20147105122 AT I 000 I 00 OO O

<

W

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/105122 A1l

3 July 2014 (03.07.2014) WIPO I PCT
(51) International Patent Classification: (74) Agents: MALLIE, Michael, J. et al.; Blakely Sokoloff
GO6F 13/16 (2006.01) GO6F 12/00 (2006.01) Taylor & Zatman LLP, 1279 Oakmead Parkway,
(21) International Application Number: Sunnyvale, CA 94085 (US).
PCT/US2013/045691 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
13 June 2013 (13.06.2013) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
13/729,439 28 December 2012 (28.12.2012) Us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, 5C,
SD, SE, 8@, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(71) Applicant: INTEL CORPORATION [US/US]; 2000 TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
Mission College Boulevard, M/S: RNB-4-150, Santa . L
Clara, California 95054 (US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: HILDESHEIM, Gur; Mark Shagal 3, 32970 GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Haifa (IL). RAIKIN, Shlomo; Pob 96, 30835 Ofer (IL). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
ANATI, Ittai; 17 Tzidkiahu St., 94409 Haifa (IL). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
GERZON, Gideon; 40B Wingate St, 30900 Zichron EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Yaakov, HA (IL). SHAFI, Hisham; Hahagana St. 6/8 ; MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
P.O.b 189, 24314 Akko (IL). BERENZON, Alex; HaNo- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
trim 20, 30900 Zikhron Yakov (IL). STRONGIN, Geof- KM, ML, MR, NE, SN, TD, TG).
frey, S.; 14950 SW Woodhue St., Tigard, Oregon 97224 Published:

(US). SORANI, Iris; Weitzman Str 18/7, 22385 Nahariya
(IL).

with international search report (Art. 21(3))

(54) Title: ACCESS TYPE PROTECTION OF MEMORY RESERVED FOR USE BY PROCESSOR LOGIC

GOMPUTER SYSTEM 700 ~u

PROCESSOR 101

EXECUTING
SOFTWARE
102

RESERVED MEMORY
PROTECTION LOGIC

ACCESS
ACDRESS/
ACCESS TYPE

S

01907 %03HD
JA0W NOLLYHIO

ON-DIE
PROCESSOR
LOGIC

JI90THITHD
3dAL 883007

103
ACCES3
ADDRESS/
ACCESS TYPE

e
|

CONFIGURATION

IREGISTERS

1108 RESERVED
MEMORY

SPECIFICATION

REGISTER(S)

110

D07 NOILIAL0Yd

=3
5
=]
<

|
I

]

]

]

1 1

5 ALLOWED| | |
CERARON AozESS [!
]

]

]

]

109

TYPE
111

114

MEMORY 115

SOFTWARE
(E.G., 08, APLICATIONS, ETC.)
116

MEMORY FOR USE BY
EXECUTING SOFTWARE
1z

MEMORY RESERVED FOR USE BY ON-DIE
PROCESSOR LAGIC
(E.G., OPERATION MODE PROTECTED MEMOCRY)
118

ACCESS TYPE PROTECTED MEMORY
1g

—————————————————

—————————————————

—————————————————

FIG. 1

(57) Abstract: A processor of an aspect includes operation mode check logic to determine whether to allow an attempted access to
an operation mode and access type protected memory based on an operation mode that is to indicate whether the attempted access is

by an on-die processor logic. Access type check logic is to determine whether to allow the attempted access to the operation mode
and access type protected memory based on an access type of the attempted access to the operation mode and access type protected
memory. Protection logic is coupled with the operation mode check logic and is coupled with the access type check logic. The pro -
tection logic is to deny the attempted access to the operation mode and access type protected memory if at least one of the operation
mode check logic and the access type check logic determines not to allow the attempted access.

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

ACCESS TYPE PROTECTION OF MEMORY RESERVED FOR USE BY PROCESSOR
LOGIC

BACKGROUND
Field

Embodiments relate to the field of processors. In particular, embodiments relate to the

field of processors to restrict accesses to portions of memory.

Backeround Information

Some processors have a mechanism to reserve a portion of physical memory for use by
firmware of the processor, or other on-die processor logic, but not for use by software executing
in the processors. By way of example, the portion of the physical memory may be configured by
firmware of the processor, a Basic Input/Output System (BIOS), or otherwise. During operation,
the mechanism may monitor attempted accesses to the portion of the physical memory, and
determine whether or not the attempted accesses should be allowed. In such processors, the
protection of the portion of the physical memory is based on the operation mode of the attempted
access (e.g., whether the on-die processor logic or the software is attempting the access). If the
attempted accesses are from the on-die processor logic they may be allowed, or if the attempted

accesses are from the software executing in the processor they may not be allowed.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The invention may best be understood by referring to the following description and
accompanying drawings that are used to illustrate embodiments of the invention. In the

drawings:

Figure 1 is a block diagram of an embodiment of a computer system including a

processor and a memory.

Figure 2A is a block diagram of an embodiment of an access type protected memory

specification register with an explicit access type.

Figure 2B is a block diagram of an embodiment of an access type protected memory

specification register with an implicit access type.

Figure 3 is a block flow diagram of a detailed example embodiment of a method of

checking and restricting accesses to an operation mode and access type protected memory.

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

Figure 4 is a block diagram of an embodiment of reserved memory protection logic.
Figure 5 is a block diagram of an embodiment of a set of access type protected memories.

Figure 6 is a block diagram of a processor having an embodiment of a TLB having access

type check and enforcement logic.

Figure 7 shows a TLB having an entry having conventional paging attribute bits and
logic to reuse the conventional paging attribute bits, but with a different interpretation, for

physical accesses.

Figure 8 shows a TLB having an entry having conventional paging attribute bits and
additional bits to specify memory access types and logic to use the additional bits for physical

acCcesses.

Figure 9A is a block diagram illustrating both an exemplary in-order pipeline and an
exemplary register renaming, out-of-order issue/execution pipeline according to embodiments of

the invention.

Figure 9B is a block diagram illustrating both an exemplary embodiment of an in-order
architecture core and an exemplary register renaming, out-of-order issue/execution architecture

core to be included in a processor according to embodiments of the invention.

Figure 10A is a block diagram of a single processor core, along with its connection to the
on-die interconnect network and with its local subset of the Level 2 (L2) cache, according to

embodiments of the invention.

Figure 10B is an expanded view of part of the processor core in Figure 10A according to

embodiments of the invention.

Figure 11 is a block diagram of a processor that may have more than one core, may have
an integrated memory controller, and may have integrated graphics according to embodiments of

the invention.

Figure 12, shown is a block diagram of a system in accordance with one embodiment of

the present invention.

Figure 13, shown is a block diagram of a first more specific exemplary system in

accordance with an embodiment of the present invention.

Figure 14, shown is a block diagram of a second more specific exemplary system in

accordance with an embodiment of the present invention.
2

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

Figure 15, shown is a block diagram of a SoC in accordance with an embodiment of the

present invention.

Figure 16 is a block diagram contrasting the use of a software instruction converter to
convert binary instructions in a source instruction set to binary instructions in a target instruction

set according to embodiments of the invention.
DETAILED DESCRIPTION

In the following description, numerous specific details are set forth (e.g., specific register
contents and layouts, specific logic implementations, specific sequences of operations, specific
logic partitioning/integration details, types and interrelationships of system components, and the
like). However, it is understood that embodiments of the invention may be practiced without
these specific details. In other instances, well-known circuits, structures and techniques have not

been shown in detail in order not to obscure the understanding of this description.

