Abstract:

Methods and means for predicting the progression of precancerous cervical lesions are provided. The presence of RNA splice-form variants in a biological sample is determined by comparing splice-form ratios in the sample to splice-form ratios in a control sample.

Title: A NON-TARGET AMPLIFICATION METHOD FOR DETECTION OF RNA SPLICE-FORMS IN A SAMPLE

FIG. 1

Abstract: Provided are methods of isolating RNA from a biological sample, methods and means for determining the presence of particular RNA splice-form variants in a biological sample, methods and means for determining the relative ratio of RNA ratios in a biological sample, and methods and means for predicting the progression of precancerous cervical lesions.
A NON-TARGET AMPLIFICATION METHOD FOR DETECTION OF RNA SPLICE-FORMS IN A SAMPLE

CROSS-REFERENCE TO RELATED APPLICATIONS

BACKGROUND

1. Field

The present disclosure relates to methods and kits for determining the presence of ribonucleic acid (RNA) in a sample.

2. Description of Related Art

The detection and characterization of specific nucleic acid sequences and sequence changes have been utilized to detect the presence of viral or bacterial nucleic acid sequences indicative of an infection, the presence of variants or alleles of mammalian genes associated with disease and cancers, and the identification of the source of nucleic acids found in forensic samples, as well as in paternity determinations. Characterization of the RNA species involved in normal biological processes may be important to understanding various little known biological processes.

Detection

The detection and characterization of RNA (e.g., messenger RNA, transfer RNA, ribosomal RNA, small nuclear RNA, and other RNAs) is an important tool in many fields including molecular biology, toxicology, and biochemistry. Messenger RNA (mRNA) is an essential functional constituent of a cell; during the process of gene expression, the functional single strand structure of mRNA is synthesized and serves as an intermediate template for the translation process in protein synthesis. The brief existence of an mRNA molecule begins with transcription of DNA into an RNA molecule, and ultimately ends in degradation. During its life, an mRNA molecule may also be processed, edited, and transported prior to translation. Splicing is the process by which pre-mRNA is modified to remove certain stretches of non-coding sequences called introns; the stretches that remain may include
protein-coding sequences and are called exons. Sometimes pre-mRNA messages may be spliced in several different ways, allowing a single transcript to encode multiple proteins.

Detection of messenger RNA (mRNA) is critical in diagnostics because it can provide viral load and gene expression information that DNA detection cannot. These factors often give clues about the progression and prognosis of a disease. The current technologies for mRNA detection present a number of problems including expense and potential for contamination.

Reverse hybrid capture is a novel non-target amplification method for RNA detection that can be used to detect specific gene transcripts from biological samples with a very low risk for contamination. This method uses DNA probes that are hybridized to the RNA targets.

The created hybrids are then detected with a hybrid capture antibody system.

The most common methods of mRNA detection include Northern blot, ribonuclease protection assay (RPA), and reverse-transcriptase polymerase chain reaction (RT-PCR). However, each of these techniques, while affording some advantages in sensitivity, requires time and material demands. In addition, some techniques require amplification of the target mRNA since total mRNA represents only about 1% of the total RNA and any particular mRNA is a significantly smaller percentage.

Characterization

Currently, reverse transcriptase-polymerase chain reaction (RT-PCR) is widely used to characterize RNA transcripts. However the method has the following limitations: 1) only a limited number of the specific regions can be co-amplified; 2) mutations or alternative splicing can limit the ability of specific primers to detect the RNA; and 3) it is difficult to characterize the mRNA structure in a continuous mode method.

BRIEF SUMMARY

The present disclosure provides a non-target amplification method of RNA detection that is capable of characterizing RNA transcripts. In one embodiment, the present disclosure provides a non-target amplification method of mRNA detection that is capable of characterizing mRNA transcripts.

The present disclosure provides a method of detecting the presence of a target RNA, the method comprising: a) providing at least one DNA capture probe, wherein the at least one DNA capture probe is bound to a support; b) hybridizing the target RNA to said at least one DNA capture probe, yielding a target RNA:DNA capture probe complex; c) isolating the
target RNA:DNA capture probe complex; d) providing at least one DNA amplification probe, and hybridizing said at least one DNA amplification probe to said target RNA:DNA capture probe complex, yielding a target RNA:DNA capture/amplification probe complex; e) providing an anti-RNA:DNA hybrid antibody, and incubating said target RNA:DNA capture/amplification probe complex with said antibody, yielding a target RNA:DNA: antibody complex; f) detecting said antibody, wherein said detecting indicates the presence of said target RNA. In one aspect, antibody is conjugated to a detectable marker, and the step of detecting comprises detecting the marker. In one aspect, the detectable marker is selected from the group consisting of alkaline phosphatase and horseradish peroxidase. In one aspect, the step of detecting comprises providing a second antibody that binds to said anti-RNA:DNA hybrid antibody, wherein said second antibody is conjugated to a detectable marker, and wherein said detecting further comprises detecting the marker. In one aspect, the support comprises a magnetic bead. In one aspect, the magnetic bead is conjugated to at least one streptavidin molecule, and the at least one DNA capture probe is conjugated to a biotin molecule.

The target RNA may be from virus, bacteria, mycobacteria or plasmodia. The target RNA may be from Herpesviridae, human immunodeficiency viruses, bacteriophages, Chlamydia spp., Neisseria spp., Staphylococcus aureus, mycobacteria, SARS coronavirus, Orthomixoviridae, or Papillomaviridae.

In one aspect, the at least one DNA capture probe and the at least one DNA amplification probe are from about 15 to about 200 bases in length.

In one aspect, the target RNA is a splice variant, and the at least one DNA capture probe and the at least one DNA amplification probe are selected to detect the presence of said splice variant.

In one aspect, the at least one DNA capture probe and the at least one DNA amplification probe are complementary to RNA from HPV high risk types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 26, 66, 73, and 82.

The present disclosure provides a kit for the detection of a target RNA, the kit comprising: a) at least one DNA capture probe, bound to a magnetic support; b) at least one DNA amplification probe; c) an anti-RNA:DNA hybrid antibody; and d) a detection reagent. In one aspect, said anti-RNA:DNA hybrid antibody is conjugated to a detectable marker, and said detection reagent comprises a substrate for said detectable marker. In one aspect, the kit further comprises a second antibody that binds to said anti-RNA:DNA hybrid antibody,
wherein said second antibody is conjugated to a detectable marker, and wherein said
detection reagent comprises a substrate for said detectable marker.

The present disclosure provides a method of providing target RNA for detection, the
method comprising: incubating a biological sample containing the target RNA with carboxyl
beads; isolating the beads; lysing the biological sample attached to the isolated beads; and
isolating the beads from the lysed biological sample, wherein the resulting supernatant
contains the target RNA for detection.

BRIEF DESCRIPTION OF THE DRAWINGS

For a further understanding of the nature, objects, and advantages of the present disclosure,
reference should be had to the following detailed description, read in conjunction with the
following drawings, wherein like reference numerals denote like elements.

FIG. 1 is a schematic diagram of target RNA (crosshatched bar) captured by biotinylated
DNA probes (white bar). "B" represents a biotin moiety; "SA" represents a streptavidin
moiety; "AP" represents alkaline phosphatase conjugated to an antibody, but SA could be
any other appropriate detectable moiety (e.g., horseradish peroxidase, etc.).

FIG. 2 is a diagram depicting the use of DNA capture probe (white bar), multiple DNA
amplification probes (black bars), and multiple DNA:RNA hybrid antibodies to "amplify"
the signal without the need for amplification of the target RNA (crosshatched bar). "B"
represents a biotin moiety; "SA" represents a streptavidin moiety. B and SA may be replaced
with other conjugation technology in which DNA probes are conjugated to the bead; "AP"
represents alkaline phosphatase conjugated to an antibody, but AP could be any other
appropriate detectable moiety (e.g., horseradish peroxidase, etc.).

FIG. 3 is a diagram of target RNAs (dashed arrows) captured by different DNA capture
probes bound to a substrate (S). Non-conjugated DNA amplification probes (black bars)
and multiple antibodies that detect and bind to DNA:RNA hybrid regions (conjugated to
alkaline phosphatase or any other appropriate detectable moiety, such as horseradish
peroxidase, etc.) are also shown. The substrate (e.g., a bead) may bear multiple DNA capture
probes, and the DNA capture probes may be the same (i.e., the same sequence and/or
length) or different (i.e., different sequences and/or different lengths).

