PHARMACEUTICAL COMPOSITION FOR USE IN THE TREATMENT OF A NEURODEGENERATIVE DISEASE

Applicants: Sanofi-Aventis Deutschland GmbH, Frankfurt (DE); University of Ulster, Coleraine (GB)

Inventors: Sibylle Hess, Frankfurt am Main (DE); Christian Hölscher, County Londonderry Northern Ireland (GB)

Appl. No.: 15/962,770

Filed: Apr. 25, 2018

The present invention refers to a pharmaceutical composition for use in the treatment of a neurodegenerative disease. Specification includes a Sequence Listing.
FIG. 1A

Brain Lixisenatide Levels 30 min Post Injection

<table>
<thead>
<tr>
<th>Peptide Concentration (nmol/kg bw)</th>
<th>Total Brain Lixisenatide Concentration (pmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Saline control</td>
</tr>
<tr>
<td>2.5</td>
<td>Lixisenatide</td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

* Significant difference compared to saline control
** Highly significant difference compared to saline control
FIG. 1B

Brain Lixisenatide Levels
3 h Post Injection

<table>
<thead>
<tr>
<th>Peptide Concentration (nmol/kg bw)</th>
<th>Total Brain Lixisenatide Concentration (pmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>0</td>
</tr>
<tr>
<td>2.5</td>
<td>*</td>
</tr>
<tr>
<td>25</td>
<td>*</td>
</tr>
<tr>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

- Saline control
- Lixisenatide

* denotes statistically significant difference from control.
FIG. 2A

Liraglutide Brain Concentrations 30 min post injection

Bar graph showing liraglutide brain concentration (μmol/L) vs. liraglutide nmol/kg bw ip. There are three groups: 0, 2.5, 25, and 250 nmol/kg bw ip., with concentration levels increasing as the dose increases.
FIG.2B

Irarglutide brain concentrations 3 h post injection

Irarglutide nmol/kg bw ip.
FIG. 3B

Total brain cAMP after injection lp. of Lixisenatide

<table>
<thead>
<tr>
<th>Control</th>
<th>Lixisenatide</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

**p < 0.01
FIG. 3C

Direct comparison Liraglutide / Lixisenatide

Total cAMP levels (pM)
Cell proliferation in the dentate gyrus after 3 weeks of treatment
FIG. 5

Effect of 3 week Lixisenatide treatment on cell proliferation in WT mice:

Average Number of BrdU positive cells/animal

- Saline
- Lixisenatide

**
FIG. 6A

LDH Assay
Pre-treatment with Lixisenatide for 4 hrs
Stressor: Methyl Glyoxal for 12 hrs
FIG. 6B

LDH Assay
Pre-treatment with L. helveticus for 4 hrs
 followed by Methyl Glyoxal for 12 hrs

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>150</td>
</tr>
<tr>
<td>100 µM</td>
<td>200</td>
</tr>
<tr>
<td>500 µM</td>
<td>250</td>
</tr>
<tr>
<td>1000 µM</td>
<td>300</td>
</tr>
<tr>
<td>3000 µM</td>
<td>350</td>
</tr>
</tbody>
</table>

Graph showing enzyme activity levels under different conditions.
FIG. 7A

XTT Assay: Lixisenatide post-treatment of 24hrs
3hrs of pre-stress

Conditions
FIG. 7B

XTT Assay: Liraglutide post-treatment of 24hrs
3hrs of pre-stress
FIG. 8A

XTT Assay: Lixisenatide 4hrs pre-treatment (0, 1, 10, 50 and 100nM) followed by MG stress for 14hrs
FIG. 8B

XTT Assay: Liraglutide 4 hrs pre-treatment (0, 10, 50, 100 and 200 nM) followed by MG stress for 14 hrs.
FIG. 8C

XTT Assay: Exendin-4 4hrs pre-treatment (0, 10, 50, 100 and 200nM) followed by MG stress for 14hrs
FIG. 9

Lixisenatide in LUHMES

Cell viability (% Control)

Control
Rotenone, 0.75 μM
Rotenone + Lixi, 0.03 μM
Rotenone + Lixi, 0.1 μM
Rotenone + Lixi, 0.3 μM
Rotenone + Lixi, 1 μM

NS
+38%
+57%
+63%

* ** ***
FIG. 10

Exenatide in LUHMES

Cell viability (% Control)

Control, Rotenone 0.75 μM, Rot. + Ex-4 0.03 μM, Rot. + Ex-4 0.1 μM, Rot. + Ex-4 0.3 μM, Rot. + Ex-4 1 μM

+44\% \quad * \quad +30\% \quad NS \quad NS

+26\%
FIG. 11

Liraglutide in LUHMES

Cell viability (% Control)

Control
Rotenone, 0.75 µM
Rot. + Lira, 0.03 µM
Rot. + Lira, 0.1 µM
Rot. + Lira, 0.3 µM
Rot. + Lira, 1 µM

+71%
+68%
PHARMACEUTICAL COMPOSITION FOR USE IN THE TREATMENT OF A NEURODEGENERATIVE DISEASE

[0001] Subject of the present invention is a pharmaceutical composition for use in the prevention or treatment of a neurodegenerative disease, the composition comprising desPhe²⁶Exendin-(4-139)-Lys₉₋₁₂₄-NH₂ or/and a pharmaceutically acceptable salt thereof, and optionally a pharmaceutically acceptable carrier, adjuvant, or and auxiliary substance.

Alzheimer’s Disease

[0002] Alzheimer’s disease (AD) is a neurodegenerative disorder that results in the loss of cortical neurons, especially in the associative neocortex and hippocampus which in turn leads to slow and progressive loss of cognitive functions, ultimately leading to dementia and death. Major hallmarks of the disease are aggregation and deposition of misfolded proteins (Bertram et al 2010; Mancuso et al 2010): (1) aggregated beta-amyloid (Aβ) peptide as extracellular senile neuritic ‘plaques’, and (2) hyperphosphorylated tau protein as intracellular neurofibrillary ‘tangles’ (NFTs).

[0003] Genetically, AD is divided into two forms: (1) early-onset familial AD (<60 years), and (2) late-onset sporadic AD (>60 years). Rare, disease causing mutations in Amyloid precursor protein (APP), Presenilin 1(PS1), and Presenilin 2 (PS2) genes are known to result in early-onset familial AD while, APOE (allele 4) is the single most important risk factor for late-onset AD (Bertram et al 2010).

[0004] Mitochondrial dysfunction and oxidative stress, demonstrated by protein oxidation and lipid peroxidation are characteristics of AD brain. An imbalance between production of reactive oxygen species (ROS) and breakdown of the chemically reactive species by antioxidants leads to oxidative stress. Aβ has direct oxidative effects but it can also disrupt mitochondrial redox activity resulting in an increase in free radicals. Neurons are less capable to defend against an increase in ROS as they have low levels of antioxidants relative to other mammalian cell types and thus are considered highly susceptible to oxidative stress. Addition of Aβ to primary neuronal cultures results in inhibition of ATPases, changes in cell potential, and Ca²⁺ influx (Varadarajan et al 2000; Higgins et al 2010).