One limitation with restricting an attempted access to a portion of physical memory based
only on an operation mode of the attempted access (e.g., whether on-die processor logic or
software is attempting the access), as described in the background section, is that there is no
consideration of an access type of the attempted access (e.g., whether the attempted access is a
read, a write, an execute, etc.). As a result, a portion of physical memory that is intended or
desired to have one type of allowed access may instead be accessed by another, different, non-
intended type of access. For example, a portion of physical memory intended to be accessed as
read-only may instead be written to and/or executed from. The on-die processor logic may be
able to perform such a non-intended type of access even if the operation mode based checking
and protection mechanism is functioning properly. In addition, an entity other than the on-die
processor logic, for example software executing in the processor, may be able to perform such a
non-intended type of access if the operation mode based checking and protection mechanism has
been compromised (e.g., by a bug, malware, tampering, etc.). In such cases, the intended or

desired access types for these portions of the physical memory may be violated.

Disclosed herein are processors, methods, and systems, that are operable to protect
portions of memory, which are reserved for on-die processor logic, based at least in part on the
access types of the attempted accesses. Advantageously, these processors, methods, and systems
may help to increase overall security. Restricting attempted accesses to portions of memory,
based on the types of the attempted accesses, may help to further protect the portions of the

memory, even from the on-die processor logic. This may help to enforce a principle of least

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

privilege in which each entity is only allowed to do the things it needs to do in order to
accomplish its intended tasks and no more. In addition, this may help to provide defense in
depth in which, even if the operation mode checking and protection mechanism is compromised,
the access type checking and protection mechanism may help to provide another level of

defense.

Figure 1 is a block diagram of an embodiment of a computer system 100 including a
processor 101 and a memory 115. The processor and the memory are coupled, or otherwise in
communication with one another, by a conventional coupling mechanism 114 (e.g., through one
or more buses, hubs, memory controllers, chipset components, or the like). The memory
represents physical memory and may include one or more different memory devices and/or one

or more different types of memory.

In some embodiments, the processor may be a general-purpose processor (e.g., of the
type used in desktop, laptop, server, and like computers). Alternatively, the processor may be a
special-purpose processor. Examples of suitable special-purpose processors include, but are not
limited to, communications processors, network processors, cryptographic processors, graphics
processors, co-processors, embedded processors, digital signal processors (DSPs), and

controllers (e.g., microcontrollers), to name just a few examples.

Referring again to Figure 1, the memory includes software 116. The software may
include, for example, one or more operating systems (OS), one or more applications, or the like.
During operation, a portion of the software may execute on the processor as executing software
102. The executing software may include macroinstructions or instruction set architecture (ISA)
level instructions that are loaded from the software 116 and executed on the processor (e.g.,
scheduled, decoded, executed, etc.). The ISA level instructions are part of the ISA. The ISA
represents the part of the architecture of the processor related to programming and commonly
includes the native instructions, architectural registers, data types, addressing modes, and the
like, of the processor. The ISA is distinguished from the microarchitecture, which generally
represents the particular processor design techniques selected to implement the ISA. The
executing software may utilize memory subset 117, which is a portion of the memory 115, which

is allowed to be used by the executing software.

The processor 101 includes on-die processor logic 103. The on-die processor logic is
fixed, resident, or persistent on-die (e.g., as opposed to software instructions that are loaded into
the processor from the memory 115). Commonly, the on-die processor logic is present on the
processor even when the processor is powered off, prior to booting, and/or at the time of

4

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

completion of manufacture. Examples of suitable on-die processor logic include, but are not
limited to, processor firmware, processor hardware (e.g., integrated circuitry), other on-die
permanent logic of the processor, or a combination thereof. By way of example, firmware may
include a combination of persistent and/or non-volatile memory of the processor (e.g., ROM,
EPROM, flash memory, etc.) and instructions (e.g., microcode, microinstructions,
microarchitectural instructions, instructions at a level closer to the circuitry/microarchitecture of
the processor than ISA level instructions, etc.) stored in the persistent and/or non-volatile

memory.

An embodiment of reserved memory 118, which is a portion of the memory 115, is
reserved for use by the on-die processor logic 103 but not for use by the executing software 102.
In some embodiments, the on-die processor logic may be allowed to access and use the reserved
memory, but the executing software may not be allowed to access or use the reserved memory.
The on-die processor logic is a particular subset of the total on-die processor logic, such as, for
example, particular on-die security-related logic, which alone is intended to use the operation
mode protected memory. The memory 115 also includes access type protected memory 119 that
is protected based on the type of the access. As shown, in some embodiments, the access type
protected memory is part of the reserved memory. In such embodiments, the access type
protected memory may be protected based on both the operation mode (e.g., whether or not the
on-die processor logic is the source of the access) as well as based on the type of the access. In
other embodiments, the access type protected memory, or a portion thereof, need not be
operation mode protected memory. As shown, in some embodiments, the access type protected
memory may include different types of access type protected memory, such as, for example, a
read protected memory 120, a write protected memory 121, and an execute protected memory
122. Other types of access type protected memory are also contemplated (e.g., write and

execute, read and write protected, other combinations of two or more types of accesses, etc.).

In some embodiments, the processor may include one or more reserved memory
specification registers 110 that are operable to specify one or more attributes of the reserved
memory 118. Examples of suitable attributes include, but are not limited to, a location of the
reserved memory, a size of the reserved memory, whether or not the reserved memory is valid or
invalid (e.g., turned on or off), whether or not the reserved memory specification register(s) are
locked, and the like. In some cases, the reserved memory specification register(s) may specify

the range of the reserved memory and may be referred to as range registers.

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

In some embodiments, the one or more reserved memory specification registers 110 may
optionally include allowed access type information 111 corresponding to the access type
protected memory 119. The allowed access type information may indicate one or more allowed
types of access for the access type protection memory. As used herein, indicating allowed types
of access includes explicitly specifying allowed types of access, implicitly indicating allowed
types of access, indirectly specifying the allowed types of access by explicitly specifying non-
allowed types of access, and combinations thereof. In some embodiments, there may be a
different set of allowed access type indication information 111 and/or a different reserved
memory specification register 110 for different access type protected memories (e.g., for each of
the read protected memory 120, the write protected memory 121, and the execute protected

memory 122).

As shown, the reserved memory specification register(s) may optionally be included in a
set of configuration registers 108 of the processor. Alternatively, the aforementioned attributes
may be specified in other locations (e.g., in the on-die processor logic, a memory management
unit (not shown), or elsewhere). By way of example, the reserved memory specification
registers may be configured by a Basic Input/Output System (BIOS), firmware, or otherwise.
Alternatively, rather than being explicitly specified or configured, one or more of the
aforementioned attributes may be implicit (e.g., the location of the reserved memory may be
predefined or otherwise implicit, the allowed access type of memory portion may be predefined

or otherwise implicit, etc.).