FIG. 4 provides the results of an experiment showing the effect of adding unbiotinylated
DNA probes after RNA capture. In this experiment, a variable number of biotinylated
probes were conjugated to streptavidin beads. The target was the E6/7 gene transcript of HPV 16. The assay was performed with each set of beads with (black bars) and without (white bars) the addition of unlabeled signal amplification probes (one- versus two-step assay). When no signal amplification step was added (white bars), the signal increased with the amount of coverage provided by the capture probes. However, when signal amplification probes were added (black bars), the signal was much higher than in the one-step assay and only 3-5 capture probes were required for improved signal.

FIG. 5 shows that endogenous hybrids are often the source of clinical background noise. "RLU" = relative luminescence unit.

FIG. 6 shows the effect of lysis buffer (wherein 100% buffer contains about 3 M guanidine thiocyanate and about 2% detergent) concentration on assay background when assaying cellular samples in PreservCyt® Solution, and demonstrates that clinical background decreases with decreasing concentrations of lysis buffer.

FIG. 7 shows that hypotonic lysis of cell pellets ensures that background noise remains stable and that the background does not change significantly regardless of the amount of specimen used. "PC" = PreservCyt® Solution; "PCQ" = Specimen (cervical scrape) pool fixed in PreservCyt® Solution with no HPV target.

FIG. 8 shows limit of detection of HPV E6/E7 from HPV positive cells (SiHa). This shows that using the methods of the present disclosure, as little as 1 x 10^3 cells are required for HPV E6/7 RNA detection.

FIG. 9 shows results from tests of various lysis buffers for the ability to lyse cells captured by COOH beads. The data of FIG. 9, along with that of TABLE 1, below, shows the preferred lysis buffer is about 1 M guanidine thiocyanate and about 0.7% detergent.

FIG. 10 shows cell capture by magnetic carboxylate-modified (COOH) beads (Sera Dyn catalog number 6515-2105-050350), over time, demonstrating that about 95% of the cells have been captured after incubation of 30 minutes.

FIG. 11 shows comparison of COOH bead capture with hypotonic lysis, and indicates that COOH bead capture is more efficient than hypotonic lysis for obtaining mRNA from cells. "PC-" indicates a pool of cervical scrape specimens that lack presence of HPV.

FIG. 12 is a diagram depicting capture and signal probe design regions. The length of HPV transcripts can be "characterized" by capture onto magnetic beads with specific capture oligos that capture specific targets and detected with various sets of unlabeled
oligonucleotides used to extend the length of the hybrid region. Signal will result if the capture RNA bears the sequence that is complementary to the detection probes that are used. Signal output will increase with successive addition of amplification signal probes until maximum length is reached where the signal will plateau. The various HPV transcripts for HPV 16 are shown. The regions denoted by the dashed boxes are designated for probe design.

FIG. 13 shows increasing signal as the number of signal amplification probes is increased. In this way, an RNA transcript length may be measured by the increasing signal generated by the increased number of consecutive detection probes. In FIG. 13, each set of 5 oligos are adjacent to one another and result in the RNA:DNA hybrid getting longer, and signal stronger, as successive sets are added.

FIG. 14 shows that a fraction of cells with a high early:late HPV mRNA ratio may be detected against a background of cells with a low ratio. For this FIG. 14, SiHa cells (cervical cancer cell line) were added to a pool of cervical specimens (each diagnosed with a high-grade HPV-related lesion). The SiHa cells incorporate a high ratio of HPV early transcripts : HPV late transcripts, which is a common characteristic of cervical cancer. The sample mimicked a specimen that has cancer cells among pre-cancerous lesion cells. The results show that the invented assay will detect cancer cells in a pool of more benign lesion cells.

DETAILED DESCRIPTION

Before the subject disclosure is further described, it is to be understood that the disclosure is not limited to the particular embodiments of the disclosure described below, as variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments, and is not intended to be limiting. Instead, the scope of the present disclosure will be established by the appended claims.

In this specification and the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs.

Methods of the present disclosure may be used to detect the presence of a target nucleic acid from samples. Such nucleic acid may be an RNA, and such samples may include, without
limitation, a specimen or culture (e.g., cellular, microbiological and viral cultures) including biomedical and environmental samples. Biological samples may be from a eukaryote, a prokaryote, an archaeon, a virus, an animal, including a human, a plant, a fungus, an excavate, and may be from fluid, solid (e.g., stool) or tissue, cell culture, liquid or solid media, as well as liquid and solid food and feed products and ingredients such as dairy items, vegetables, meat and meat by-products, and waste. Environmental samples include environmental material such as surface matter, soil, water, air and industrial samples, as well as samples obtained from food and dairy processing instruments, apparatus, equipment, utensils, disposable and non-disposable items. Particularly preferred are biological samples including, but not limited to, cervical epithelial cells (e.g., a sample obtained from a cervical swab or biopsy), adenoid cells, anal epithelial cells, blood, saliva, cerebral spinal fluid, pleural fluid, milk, lymph, sputum and semen. The sample may comprise a ribonucleic acid including messenger RNA (mRNA).

The present disclosure provides a method for determining the presence of a target RNA in a sample, wherein the method comprises: a) hybridizing the target RNA with a DNA capture probe having a sequence complementary to the target RNA to form a target RNA:DNA capture probe complex, wherein the DNA capture probe is conjugated to a support; b) separating the target RNA:DNA capture probe complex from unbound RNA (e.g., by washing); c) optionally hybridizing at least one amplification probe to the target RNA:DNA capture probe complex, wherein the at least one amplification probe has a sequence complementary to the target RNA, thereby forming a target RNA:DNA capture/amplification probe complex; d) adding an antibody that recognizes and binds to RNA:DNA hybrids to bind the target RNA:DNA capture/amplification probe complex, thereby forming a target RNA:DNA:antibody complex, wherein the antibody is labeled with a detectable marker; e) detecting the marker on said antibody, wherein the detecting indicates the presence of the target ribonucleic acid; and f) comparing the detection results with results produced from a different combination of amplification probes wherein the comparing indicates the particular RNA splice-form present.

The present disclosure provides a method for determining the presence of a target RNA in a sample, wherein the method comprises: a) hybridizing the target RNA with a DNA capture probe having a sequence complementary to the target RNA to form a target RNA:DNA capture probe complex, wherein the DNA capture probe is conjugated to a support; b) separating the target RNA:DNA capture probe complex from unbound RNA; c) optionally hybridizing at least one amplification probe to the target RNA:DNA capture probe complex,
wherein the at least one amplification probe has a sequence complementary to the target RNA, thereby forming a target RNA:DNA capture/amplification probe complex; d) adding an antibody that recognizes and binds to RNA:DNA hybrids to bind the target RNA:DNA capture/amplification probe complex, thereby forming a target RNA:DNA:antibody complex; e) adding a second antibody that recognizes and binds the first antibody, wherein the second antibody is labeled with a detectable marker; f) detecting the marker on the second antibody, wherein the detecting indicates the presence of the target ribonucleic acid; and g) comparing the detection results with results produced from a different combination of amplification probes wherein the comparing indicates the particular RNA splice-form present.

The present disclosure also provides a method of detecting the presence of a ribonucleic acid (RNA) splice form in a sample, wherein the method comprises a) hybridizing the target RNA with a DNA capture probe having a sequence complementary to the target RNA under conditions that allow the probe and the target ribonucleic acid to hybridize, thereby forming a target RNA:DNA capture probe complex; b) adding a first antibody that recognizes and binds to RNA:DNA hybrids to bind the target RNA:DNA capture probe complex, thereby forming a target RNA:DNA:antibody complex, wherein the first antibody is conjugated to a support; c) separating the target RNA:DNA capture probe:antibody complex from unbound RNA; d) hybridizing at least one amplification probe to the target RNA:DNA capture probe:antibody complex, wherein the at least one amplification probe has a sequence complementary to the target RNA and is added in a combination that will cover specific target RNA regions, thereby forming a target RNA:DNA:antibody complex; e) adding a second antibody that recognizes and binds to RNA:DNA duplexes to bind the target RNA:DNA:antibody complex, to form a target RNA:DNA:antibodies complex, wherein the second antibody is labeled with a detectable marker; f) detecting the marker on said second antibody, wherein the detecting indicates the presence of the target RNA; and g) comparing the detection results with results produced from a different combination of amplification probes wherein the comparing indicates the particular RNA splice-form present.