[0005] There is no cure for this devastating disease at present and the few treatments approved by the US Food and Drug Administration (FDA) do not stop the progression of AD rather are only partially effective in improving the symptoms (Wollen 2010, Adeniran et al 2010). Currently, licensed pharmaceutical therapies against AD are the acetylcholinesterase inhibitors such as Tacrine, Donepezil, Rivastigmine, Galantamine and the NMDA receptor antagonist memantine. The effect of these drugs is very limited, and the main action again is to reduce symptoms rather than prevent the development of the disease. Other drugs may be given ‘off label’, such as statins (cholesterol level reducing agents), antihypertensive drugs, anti-inflammatory drugs, or others. None of these drugs have been proven to reduce progression of AD (Kaduszkiewicz et al 2005; Hölscher, 2005). Other strategies for treating AD are under investigation. It has been found that Neuronal Growth Factor α (NGF) can decrease senile plaques and improve cognitive function (De Rosa et al 2005). Since insulin resistance is now known as one of the main problems in AD (Hölscher and Li, 2010), instead of insulin itself other growth factors such as the incretin hormone Glucagon-like peptide-1 (GLP-1) are showing good effects in pre-clinical studies. The GLP-1 incretin analogue tiraglutide reduced the number of amyloid plaques, reduced beta-amyloid levels, prevented cognitive impairment and synaptic dysfunction, reduced the inflammation response and enhanced synapse growth and neurogenesis in the brains of a transgenic mouse model of AD (McClellan et al 2011). The amyloid plaques and the associated inflammation response in the brain are key hallmarks of AD. Similar protective effects were found with another GLP-1 analogue receptor agonist in a transgenic mouse model of AD (Li et al 2010).

Parkinson’s Disease

[0006] Parkinson’s disease (PD) is a chronic neurogenerative disorder of muscle movement commonly characterized by selective degeneration of nigrostriatal neurons, greatly reduced synthetic capacity for dopamine and a consequent failure to engage striatal dopamine receptors. (Gandhi et al 2005). Before the disease presents clinically, death of nigrostriatal neurons occurs in the substantia nigra pars compacta(SNc) silently, probably as a result of the occurrence of concurrent apoptotic, excitotoxic, free-radical mediated neuroinflammatory events. A therapeutic strategy offering cure for, or a means of arresting the pathology of PD remains elusive. Established drug therapies are essentially palliative and not effective in all patients. Since apoptotic cell death is one of the central components in selective nigrostriatal neuronal death (Schapira 2001) future therapeutic strategies could involve the targeted use of biomolecules with anti-apoptotic properties. Alternatively, a positive therapeutic effect could be produced by molecules with neurotrophic properties or the ability to stimulate neurogenesis of cells with a dopaminergic phenotype. It has recently been observed that the glucagon-like peptide-1 receptor (GLP-1) agonist exendin-4 shows neurotrophic (Perry et al 2002) and neuroprotective (Perry et al 2002) properties in cultures of PC12 cells subjected to excitotoxic stress. Recently, it was shown (Harkavy et al 2008) that exendin-4 arrests progression of, or even reverse nigral lesions, once established in two PD mouse models. In addition, it has been shown that exendin-4 treatment protected dopaminergic neurons against degeneration, preserved dopamine levels, and improved motor function in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD (Li et al 2009).

Huntington’s Disease

[0007] Huntington’s disease (HD) is an inherited neurodegenerative disorder typified by involuntary body movement, as well as psychiatric and cognitive abnormalities. The genetic defect underlying HD involves expansion of CAG trinucleotide repeats in exon 1 of the HD gene, resulting in polyglutamine expansion in the huntingtin (hft) protein. This leads to abnormal processing and deleterious intracellular aggregation. Recently it has been shown that exendin-4 treatment suppresses the development of mutant htt inclusions in the pancreas and brain ameliorates metabolic effects and motor dysfunction and extends survival of HD mice (Martin et al 2009).
Stroke

[0008] The pathophysiology of stroke includes death of cortical and striatal neurons via apoptosis (Mattson, 2007). [0009] Recently it has been shown that administration of exendin-4 reduced brain damage and improved functional outcome in a transient middle cerebral artery occlusion stroke mouse model (Li et al 2009). In a cerebral ischemia model in the gerbil, it was further shown that GLP-1 receptor stimulation with exendin-4 attenuated the ischemia-related neuronal death by interfering with microglial activation against transient cerebral ischemic damage. (Lee et al 2011). Teramoto et al (2011) showed that exendin-4 is effective in a cerebral ischemia-reperfusion injury mouse model. Exendin-4 treatment significantly reduced infarct volume and improved functional deficit.

Peripheral Sensory Neuropathy

[0010] About 60-70% of individuals with diabetes have some degree of neurological damage, specifically neuropathies that cause impaired sensation in the hands and/or feet, slowed gastric motility or carpal tunnel syndrome. There is currently no therapy proven to reverse the neurological damage caused by prolonged hyperglycaemia and the associated metabolic disturbances. GLP-1 expression has been identified in neurons in the nodose ganglion, suggesting a role of GLP-1 in peripheral neurotransmission (Nakagawa 2004). In a rodent model of pyridoxine-induced peripheral neuropathy in non-diabetic rodents, GLP-1 and s.c. exendin-4 were shown to partially protect against several pyridoxine-induced functional and morphological defects and to facilitate normalization of axonal size (Perry et al 2007).

Cognitive Function, Mood and Memory:

[0011] GLP-1 receptor agonists are able to enhance cognitive function in rodents, as measured in the Morris water maze; the GLP-1 receptor knock-out mouse has a phenotype characterized by a learning deficiency that is restored after hippocampal GLP-1 receptor gene transfer (During et al 2003). Recently, Inason et al (2010) showed an effect of chronic exendin-4 treatment on hippocampus-associated cognitive and mood-related behaviour in adult rodents. In another study, the polynucleophyly found in the dorsal root ganglion of a mouse model of diabetes was reversed by exendin-4 (Himeno et al 2011). Another GLP-1 analogue, iraglutide has been shown to exert beneficial effects on cognitive function and hippocampal synaptic plasticity in mice with high fat diet-induced obesity and insulin resistance (Porter et al 2010).

Glucagon-Like Peptide 1

[0012] Glucagon-like peptide 1, GLP-1 or GLP-1(7-36) is a 30-amino acid peptide hormone that is encoded in the proglucagon gene. It is mainly produced in enteroendocrine L cells of the gut and is secreted into the blood stream when food containing fat, protein hydrolysate, and/or glucose enters the duodenum. The most widely studied cell activated by GLP-1 is the insulin-secreting beta cell in the pancreas where its defining action is augmentation of glucose-induced insulin secretion. Upon GLP-1 receptor (GLP-1R) activation in the beta cells, adenylyl cyclase (AC) is activated and cAMP is generated, leading, in turn, to cAMP-dependent activation of second messenger pathways, such as the protein kinase A (PKA) and Epac pathways. As well as short-term effects of enhancing glucose-induced insulin secretion, continuous GLP-1R activation also increases insulin synthesis, beta cell proliferation and neogenesis (Doyle et al 2007). Furthermore, GLP-1 generally regulates the concentrations of glucagon, slows down gastric emptying, stimulates the biosynthesis of (Pro-)insulin, increases the sensitivity toward insulin, and stimulates the insulin-independent biosynthesis of glycogen (Holst 1999; Curr. Med. Chem 6: 1005; Nauck et al (1997) Exp Clin Endocrinol Diabetes 105:187; Lopez-Delgado et al (1998) Endocrinology 139: 2811).

[0013] The particular effects of GLP-1 on insulin and glucagon secretion have generated a research activity over the past 20 years culminating in a naturally occurring GLP-1 receptor (GLP-1R) agonist, exendin 4, now being used to treat type 2 diabetes mellitus (12/DM) (Doyle et al 2007).

[0014] In tissues other than the pancreas (brain, kidney, lung, heart, and major blood vessels) GLP-1 can activate a specific guanine nucleotide-binding protein (G-protein) coupled receptor.

[0015] GLP-1 has shown growth factor-like as well as neuroprotective properties (McClen et al 2010). GLP-1 also reduces the induction of apoptosis of hippocampal neurons and improves spatial and associative learning (Dur et al 2003). Perry et al (2002) reported that GLP-1 could completely protect cultured rat hippocampal neurons against glutamate-induced apoptosis. The GLP-1 analogues (Va18) GLP-1 and N-acetyl-Glu-1 have shown prominent effects on long-term potentiation of synaptic transmission (LTP) in the hippocampus (McClen et al 2010). The GLP-1 analogue iraglutide reduced the number of amyloid plaques, reduced beta-amyloid levels, prevented cognitive impairment and LTP depression, reduced the inflammation response and enhanced synapse growth and neurogenesis in the hippocampus of a transgenic mouse model of AD (McClen et al 2011).