During operation the processor may monitor attempted accesses to the reserved memory
118 and determine whether or not the attempted accesses are to be allowed or not. The processor
includes an embodiment of reserved memory protection logic 104. The reserved memory
protection logic is commonly on-die logic of the processor, for example hardware, firmware, or a
combination thereof. In some embodiments, the reserved memory protection logic may reside in
the memory management subsystem (e.g., in the page miss handler, in a load/store unit, or the
like). Accesses from the on-die processor logic 103 and from the execution software 102 may
each have a corresponding access address. For example, such access addresses may correspond
to instructions (e.g., macroinstructions and/or microinstructions) attempting the accesses. By
way of example, a load microinstruction may specify a physical address in the reserved memory.
The reserved memory protection logic 104 may know the location and size of the reserved
memory 118. For example, the reserved memory protection logic may receive the location and
size of the reserved memory from the reserved memory specification register(s) 110. The

reserved memory protection logic may determine whether or not the access address of the
6

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

attempted access lies within the reserved memory. If the access address lies within the reserved
memory and/or the access type protected memory, then operation mode check logic 105 and/or
access type check logic 106 may be used to determine whether or not the attempted access

should be allowed or prevented.

The reserved memory protection logic includes operation mode check logic 105. The
operation mode check logic may be operable to allow or prevent access to the reserved memory
based on an operation mode of an attempted access. In some embodiments, the operation mode
may indicate whether or not the attempted access is from the on-die processor logic 103. For
example, an operation mode 109 (e.g., a single bit) may have a first value (e.g., be set to binary
one) if the on-die processor logic is attempting the access or may have a second, different value
(e.g., be cleared to binary zero) if the on-die processor logic is not attempting the access (e.g., the
executing software 102 is attempting the access). In some embodiments, the processor (e.g., the
on-die processor logic or other firmware or hardware of the processor) may specify the operation
mode based on whether or not the on-die processor logic is attempting to access the reserved
memory. As shown, the operation mode may be included in the set of configuration registers
108. The operation mode basically indicates whether or not the particular on-die processor logic
intended to access the operation mode protected memory is in fact the entity accessing the
operation mode protected memory. Alternatively, the operation mode may be included in the
on-die processor logic, a memory management unit (not shown), or elsewhere. As another
option, the operation mode may also be associated with a microinstruction (e.g., as one of the
attributes of the microinstruction) in the processor execution pipeline. The operation mode
check logic may determine to allow accesses by the on-die processor logic or prevent accesses
by entities other than the on-die processor logic (e.g., by the executing software 102). In the
illustration, an “X” is used to indicate that the operation mode check logic may prevent access to

the reserved memory by the executing software.

The reserved memory protection logic also includes an embodiment of access type check
logic 106. The access type check logic may be operable to allow or prevent access to the access
type protected memory 119 based on a type of an attempted access. Accesses from the on-die
processor logic, and from the executing software, may each have a corresponding access type.
For example, these access types may correspond to an instruction (e.g., a macroinstruction and/or
a microinstruction) that is attempting the access. For example, a load instruction may attempt a
read type of access, a store instruction may attempt a write type of access, etc. The access type
check logic may receive these attempted types of accesses as well as the allowed access type(s)

111 that correspond to the access type protected memory. The access type check logic may be
7

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

operable to check whether or not the attempted type of access matches the allowed access
type(s). The access type check logic may determine to allow accesses when the attempted access
type matches the allowed access type or prevent accesses when the attempted access type does
not match the allowed access type. For example, an attempted read from the write protected
memory 121 may be allowed but an attempted write to the write protected memory 121 may not

be allowed.

Protection logic 107 may allow or prevent the attempted access based on the checks by
the operation mode 105 and access type check 106 logics. In some embodiments, if either the
operation mode or the access type is illegal the attempted access may be prevented. In some
embodiments, in the event of an attempted illegal access, one or more additional protective
actions may be taken. Examples of such actions include, but are not limited to, causing an
exception (e.g., an interrupt, fault, trap, or the like), reporting the illegal attempt to an
appropriate entity (e.g., the on-die processor logic or an operating system), stopping the

executing software, or the like.

Advantageously, the ability to restrict attempted accesses to portions of memory based on
the types of the attempted accesses may help to increase overall security. For one thing, it may
help to enforce a principle of least privilege in which each entity is only allowed to do the things
it needs to do in order to accomplish its intended tasks and no more. The access type check logic
may help to further limit access, even by the on-die processor logic itself, to the access type
protected memory based on the type of access. Intended or desired types of access may be
allowed while unintended or undesired types of access may be prevented (even to the on-die
processor logic which would otherwise satisfy the operating mode check). This represents an
additional restriction in addition to the operation mode restriction. By way of example, without
the access type check and protection logic the on-die processor logic may be allowed to write to
the write protected memory 121 but with the access type check and protection logic the on-die
processor logic may be prevented from writing to the write protected memory 121. For another
thing, this ability may help to provide defense in depth in which, even if the operation mode
checking and protection mechanism is compromised (e.g., by a bug, malware, tampering, etc.)
the access type checking and protection mechanism may be able to provide another level of

defense.

Figure 2A is a block diagram of an embodiment of an access type protected memory
specification register 210A with an explicit access type 211. In some embodiments, BIOS,

firmware, appropriately privileged software, or the like, may configure or specify the register in

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

order to specify the attributes of an access type protected memory (e.g., access type protected

memory 119 in Figure 1).

The register includes a base address field 230 to allow specification of a base address.
The register includes an address mask field 231 to allow specification of an address mask. The
base address may specify where the access type protected memory resides in physical memory.
The address mask may specify the size of the access type protected memory. Further details of

the suitable base addresses and address masks will be described further below.

The register includes an optional validity field 232. The validity field may allow a
specification of whether or not the access type protected memory specification register and/or its
corresponding access type protected memory is valid (e.g., is being used or not). For example,
the access type checks and enforcement may only be performed when the valid bit is set or
otherwise enabled. In this way, the valid bit may represent an on/off switch for the access type

checking and enforcement mechanism.

The register includes an optional lock field 233 to allow the register to be locked. By
way of example, after BIOS, firmware, or another appropriate entity has configured the register,
that entity may enable the lock (e.g., by storing a predetermined value in the lock field). For
example, a single bit lock field may be set to binary one to lock the register, or cleared to binary
zero to unlock the register. Enabling the lock may help to prevent unauthorized modification of
the register. As an example, the lock may be released (e.g., the register unlocked) when the
system is shut down and/or a hardware reset occurs. The lock may remain unlocked until the

BIPS or other entity configures the register and sets the lock.

The register includes an access type field 211 to allow explicit specification of one or
more access types for the memory locations specified by the base address and the address mask.
The specified access types may be either allowed access types or prohibited access types. For
example, the access type field may specify whether any of read, write, execute, or some
combination thereof, are allowed or prohibited. By way of example, write protected memory

may be either specified as write prevented or read and execute permitted.

Figure 2B is a block diagram of an embodiment of an access type protected memory
specification register 210B with an implicit access type. The register includes a base address
field 230, an address mask field 231, an optional validity field 232, and an optional lock field
233. The register, and each of these fields, may be similar to or the same as those described

above in conjunction with Figure 2A. To avoid obscuring the description, these similarities will

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

not be repeated, but rather the discussion will emphasize the different or additional aspects of the

register 210B.

The register omits an explicitly specified access type field. Instead, one or more access
types are predefined or otherwise implicit for the register 210B. For example, the reserved
memory protection logic 104 may understand that the memory portion corresponding to the
register 210B (e.g., indicated by the base address field 230 and the address mask field 231) has a
predefined or otherwise implicit allowed or prohibited access type. In some cases, different such
registers may each have a different corresponding implicit access type for a different

corresponding memory range.