The present disclosure also provides a method of detecting the presence of a ribonucleic acid (RNA) splice form in a sample, wherein the method comprises a) hybridizing the target RNA with a DNA capture probe having a sequence complementary to the target RNA under conditions that allow the probe and the target ribonucleic acid to hybridize, thereby forming a target RNA:DNA capture probe complex; b) adding a first antibody that recognizes and
binds to RNA:DNA hybrids to bind the target RNA:DNA capture probe complex, thereby forming a target RNA:DNA capture probe:antibody complex, wherein the first antibody is conjugated to a support; c) separating the target RNA:DNA capture probe:antibody complex from unbound RNA; d) hybridizing at least one amplification probe to the target RNA:DNA capture probe:antibody complex, wherein the at least one amplification probe has a sequence complementary to the target RNA and is added in a combination that will cover specific target RNA regions, thereby forming a target RNA:DNA:antibody complex; e) adding a second antibody that recognizes and binds to RNA:DNA duplexes to bind the target RNA:DNA:antibody complex, to form a target RNA:DNA:antibodies complex; f) separating the target RNA:DNA:antibodies complex from unbound second antibody; g) adding a third antibody labeled with a detectable marker wherein the third antibody recognizes and binds to the second and/or first antibody; h) detecting the marker on the third antibody, wherein the detecting indicates the presence of the target RNA; and i) comparing the detection results with results produced from a different combination of at least one amplification probe wherein the comparing indicates the RNA splice-form present.

RNA is often transcribed from different promoters, thereby generating multiple forms that include the coding regions for different genes. It is important to characterize these multiple spliced forms of RNA for fundamental research and for applications where the detection of specific mRNA isoforms is critical.

One application of the present disclosure is the detection and characterization of mRNA expression in human papillomavirus (HPV). Carcinoma of the cervix has been shown to be associated with the presence of high-risk HPV types; from about 13 to about 18 high-risk types are currently identified. The HPV DNA test can identify high-risk HPV types, but is a poor predictor for the progression of the disease in pre-cancerous clinical specimens. Thus, additional methods and markers are needed to improve the predictive value of HPV tests. The characterization of mRNA for the presence of the E6/7 oncogene and other mRNAs, as provided by the present disclosure, will allow an accurate and reliable method that determines the ratio of expression of these oncogenes versus other viral genes. The ratio of E6/E7 to E2, E4, and/or L1 mRNA may be a better predictor for the progression of precancerous cervical lesions (see, e.g., U.S. Patent No. 6,355,424, incorporated by reference herein), yet currently-available assays do not detect mRNA ratios. Hybrid capture technology is a linear signal amplification method. Thus, the instant disclosure provides valuable methods for guiding therapeutic strategy, while minimizing the number of patients requiring colposcopy. The instant disclosure provides methods of using mixtures of short
oligonucleotides capable of hybridizing to the different lengths/genes of RNA (and niRNA in particular) in order to characterize splice forms.

Target Nucleic Acids

In one embodiment, the target ribonucleic acid to be detected may be mRNA, ribosomal RNA, nucleolar RNA, transfer RNA, viral RNA, heterogeneous nuclear RNA etc., wherein the one or more polynucleotide probes are DNA probes. The target ribonucleic acids include, without limitation, nucleic acids found in specimens or cultures (e.g., cellular, microbiological and viral cultures) including biological and environmental samples. The target ribonucleic acids may be found in biological samples from an animal, including a human, fluid, solid (e.g., stool) or tissue, as well as liquid and solid food and feed products and ingredients such as dairy items, vegetables, meat and meat by-products, and waste. Target ribonucleic acids may be found in environmental samples and include environmental material such as surface matter, soil, water and industrial samples, as well as samples obtained from food and dairy processing instruments, apparatus, equipment, utensils, disposable and non-disposable items. Particularly preferred are target nucleic acids found in biological samples including, but not limited to cervical samples (e.g., a sample obtained from a cervical swab), adenoid cells, anal epithelial cells, blood, saliva, cerebral spinal fluid, pleural fluid, milk, lymph, sputum, urine and semen.

In other embodiments, the target ribonucleic acids are from virus, bacteria, mycobacteria or plasmodia, for example, without intending to be limited thereby, cytomegalovirus (CMV), Herpesviridae, human immunodeficiency virus (HIV), Chlamydia spp., Neisseria spp. (e.g., N. gonorrhea), Staphylococcus aureus, mycobacteria (e.g., Mycobacterium tuberculosis), SARS coronavirus (SARS-CoV), or Orthomixoviridae (e.g., influenza viruses).

In one embodiment, the target ribonucleic acids are human papillomavirus (HPV) and include genetic variants of HPV. A variant includes polymorphisms, mutants, derivatives, modified, altered, or the like forms of the target nucleic acid. In one embodiment, the target nucleic acid is an HPV nucleic acid. In another embodiment, the HPV nucleic acid is HPV DNA of a high risk HPV type. In another embodiment the target nucleic acids are high risk HPV types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 26, 66, 73, and 82.

The RNA may be isolated and prepared for hybridization by a variety of methods and reagents including (but not limited to) guanidinium thiocyanate-phenol-chloroform extraction (e.g., with TRIzol® reagent, also known as TRI Reagent), hypotonic lysis, and carboxyl (COOH) bead capture. The principle of RNA isolation is based on cell/tissue lysis,
followed by extraction, precipitation, and washing. While very effective, these techniques require a high level of technical precision and are not candidates for automation. Other RNA preparation methods do not completely eliminate DNA and other potential contaminants, require expensive enzymes, and require many — sometimes time-consuming — washing steps. The challenge is to develop a method for mRNA detection that reduces many of the current challenges and can provide rapid information about expression of specific genes. Two primary sample preparation methods have been devised for the present disclosure: hypotonic cell lysis; and carboxyl bead capture. RNA isolated using TRIzol® or QIAGEN resin technology (for example, QIAGEN RNeasy Plus Mini Kit) can also be used in this assay.

In certain embodiments, the biological sample is comprised of cervical cells, especially human cervical cells. The sample can be collected with any method or device known in the art, including a chemically inert collection device such as a Dacron® (poly(ethylene terephthalate)) tipped swab. Other acceptable collection devices may be used including, but not limited to, cotton swab, cervical brush, flocked swab (a swab shaped like a Dacron® swab but made with nylon fibers enabling collection of more cells and easier release of cells), cervical broom, mini broom, lavage, or any collection device often used in PAP smear testing (Papanikolaou's test). The cervical cells may also be part of a biopsy specimen.

Sample Preparation

The use of TRIzol® to isolate RNA, as well as other known methods for RNA isolation, may be employed in methods of the present disclosure. Sample preparation by hypotonic lysis of the cell pellet avoids releasing endogenous RNA:DNA hybrids that may interfere with assay detection step, and this is a preferable RNA isolation method. In this sample preparation method, cells are pelleted via centrifuge, the supernatant is removed, and the pellet is resuspended and the cells lysed. After lysis, the cellular debris is pelleted and the supernatant (containing RNA) collected. Reducing the stringency of lysis (as measured by salt and detergent concentrations in a buffer) reduces the clinical background produced from pools of methanol-based cervical specimens (FIGS. 5 & 6). The signal:noise ratios are also higher and the variability in background between pools and in interference is lower. Other studies have shown that hypotonic lysis works by rupturing the cellular membrane because of differences in tonicity between the cell and the milieu, but organelles are left intact. Thus, RNA in the cell is released from the cell into the solution, whereas contaminants to the assay (such as endogenous RNA:DNA hybrids) will remain in the insoluble cell debris. This
method may be useful in cases where the amount of RNA in a specimen is limited because increasing the amount of specimen does not lead to an increase in background.