[0016] GLP-1, iraglutide and exendin-4 have been shown to cross the blood brain barrier (BBB) (Kastin et al 2001; McClen et al 2011). Perry et al (2003) found that GLP-1 and exendin-4 reduced the levels of beta amyloid in the brain and amyloid precursor protein in neurons. Chronic treatment with exendin-4 or iraglutide affects cell proliferation and neuroblast differentiation in the adult mouse hippocampal dentate gyrus (Li et al 2010; Hamilton et al 2011).

[0017] Iraglutide is a GLP-1 analogue having the formula Arg534,Lys36(N'glytamyln(N-2-hexadecanoyl))GLP-1(7-37). Iraglutide is usually administered parenterally.

[0018] The compound desPro3'Exendin-4(1-39)-Lys4-NH2 (AVE0010, lixisenatide) is an analogue of exendin-4. Lixisenatide is disclosed as SEQ ID NO:93 in WO 01/04156.

SEQ ID NO: 1: Lixisenatide (44 AS)

SEQ ID NO: 2: Exendin-4 (39 AS)

SEQ ID NO: 3: GLP-1(7-36) (30 AS)

[0019] Exendins are a group of peptides which can lower blood glucose concentration. Exendins have an amino acid
sequence identity of only about 50% with GLP-1 (7-36). Therefore, exendins are generally not regarded as GLP-1 analogs.

[0020] Lixisenatide is characterised by C-terminal truncation of the native exendin-4 sequence. Lixisenatide comprises six C-terminal lysine residues not present in exendin-4. Up to now, lixisenatide has not been considered as a drug suitable for the treatment of CNS disorders, in particular neurodegenerative diseases, as the C-terminal lysine residues may prevent the drug to pass the blood-brain-barrier. At present, there is no indication that lixisenatide could be transported across the blood-brain-barrier by a specific or/and regulated mechanism.

[0021] In example 1 of the present invention, it has been demonstrated that lixisenatide has superior properties compared to the GLP-1 analogue lixaglutide and to exendin-4, both of which are currently used as treatments for type 2 diabetes:

[0022] (a) Surprisingly, lixisenatide can cross the blood brain barrier. The data of the present invention indicate that the transport is regulated, as the transport rate at high concentrations is limited to a maximum level. Furthermore, lixisenatide is taken up into the brain at a lower parenteral dose as compared with lixaglutide.

[0023] (b) Lixisenatide activates GLP-1 receptors in the brain and induces cAMP production. Surprisingly, lixisenatide produces higher levels of cAMP than lixaglutide, demonstrating higher effectiveness at activating the GLP-1 receptor at the same dose.

[0024] (c) Lixisenatide can induce proliferation of progenitor cells in the dentate gyrus. Compared with exendin-4 or with lixaglutide, lixisenatide provides enhanced effects when administered at the same dose. In neurodegenerative diseases, these effects can constitute a disease-modifying effect.

[0025] (d) Lixisenatide showed superior neuroprotective effects (against cellular stress) in the dentate gyrus when compared with lixaglutide.

[0026] (e) Surprisingly, a pre-treatment with a dose of 10 nM lixisenatide was sufficient in protecting SH-SY5Y neuroblastoma cells from 1200 μM Methyl Glyoxal stress. A dose of 200 nM lixaglutide was necessary in protecting cells from 1200 μM Methyl Glyoxal stress, indicating that a lower dose of lixisenatide is sufficient to induce protection (see also data of Example 2 obtained by pre-treatment with GLP-1 agonists).

[0027] Example 2 demonstrates that a post-treatment with lixisenatide was sufficient in protecting SH-SY5Y neuroblastoma cells from 2 mM Methyl Glyoxal stress or 1 mM H₂O₂ stress. In contrast, Liraglutide did not protect cells from the stress by MG or H₂O₂.

[0028] In Example 3, Lixisenatide exhibited significant neuroprotective effects in rotenone treated L929 cells against neurodegeneration. Lixisenatide provides advantages compared with other GLP-1 receptor (GLP-1R) agonists. In rotenone treated L929 cells, Lixisenatide is significantly active at 3-fold lower concentrations than Liraglutide, a result confirming the unexpected superior activity effect seen in the Methyl Glyoxal model of Example 1. Exenatide did not elicit a significant effect at concentrations of 0.3 and 1 μM. In contrast, Lixisenatide provides a dose-dependent improvement of viability at these concentrations.

[0029] In Example 4, it is demonstrated that lixisenatide treatment in vivo leads to a decrease of amyloid plaque load in the brain of transgenic mice, models of Alzheimer’s disease. Therefore, in addition to its neuroprotective properties, lixisenatide can decrease cerebral pathological lesions such as amyloid plaques and represents therefore an attractive prevention or/and treatment for Alzheimer’s Disease. Activity is observed at lower dose (10 nmol/kg) than previously described for lixaglutide (25 nmol/kg) by McLean et al. (2011).

[0030] Therefore, lixisenatide is suitable for the treatment or/and prevention of a neurodegenerative disease, as described herein, for example Alzheimer’s disease, Parkinson’s disease or/and stroke.

[0031] A first aspect of the present invention is a pharmaceutical composition for use in the prevention or/and treatment of a neurodegenerative disease, the composition comprising desPro⁵Exendin-4(1-39)-Lys⁵-NH₂ or/and a pharmaceutically acceptable salt thereof, and optionally a pharmaceutically acceptable carrier, adjuvant, or/and auxiliary substance.

[0032] Another aspect of the present invention is a pharmaceutical composition for use in the treatment of a neurodegenerative disease, the composition comprising desPro⁵Exendin-4(1-39)-Lys⁵-NH₂ or/and a pharmaceutically acceptable salt thereof, and optionally a pharmaceutically acceptable carrier, adjuvant, or/and auxiliary substance.

[0033] The neurodegenerative disease may be any neurodegenerative disease, in particular a neurodegenerative disease which is associated with oxidative stress, loss of neurite integrity, apoptosis, neuronal loss or/and inflammation response.

[0034] In the present invention, loss of neurite integrity includes dendritic spine loss, loss of synaptic plasticity, or/and loss of new compensatory neurite sprouting.

[0035] The neurodegenerative disease may be associated with cognitive impairment.

[0036] In particular, the neurodegenerative disease is selected from the group consisting of Alzheimer’s disease, Parkinson’s disease, progressive supranuclear palsy (PSP), multiple system atrophy (MSA), Lewy body dementia, Parkinson’s disease dementia, epilepsy, stroke, Huntington’s Chorea, cerebral hypoxia, multiple sclerosis, and peripheral neuropathy. The peripheral neuropathy may be associated with diabetes mellitus.

[0037] It is preferred that the neurodegenerative disease is selected from the group consisting of Alzheimer’s disease, Parkinson’s disease, and stroke.

[0038] It is also preferred that the neurodegenerative disease is selected from the group consisting of progressive supranuclear palsy, multiple system atrophy, Lewy body dementia, Parkinson’s disease, and Parkinson’s disease dementia. Any one of these diseases may be associated with Parkinsonism.

[0039] Progressive supranuclear palsy and multiple system atrophy are collectively known as Parkinson-plus syndromes.

[0040] In the present invention, Parkinsonism is a neurological syndrome which is characterised by a combination of specific symptoms such as tremor, hypokinesia, rigidity, or/and postural instability.
In one embodiment, the neurodegenerative disease is Alzheimer’s disease. Alzheimer’s disease can be associated with oxidative stress and neuronal loss. In another embodiment, the neurodegenerative disease is Parkinson’s disease. Parkinson’s disease may be associated with oxidative stress, inflammatory response, apoptosis, neuronal loss, in particular loss of dopaminergic neurons, for example neuronal loss in the substantia nigra resulting in a lack of dopamine. Neuronal loss may be caused by apoptosis.