It is to be appreciated that these are just example embodiments of suitable registers.
Alternate embodiments may include a subset of the illustrated fields and/or may include
additional fields. For example, some registers may have a validity field without a lock field, may
have a lock field without a validity field, or may omit both of these fields but include additional
fields. Moreover, the illustrated arrangement of the fields within the registers is not required, but
rather the fields may be rearranged in many different ways. Each of the fields may be one or
more bits in the register that are sufficient to specify the intended information for the particular
implementation. The bits may be a physically contiguous sequence of bits, or may be dispersed

throughout the register but logically grouped into the field, or a combination thereof.

Figure 3 is a block flow diagram of a detailed example embodiment of a method 340 of
checking and restricting accesses to an operation mode and access type protected memory. In
some embodiments, the operations and/or method of Figure 3 may be performed by and/or
within the processor of Figure 1. Alternatively, the operations and/or method of Figure 3 may be
performed by and/or within either a similar or an entirely different apparatus. Moreover, the
processor of Figure 1 may perform operations and/or methods either the same as, similar to, or

entirely different than those of Figure 3.

The method includes determining whether a physical address of an attempted access is
within the operation mode and access type protected memory, at block 341. For example, this
may include comparing the physical address of the attempted access with a base address field
and an address mask field of a corresponding access type protected memory specification
register. If the physical address of the attempted access is not within the operation mode and
access type protected memory (i.e., “no” is the determination at block 341), then the attempted
access to the memory at the physical address may be allowed at block 342. This means the
physical address of the attempted access is outside of the operation mode and access type

10

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

protected memory. Thereafter the method may revisit block 341 upon the next attempted access

to memory.

Alternatively, if the physical address of the attempted access is within the operation mode
and access type protected memory (i.e., “yes” is the determination at block 341) then the method
may advance to block 343. At block 343, an optional determination may be made whether the
operation mode and access type protected memory is enabled for access type checking and
enforcement. This is optional not required. This may include examining a validity bit or field in
the corresponding access type protected memory specification register. As previously
mentioned, the validity may indicate whether or not protection of the access type protected
memory is currently enabled or disabled. If it is invalid (i.e., “no” is the determination at block
341), then the method may advance to block 347, where the attempted access may be allowed to
the operation mode and access type protected memory (e.g., since the protection mechanism is

currently disabled or otherwise not valid).

Alternatively, if the operation mode and access type protected memory is valid (i.e.,
“yes” is the determination at block 343), then the method may advance to block 344. At block
344, a determination may be made whether the operation mode of the attempted access is
allowed. This may include examining the current operating mode (e.g., a bit in a configuration
register of the processor) and determining whether the current operating mode indicates that on-
die processor logic is attempting the access or not. If on-die processor logic is attempting the
access, then the operation mode of the attempted access may be allowed. Otherwise, if the on-
die processor logic is not attempting the access (e.g., instead software executing on the processor

is attempting the access), the operation mode of the attempted access may not be allowed.

If the operation mode of the attempted access is allowed (i.e., “yes” is the determination
at block 344), the method may advance to block 346. At block 346, a determination may be
made whether the access type of the attempted access is allowed. This may include comparing
the access type of the attempted access with the allowed access type(s) for the operation mode
and access type protected memory. As mentioned, in some cases the allowed access type(s) may
be explicitly specified in or implicitly indicated by the corresponding access type protected
memory specification register. If the attempted access type matches one of the allowed access
type(s), then the attempted access type may be allowed. Otherwise, if the attempted access type
is different than all of the allowed access type(s), then the attempted access type may not be

allowed.

11

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

If either the operation mode of the attempted access is not allowed (i.e., “no” is the
determination at block 344), or if the access type of the attempted access is not allowed (i.e.,
“no” is the determination at block 346), the method may advance to block 345. At block 345,
the attempted access to the operation mode and access type protected memory may be denied. In
some embodiments, other actions may also be taken (e.g., raising an exception, reporting the
illegal access to a privileged entity, etc.). Thereafter, the method may revisit block 341 upon the

next attempted access to memory.

Alternatively, if the access type of the attempted access is allowed (i.e., “yes” is the
determination at block 346) the method may advance to block 347. At block 347, the attempted
access to the operation mode and access type protected memory may be allowed. Both the
checks of the operation mode and access type revealed that the attempted access was
permissible. Thereafter, the method may revisit block 341 upon the next attempted access to

memory.

This is just one illustrative example of a suitable method. Many variations on this
method are contemplated. For example, the method has been described in a relatively basic form
but operations may optionally be added to and/or removed from the methods. As one example,
other embodiments may omit the validity check shown at block 343. As another example, other
embodiments pertain to access type protection without operation mode protection. Moreover,
while the flow diagram shows one possible order for the operations, alternate embodiments may
perform the operations in different order, combine certain operations, overlap certain operations,

etc.

Figure 4 is a block diagram of an embodiment of reserved memory protection logic 404.
In some embodiments, the reserved memory protection logic of Figure 4 may be included in the
processor of Figure 1. Alternatively, the reserved memory protection logic of Figure 4 may be
included within either a similar or an entirely different apparatus. Moreover, the processor of
Figure 1 may include reserved memory protection logic either the same as, similar to, or entirely
different than that of Figure 4. Moreover, in some embodiments, the reserved memory
protection logic of Figure 4 may perform the operations and/or method of Figure 3.
Alternatively, the reserved memory protection logic of Figure 4 may perform similar or entirely
different operations and/or methods. Moreover, the operations and/or method of Figure 3 may

be performed by logic either the same as, similar to, or entirely different than that of Figure 4.

A base address 430 is provided to an input (a) of a first AND logic 452. An address
mask 431 is provided to an input (b) of the first AND logic. The address mask is also provided
12

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

to an input (d) of a second AND logic 453. By way of example, the base address and the address
mask may come from an access type protected memory specification register. A physical
address of an attempted access is provided to an input (e) of the second AND logic. An output
of the first AND logic is provided to an input (c) of a comparison logic 454. An output of the
second AND logic is provided to an input (f) of the comparison logic. The comparison logic is
operable to determine whether or not the physical address of the attempted access is within an
operation mode and access type protected memory that is defined by the base address and
address mask. The comparison logic provides an “address match/no match indication” to an
input (g) of a third logic 456. An optional validity 432 may provide a “valid/invalid indication”
to an input (k) of the third logic. By way of example, the validity may come from an access type

protected memory specification register.

In some embodiments, the physical address of the attempted access may be considered to
be inside the range of the operation mode and access type protected memory if (physical address
450 AND address mask 431) equals (base address 430 AND address mask 431). The base
register may determine where the memory region resides in memory. In one aspect, a resolution
of pages may be used (e.g., 4K bytes or 4096 bytes). So only address bits 12 and more
significant may be used for the comparison and these bits need to be included in the reserved
memory specification register. The address mask may determine the size of the reserved
memory region. For example, if the address mask is all 1’s, then the memory region may be
only one page because the base address and the address mask need to be equal to create a match.
If the address mask is “1...1111000” then the size of the region may be eight pages, since the
lower 3-bits bits of the address may be “ignored” or “masked” while bits 15 and more significant
may be used for the comparison and determine the result. Such a base address and address mask
generally tend to be efficient to implement, since they may be evaluated with AND logic and a
comparator. However, other ways of representing the memory region may also optionally be

used instead.