Another method of sample preparation uses magnetic carboxyl (COOH) beads that can be added directly to a biological sample. Cells in the sample are attracted to the beads via hydrophobic interactions. After using a magnetic to pellet the beads, the supernatant can be removed and the cells lysed. Non-magnetic COOH beads or other adsorbive particles could also be used, substituting centrifugation for pelleting via a magnetic rack. After the lysis (which usually occurs at 65°C for 15 min) the beads are again pelleted and the remaining supernatant may be used directly in methods of the present disclosure. While decreasing lysis stringency again reduces background in this method, water alone is not enough to release the RNA from the cells. As such, it is preferable to use a lysis buffer comprising about 1 M guanidine thiocyanate and about 0.7% detergent for all sample preparation methods of the present disclosure (see, e.g., FIGS. 5 & 6).

Hybridization/Capture — Capture Probes

After the sample is prepared and target RNA is released, it is contacted with at least one polynucleotide DNA capture probe under a condition sufficient for the at least one polynucleotide probe to hybridize to the target RNA in the sample to form a double-stranded nucleic acid hybrid. The DNA capture probes may be full length, truncated, or synthetic DNA. The DNA capture probes are sequence specific for the target RNA. DNA capture probes are ideally about 35 bases long and may be complementary to any region of the target RNA. The DNA capture probes may range from about 15 to about 200 bases in length. The DNA capture probes can be bound to a support. "Bound" includes but is not limited to chemically attached, covalently bound, and covalently linked. Multiple DNA capture probes, and multiple different DNA capture probes may be bound to the same support (e.g., the same magnetic bead), as shown schematically in FIG. 3. Only 3-5 different capture probes are required for optimal results (see FIG. 4), thus providing a great deal of flexibility to allow these probes to be sequence-specific and not fall in regions that may be spliced out in some variants. In one embodiment, the sequence-specific DNA capture probes are biotinylated and have been bound by conjugation to magnetic streptavidin beads.

In one aspect, the present disclosure can optionally include the use of a set of DNA capture probes useful for detection of high risk (HR) human papillomaviruses, wherein the set comprises polynucleotide capture probes for HPV high risk types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 26, 66, 73, and 82.
Supports include, but are not limited to beads, magnetic beads, columns, plates, filter paper, polydimethylsiloxane (PDMS), and dipsticks. Any support can be used as long as it allows extraction of the liquid phase and provides the ability to separate out bound and unbound capture probes or antibodies. Magnetic beads are particularly useful in that they can be left in the solution and the liquid phase can be extracted or decanted, if a magnetic field is applied to hold the beads in place. Beads that are small and have a high surface area are preferable, such as beads about 1 µm in diameter. In certain embodiments, the support comprises a modified magnetic bead, that is coated or has attached thereto a DNA capture probe complementary and specific to the target mRNA. A magnetic field is used to separate the double-stranded nucleic acid/magnetic bead complex from non-bound ribonucleic acid. In certain embodiments, the support comprises a modified magnetic bead, wherein the magnetic beads are modified by coating the beads with a first antibody immunospecific for double-stranded hybrid nucleic acids. A magnetic field is used to separate the nucleic acid hybrid/antibody/magnetic bead complex from unbound ribonucleic acid. Other beads that employ charge switching or silica capture (as opposed to magnetic fields) may be used as well.

Following capture of the target RNA or the target RNA:DNA hybrid as described above, the captured target RNA or RNA:DNA hybrid may be separated from the rest of the sample by application of a magnetic field (in the case of magnetic beads), and washing away of non-captured nucleic acids. Washing away unwanted interfering substances may be accomplished with buffers containing salt and or detergent that are used at various temperatures. When using supports other than magnetic beads, alternative methods of separating captured hybrid from the rest of the sample are conducted, including but not limited to, washing.

Hybridization/Capture — Amplification Probes

After the wash step to ensure that only the target remains, signal amplification DNA probes are hybridized to the target mRNA, wherein the signal amplification probes are unlabeled DNA probes complementary and/or specific to the target mRNA. The amplification probe need not be specific to the target nucleic acid. For example, the DNA amplification probe may be able to bind other nucleic acids other than the designed target. The DNA signal amplification probes complementary to the mRNA regions are designed and combined in mixtures that will cover specific genes. By extending and varying the coverage, one can determine which genes are present and the particular splice forms of the RNA. "Coverage" is defined as the extent or length of target sequence which is flanked by the complementary
signal probes. The signal amplification probes are roughly 40 bases in length, but because they are designed around the capture probes, some may be more or less than 40 bases. Signal amplification probes may be about 15 to about 200 bases in length. Increasing coverage (i.e., hybridizing more signal probes to complementary regions of the target RNA) will lead to an increase in signal. Therefore, it is preferable to use more probes to obtain an amplified signal. The limit of detection depends, in part, on the length of the target nucleic acid (i.e., the target gene).

Amplification signal probes are added in combinations which would extend over the genetic sequence of known RNA splice-forms. The combination of signal amplification probes will determine the extent of coverage on the target mRNA and hence, signal output. Comparison of the resulting signal output from different combinations of amplification probes will indicate the presence of particular mRNA splice-form variants. In this way, this method is a "molecular ruler" in that the signal output is dependent on the splice form present. For example, capture probe 3 is expected to hybridize with E6/7 target mRNA, but not with E1, E2, E4, E5, L1, or L2 (see, e.g., TABLE 3 and FIG. 11). Signal amplification probes 1 and 6, used after hybridization with capture probe 3, will generate a strong signal from the spliced E6/7 form, and a weak signal from the spliced/integrated E6/7 form. By varying the combinations and numbers of capture probes and amplification probes, the signal output provides information about which viral genes are being expressed (e.g., the ratio thereof), as well as which splice forms of those genes are expressed. Such information, coupled with clinical and experimental data, is expected to provide a better predictor for progression of precancerous cervical lesions.

The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining whether cells are infected with a pathogen, and the state of disease progression.

The present disclosure provides a method of determining lengths of gene transcripts for known and unknown splice form variants. A reliable and robust method for measuring the expression of alternatively spliced transcripts is an important step in investigating the significance of each variant. So far, accurate quantification of splice variants, such as Northern blotting, RT-PCR and real time RT-PCR, has been laborious and difficult due to the intrinsic limitations of conventional methods. The present disclosure provides methods of determining the presence of splice form variants. For example, the question of whether an early HPV transcript (for example HPV E6*I) bears late-gene sequences may be
determined by capturing the transcript with capture probes complimentary to the early region, then detecting with detection probes that are complementary to the late region; resulting signal may indicate the presence of late regions on early gene transcripts. Furthermore, by providing a combination of degenerate signal amplification probes that would cover predicted splice form sequences, the presence of a splice variant could be determined. Furthermore, the absence of a region may be indicated by lack of capture by select DNA probes.

The resulting hybrids are captured/detected using molecules that recognize RNA:DNA hybrids. Molecules specific for the double stranded nucleic acid hybrids include, but are not limited to, monoclonal antibodies, polyclonal antibodies, proteins such as but not limited to RNase H, nucleic acids including but not limited to aptamers, or sequence specific nucleic acids. Aptamers are short oligonucleotide or peptide molecules that bind to a particular target molecule. They are often created by selecting them from large pools of random sequences, although naturally-occurring aptamers (e.g., riboswitch aptamers) are known.

Hybridization/Capture — Anti-Hybrid Antibody

In one embodiment the molecule specific for the double stranded nucleic acid hybrid is an antibody ("anti-hybrid antibody"). The hybrids are incubated with the anti-hybrid antibody for a sufficient amount of time to allow binding to the double-stranded nucleic acid hybrids. The anti-hybrid antibody may be monoclonal or polyclonal. In a most preferred embodiment the antibody is monoclonal.

In another embodiment, the first antibody is bound to a support. In this embodiment, after the sample is prepared and RNA is released, it is contacted with at least one polynucleotide DNA capture probe under conditions sufficient for the at least one polynucleotide probe to hybridize to the target RNA in the sample to form a double-stranded nucleic acid hybrid.