In another embodiment, the neurodegenerative disease is progressive supranuclear palsy. Progressive supranuclear palsy may be associated with neuronal loss, in particular loss of dopaminergic neurons.

In another embodiment, the neurodegenerative disease is multiple system atrophy. Multiple system atrophy may be associated neuronal loss, in particular loss of dopaminergic neurons.

In another embodiment, the neurodegenerative disease is Lewy body dementia. Lewy body dementia may be associated with neuronal loss, in particular loss of dopaminergic neurons. Lewy body dementia may be associated with Parkinson’s disease.

In another embodiment, the neurodegenerative disease is Parkinson’s disease. Parkinson’s disease may be associated with neuronal loss, in particular loss of dopaminergic neurons. In particular, Parkinson’s disease may be associated with Parkinson’s disease.

In yet another embodiment, the neurodegenerative disease is stroke. Stroke may be associated with neuronal loss caused by ischemia, wherein ischemia may be caused by blockage (such as thrombosis or arterial embolism) or haemorrhage.

In yet another embodiment, the neurodegenerative disease is multiple sclerosis, which may be associated with inflammatory processes in the CNS.

The data of the present invention demonstrate that (a) lixisenatide provides neuroprotective and/or neuroregenerative effects, and (b) lixisenatide is superior compared with other GLP-1 agonists, such as exendin-4 or liraglutide. Thus lixisenatide can provide a disease-modifying effect in neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and stroke. In particular, administration of lixisenatide is suitable for the treatment in an early stage of a neurodegenerative disease, as neuroprotection and neuroregeneration could slow down the progression of the disease and thereby improve quality of life.

Therefore, in one aspect of the present invention, the neurodegenerative disease is in an early stage. For example, the Alzheimer’s disease may be an early-stage Alzheimer’s disease. Early-stage Alzheimer’s disease (AD) is also termed prodomal Alzheimer’s disease or predementia Alzheimer’s disease. (Dubois et al. 2010). Early stage Alzheimer’s disease can be defined as: patients presenting objective memory complaint associated with supportive biomarker data or Alzheimer’s disease pathologies in cerebrospinal fluid (CSF): low levels of β-amyloid 42 (Aβ42 peptide over tau protein ratio are found, or amyloid plaque in the brain are detected by amyloid PET (positron emission tomography) agent such as AmyViDP™ from E. Lilly (Avid).

In another example, the Parkinson’s disease may be an early-stage Parkinson’s disease. In yet another example, the progressive supranuclear palsy may be an early-stage progressive supranuclear palsy. In yet another example, the multiple system atrophy may be an early-stage multiple system atrophy. In another example, the Lewy body dementia may be an early-stage Lewy body dementia. In further example, the Parkinson’s disease dementia may be an early-stage Parkinson’s disease dementia.

Furthermore, lixisenatide is suitable in the prevention of a neurodegenerative disease, in particular in those patients suspected of suffering from a neurodegenerative disease without having a clear diagnosis. In another aspect of the present invention, the pharmaceutical composition, as described herein, is for use in the prevention of a neurodegenerative disease.

In the context of the present invention, desPro4Exendin-4(1-39)-Lys8-NH2 (lixisenatide) includes pharmaceutically acceptable salts thereof. The person skilled in the art knows pharmaceutically acceptable salts of lixisenatide. A preferred pharmaceutically acceptable salt of lixisenatide employed in the present invention is acetate.

In the present invention, desPro4Exendin-4(1-39)-Lys8-NH2 or/and the pharmaceutically acceptable salt thereof may be administered to a patient in need thereof, in an amount sufficient to induce a therapeutic effect.

In the present invention, desPro4Exendin-4(1-39)-Lys8-NH2 or/and the pharmaceutically acceptable salt thereof may be formulated with suitable pharmaceutically acceptable carriers, adjuvants, and/or auxiliary substances.

The pharmaceutical composition of the present invention provides a disease-modifying effect by its neuroprotective and neuroregenerative effects, as described herein, in a neurodegenerative disease, as described herein. In particular, a disease-modifying response can be obtained in the treatment of a neurodegenerative disease as described herein, for example in Alzheimer’s disease, Parkinson’s disease, progressive supranuclear palsy, multiple system atrophy, Lewy body dementia, Parkinson’s disease dementia, epilepsy, stroke, Huntington’s Chorea, cerebellar hypoxia, multiple sclerosis, and peripheral neuropathy as described herein.

The pharmaceutical composition of the present invention may be administered parenterally, e.g., by injection (such as by intramuscular or by subcutaneous injection). Suitable injection devices, for instance the so-called “pens” comprising a cartridge comprising the active ingredient, and an injection needle, are known. The compound desPro4Exendin-4(1-39)-Lys8-NH2 or/and a pharmaceutically acceptable salt thereof may be administered in a suitable amount, for instance in an amount in the range of 1 to 50 μg per dose, 5 to 40 μg per dose, 10 to 30 μg per dose, 10 to 15 μg per dose or 15 to 20 μg per dose.

In the present invention, the compound desPro4Exendin-4(1-39)-Lys8-NH2 or/and a pharmaceutically acceptable salt thereof may be administered in a daily dose in the range of 1 to 50 μg, in the range of 5 to 40 μg, in the range of 10 to 30 μg, in the range of 10 to 20 μg, in the range of 10 to 15 μg, or in the range of 15 to 20 μg. The composition of the present invention may be administered by one injection per day.

In the present invention, the composition of the present invention may be provided as a liquid composition. The skilled person knows liquid compositions of lixisenatide suitable for parenteral administration. A liquid composition of the present invention may have an acidic or a physiologic pH. An acidic pH preferably is in the range of pH 1-6.8, pH 3.5-6.8, or pH 3.5-5. A physiologic pH...
preferably is in the range of pH 2.5-8.5, pH 4.0-8.5, or pH 6.0-8.5. The pH may be adjusted by a pharmaceutically acceptable diluted acid (typically HCl) or pharmaceutically acceptable diluted base (typically NaOH).

[0061] The liquid composition of the present invention may comprise a suitable preservative. A suitable preservative may be selected from phenol, m-cresol, benzyl alcohol and p-hydroxybenzoic acid ester. A preferred preservative is m-cresol.

[0062] The liquid composition of the present invention may comprise a toxicity agent. A suitable toxicity agent may be selected from glycerol, lactose, sorbitol, mannitol, glucose, NaCl, calcium or magnesium containing compounds such as CaCl₂. The concentration of glycerol, lactose, sorbitol, mannitol and glucose may be in the range of 100-250 mM. The concentration of NaCl may be up to 150 mM. A preferred toxicity agent is glycerol.

[0063] The liquid composition of the present invention may comprise methionine from 0.5 µg/mL to 20 µg/mL, preferably from 1 µg/mL to 5 µg/mL. Preferably, the liquid composition comprises L-methionine.

[0064] Yet another aspect of the present invention refers to a method for the prevention of a disease or treatment of a medical condition, as described herein. For example, the method may comprise the administration of the pharmaceutical composition as described herein. The method may be a method for the prevention of treatment of a neurodegenerative disease, as described herein.

[0065] In particular, the method, as described herein, elicits a disease-modifying response, for example by neuroprotection or/and neurodegeneration.

[0066] In the method of the present invention, a disease-modifying therapy by its neuroprotective and neuroregenerative effects is provided by administration of the pharmaceutical composition, as described herein, in a neurodegenerative disease, as described herein. In particular, a disease-modifying response can be obtained in the treatment of a neurodegenerative disease as described herein, for example in Alzheimer’s disease, Parkinson’s disease, progressive supranuclear palsy, multiple system atrophy, Lewy body dementia, Parkinson’s disease dementia, epilepsy, stroke, Huntington’s Chorea, cerebral hypoxia, multiple sclerosis, and peripheral neuropathy, as described herein.

[0067] In the method of the present invention, a therapeutically effective amount of the pharmaceutical composition, as described herein, is administered.