A mode 409 of the attempted access may be provided to operation mode check logic 405.
The operation mode check logic may provide a legal/illegal access indication to an input (h) of
OR logic 455. An access type 451 of the attempted access may be provided to access type check
logic 406. One or more allowed access types 411 corresponding to the operation mode and
access type protected memory may also be provided to the access type check logic. By way of
example, the one or more allowed access types may come from the access type protected
memory specification register. The access type check logic may provide a legal/illegal access

indication to an input (i) of the OR logic. The OR logic may provide a “legal/illegal access
13

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

indication” to an input (j) of the third logic. If either the operation mode or the access type are
determined to be illegal, then the OR logic may provide an illegal access indication.
Alternatively, if both the operation mode and the access type are determined to be legal, then the

OR logic may provide a legal access indication.

The third logic 456 may determine whether to allow or not allow the attempted access
based on the indications provided on its inputs (g), (k), and (j). If an address no-match indication
is provided on input (g), then the third logic may allow the attempted access. This generally
means that the attempted access is not to the operation mode and access type protected memory
region. If an invalid indication is provided on input (k) then the third logic may allow the
attempted access. This may mean that the access protection mechanism is disabled, turned off,
or otherwise not valid. Alternatively, an address match indication is provided on input (g), and a
valid indication is provided on input (k), then the third logic may use the legal/illegal access
indication provided on input (j) to determine whether or not to allow the attempted access. If the
legal indication is provided, the attempted access may be allowed, whereas if the illegal
indication is provided, then the attempted access may not be allowed. Protection logic 407 may

allow or not allow the attempted access based on the determination by the third logic.

Figure 5 is a block diagram of an embodiment of a set of access type protected memories
519. The access type protected memories are in a physical address space 557. The access type
protected memories include a read, write, and execute (RWX) permitted memory 519A, an
execute and read (XR) permitted but write prohibited memory 519B (any attempt to write to this
region will be aborted), and a read and write permitted but execute prohibited memory 519C
(any attempt to execute from this region will be aborted). In some embodiments, all of these
may be reserved for on-die processor logic. The RWX memory 519A has a corresponding RWX
range register S10A. The XR memory has a corresponding XR range register 510B. In some
embodiments, the read and write permitted but execute prohibited memory 519C may also have
a corresponding range register (not shown). However, as shown, in some embodiments, the read
and write permitted but execute prohibited memory 519C may not have a corresponding range
register. Rather, in some embodiments, access to this memory 519C may be determined based
on an evaluation of accesses (e.g., a logical combination of accesses) to one or more other access
type protected memories of the set. That is, in some embodiments, access to one or some of the
access type protected memories of a set may be evaluated based on a logical combination of
accesses to other access type protected memories of the set. For example, access to the read and

write permitted but execute prohibited memory 519C may be determined based on an access hit

14

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

to the RWX memory 519A ANDNOT an access hit to the XR memory 519B. Advantageously,

this may allow one or more specification registers to be eliminated, but is not required.

Other embodiments pertain to translation lookaside buffers (TLBs) that are operable to
protect access type protected memory. TLBs are commonly used in processors and other
apparatus that use virtual memory. A TLB may represent a cache that memory management
hardware may use to improve virtual address translations. The TLB may be used to map virtual
and physical address spaces. Virtual memory may represent the memory perspective from the
view of software processes. Commonly, software processes use virtual addresses to search the
TLB for corresponding physical addresses. A TLB hit occurs when a physical address for a
virtual address is cached in the TLB. The retrieved physical address may then be used to access
physical memory. Alternatively, a TLB miss may occur when the TLB does not cache a
physical address for the virtual address. Commonly, in the event of such a TLB miss, a page
walk may be performed in order to look up the virtual to physical translation in a page table
often stored in physical memory. After the physical address is determined by performing the
page walk, the mapping of the virtual address to the physical address may be cached or preserved

in the TLB for future use. In this way, the TLB may effectively cache a subset of the page table.

Figure 6 is a block diagram of a processor 601 having an embodiment of a TLB 660
having access type check and enforcement logic 662. The processor also has on-die processor
logic 603 and (during use) executing software 602. The executing software may access the TLB
with virtual addresses to obtain physical addresses, as previously described. In contrast, in some
embodiments, the on-die processor logic may access the TLB using physical addresses. After
access type protected memory has been accessed through the appropriate operation mode and
access type check and protection logic, the translation may be cached in the TLB for future use
and to speed up memory accesses. The TLB may help to avoid needing to go through the full
operation mode and access type check and protection logic again. However, problems would
occur if the TLB is not handled properly to enforce the access type restrictions. By way of
example, initially a load operation may access a read allowed but write prohibited memory.
After the load operation the translation may be stored in the TLB. In some embodiments, the
TLB has the access type check and enforcement logic to prevent a subsequent non-allowed type
of access, such as a store operation, from being able to use the TLB to write to the read allowed
but write prohibited memory. However, in some embodiments, the access type check and
enforcement logic 662 is operable to enforce access type restrictions for physical accesses to the
TLB. The physical access is not done by software or the operating system but by the on-die

processor logic. The type of access restrictions may be consistent with the access type protected
15

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

memory for the physical address. For example, physical addresses corresponding to write

protected memory 121 may not permit writes, etc.

Normally, the page miss handler does not perform a page walk for physical translations,
since no paging is involved and the physical address is equal to the linear address. As a result,
according to a conventional approach (with no access type protection for physical accesses),
physical translations cached in the TLB may have all page attribute bits set to a “safe” value that
provides maximal allowed access level (i.e., does not impose any access type restrictions). For
example, the write bit or “w-bit” may automatically be set to binary one (i.e., “1”) and the non-
executable or “NX-bit” may be cleared to binary zero (i.e., to “0”). As a result, a TLB hit will

typically be considered legal and would not cause a type of access violation.

Various different embodiments of the access type check and protection logic 662 are
contemplated. In some embodiments, the entries of the TLB may indicate the access type

restrictions for their corresponding physical translations.

Figure 7 shows a TLB 760 having an entry 762 having conventional paging attribute bits
764 and logic 766 to reuse the conventional paging attribute bits, but with a different
interpretation, for physical accesses. The conventional existing paging attribute bits may have a
conventional interpretation for accesses with virtual addresses (e.g., from the executing
software). This may be according to the page tables. However, they may have a different
interpretation for accesses with physical addresses (e.g., from the on-die processor logic). For
example, in some embodiments, rather than being set to a “safe” value that provides maximal
allowed access level (i.e., does not impose any access type restrictions), the conventional paging
attribute bits may be set to values that indicate the appropriate access type restrictions. For
example, if the translation is in a non-writeable region, then the write bit or “w-bit” of the TLB
entry may be cleared to binary zero (i.e., “0”). As another example, if the translation is in a non-
executable region, then the non-executable or “NX-bit” may be set to binary one (i.e., to “1”).
Notice that these values are different than the conventional “safe” approach described a few
paragraphs above. If the translation is in a non-readable execute only region, then it may not be

cached in the TLB.