The target RNA, in the form of a target RNA:DNA capture probe complex is separated from unbound RNA by washing. After the wash step to ensure that the only RNA remaining is target RNA, signal amplification DNA probes are hybridized to the target RNA, wherein the signal amplification probes are unlabeled DNA probes that are complementary and/or specific to the target RNA. The hybridization of capture and amplification probes to the target RNA creates double stranded nucleic acid hybrids. The resulting hybrids are detected using molecules that recognize RNA:DNA hybrids. In a preferred embodiment the molecule specific for the double stranded nucleic acid hybrid is an antibody ("anti-hybrid antibody"). The hybrids are incubated with the anti-hybrid antibody for a sufficient amount
of time to allow binding to the double-stranded nucleic acid hybrid regions. The anti-hybrid antibody is conjugated to a support and binding to the RNA:DNA hybrids forms an RNA:DNA hybrid:antibody complex. The complex is separated from unbound antibody. In applications where the support is a magnetic bead, a magnetic field is used to separate out any unbound antibody.

Detection

After unbound anti-hybrid antibody is removed, a second antibody is added, wherein the second antibody is labeled with a detectable marker and recognizes and binds to the first antibody. The label present on the second antibody is detected to thus indicate the presence of the target ribonucleic acid. Methods for detecting various labels are known in the art. For example, colorimetry, radioactive, surface plasmon resonance, or chemiluminescence methods are described by e.g., Coutlee, et al., J. Clin. Microbiol. 27:1002-1007 (1989).

For example, antibodies conjugated with at least one alkaline phosphatase molecule can be detected by chemiluminescence with a reagent such as a Lumi-Phos™ 530 reagent (Lumigen, Detroit, MI) or DR2 (Applied Biosystems, Foster City, CA) using a detector such as an E/Lumina™ luminometer (Source Scientific Systems, Inc., Garden Grove, CA), an Optocomp I™ Luminometer (MGM Instruments, Hamden, CT), or the like. As described herein, detection of the label on the second antibody is indicative of the presence of one or more of the target ribonucleic acids in the sample that are complementary to the one or more probes. Following washing, the sample is suspended in a detection buffer that for example, contains the substrate for the label on the second antibody.

Anti-hybrid antibodies can be used and/or coupled to magnetic beads and/or immobilized on a support in the present assay as described below. In a preferred embodiment, the antibodies used for capture and detection of the target nucleic acid are monoclonal antibodies. The first and second antibodies may be the same for capture and detection (i.e., produced by the same hybrid myeloma cell line) or may from different and produced by different hybrid myeloma cell lines. In a most preferred embodiment, the first and second monoclonal antibodies used for capture and/or detection are the same and are specific for RNA/DNA hybrids. Also included are immunofragments or derivatives of antibodies specific for double-stranded hybrids, where such fragments or derivatives contain binding regions of the antibody.

For example, a monoclonal RNA:DNA hybrid antibody derived from myeloma cells fused to spleen cells that are immunized with an RNA:DNA hybrid can be used. The hybrid-specific
antibody can be purified by affinity purification against RNA:DNA hybrids immobilized on a solid support, for example as described in Kitawaga et al., Mol. Immunology, 19:413 (1982); and U.S. Patent No. 4,732,847, each of which is incorporated herein by reference.

Other suitable methods of producing or isolating antibodies, including human or artificial antibodies, can be used, including, for example, methods that select recombinant antibody (e.g., single chain Fv or Fab, or other fragments thereof) from a library, or which rely upon immunization of transgenic animals (e.g., mice) capable of producing a repertoire of human antibodies (see, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362: 255 (1993); and U.S. Pat. Nos. 5,545,806 and 5,545,807).

In yet another aspect, the present disclosure provides kits that allow for the detection of ribonucleic acids in a biological sample or a sample containing nucleic acids. In a preferred embodiment, the kit comprises a) a DNA capture probe conjugated to a magnetic bead; b) a DNA amplification probe; c) a first anti-hybrid antibody; d) a detection reagent comprising a second antibody, wherein the second antibody binds the first antibody and is detectably labeled; e) a detergent-based wash buffer and; f) a second detection reagent comprising a substrate for the label on the second antibody. A preferred detergent-based wash buffer is 40 mM Tris-HCl, 100 mM NaCl, 0.5% Triton X-100.

In certain embodiments, detection methods of the present disclosure detect RNA by first capturing the target onto complementary biotinylated DNA probes that are conjugated to magnetic streptavidin beads. This probe-bead complex may be preconjugated and is stable at 4°C for several months. This capture step is preferably performed at 60°C with constant shaking and allowed to proceed for about 30 minutes (a time sufficient to allow capture). The beads with the captured target are then washed so that any non-target RNA sequences are removed. Because the hybrid capture antibody binds to individual DNA-RNA hybrids, it is preferable to cover the target region with DNA amplification probes to achieve the maximal signal (see FIGS. 1 & 2). Thus, additional probes are then hybridized to the target mRNA. Because only the target is captured at this point, these probes need not be sequence-specific but rather may cover the full length of the gene, excluding regions that are already covered by the biotinylated specific probes. The signal amplification probes are complementary to the mRNA regions and are designed and combined in mixtures that will cover specific genes. By extending and varying the coverage, particular genes and particular splice variants can be determined. These "signal amplification" probes are preferably used at concentration of 4.2 nM. This hybridization also preferably occurs at 60°C for 30 min at a
pH of around 7.8. The hybridization is then followed by detection with the hybrid capture antibody system discussed above (use of anti-hybrid antibody and a second antibody to detect the anti-hybrid antibody).

EXAMPLE 1

5 Sample preparation via hypotonic lysis of cell pellet

Endogenous hybrids present a unique challenge to detection assays because they will be detected by the hybrid capture antibody. Thus, sample preparation preferably either destroys or avoids releasing these hybrids. Hypotonic lysis relies on the latter strategy. In this method, cells are pelleted via centrifuge, the supernatant is removed, and the pellet is lysed. As is shown in FIG. 6, reducing the stringency of lysis by varying salt and detergent concentrations in a buffer reduces the clinical background produced from pools of methanol-based cervical specimens. The signal to noise ratios are also higher and the variability in background between pools and in interference is lower (TABLE 2). Other studies have shown that hypotonic lysis works by rupturing the cellular membrane because of differences in cellular tonicity compared to the milieu, but organelles are left intact. Thus, RNA in the cell is released from the cell into solution, whereas contaminants to the assay such as hybrids will remain with the insoluble cell debris. This method may be useful in cases where the amount of RNA in a specimen is limited because increasing the amount of specimen does not lead to an increase in background (FIG. 7). Using a model of spiking HPV positive cells into pools of negative cervical specimens, hypotonic lysis followed by detection methods of the present disclosure can detect HPV E6/7 RNA from just 1000 cells (FIG. 8).

EXAMPLE 2

Sample preparation via magnetic carboxyl beads

Another sample preparation method that has been characterized for use in the methods of the present disclosure uses magnetic carboxyl modified (COOH) beads that can be added directly to a biological sample (e.g., Sera-Mag® Magnetic Carboxylate-Modified Particles; Thermo Fisher Scientific, Inc.). Cells in the sample are attracted to the beads via hydrophobic interactions. After using a magnetic rack to pellet the beads, the supernatant can be removed and the cells lysed. After lysis, the beads are again pelleted and the remaining supernatant is transferred for use in methods of the present disclosure. While decreasing lysis stringency again reduces background in this method (see TABLE 1), water alone is insufficient to release RNA from the cells. Rather, a preferred lysis buffer is about 1 M guanidine thiocyanate and about 0.7% detergent (see FIG. 9), as it supports both lysis and
hybridization. Stronger lysis buffer concentrations may be used if it is diluted before the hybridization capture step. As shown in FIG. 10, the capture of cells onto the beads is a biphasic reaction. Carboxyl beads were spiked directly into PreservCyt®-based samples of cervical cells. Approximately 50-60% of all the cells in the samples were attracted to the beads within the first minute of exposure. This process plateaus for at least 15 min, but approximately 30 min after adding the beads at least 95% of the cells have been captured (as measured by counting cells remaining in the supernatant; see FIG. 10). FIG. 11 shows that using methods of the present disclosure results could be obtained using only approximately 1000 HPV positive cells; carboxyl bead cell capture, followed by detection methods of the present disclosure, is more efficient at obtaining mRNA from cells than hypotonic cell lysis followed by detection methods of the present disclosure (see FIG. 11).

| TABLE 1 |
% Lysis Buffer	S/N
100	1.6
50	3.2
32.5	7.0
25	1.7
0	0.9

EXAMPLE 4

Effects of endogenous hybrids on assay background

Endogenous hybrids are often the source of clinical background noise (see FIG. 5). When HPV 16 E6/7 RNA is spiked into clinical pools (with no HPV; KPSTMQ), the background is high and the signal is masked. However, when the pools are denatured (1.75 M NaOH) and neutralized before the RNA addition, the background is low and the signal is rescued. This reveals the need to eliminate or prevent release of endogenous nucleic acid hybrids before utilizing a detection method that employs antibodies that recognize nucleic acid hybrids.