[0068] Yet another aspect of the present invention refers to the use of the composition as described herein for the manufacture of a medicament for the treatment of a medical indication, as described herein. For example, the composition of the present invention can be used for the manufacture of a medicament for the prevention or/and treatment of a neurodegenerative disease, as described herein.

[0069] The invention is further illustrated by the following examples and figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0070] FIG. 1A shows total lixisenatide concentration (pmol/L) measured in the brains of wild type female mice (n=5; average age 24 weeks) at 30 min following i.p. saline vehicle (0.9% w/v NaCl) or i.p. lixisenatide (2.5, 25 or 250 nmol/kg body weight) injection. Values are the mean±S.E.M. *p<0.05, **p<0.01.

[0071] FIG. 1B shows total lixisenatide concentration (pmol/L) measured in the brains of wild type female mice (n=5; average age 24 weeks) at 3 h following i.p. saline vehicle (0.9% w/v NaCl) or i.p. lixisenatide (2.5, 25 or 250 nmol/kg body weight) injection. Values are the mean±S.E.M. *p<0.05, **p<0.01.

[0072] FIG. 2A shows total liraglutide concentration (pmol/L) measured in the brains of wild type female mice (n=5; average age 24 weeks) at 30 min following i.p. saline vehicle (0.9% w/v NaCl) or i.p. liraglutide (2.5, 25 or 250 nmol/kg body weight) injection. Values are the mean±S.E.M. *p<0.05, **p<0.01.

[0073] FIG. 2B shows total liraglutide concentration (pmol/L) measured in the brains of wild type female mice (n=5; average age 24 weeks) at 3 h following i.p. saline vehicle (0.9% w/v NaCl) or i.p. liraglutide (2.5, 25 or 250 nmol/kg body weight) injection. Values are the mean±S.E.M. *p<0.05, **p<0.01.

[0074] FIG. 3A shows injection of 25 nmol/kg bw liraglutide ip. 30 min before analysis showed a significant increase of cAMP in the brain compared to controls (p<0.05; t-test).

[0075] FIG. 3B shows injection of 25 nmol/kg bw lixisenatide ip. 30 min before analysis showed a significant increase of cAMP in the brain compared to controls (p<0.01; t-test).

[0076] FIG. 3C shows when directly comparing the effects of liraglutide with lixisenatide, a significant difference between drugs is found (p<0.05; t-test).

[0077] FIG. 4 shows the effect of oncedaily injection of either exendin-4, liraglutide or lixisenatide 25 nmol/kg bw, for 3 weeks on cell proliferation in the dentate gyrus (BrdU staining). Values are the mean±S.E.M. *p<0.05, **p<0.01. Lixisenatide shows an increased cell proliferative activity compared to exendin-4 and liraglutide (p<0.05) and controls (p<0.01).

[0078] FIG. 5 shows histological analysis of chronic injection of lixisenatide ip. once-daily for 3 weeks (25 nmol/kg bw ip.). In a BrdU immuno-histological analysis, more new cells were found in the dentate gyrus brain area. Also, more young neurons were found (double cortex stain). Values are the mean±S.E.M. *p<0.05, **p<0.01.

[0079] FIG. 6A shows LDH Assay, Pre-treatment of SH-SY5Y cells with lixisenatide followed by Methyl Glyoxal Stress. (*p<0.0001). A dose of 10 nM lixisenatide was sufficient in protecting cells from 1200 µM Methyl Glyoxal stress.

[0080] FIG. 6B shows LDH Assay, Pre-treatment of SH-SY5Y cells with liraglutide followed by Methyl Glyoxal Stress. (*p<0.05, **p<0.001). A dose of 200 nM liraglutide was sufficient in protecting cells from 1200 µM Methyl Glyoxal stress. The lower doses of 10 nM or 100 nmol showed no effect.

[0081] FIG. 7A shows post-stress treatment with Lixisenatide after Methyl Glyoxal (MG) and Hydrogen Peroxide (H₂O₂) treatment. The X-axis refers to various assay conditions and the Y-axis represents the absorbance. *p<0.05, **p<0.01.

[0082] FIG. 7B shows post-stress treatment with Liraglutide after Methyl Glyoxal (MG) and Hydrogen Peroxide (H₂O₂) treatment. The X-axis refers to various assay conditions and the Y-axis represents the absorbance. *p<0.05, **p<0.01.

[0083] FIG. 8A shows pre-treatment effect of Lixisenatide followed by Methyl Glyoxal (MG) stress. The X-axis refers
to various assay conditions and the Y-axis represents the absorbance. *=p<0.05, **=*p<0.001.

[0084] FIG. 8B shows pre-treatment effect of Liraglutide followed by Methyl Glyoxal (MG) stress. The X-axis refers to various assay conditions and the Y-axis represents the absorbance. *=p<0.05, **=*p<0.001.

[0085] FIG. 8C shows pre-treatment effect of Exendin-4 followed by Methyl Glyoxal (MG) stress. The X-axis refers to various assay conditions and the Y-axis represents the absorbance. *=p<0.05, **=*p<0.001.

[0086] FIG. 9 shows neuroprotection of LUHMES cells (expressed as percentage reversal of the normalized cell viability decrease induced by rotenone exposure) in the presence of various concentrations of Lixisenatide. Rot. =rotenone. NS =not significant. *=p<0.05; **=*p<0.001.

[0087] FIG. 10 shows neuroprotection of LUHMES cells (expressed as percentage reversal of the normalized cell viability decrease induced by rotenone exposure) in the presence of various concentrations of Exendin-4/Exenatide. Rot. =rotenone. NS =not significant. *=p<0.05.

[0088] FIG. 11 shows neuroprotection of LUHMES cells (expressed as percentage reversal of the normalized cell viability decrease induced by rotenone exposure) in the presence of various concentrations of Lixisenatide. Rot. =rotenone. NS =not significant. *=p<0.001.

[0089] FIG. 12 shows Lixisenatide treatment reduces amyloid plaque load in the brain of Alzheimer’s Disease transgenic mice. Lixisenatide treatment in 7-month old APP/PS1 transgenic mice for 70 days (10 nmol/kg, i.p., daily) reduces beta amyloid plaque load in the brain as quantified by beta amyloid immunohistochemistry and determination of the % area positive for 1 amyloid in cross sections of the brain cortex. Values are mean±SEM (**=*p<0.01).

[0090] FIG. 13 shows Lixisenatide treatment reduces amyloid plaque load in the brain of Alzheimer’s Disease transgenic mice. Lixisenatide treatment in 7-month old APP/PS1 transgenic mice (Alzheimer’s disease model) for 70 days 10 nmol/kg, i.p., daily) reduces mature amyloid plaque load in the brain as quantified by histological staining with Congo red and determination of the % area positive for Congo red in cross sections of the brain cortex. Values are mean±SEM (*=p<0.05).

EXAMPLE 1

[0091] Lixisenatide is a peptide drug which typically is administered parenterally. To elicit an activity against neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, progressive supranuclear palsy, multiple system atrophy, Lewy body dementia, Parkinson’s disease dementia or stroke, lixinatide must cross the blood-brain barrier. Lixisenatide, in particular when administered parenterally, is suitable for the treatment of and prevention of neurodegenerative diseases if lixinatide provides one or more of the following features:

[0092] (a) lixinatide can cross the blood brain barrier,

[0093] (b) lixinatide activates GLP-1 receptors in the brain and induces physiological effects by receptor activation,

[0094] (c) lixinatide provides disease-modifying effects in suitable models,

[0095] (d) lixinatide is neuroprotective in suitable models, and

[0096] (e) lixinatide provides advantages over other GLP-1 receptor agonists, such as liraglutide or exenatide.