During a fill of the TLB, if the access is virtual, then the conventional TLB page attribute
bits may be set according to the page tables. Alternatively, during the fill operation, if the access
is physical, then the conventional TLB page attribute bits may be set according to the specified
access type restrictions (e.g., according to the access type protected memory specification
registers 210). Upon a TLB hit with an access type that violates the conventional TLB page

16

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

attribute bits, if the access is virtual, then a page fault may be reported. Alternatively, upon a
TLB hit with an access type that violates the conventional TLB page attribute bits, if the access
is physical, then an action may be taken similar to the other access type violates described
elsewhere herein (e.g., the access may be prevented and/or an operating system, firmware, or

another appropriate privileged entity may be notified).

Figure 8§ shows a TLB 860 having an entry 862 having conventional paging attribute bits
864 and additional bits 868 to specify memory access types and logic 870 to use the additional
bits 868 for physical accesses. The conventional paging attribute bits may have a conventional
interpretation for accesses with virtual addresses (e.g., from the executing software). This may
be according to the page tables. However, the additional bits 868 may be used for physical
accesses (e.g., from the on-die processor logic). By way of example, in one embodiment, a
physical write or “physical w-bit” may be added to specify whether or not write type accesses
are allowed and a physical execute or “physical X-bit” may be added to specify whether execute
type accesses are allowed. These may be added to each TLB entry. This may tend to increase

the size and cost of the TLB, but may be appropriate for certain implementations.

In yet another embodiment, the TLB may not be used to cache any physical translations
that do not have full type of access privilege (e.g., do not permit read, write, and execute). This

may tend to reduce performance, but may be appropriate for certain implementations.

Various embodiments have been described above, although other embodiments are
contemplated. In one alternate embodiment, an access type protected memory portion may be
access type protected whether or not it is operation mode protected. In another alternate
embodiment, different on-die processor logic may each have a different set of one or more
access type protected memory portions. Still other embodiments will be apparent to those skilled

in the art and having the benefit of the present disclosure.

[0060] To avoid obscuring the description, simplified processors have been shown and
described herein. In other embodiments, a processor may optionally include other well-known
components, such as, for example, an instruction fetch unit, an instruction scheduling unit, a
branch prediction unit, instruction and data caches, instruction and data translation lookaside
buffers, prefetch buffers, microinstruction queues, microinstruction sequencers, bus interface
units, second or higher level caches, a retirement unit, a register renaming unit, or other
components included in conventional processors. Embodiments may have multiple cores,
logical processors, or execution engines. There are literally numerous different combinations
and configurations of components in processors, and embodiments are not limited to any

17

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

particular combination or configuration. The processor may represent an integrated circuit or set
of one or more semiconductor dies or chips (e.g., a single die or chip, or a package incorporating
two or more die or chips). In some embodiments, the processor may represent a system-on-chip

(SoC).

Exemplary Core Architectures, Processors, and Computer Architectures

Processor cores may be implemented in different ways, for different purposes, and in
different processors. For instance, implementations of such cores may include: 1) a general
purpose in-order core intended for general-purpose computing; 2) a high performance general
purpose out-of-order core intended for general-purpose computing; 3) a special purpose core
intended primarily for graphics and/or scientific (throughput) computing. Implementations of
different processors may include: 1) a CPU including one or more general purpose in-order cores
intended for general-purpose computing and/or one or more general purpose out-of-order cores
intended for general-purpose computing; and 2) a coprocessor including one or more special
purpose cores intended primarily for graphics and/or scientific (throughput). Such different
processors lead to different computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the coprocessor on a separate die in the same
package as a CPU; 3) the coprocessor on the same die as a CPU (in which case, such a
coprocessor is sometimes referred to as special purpose logic, such as integrated graphics and/or
scientific (throughput) logic, or as special purpose cores); and 4) a system on a chip that may
include on the same die the described CPU (sometimes referred to as the application core(s) or
application processor(s)), the above described coprocessor, and additional functionality.
Exemplary core architectures are described next, followed by descriptions of exemplary

processors and computer architectures.

Exemplary Core Architectures
In-order and out-of-order core block diagram

Figure 9A is a block diagram illustrating both an exemplary in-order pipeline and an
exemplary register renaming, out-of-order issue/execution pipeline according to embodiments of
the invention. Figure 9B is a block diagram illustrating both an exemplary embodiment of an in-
order architecture core and an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to embodiments of the invention. The
solid lined boxes in Figures 9A-B illustrate the in-order pipeline and in-order core, while the

optional addition of the dashed lined boxes illustrates the register renaming, out-of-order

18

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

issue/execution pipeline and core. Given that the in-order aspect is a subset of the out-of-order

aspect, the out-of-order aspect will be described.

In Figure 9A, a processor pipeline 900 includes a fetch stage 902, a length decode stage
904, a decode stage 906, an allocation stage 908, a renaming stage 910, a scheduling (also
known as a dispatch or issue) stage 912, a register read/memory read stage 914, an execute stage
916, a write back/memory write stage 918, an exception handling stage 922, and a commit stage

924.

Figure 9B shows processor core 990 including a front end unit 930 coupled to an
execution engine unit 950, and both are coupled to a memory unit 970. The core 990 may be a
reduced instruction set computing (RISC) core, a complex instruction set computing (CISC)
core, a very long instruction word (VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 990 may be a special-purpose core, such as, for example, a network or
communication core, compression engine, coprocessor core, general purpose computing graphics

processing unit (GPGPU) core, graphics core, or the like.

The front end unit 930 includes a branch prediction unit 932 coupled to an instruction
cache unit 934, which is coupled to an instruction translation lookaside buffer (TLB) 936, which
is coupled to an instruction fetch unit 938, which is coupled to a decode unit 940. The decode
unit 940 (or decoder) may decode instructions, and generate as an output one or more micro-
operations, micro-code entry points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect, or are derived from, the original
instructions. The decode unit 940 may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited to, look-up tables, hardware
implementations, programmable logic arrays (PLAs), microcode read only memories (ROMs),
etc. In one embodiment, the core 990 includes a microcode ROM or other medium that stores
microcode for certain macroinstructions (e.g., in decode unit 940 or otherwise within the front
end unit 930). The decode unit 940 is coupled to a rename/allocator unit 952 in the execution

engine unit 950.

The execution engine unit 950 includes the rename/allocator unit 952 coupled to a
retirement unit 954 and a set of one or more scheduler unit(s) 956. The scheduler unit(s) 956
represents any number of different schedulers, including reservations stations, central instruction
window, etc. The scheduler unit(s) 956 is coupled to the physical register file(s) unit(s) 958.
Each of the physical register file(s) units 958 represents one or more physical register files,
different ones of which store one or more different data types, such as scalar integer, scalar