EXAMPLE 5

Effect of lysis buffer concentration on background

Reducing lysis stringency reduces clinical background noise (see FIG. 6). One mL of methanol-based cervical specimens were spun down and the pellets resuspended in buffer at
various concentrations (100% buffer = about 3 M guanidine thiocyanate + about 2% detergent), as shown along the x-axis. Pelleted cells were heated for 15 min at 65°C. The final concentration of lysis buffer was then adjusted to 32.5% for the capture of RNA according to methods of the present disclosure. As shown in FIG. 6, the background decreased with decreasing concentrations of lysis buffer. This experiment provides evidence that hypotonic lysis of cells was successful in preventing release of endogenous nucleic acid hybrids. RNA in the cytoplasm is released from the cell whereas contaminants to the assay such as hybrids will remain in the nucleus.

In addition, water lysis gives lower background and variability and higher signal:noise than more stringent lysis (see TABLE 2, below). Values in TABLE 2 are averaged across results from four different clinical pools of cervical specimens. Typically, these pools vary greatly in background.

<table>
<thead>
<tr>
<th>Lysis Condition</th>
<th>Background (RLUs)</th>
<th>Background Variability</th>
<th>S/N Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>71</td>
<td>21.8%</td>
<td>6.6</td>
</tr>
<tr>
<td>100% Lysis Buffer</td>
<td>652.3</td>
<td>53.2%</td>
<td>4.7</td>
</tr>
</tbody>
</table>

EXAMPLE 6
Hypotonic lysis of cell pellets

FIG. 7 shows that hypotonic lysis of cell pellets ensures that background noise remains stable. Varying amounts of cervical specimens (250 ul-10 ml) were spun down, lysed with water, and subjected to RNA detection assays of the present disclosure. As shown in the graph in FIG. 7, the background does not change significantly regardless of the amount of specimen used.

EXAMPLE 7
Limit of detection

The limit of detection for HPV 16 E6/7 RNA from HPV positive cells (SiHa cells) was tested (see FIG. 8). Cells were spiked into 1 mL of a pool of negative cervical specimens to model a clinical sample. After spinning down and being lysed with water and heated, buffer was added to the cells (to a concentration of 32.5% buffer, or about 1M guanidine thiocyanate and about 0.7% detergent) and they were placed in a plate to begin the RNA
detection assay of the present disclosure. The results show that using the methods of the present disclosure, as few as 1 x 10^3 cells are required for HPV E6/7 RNA detection.

EXAMPLE 8

Lysing cells captured by COOH beads

Various lysis buffers were compared for the ability to lyse cells captured by COOH beads (see FIG. 9). The results show that water alone is not enough to lyse cells captured by COOH beads. Either HPV negative or HPV positive cells were spiked into 1 mL of a negative cervical pool. After cells were captured by beads and the supernatant removed, varying concentrations of buffer (containing guanidine thiocyanate and detergent) were added to the samples which were then heated for 15 min at 65°C. Buffer concentration was adjusted to a total of 32.5% for RNA detection using methods of the present disclosure. As seen with the spin-down method, background does decrease with decreasing amounts of salt and detergent. However, at least 32.5% buffer (totaling approximately 1 M salt and 0.7% detergent) is required to lyse the cells enough to release RNA.

EXAMPLE 9

Time course of cell capture by COOH beads shows that capture of cells onto the beads is a biphasic reaction

A time course of cell capture by COOH beads was conducted (see FIG. 10). Cells were spiked into 1 mL of a negative cervical pool. The baseline number of cells was counted, and at each time point after addition of COOH beads, beads were pelleted for 1.5 min and then the supernatant removed and diluted for counting. Approximately 50% of cells are captured within a minute. Capture then plateaus but at 30 min at least 95% of the cells have been captured. More beads provide slightly more efficient capture.

EXAMPLE 10

Carboxyl (COOH) bead capture is more efficient than hypotonic lysis

HPV 18 positive (HeLa) cells in 1 mL of a pool of negative cervical specimens were prepared with either COOH bead capture or with pelleting and hypotonic lysis. The limit of detection for the carboxyl bead capture method is also approximately 1000 HPV positive cells and the results of the reverse hybrid capture assay show that this method is more efficient for obtaining mRNA from cells (see FIG. 11). While the background is slightly higher when COOH bead capture is used (271 RLUs versus 163 RLUs for hypotonic lysis),
both signal-noise and signal—noise (a measure of the total RNA detected) were much higher than when hypotonic lysis is used.

EXAMPLE 11
Pretreatment procedure (Hypotonic lysis) combined with detection of target RNA

The following protocol combines a sample pretreatment procedure (using hypotonic cell lysis) with an RNA detection method of the present disclosure. Spin down cells in tubes for 3 minutes at 1500 relative centrifugal force (RCF). Supernatant was removed and 33.75 µL water was added and pipetted gently to resuspend the pellet. Then, heat for 15 minutes at 65°C with gentle shaking. Next, add 16.25 µL buffer (about 3 M guanidino thiocyanate and about 2 % detergent) and transfer 50 µL sample to wells on the plate. Then, add 10 µL preconjugated streptavidin beads with biotinylated capture probes and incubate the plate for 30 minutes at 60°C with shaking at 1150 revolutions per minute (RPM). Place the plate on a magnetic rack and let the beads pellet for 1.5 min and then decant and blot plate. Wash twice with Sharp Wash buffer (1 M Tris-HCl, 0.6 M NaCl, 0.25% Tween-20); the first wash should be 2 minutes and the second wash should be 5 minutes. After washing, decant and dry plate well by blotting. To each well, add 65 µL signal amplification probes diluted to 4.2 nM in RNA hybridization buffer. The, incubate the plate for 30 minutes at 60°C with shaking at 1150 RPM. Place the plate on magnetic rack for 3 min, decant, and dry wells. Add 35 µL Digene Hybrid Capture 2 kit Detection Reagent 1 (alkaline phosphatase-conjugated antibodies to RNA:DNA hybrids in buffered solution with 0.05% (w/v) of sodium azide, and with no RNase) into each well and incubate the plate for 30 minutes at 45°C. Place the plate on the magnetic rack, decant, and blot. Wash the plate five times with buffer comprising 40 mM Tris-HCl, 100 mM NaCl, 0.5% Triton X-100, allow plate to sit 1 minute per wash. Then, decant and dry the wells. Next, add 45 µL Digene Hybrid Capture 2 kit Detection Reagent 2 (CDP-Star® reagent with Emerald II™, a chemiluminescent substrate) to each well. Protect from light and incubate the plate for 15 minutes at room temperature with shaking at 300 RPM. Read the plate on a luminometer.