Lixisenatide Uptake by the Brain

[0097] In the present Example, it is described whether the GLP-1 receptor agonist lixinatide crossed the blood-brain-barrier (BBB). 3 doses (2.5 nmol/kg bw, 25 nmol/kg bw and 250 nmol/kg bw, ip.) were tested, and the levels found in mouse brain tissue 30 min and 3 h post injection were examined. Lixisenatide levels were enhanced 30 min after delivery with all doses and were also detected with both the low (2.5 nmol/kg bw) and medium level (25 nmol/kg bw), but not the high dose of 250 nmol/kg bw of lixinatide. This difference suggests that transport of lixinatide into the brain is regulated, limiting the influx of high concentrations of lixinatide tested here (FIG. 1).

Comparison of Lixisenatide Uptake with Liraglutide Uptake in the Brain

[0098] The above results for lixinatide were compared to those for the GLP-1 agonist, liraglutide (Victoza by Novo Nordisk). As discussed above and shown in FIGS. 1 and 2, lixinatide levels showed significant increase in the brain at the lowest dose of 2.5 nmol/kg bw, whereas liraglutide did not show an increase at this dose (FIG. 2), suggesting that lixinatide is taken up in the brain at lower concentrations than liraglutide.

[0099] From this finding it is concluded that lixinatide requires a lower dose of lixinatide to pass the blood-brain-barrier, compared with liraglutide, so that it can exert a therapeutic effect upon neurodegenerative diseases, as described herein, at a lower dose, compared with liraglutide. GLP-1 Receptor Activation in the Brain/Production of cAMP

[0100] Preliminary studies have shown that lixinatide activates the pancreas GLP-1 receptor that is linked to the enhancement of the cAMP levels (for review, see, for example, Doyle et al., 2007)

[0101] In the present example, it has been shown for the first time that injecting lixinatide i.p. increased the amount of cAMP in the brain, indicating that the lixinatide activates GLP-1 receptors in the brain (FIG. 3b). A direct comparison of the effects of lixinatide (25 nmol/kg bw i.p.) and liraglutide (25 nmol/kg bw i.p., for results, see FIG. 3a) on GLP-1 receptor is shown in FIG. 3c. Lixisenatide produces significantly higher levels of cAMP than liraglutide (*=p<0.05) at the same dose, demonstrating a higher effectiveness of lixinatide.

Neurogenerative Effects/Disease-Modifying Effects of Lixisenatide in the Brain

[0102] The effects of chronic injection of lixinatide i.p., exendin-4 i.p. and liraglutide i.p. for 3 weeks upon neuronal progenitor stem cell proliferation was investigated. An enhanced stem cell proliferation in the dentate gyrus was found (BrdU stain, FIGS. 4 and 5). Surprisingly, lixinatide had significantly enhanced cell proliferation (*=p<0.05) when compared with exendin-4 or liraglutide, indicating that lixinatide is more effective in the brain than exendin-4 and liraglutide when injected at the same dose.

[0103] In addition, the number of young neurons in the dentate gyrus was increased after lixinatide injection when compared to liraglutide (double cortin stain, data not
shown), indicating that the progenitor cells differentiate into neurons. This demonstrates that lixisenatide induces lasting improvements.

[0104] These effects of lixisenatide on stem cells (proliferation and differentiation) are an important aspect for brain repair, so these effects can provide a disease-modifying effect in neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and stroke.

Neuroprotective Effects of Lixisenatide in the Brain

[0105] In neuronal cell culture studies, lixisenatide has been tested to investigate if it has neuroprotective effects in cellular stress conditions. The toxic drug Methyl Glyoxal was used to reduce cell viability. Addition of lixisenatide showed neuroprotective effects in a dose-dependent manner (Fig. 6a), affording 100% protection at all doses with the lowest concentration of Methyl Glyoxal and maintaining protection even with the highest concentration of Methyl Glyoxal tested. A dose of 10 nM lixisenatide was sufficient in protecting cells from 1200 μM Methyl Glyoxal stress.

[0106] In addition, lixisenatide showed superior protection compared with liraglutide. In Fig. 6b, it is shown that liraglutide was not able to protect cells at a dose of 10 nM. A dose of 200 nM liraglutide was required in order to protect the cells from 1200 μM Methyl Glyoxal stress, the lower doses of 10 or 100 nM showed no effect.

Materials and Methods

[0107] Measurement of cAMP in the Brain

Animals

[0108] Female wild type (C57BL/6 background) mice were used, 5 per group. For cAMP measurement, mice were injected i.p. with 25 nmol/kg body weight (bw) liraglutide, lixisenatide or saline (0.9% w/v) as control in two separate experiments. 30 min post injection mice brains were immediately removed and snap frozen.

Tissue Extraction of cAMP

[0109] Each brain was extracted using 0.1 M HCl, 10 ml of 0.1 M HCl per g of tissue was added. Samples were sonicated then centrifuged at 10,000 rpm for 15 min at 4°C. The supernatant was poured off and used directly for measurement by direct cAMP ELISA kit (Enzo Life Sciences). Dilutions were made using the 0.1 M HCl provided in the kit.

Immunohistochemistry

[0110] Animals were administered BrdU (180 mg/kg bw; i.p.) 18 h prior to being anaesthetized with pentobarbitone (0.3 ml; Euthanal, Bayer AG, Leverkusen, Germany) and perfused transcardially with PBS followed by 4% paraformaldehyde. The brains were removed and put into 30% sucrose in PBS overnight. Immunohistochemistry for BrdU or doublecortin (DCX) was performed on 45 μm free floating sections. Endogenous peroxidase activity was quenched by incubation of sections in 3% hydrogen peroxide. Denaturation of DNA involved incubation in 2N HCl, followed by 0.1 M borax for 10 min. Sections were incubated in a primary antibody for BrdU (1:200, mouse monoclonal anti-BrdU, Sigma) or for DCX gout polycyclonal anti-doublecortin (1:200, Santa Cruz, USA, sc-710) overnight at 4°C. Then secondary antibody (1:200, horse anti-mouse, Vector elite ABC kit, mouse, Vector laboratories) was applied. Sections were incubated in an avidin biotin enzyme reagent and incubated in Vector SG substrate chromogen (see Gengler et al. 2010) for details.

Microscopy

[0111] The sections were analysed using an Olympus CX 40 microscope, using stereological techniques. This involves starting the sectioning randomly and collecting every 5th section throughout the granule cell layer (GCL) of the dentate gyrus (DG). Analysis was performed using a x40 objective and representative images were taken using a 5.1 MPix digital camera. For each drug group, 4-6 mice brains were analysed. Between 8 and 12 sections were taken for each brain. The brain regions analysed ranged from −1.3 to −2.5 mm bregma. All positive cells in the DG were counted using ImageJ software (frefeware of the NIH, http://rsbweb.nih.gov/ij/). In the GCL, cells positive for BrdU or DCX were counted.

SH-SY5Y Cell Line

[0112] SH-SY5Y is a thrice-cloned human neuroblastoma cell line that was established in 1970 from a bone marrow biopsy of a metastatic neuroblastoma site in a four-year-old female. These cells are dopamine beta hydroxylase active, acetylcholinergic, glutamatergic and adenosinergic. SH-SY5Y cells grow as a mixture of floating and adherent cells as well as form clusters of neuroblastic cells with multiple, short, fine cell processes. Retinoic acid and cholesterol treatment can force the cells to grow dendrites and differentiate.

Pre-Treatment of SH-SY5Y Cells with Lixisenatide or Liraglutide Followed by Methyl Glyoxal Stress

[0113] SH-SY5Y cells were cultured in Dulbecco’s minimum essential medium with F12 (1:1) and Glutamax supplemented with 10% heat inactivated (heated at 56°C for 20 min) fetal bovine serum and penicillin and streptomycin, and incubated in a humidified, 5% CO2, 37°C incubator. Cells were trypsinized at 80% confluency and after counting cells by trypan blue exclusion method (Countess, Invitrogen), 2x10⁴ cells were plated in Luminin coated 96-well plate (Nunc, Inc) at 95% cell viability. After 12 hours of cell attachment, cells were pre-treated with lixisenatide or liraglutide at different doses as at 10 nM, 100 nM and 200 nM, followed by the addition of stressor Methyl Glyoxal in the serum free media at concentrations 300 μM, 600 μM and 1200 μM (FIGS. 6A and 6B). Data was analyzed by PRISM 5.0 C (GraphPad Software, Inc.) and significance was defined as p values of <0.05 or smaller.

