest brush surface dimension of a toothbrush.

6. A powder dispensing device having a viewable dispensing side opening in the powder container part thereof, and dispensively pressure-operated dispensing means including a finger piece operatively connected with an operatively viewable measuring dispensing walled spout having viewable interconnecting separate entrance and discharge openings axially disposed perpendicular to the direction of motion of said spout and viewably movable through said dispensing opening, said discharge opening having at least one dimension not greater than the smallest brush surface dimension of a toothbrush, and said device and said finger piece having such size and disposition as to permit being held in one hand and to permit pressure to be applied to said finger piece by a finger of the same hand to move said spout through said dispensing opening.

7. A powder dispensing device having a viewable dispensing side opening in the powder container part thereof, and dispensively pressure-operated dispensing means including a finger piece operatively connected with an operatively viewable measuring dispensing walled spout having viewable interconnecting separate entrance and discharge openings viewably movable through said dispensing opening and axially disposed perpendicular to the direction of motion of said spout, said discharge opening having at least one dimension not greater than the smallest brush surface dimension of a toothbrush, and said device and said finger piece having such size and disposition as to permit being held in one hand and to permit pressure to be applied to said finger piece by a finger of the same hand to move said spout through said dispensing opening.

8. A powder dispensing device having a viewable dispensing side opening in a constricted part thereof, and dispensively pressure-operated dispensing means of substantially uniform exterior cross-section throughout the greater part of the length thereof and including an operatively viewable measuring dispensing vertically walled spout disposed at an extreme end of said dispensing means and having viewable separate inter-connecting entrance and discharge openings viewably and slidably movable through said dispensing opening to the outside of said device.

9. A powder dispensing device having such elongated shape and side-to-side width as to permit being operatively held by one hand and having oppositely disposed side openings including a viewable dispensing side opening at an end in a constricted part thereof, slidable dispensing means movable through said openings and including an operatively viewable measuring dispensing walled spout slidably movable and adjustable completely through said dispensing opening, said means having a length not greater than the maximum side-to-side width of said device and a substantially uniform exterior cross-section throughout the greater part of its length and being dispensively operable by said same hand in response to finger pressure thereon in a straight-line direction towards said dispensing opening, said spout having four enclosing side walls and viewable separate top and bottom interconnecting rectangular shaped end openings of equal area axially disposed perpendicular to the direction of motion thereof, said end openings having at least one dimension not greater than the smallest brush surface dimension of a toothbrush, the outermost side of said spout being of uniform thickness and disposed at an extreme end of said slidable dispensing means and forming a closure for said dispensing opening in one position of said spout and the innermost side of said spout forming a powder closure for said dispensing opening in dispensing position, and stop means on said slidable dispensing means to limit movement of said spout between said positions.

10. A powder dispensing device having a plurality of viewable dispensing openings, dispensively pressure-operated dispensing means movable as a unit through said plurality of openings, said means having a plurality of dispensively viewable measuring dispensing spouts, each having separate entrance and discharge openings axially disposed perpendicular to the direction of motion of said dispensing means, said entrance openings being dispensively viewable, one of said spouts being disposed at the extreme end of said means and movable through one of said dispensing openings and another of said spouts being disposed at the other extreme end of said means and movable through another of said openings.

11. A powder dispensing device having a plurality of viewable openings, dispensively pressure-
operated dispensing means movable as a unit through said plurality of openings, said means having a plurality of vertically walled compartments disposed at the extreme ends thereof, and stop means comprising a wall of at least one of said compartments for limiting the movement of said dispensing means, at least one of said compartments having an internal dimension between the walls thereof not greater than substantially $\frac{3}{4}$ inch.

12. A portable tooth powder dispensing device for accurately dispensing a measured quantity of tooth powder to the brush surface of a toothbrush, said device being vertically elongated, having such side-to-side width as to permit being operatively held by its sides in one hand and having viewable oppositely disposed openings in the sides at an end thereof, said side openings being of equal area and axially disposed horizontally, at least one of said side openings being a powder dispensing opening, a walled measuring spout having an operatively vertical axis and oppositely disposed powder entrance and discharge openings, said spout discharge opening having at least one horizontal side-to-side internal dimension not greater than the minimum width dimension of said brush surface, a finger piece so disposed outwardly of said device as to permit operative contact with a finger of said same hand, and means including a horizontally slidable member movable through said side openings whereby, upon pressing said finger piece inwardly by said finger, said spout is moved outwardly and horizontally through said dispensing side opening.

13. A portable tooth powder dispensing device for accurately dispensing a measured quantity of tooth powder to the brush surface of a toothbrush, said device being elongated, having such side-to-side width as to permit being operatively held by its sides in one hand, and having a constricted portion at an end thereof, said constricted portion having viewable oppositely disposed openings in the sides thereof, said side openings being of equal area and axially disposed horizontally, at least one of said side openings being a powder dispensing opening, a walled measuring spout having an operatively vertical axis and oppositely disposed powder entrance and discharge openings, said spout discharge opening having at least one horizontal side-to-side internal dimension not greater than the minimum width dimension of said brush surface, a finger piece so disposed outwardly of said device as to permit operative contact with a finger of said same hand, and means including a horizontally slidable member movable through said side openings, whereby upon pressing said finger piece inwardly by said finger, said spout is moved outwardly and horizontally through said dispensing side opening.

WILLIAM A. ROCHESTER.