EXAMPLE 12
Pretreatment procedure (COOH bead capture) combined with detection of target RNA

The following protocol combines carboxyl bead capture sample preparation with an RNA detection method of the present disclosure. To each sample, add 8 µL carboxyl (COOH) beads (2 mL well plate) and shake at 800 RPM for 30 minutes at room temperature. Place the plate on a magnetic rack for 2 minutes to pellet beads. Remove supernatant with vacuum
and resuspend in 50 µL 32.5% buffer (about 1M guanidine thiocyanate and about 0.7%
detergent). Then, shake at 1000 RPM for 15 minutes at 65°C. Place the plate on a magnetic
rack, pellet the beads, and transfer supernatant to new wells. Then, add 10 µL preconjugated streptavidin beads with biotinylated capture probes and incubate the plate for 30 minutes at

![Image](5)

60°C with shaking at 1150 RPM. Place the plate on a magnetic rack and let the beads pellet
for 1.5 min and then decant and blot plate. Wash twice with Sharp Wash buffer (1 M Tris-
HCl, 0.6 M NaCl, 0.25% Tween-20); the first wash should be 2 minutes and the second wash
should be 5 minutes. After washing, decant and dry plate well by blotting. To each well, add
65 µL signal amplification probes diluted to 4.2 nM in RNA hybridization buffer. The,

incubate the plate for 30 minutes at 60°C with shaking at 1150 RPM. Place the plate on
magnetic rack for 3 min, decant, and dry wells. Add 35 µL Detection Reagent 1 (alkaline
phosphatase-conjugated antibodies to RNA:DNA hybrids in buffered solution with 0.05%
(w/v) of sodium azide, and with no RNase) into each well and incubate the plate for 30
minutes at 45°C. Place the plate on the magnetic rack, decant, and blot. Wash the plate five
times with buffer comprising 40 mM Tris-HCl, 100 mM NaCl, 0.5% Triton X-100, allow
plate to sit 1 minute per wash. Then, decant and dry the wells. Next, add 45 µL Detection
Reagent 2 (CDP-Star® reagent with Emerald II™, a chemiluminescent substrate) to each well.
Protect from light and incubate the plate for 15 minutes at room temperature with shaking at

300 RPM. Read the plate on a luminometer.

EXAMPLE 13

Streptavidin bead-biotinylated probe Conjugation

The following protocol provides a method of forming DNA capture probes bound to
magnetic beads. Vortex and sonicate Seradyn dsMag streptavidin beads (Seradyn part
#3015210301050, Thermo Fisher Scientific, Inc.). Add 5 µL beads to 250 µL bead

![Image](5)

conjugation buffer (Ix PBS; 0.15 M NaCl). Pull down beads on magnetic rack and was
twice with bead conjugation wash buffer (above 0.5% Tween-20). Resuspend beads with 45
nM of each DNA capture probe in bead conjugation buffer. Incubate for 30 minutes at 37
°C with shaking at 1150 RPM. Pull down beads and wash three times with bead conjugation
wash buffer. Resuspend in 250 µL Blocker buffer (casein-based) from Digene Hybrid

Capture 2 to yield 50x beads.
EXAMPLE 14

Reverse Hybrid Capture Assay

Reverse hybrid capture detects mRNA by first capturing the target RNA onto complementary biotinylated DNA probes that are conjugated to magnetic streptavidin beads. This probe-bead complex may be preconjugated and is stable at 4°C for several months. This capture step requires 30 min and should occur at 60°C with constant shaking. The beads with the captured target are then washed so that any non-target RNA sequences are removed. Because the hybrid capture antibody binds to individual DNA-RNA hybrids, it is preferable to cover the target RNA with DNA probes (e.g., DNA capture probe and amplification probes) to achieve the maximal signal (see, e.g., FIGS. 1 & 2). Thus, additional probes are then hybridized to the target mRNA. Because only the target is present at this point (because non-target RNA has been washed away), these probes need not be sequence-specific but rather may cover the full length of the gene, excluding regions that are already covered by the biotinylated DNA probes. These "signal amplification" probes are diluted to a working concentration of 4.2 nM. This hybridization also occurs at 60°C for 30 min at a pH of around 7.8, preferably with shaking. The hybridization is then followed by detection with the hybrid capture antibody system: exposure to Detection Reagent 1 (alkaline phosphatase-conjugated antibodies to RNA:DNA hybrids in buffered solution with 0.05% (w/v) of sodium azide, and with no RNase) for 30 min at 45°C followed by extensive washing and subsequent addition of Detection Reagent 2 (CDP-Star® reagent with Emerald II™, a chemiluminescent substrate) for 15 min at room temperature. The signal is read on a luminometer. This post-analytic portion of the assay takes approximately 2 h 15 min.

EXAMPLE 15

Effect of adding unlabeled signal amplification probe

The signal is relatively low for a RNA target captured with only 3 or 5 biotinylated DNA capture probes and no unlabeled signal probes. The signal is substantially higher when unlabeled probes are hybridized to the target before detection with hybrid-capture antibody and luminescence technology. The reverse hybrid-capture assay is used to detect RNA. In this experiment, a variable number of biotinylated DNA capture probes were conjugated to streptavidin beads (see FIG. 4). The target was the E6/7 gene of HPV 16. The assay was performed with each set of beads with and without the addition of signal amplification probes (one- versus two-step assay, respectively). When no unlabeled DNA probes for signal amplification were added (one-step assay; gray bars), the signal increased with the
amount of coverage provided by the biotinylated capture probes. However, when unlabeled DNA probes for signal amplification were added (two-step assay; black bars), the signal was much higher than in the one-step assay when only 1, 3, or 5 capture probes were used. In the two-step assay, optimal signal was achieved with as few as 3 to 5 capture probes.

5 EXAMPLE 16

Length of mRNA transcript determined by molecular ruler method

The length of HPV transcripts can be "measured" by capture onto magnetic beads and detection with unlabeled oligonucleotides used in order to extend the length of the hybrid region. Signal output will increase with successive addition of amplification signal probes until maximum length is reached, where the signal will plateau. The various HPV transcripts for HPV 16 are shown schematically in FIG. 12. The numbered regions 1 through 7 (FIG. 12) are designated for probe design. For instance, the E6/7 gene transcript can be captured from a sample using the DNA capture probe 3 and the combination of signal amplification probes will determine the signal output. If the variant form present is full length and the combination of amplification probes covers the entire length of the transcript, the signal will be strong. If E6/7 the variant form present is spliced and a subset of signal probes is used (e.g., probes 1 and 6), then the signal output will be somewhat weaker compared to signal from full-length/unspliced E6/7 (see TABLE 3). If the E6/7 variant form is spliced and integrated, it will provide a much weaker signal (see TABLE 3). The stronger signal is indicative of a greater number of targets and a certain disease state. E6/7 spliced integrated variant provides a weaker signal and is indicative of fewer targets captured, and thus less expression of this gene. It is also indicative of a different disease state. TABLE 3 shows the expected signal resulting from the combined use of the listed probes (shown in FIG. 12) from various regions of HPV 16.
Referring again to FIG. 12 and TABLE 3, the signal contributed by non-spliced transcripts hybridizing to capture probe #2 (for example) may be subtracted from the signal generated using other capture probes to determine the degree of signal arising from spliced transcripts alone. The combination of signal amplification probes will determine the extent of coverage on the target mRNA and hence, signal output. Comparison of the signal output resulting from different combinations of amplification probes will indicate the presence of particular mRNA splice form variants. In this way, this method is a "molecular ruler" in that the signal output is dependent upon the splice form present and can indicate progression of disease state.

EXAMPLE 17

Detection of elevated early:late mRNA ratio

The methods of the present disclosure enable detection of a ratio of early and late HPV mRNA transcripts, which may be indicative of progressing HPV-related cervical disease. The described assay detected a high early:late mRNA ratio of SiHa cells (cancer cell line) against a background of HPV-positive specimens (FIG. 14). Capture and detection DNA probes were designed to detect early transcripts and late transcripts of HPV. These two assays were performed concurrently on the same samples, and the ratio of the resulting signals indicates the ratio of the early and late HPV transcripts. To mimic specimens comprising a few cancer cells mixed with cells of pre-cancerous lesion, pools of HSIL specimens (high-grade squamous intraepithelial lesion, per Bethesda System for cervical cytology) were spiked with known numbers of SiHa cells (as indicated along the x-axis), and then assayed via the methods of the present disclosure (see, e.g., EXAMPLE 12). As indicated
by FIG. 14, a fraction of cells with a high E6/7 mRNA ratio may be detected against a background of cells with a low ratio.

All references cited in this specification are herein incorporated by reference as though each reference was specifically and individually indicated to be incorporated by reference. The citation of any reference is for its disclosure prior to the filing date and should not be construed as an admission that the present disclosure is not entitled to antedate such reference by virtue of prior invention.