19

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

floating point, packed integer, packed floating point, vector integer, vector floating point,, status
(e.g., an instruction pointer that is the address of the next instruction to be executed), etc. In one
embodiment, the physical register file(s) unit 958 comprises a vector registers unit, a write mask
registers unit, and a scalar registers unit. These register units may provide architectural vector
registers, vector mask registers, and general purpose registers. The physical register file(s)
unit(s) 958 is overlapped by the retirement unit 954 to illustrate various ways in which register
renaming and out-of-order execution may be implemented (e.g., using a reorder buffer(s) and a
retirement register file(s); using a future file(s), a history buffer(s), and a retirement register
file(s); using a register maps and a pool of registers; etc.). The retirement unit 954 and the
physical register file(s) unit(s) 958 are coupled to the execution cluster(s) 960. The execution
cluster(s) 960 includes a set of one or more execution units 962 and a set of one or more memory
access units 964. The execution units 962 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g., scalar floating point, packed
integer, packed floating point, vector integer, vector floating point). While some embodiments
may include a number of execution units dedicated to specific functions or sets of functions,
other embodiments may include only one execution unit or multiple execution units that all
perform all functions. The scheduler unit(s) 956, physical register file(s) unit(s) 958, and
execution cluster(s) 960 are shown as being possibly plural because certain embodiments create
separate pipelines for certain types of data/operations (e.g., a scalar integer pipeline, a scalar
floating point/packed integer/packed floating point/vector integer/vector floating point pipeline,
and/or a memory access pipeline that each have their own scheduler unit, physical register file(s)
unit, and/or execution cluster — and in the case of a separate memory access pipeline, certain
embodiments are implemented in which only the execution cluster of this pipeline has the
memory access unit(s) 964). It should also be understood that where separate pipelines are used,

one or more of these pipelines may be out-of-order issue/execution and the rest in-order.

The set of memory access units 964 is coupled to the memory unit 970, which includes a
data TLB unit 972 coupled to a data cache unit 974 coupled to a level 2 (L2) cache unit 976. In
one exemplary embodiment, the memory access units 964 may include a load unit, a store
address unit, and a store data unit, each of which is coupled to the data TLB unit 972 in the
memory unit 970. The instruction cache unit 934 is further coupled to a level 2 (L.2) cache unit
976 in the memory unit 970. The L2 cache unit 976 is coupled to one or more other levels of

cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-of-order issue/execution core

architecture may implement the pipeline 900 as follows: 1) the instruction fetch 938 performs
20

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

the fetch and length decoding stages 902 and 904; 2) the decode unit 940 performs the decode
stage 906; 3) the rename/allocator unit 952 performs the allocation stage 908 and renaming stage
910; 4) the scheduler unit(s) 956 performs the schedule stage 912; 5) the physical register file(s)
unit(s) 958 and the memory unit 970 perform the register read/memory read stage 914; the
execution cluster 960 perform the execute stage 916; 6) the memory unit 970 and the physical
register file(s) unit(s) 958 perform the write back/memory write stage 918; 7) various units may
be involved in the exception handling stage 922; and 8) the retirement unit 954 and the physical
register file(s) unit(s) 958 perform the commit stage 924.

The core 990 may support one or more instructions sets (e.g., the x86 instruction set
(with some extensions that have been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, CA; the ARM instruction set (with optional additional
extensions such as NEON) of ARM Holdings of Sunnyvale, CA), including the instruction(s)
described herein. In one embodiment, the core 990 includes logic to support a packed data
instruction set extension (e.g., AVXI1, AVX2), thereby allowing the operations used by many

multimedia applications to be performed using packed data.

It should be understood that the core may support multithreading (executing two or more
parallel sets of operations or threads), and may do so in a variety of ways including time sliced
multithreading, simultaneous multithreading (where a single physical core provides a logical
core for each of the threads that physical core is simultaneously multithreading), or a
combination thereof (e.g., time sliced fetching and decoding and simultaneous multithreading

thereafter such as in the Intel® Hyperthreading technology).

While register renaming is described in the context of out-of-order execution, it should be
understood that register renaming may be used in an in-order architecture. While the illustrated
embodiment of the processor also includes separate instruction and data cache units 934/974 and
a shared L2 cache unit 976, alternative embodiments may have a single internal cache for both
instructions and data, such as, for example, a Level 1 (1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may include a combination of an internal cache
and an external cache that is external to the core and/or the processor. Alternatively, all of the

cache may be external to the core and/or the processor.

Specific Exemplary In-Order Core Architecture

Figures 10A-B illustrate a block diagram of a more specific exemplary in-order core
architecture, which core would be one of several logic blocks (including other cores of the same

type and/or different types) in a chip. The logic blocks communicate through a high-bandwidth
21

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

interconnect network (e.g., a ring network) with some fixed function logic, memory 1/O

interfaces, and other necessary 1/0 logic, depending on the application.

Figure 10A is a block diagram of a single processor core, along with its connection to the
on-die interconnect network 1002 and with its local subset of the Level 2 (L2) cache 1004,
according to embodiments of the invention. In one embodiment, an instruction decoder 1000
supports the x86 instruction set with a packed data instruction set extension. An L1 cache 1006
allows low-latency accesses to cache memory into the scalar and vector units. While in one
embodiment (to simplify the design), a scalar unit 1008 and a vector unit 1010 use separate
register sets (respectively, scalar registers 1012 and vector registers 1014) and data transferred
between them is written to memory and then read back in from a level 1 (L1) cache 1006,
alternative embodiments of the invention may use a different approach (e.g., use a single register
set or include a communication path that allow data to be transferred between the two register

files without being written and read back).

The local subset of the L2 cache 1004 is part of a global L2 cache that is divided into
separate local subsets, one per processor core. Each processor core has a direct access path to its
own local subset of the L2 cache 1004. Data read by a processor core is stored in its L2 cache
subset 1004 and can be accessed quickly, in parallel with other processor cores accessing their
own local L2 cache subsets. Data written by a processor core is stored in its own L2 cache
subset 1004 and is flushed from other subsets, if necessary. The ring network ensures coherency
for shared data. The ring network is bi-directional to allow agents such as processor cores, L2
caches and other logic blocks to communicate with each other within the chip. Each ring data-

path is 1012-bits wide per direction.

Figure 10B is an expanded view of part of the processor core in Figure 10A according to
embodiments of the invention. Figure 10B includes an L1 data cache 1006A part of the L1
cache 1004, as well as more detail regarding the vector unit 1010 and the vector registers 1014.
Specifically, the vector unit 1010 is a 16-wide vector processing unit (VPU) (see the 16-wide
ALU 1028), which executes one or more of integer, single-precision float, and double-precision
float instructions. The VPU supports swizzling the register inputs with swizzle unit 1020,
numeric conversion with numeric convert units 1022A-B, and replication with replication unit

1024 on the memory input. Write mask registers 1026 allow predicating resulting vector writes.

Processor with integrated memory controller and graphics
Figure 11 is a block diagram of a processor 1100 that may have more than one core, may
have an integrated memory controller, and may have integrated graphics according to

22

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

embodiments of the invention. The solid lined boxes in Figure 11 illustrate a processor 1100
with a single core 1102A, a system agent 1110, a set of one or more bus controller units 1116,
while the optional addition of the dashed lined boxes illustrates an alternative processor 1100
with multiple cores 1102A-N, a set of one or more integrated memory controller unit(s) 1114 in

the system agent unit 1110, and special purpose logic 1108.