Effect of Lixisenatide or Liraglutide Pre-Treatment on Hydrogen Peroxide Stressed SH-SY5Y Cells

[0114] Cells were pre-treated with 10 nM and 100 nM liraglutide or lixisenatide, followed by the addition of stressor hydrogen peroxide in the serum free media at concentrations 200 μM, 400 μM and 800 μM.

LDH Assay

[0115] Cell culture media were analysed using a sensitive lactate-dehydrogenase (LDH) assay (by Sigma). The LDH assay provides a measure of the number of dead cells via total cytoplasmic LDH or by membrane integrity as a function of the amount of cytoplasmic LDH released into the medium. The measurement of released LDH is based on the
reduction of NAD by the action of LDH. The resulting reduced NAD (NADH) is used in the stoichiometric conversion of a tetrazolium dye. The final colored compound is measured by colorimetry.

SUMMARY

The data of the present example demonstrates that lixisenatide is suitable for the treatment or prevention of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, progressive supranuclear palsy, multiple system atrophy, Lewy body dementia, Parkinson's disease dementia or stroke. Furthermore, lixisenatide has superior properties compared to the GLP-1 analog liraglutide and to exendin-4, both of which are currently used as treatments for type 2 diabetes.

In particular, the data of the present example demonstrates that

(a) surprisingly, lixisenatide can cross the blood brain barrier. The data of the present invention indicates that the transport is regulated, as the transport rate at high concentrations is limited to a maximum level. Furthermore, lixisenatide is taken up into the brain at a lower parenteral dose as compared with liraglutide.

(b) lixisenatide activates GLP-1 receptors in the brain and induces cAMP production. Surprisingly, lixisenatide produces higher levels of cAMP than liraglutide, demonstrating higher effectiveness at activating the GLP-1 receptor at the same dose.

(c) lixisenatide can induce proliferation of progenitor cells in the dentate gyrus. Compared with exendin-4 or with liraglutide, lixisenatide surprisingly provides enhanced effects when administered at the same dose. In neurodegenerative diseases, these effects can constitute a disease-modifying effect.

(d) surprisingly, lixisenatide showed superior neuroprotective effects (against cellular stress) in the dentate gyrus when compared with liraglutide.

(e) surprisingly, a pre-treatment with a dose of 10 nM lixisenatide was sufficient in protecting SH-SY5Y neuroblastoma cells from 1200 µM Methyl Glyoxal stress. A dose of 200 nM liraglutide was necessary in protecting cells from 1200 µM Methyl Glyoxal stress, indicating that a lower dose of lixisenatide is sufficient to induce protection.

EXAMPLE 2

Post-Stress Treatment with Lixisenatide or Liraglutide after Methyl Glyoxal (MG) and Hydrogen Peroxide (H₂O₂) Treatment

SHESY-5Y cells were seeded in 96 well plates and after 12 hours of serum starvation, were stressed with 600 µM and 1 mM of H₂O₂ and 1 mM and 2 mM of MG for 3 hrs. The cells were treated with 0, 1, 10, 50 and 100 nM of Lixisenatide and 0, 10, 50, 100 and 200 nM of Liraglutide. After 24 hrs 50 µL of XTT reagent was added and incubated for 8 hrs. The assay volume was 100 µL.

FIG. 7 demonstrates that the post-treatment with Lixisenatide significantly increased the number of surviving cells after stress with MG or H₂O₂ in a dose-dependent way (see in particular data obtained with 600 µM H₂O₂, and 2 mM MG in FIG. 7A). Liraglutide did not protect cells from the stress by MG or H₂O₂ (FIG. 7B).

Pre-Treatment with Lixisenatide or Liraglutide Followed by Methyl Glyoxal (MG) Stress

SHESY-5Y cells were seeded in 96 well plates and after 12 hours of serum starvation and were treated with 0, 1, 10, 50 and 100 nM of Lixisenatide and 0, 10, 50, 100 and 200 nM of Liraglutide and Exendin-4 for 4 hrs, after being stressed with 400 µM and 600 µM of MG for 14 hrs. 50 µL of XTT reagent was added and plates incubated for 8 hrs.

FIG. 8 demonstrates that the pre-treatment with Lixisenatide before stress with MG or H₂O₂ significantly increased the number of surviving cells in a dose-dependent way, starting with the lowest dose of 1 nM with best results at 50 nM (FIG. 8A). Liraglutide also protected the cells, but only at a higher dose of 100 nM (FIG. 8B). Exendin-4 did not protect cells from the stress by MG or H₂O₂ (FIG. 8C).

Material and Methods

Pre-Treatment Assay with SHESY-5Y Cells Using Methyl Glyoxal as Stressor

1. SHESY-5Y cells were maintained in DMEM+F12 Glutamax media (Cat No. 313310, Invitrogen Inc.) with 10% FBS (Cat No. 10437, Invitrogen Inc.) and 1% Penne Strep (Cat No. 15070063, Invitrogen Inc.).

2. 80-90% confluent cultures were trypsinized using 0.25% trypsin EDTA solution and were seeded in 96 well plates (Cat No. 55301, Orange Scientific) which were previously coated with Laminin (L2020, Sigma) at a concentration of 1 µg/cm² for 2 hours at 37°C in a CO₂ incubator and were washed 2 times with sterile double distilled water.

3. After 12-15 hours media was changed from 10% FBS containing to serum free media (SFM) for next 12 hours.

4. Cells were pre-treated with incretins for 4 hours, the assay was performed in 150 µl volume format of different concentrations and fresh SFM was added to the controls respectively, for 4 hrs.

5. The cells were washed with 1xHBSS and 150 µl of 600 µM Methyl Glyoxal (Cat No. M0252, Sigma) and SFM was added to the test wells and controls respectively for 12 hrs.

6. The supernatant was collected to perform the LDH assay and stored at ~20°C.

7. 75 µl of XTT solution (Cat No. 11465015001, Roche Inc.) (Containing the coupling reagent) was added to the remaining cells and incubated at 37°C for 4 hours. The assay is based on the ability of metabolic active cells to reduce the tetrazolium salt XTT to colored compounds which can be determined by absorbance measurement. An increased absorbance indicates an increased number of metabolic active cells.

8. Absorbance was obtained by measuring at 492 nm and 690 nm for each well and subtracting As0 from As90.

9. For the LDH (Cat No. G1780, Promega) assay the 50 µl of the supernant was added to a 96 well plate along with 50 µl of the substrate and incubated in dark at room temperature for 60 minutes.

10. 50 µl of Stop solution was added and the absorbance measured at 490 nm.

11. The data for XTT and LDH assays was analyzed using Prism V.
The data of example 2 demonstrates that lixisenatide is suitable for the treatment of neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, progressive supranuclear palsy, multiple system atrophy, and Lewy body dementia. Lixisenatide provides a significant improvement of viability at these concentrations (FIGS. 9 and 10).

Material and Methods

To assess neuroprotection against rotenone, LUMHES cells were grown at 37°C in a humidified 95% air, 5% CO₂ atmosphere in standard cell-culture media. After 2 days culture in plastic flasks, differentiation medium containing growth factors was added and cells were incubated for another 2 days. Cells were dissociated and seeded into coated multi-well plates and fresh differentiation medium was added for another 4 days. On day 6 of differentiation, cells were treated with various concentrations of Lixisenatide, Exenatide (Exendin-4) or Liraglutide 1 hour before treatment with rotenone (0.75 μM). Neuroprotection was measured after 72 hrs. with a resazurin-based assay, an indicator of metabolically active cells generating a fluorescent product through cellular oxidation-reduction. The fluorescence produced is proportional to the number of viable cells in the cultures and thus measures the degree of protection of the neuronal LUMHES cells provided by the treatments. Data from n=12 measurements were compared following normalization of cell viability readings with respect to controls without rotenone. A one-way analysis of variance followed by a Dunnett’s test was used for statistical comparisons between experimental groups. Values of p<0.05 were considered as significant and denoted in the graphs with asterisks as follows: *p<0.05; **p<0.01; ***p<0.001; NS=not significant. Neuroprotection was expressed as percent reversal of viability decrease induced by rotenone.