It will be understood that each of the elements described above, or two or more together may also find a useful application in other types of methods differing from the type described above. Without further analysis, the foregoing will so fully reveal the gist of the present disclosure that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this disclosure set forth in the appended claims. The foregoing embodiments are presented by way of example only; the scope of the present disclosure is to be limited only by the following claims.
CLAIMS

What is claimed is:

1. A method of detecting the presence of a target RNA, the method comprising:
 a) providing at least one DNA capture probe, wherein the at least one DNA capture probe is bound to a support;
 b) hybridizing the target RNA to said at least one DNA capture probe, yielding a target RNA:DNA capture probe complex;
 c) isolating the target RNA:DNA capture probe complex;
 d) providing at least one DNA amplification probe, and hybridizing said at least one DNA amplification probe to said target RNA:DNA capture probe complex, yielding a target RNA:DNA:DNA capture/amplification probe complex;
 e) providing an anti-RNA:DNA hybrid antibody, and incubating said target RNA:DNA capture/amplification probe complex with said antibody, yielding a target RNA:DNA:antibody complex;
 f) detecting said antibody, wherein said detecting indicates the presence of said target RNA.

2. The method of claim 1, wherein said antibody is conjugated to a detectable marker, and wherein said detecting comprises detecting the marker.

3. The method of claim 2, wherein the detectable marker is selected from the group consisting of alkaline phosphatase and horseradish peroxidase.

4. The method of claim 1, wherein said detecting comprises providing a second antibody that binds to said anti-RNA:DNA hybrid antibody, wherein said second antibody is conjugated to a detectable marker, and wherein said detecting further comprises detecting the marker.

5. The method of claim 1 wherein the support comprises a magnetic bead.

6. The method of claim 5, wherein said at least one DNA capture probe is conjugated to a biotin molecule, and wherein said support is conjugated to at least one streptavidin molecule.

7. The method of claim 1, wherein the target RNA is from virus, bacteria, mycobacteria or plasmodia.
8. The method of claim 1, wherein the target RNA is from Herpesviridae, human immunodeficiency virus, Chlamydia spp., Neisseria spp., Staphylococcus aureus, mycobacteria, SARS coronavirus, Orthomixoviridae, or Papillomaviridae.

9. The method of claim 1, wherein the at least one DNA capture probe and the at least one DNA amplification probe are from about 15 to about 200 bases in length.

10. The method of claim 1, wherein the target RNA is a splice variant, and wherein the at least one DNA capture probe and the at least one DNA amplification probe are selected to detect the presence of said splice variant.

11. The method of claim 11, wherein the at least one DNA capture probe and the at least one DNA amplification probe are complementary to RNA from HPV high risk types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 26, 66, 73, and 82.

12. A kit for the detection of a target RNA, the kit comprising:
 a) at least one DNA capture probe, bound to a magnetic support;
 b) at least one DNA amplification probe;
 c) an anti-RNA:DNA hybrid antibody; and
 d) a detection reagent.

13. The kit of claim 12, wherein said anti-RNA:DNA hybrid antibody is conjugated to a detectable marker, and wherein said detection reagent comprises a substrate for said detectable marker.

14. The kit of claim 12, further comprising a second antibody that binds to said anti-RNA:DNA hybrid antibody, wherein said second antibody is conjugated to a detectable marker, and wherein said detection reagent comprises a substrate for said detectable marker.

15. A method of providing target RNA for detection, the method comprising:
 a) incubating a biological sample containing the target RNA with carboxyl beads;
 b) isolating the beads;
 c) lysing the biological sample attached to the isolated beads; and
 d) isolating the beads from the lysed biological sample, wherein the resulting supernatant contains the target RNA for detection.
16. A method of detecting the presence of a target RNA, the method comprising:
 a) providing at least one DNA capture probe;
 b) providing a first anti-RNA:DNA hybrid antibody, wherein the first anti-RNA:DNA hybrid antibody is bound to a support;
 c) hybridizing the target RNA to said at least one DNA capture probe, yielding a target RNA:DNA capture probe complex;
 d) incubating said target RNA:DNA capture probe complex with said anti-RNA:DNA hybrid antibody, yielding a bound target RNA:DNA capture probe complex;
 e) providing at least one DNA amplification probe, and hybridizing said at least one DNA amplification probe to said bound target RNA:DNA capture probe complex, yielding a bound target RNA:DNA capture/amplification probe complex;
 f) providing a second anti-RNA:DNA hybrid antibody, and incubating said bound target RNA:DNA capture/amplification probe complex with said second anti-RNA:DNA hybrid antibody, yielding a bound target RNA:DNA:antibody complex;
 g) detecting said second anti-RNA:DNA hybrid antibody, wherein said detecting indicates the presence of said target RNA.

17. The method of claim 16, wherein said second anti-RNA:DNA hybrid antibody is conjugated to a detectable marker, and wherein said detecting comprises detecting the marker.

18. The method of claim 17, wherein the detectable marker is selected from the group consisting of alkaline phosphatase and horseradish peroxidase.

19. The method of claim 16, wherein said detecting comprises providing a third antibody that binds to said second anti-RNA:DNA hybrid antibody, wherein said third antibody is conjugated to a detectable marker, and wherein said detecting further comprises detecting the marker.

20. The method of claim 16 wherein the support comprises a magnetic bead.
21. The method of claim 20, wherein said first anti-RNA:DNA hybrid antibody is conjugated to a biotin molecule, and wherein said support is conjugated to at least one streptavidin molecule.

22. The method of claim 16, wherein the target RNA is from virus, bacteria, mycobacteria or plasmodia.

23. The method of claim 16, wherein the target RNA is from Herpesviridae, human immunodeficiency virus, Chlamydia spp., Neisseria spp., Staphylococcus aureus, mycobacteria, SARS coronavirus, Orthomixoviridae, or Papillomaviridae.

24. The method of claim 16, wherein the at least one DNA capture probe and the at least one DNA amplification probe are from about 15 to about 200 bases in length.

25. The method of claim 16, wherein the target RNA is a splice variant, and wherein the at least one DNA capture probe and the at least one DNA amplification probe are selected to detect the presence of said splice variant.

26. The method of claim 25, wherein the at least one DNA capture probe and the at least one DNA amplification probe are complementary to RNA from HPV high risk types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 26, 66, 73, and 82.
FIG. 4

Number of DNA sequences conjugated to magnetic SA beads

FIG. 5

Average RLU

RNA in clean STM RNA in KPSTM(-) RNA in denatured KPSTM(-)

0 copies 10^45 copies
INTERNATIONAL SEARCH REPORT

A CLASSIFICATION OF SUBJECT MATTER
IPC(8) - C12Q 1/68 (20I 0 01I)
USPC - 435/6

According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
USPC 435/6

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC 435/6

(keyword limited, terms below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Search terms hybrid capture, reverse, RNA DNA, alkaline phosphatase, horseradish peroxidase, secondary, amplification, probe, HPV, splice

C DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>U.S 2006/0051809 A1 (NAZARENKO et al) 9 March 2006 (09 03 2006) para [0009]-[0010], [0016]-[0018], [0027]-[0028], [0033]-[0039], [0042], [0059]-[0061], [0066]-[0072], [0084]-[0086], [0104]-[0105], claim 18</td>
<td>1-26</td>
</tr>
<tr>
<td>A</td>
<td>LORINCZ Hybrid capture Clin Chem June 1998 Vol 44, No 6, R 1, page 1463</td>
<td>1-26</td>
</tr>
<tr>
<td>A</td>
<td>VERNICK et al The HPV DNA virus hybrid capture assay what is the and where do we go from here' Mol Med Lab Obs March 2003 Vol 35, No 3, pages 8-10, 13</td>
<td>1-26</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C ☐

* Special categories of cited documents
' A ' document defining the general state of the art which is not considered to be of particular relevance
' E ' earlier application or patent but published on or after the international filing date
' L ' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
'O' document referring to an oral disclosure, use, exhibition or other means
' P ' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
'X' document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
'Y' document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is taken alone
'&' document member of the same patent family

Date of the actual completion of the international search
14 June 2010 (14 06 2010)

Date of mailing of the international search report
05 AUG 2010

Name and mailing address of the ISA/JS
Mail Stop PCT, Attn ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No 571-273-3201

Authorized officer
Lee W. Young
PCT H:273-4000
PCT OSP 571-272-7774