Example 3

The data of example 3 demonstrates that lixisenatide is suitable for the treatment of neurodegenerative diseases, such as Parkinson’s disease, progressive supranuclear palsy (PSP), multiple system atrophy (MSA), Lewy body dementia, and Parkinson’s disease dementia or stroke. Furthermore, lixisenatide has superior properties compared to the GLP-1 analogs liraglutide and exenatide.

Summary

Lixisenatide provides a significant improvement of viability at these concentrations (FIGS. 9 and 11), a result comforting the unexpected superior activity effect of Lixisenatide seen previously in the Methyl Glyoxal model of Example 1.

Exenatide does not induce an improved viability at a concentration of 0.3 μM or 1 μM. In contrast, Lixisenatide provides a significant improvement of viability at these concentrations (FIGS. 9 and 10).

EXAMPLE 4: THE EFFECT OF LIXSSENATIDE IN APPsw/PS1ΔE9 TRANSGENIC MICE

To further demonstrate the interest of lixisenatide for the treatment of neurodegenerative diseases such as Alzheimer’s Disease, in the present example, it is described the effect of lixisenatide treatment in transgenic mice bearing amyloid plaques in their brain. APPsw/PS1ΔE9 trans-
genic mice are a well characterized model of Alzheimer’s disease showing an amyloid brain pathology. Lixisenatide treatment (10 nmol/kg, i.p., daily) was initiated in 7-month old APP/PS1 transgenic mice at an age when amyloid plaques have already developed in the brain and lasted for 70 days.

Transgenic Animals

APP_{sw}/PS1_{E63} mice with a C57Bl6 background were obtained from the Jackson lab (http://research.jax.org/repository/alzheimers.html). Heterozygous males were bred with wild-type C57Bl6 females bought locally (Harlan, UK). Offspring were ear punched and genotyped using PCR with primers specific for the APP-sequence (Forward: “GACTCGAGCATGACTCAGG”, SEQ: 1D NO:4”, Reverse: “GTCCTGTCGATCTTGGACA”, SEQ: 1D NO:5”). Mice not expressing the transgene were used as wild-type controls. Male animals were used in all studies. Animals were caged individually and maintained on a 12/12 light-dark cycle (lights on at 08h00, off at 20h00), in temperature-controlled room (T:21.5°C ±1). Food and water were available ad libitum. Animals were handled daily for two weeks prior to commencement of the study.

Treatment with Lixisenatide

Mice were 7 months of age when treatment began. At that time, mice already showed amyloid brain pathology. Mice were injected intraperitoneally (i.p.) once daily with Lixisenatide (10 nmol/kg body weight) or Saline (0.9% w/v) for 70 days. Experiments were licensed by the UK home office in accordance with the Animal (scientific procedures) Act of 1986.

Lixisenatide was supplied by Sanofi. Lyophilised peptide was reconstituted in Milli-Q water at a concentration of 1 mg/ml. Aliquots were stored in the freezer and reconstituted in 0.9% saline for injection.

Histological Preparation

Animals were perfused transcardially with PBS buffer followed by ice-cold 4% paraformaldehyde in PBS. Brains were removed and fixed in 4% paraformaldehyde for at least 24 h before being transferred to 30% sucrose solution overnight. Brains were then snap frozen using Envirofreeze™ and coronal sections of 40-micron thickness were cut at a depth of ~2 to ~3 Bregma using a Leica cryostat. Sections were chosen according to stereological rules with the first section taken at random and every 6th section afterwards.

Using standard methods (see McClean et al. 2011 for details), beta amyloid was stained using rabbit polyclonal anti amyloid beta peptide (1:200, Invitrogen, UK, 71-5800), and dense core plaques were stained using congo red. Beta amyloid and congo red were analysed by taking 2 images (using a 10x objective) of cortex per section (with 7-10 sections per brain; n=6 for Lixisenatide 10 nmol/kg bw, n=12 for saline). All staining was visualized by Axio Scope 1 (Zeiss, Germany) and analyzed using a multi threshold plug-in with Image J (NIH, USA).

Results

In APP_{sw}/PS1_{E63} transgenic mice already bearing amyloid brain pathology at initiation of treatment, lixisenatide treatment for 70 days lead to a reduction of beta amyloid plaque load as measured by beta amyloid immunoreactivity by 62% (p<0.0039; repeated measures t-test), compared with Saline-treated mice (FIG. 12).

Similarly, lixisenatide treatment reduced dense core amyloid plaque load as quantified by Congo red histological staining by 52% (p<0.0419; repeated measures t-test) compared with respective Saline-treated APP/PS1 mice (FIG. 13).

The activity was observed at lower dose (10 nmol/kg) than previously described for liraglutide (25 nmol/kg, McClean et al 2011).

Summary

These data using two independent techniques demonstrate that lixisenatide can reduce brain amyloid pathology in an animal model of Alzheimer’s disease. The data demonstrates that lixisenatide is suitable for the treatment of Alzheimer’s and prevention of neurodegenerative diseases, such as Alzheimer’s disease by decreasing brain amyloid plaque pathology. Therefore in addition to its neuroprotective properties, lixisenatide can decrease pathological lesions such as amyloid plaques and represent therefore an attractive treatment for Alzheimer’s disease. Furthermore, activity is achieved at dose lower than those previously described for the GLP-1 analog liraglutide as expected from the data of Example 1.

REFERENCES

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 5
<210> SEQ ID NO 1
<211> LENGTH : 44
<212> TYPE : PRT
<213> ORGANISM : Artificial
<220> FEATURE:
<223> OTHER INFORMATION: desPro36-Exendin-4(1-39)-Lys6-NN2

<400> SEQUENCE: 1
His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
1   5   10
Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Glu Gly Pro Ser
20  25  30
Ser Gly Ala Pro Pro Ser Lys Lys Lys Lys Lys
35  40

<210> SEQ ID NO 2
<211> LENGTH : 39
<212> TYPE : PRT
<213> ORGANISM : Heloderma suspectum
<400> SEQUENCE: 2
His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
1   5   10
Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Glu Gly Pro Ser
20  25  30
Ser Gly Ala Pro Pro Ser
35

<210> SEQ ID NO 3
<211> LENGTH : 30
<212> TYPE : PRT
<213> ORGANISM : artificial
<220> FEATURE:
<223> OTHER INFORMATION: GLP-1(7-36)

<400> SEQUENCE: 3
His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly
```
1: A method for treating stroke in a patient in need thereof, comprising administering to said patient a therapeutically effective amount of a pharmaceutical composition comprising desPro\(^{39}\)Exendin-4(1-39)-Lys\(_2\)-NH\(_2\) ("lixisenatide") or a pharmaceutically acceptable salt thereof, and optionally a pharmaceutically acceptable carrier, adjuvant, auxiliary substance or a combination thereof.

2: The method according to claim 1, wherein the lixisenatide or pharmaceutically acceptable salt thereof is administered parenterally.

3: The method according to claim 1, wherein the lixisenatide or pharmaceutically acceptable salt thereof is administered in a daily dose selected from the range of 10 \(\mu\)g to 20 \(\mu\)g.

4: The method according to claim 1, wherein the stroke is associated with death of cortical or striatal neurons or neuronal loss caused by ischemia.

5: The method according to claim 4, wherein the composition attenuates neuronal loss caused by ischemia.

6: The method according to claim 1, wherein the composition elicits a reduction in brain damage.

7: The method according to claim 1, wherein the composition elicits a disease-modifying response.

* * * * *