Thus, different implementations of the processor 1100 may include: 1) a CPU with the
special purpose logic 1108 being integrated graphics and/or scientific (throughput) logic (which
may include one or more cores), and the cores 1102A-N being one or more general purpose
cores (e.g., general purpose in-order cores, general purpose out-of-order cores, a combination of
the two); 2) a coprocessor with the cores 1102A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (throughput); and 3) a coprocessor with the
cores 1102A-N being a large number of general purpose in-order cores. Thus, the processor 1100
may be a general-purpose processor, coprocessor or special-purpose processor, such as, for
example, a network or communication processor, compression engine, graphics processor,
GPGPU (general purpose graphics processing unit), a high-throughput many integrated core
(MIC) coprocessor (including 30 or more cores), embedded processor, or the like. The processor
may be implemented on one or more chips. The processor 1100 may be a part of and/or may be
implemented on one or more substrates using any of a number of process technologies, such as,

for example, BICMOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of cache within the cores, a set or one
or more shared cache units 1106, and external memory (not shown) coupled to the set of
integrated memory controller units 1114. The set of shared cache units 1106 may include one or
more mid-level caches, such as level 2 (L2), level 3 (L3), level 4 (LL4), or other levels of cache, a
last level cache (LLC), and/or combinations thereof. While in one embodiment a ring based
interconnect unit 1112 interconnects the integrated graphics logic 1108, the set of shared cache
units 1106, and the system agent unit 1110/integrated memory controller unit(s) 1114, alternative
embodiments may use any number of well-known techniques for interconnecting such units. In
one embodiment, coherency is maintained between one or more cache units 1106 and cores

1102-A-N.

In some embodiments, one or more of the cores 1102A-N are capable of multi-threading.
The system agent 1110 includes those components coordinating and operating cores 1102A-N.
The system agent unit 1110 may include for example a power control unit (PCU) and a display

unit. The PCU may be or include logic and components needed for regulating the power state of

23

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

the cores 1102A-N and the integrated graphics logic 1108. The display unit is for driving one or

more externally connected displays.

The cores 1102A-N may be homogenous or heterogeneous in terms of architecture
instruction set; that is, two or more of the cores 1102A-N may be capable of execution the same
instruction set, while others may be capable of executing only a subset of that instruction set or a

different instruction set.

Exemplary Computer Architectures

Figures 12-15 are block diagrams of exemplary computer architectures. Other system
designs and configurations known in the arts for laptops, desktops, handheld PCs, personal
digital assistants, engineering workstations, servers, network devices, network hubs, switches,
embedded processors, digital signal processors (DSPs), graphics devices, video game devices,
set-top boxes, micro controllers, cell phones, portable media players, hand held devices, and
various other electronic devices, are also suitable. In general, a huge variety of systems or
electronic devices capable of incorporating a processor and/or other execution logic as disclosed

herein are generally suitable.

Referring now to Figure 12, shown is a block diagram of a system 1200 in accordance
with one embodiment of the present invention. The system 1200 may include one or more
processors 1210, 1215, which are coupled to a controller hub 1220. In one embodiment the
controller hub 1220 includes a graphics memory controller hub (GMCH) 1290 and an
Input/Output Hub (IOH) 1250 (which may be on separate chips); the GMCH 1290 includes
memory and graphics controllers to which are coupled memory 1240 and a coprocessor 1245;
the IOH 1250 is couples input/output (I/0O) devices 1260 to the GMCH 1290. Alternatively, one
or both of the memory and graphics controllers are integrated within the processor (as described
herein), the memory 1240 and the coprocessor 1245 are coupled directly to the processor 1210,
and the controller hub 1220 in a single chip with the IOH 1250.

The optional nature of additional processors 1215 is denoted in Figure 12 with broken
lines. Each processor 1210, 1215 may include one or more of the processing cores described

herein and may be some version of the processor 1100.

The memory 1240 may be, for example, dynamic random access memory (DRAM),
phase change memory (PCM), or a combination of the two. For at least one embodiment, the

controller hub 1220 communicates with the processor(s) 1210, 1215 via a multi-drop bus, such

24

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

as a frontside bus (FSB), point-to-point interface such as QuickPath Interconnect (QPI), or

similar connection 1295.

In one embodiment, the coprocessor 1245 is a special-purpose processor, such as, for
example, a high-throughput MIC processor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or the like. In one embodiment,

controller hub 1220 may include an integrated graphics accelerator.

There can be a variety of differences between the physical resources 1210, 1215 in terms
of a spectrum of metrics of merit including architectural, microarchitectural, thermal, power

consumption characteristics, and the like.

In one embodiment, the processor 1210 executes instructions that control data processing
operations of a general type. Embedded within the instructions may be coprocessor instructions.
The processor 1210 recognizes these coprocessor instructions as being of a type that should be
executed by the attached coprocessor 1245. Accordingly, the processor 1210 issues these
coprocessor instructions (or control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect, to coprocessor 1245. Coprocessor(s) 1245 accept and

execute the received coprocessor instructions.

Referring now to Figure 13, shown is a block diagram of a first more specific exemplary
system 1300 in accordance with an embodiment of the present invention. As shown in Figure
13, multiprocessor system 1300 is a point-to-point interconnect system, and includes a first
processor 1370 and a second processor 1380 coupled via a point-to-point interconnect 1350.
Each of processors 1370 and 1380 may be some version of the processor 1100. In one
embodiment of the invention, processors 1370 and 1380 are respectively processors 1210 and
1215, while coprocessor 1338 is coprocessor 1245. In another embodiment, processors 1370 and

1380 are respectively processor 1210 coprocessor 1245.

Processors 1370 and 1380 are shown including integrated memory controller (IMC) units
1372 and 1382, respectively. Processor 1370 also includes as part of its bus controller units
point-to-point (P-P) interfaces 1376 and 1378; similarly, second processor 1380 includes P-P
interfaces 1386 and 1388. Processors 1370, 1380 may exchange information via a point-to-point
(P-P) interface 1350 using P-P interface circuits 1378, 1388. As shown in Figure 13, IMCs 1372
and 1382 couple the processors to respective memories, namely a memory 1332 and a memory

1334, which may be portions of main memory locally attached to the respective processors.

25

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

Processors 1370, 1380 may each exchange information with a chipset 1390 via individual
P-P interfaces 1352, 1354 using point to point interface circuits 1376, 1394, 1386, 1398. Chipset
1390 may optionally exchange information with the coprocessor 1338 via a high-performance
interface 1339. In one embodiment, the coprocessor 1338 is a special-purpose processor, such
as, for example, a high-throughput MIC processor, a network or communication processor,

compression engine, graphics processor, GPGPU, embedded processor, or the like.

A shared cache (not shown) may be included in either processor or outside of both
processors, yet connected with the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the shared cache if a processor is placed

into a low power mode.

Chipset 1390 may be coupled to a first bus 1316 via an interface 1396. In one
embodiment, first bus 1316 may be a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation I/O interconnect bus, although the scope of

the present invention is not so limited.

As shown in Figure 13, various I/O devices 1314 may be coupled to first bus 1316, along
with a bus bridge 1318 which couples first bus 1316 to a second bus 1320. In one embodiment,
one or more additional processor(s) 1315, such as coprocessors, high-throughput MIC
processors, GPGPU’s, accelerators (such as, e.g., graphics accelerators or digital signal
processing (DSP) units), field programmable gate arrays, or any other processor, are coupled to
first bus 1316. In one embodiment, second bus 1320 may be a low pin count (LPC) bus.
Various devices may be coupled to a second bus 1320 including, for example, a keyboard and/or
mouse 1322, communication devices 1327 and a storage unit 1328 such as a disk drive or other
mass storage device which may include instructions/code and data 1330, in one embodiment.
Further, an audio I/0O 1324 may be coupled to the second bus 1320. Note that other architectures
are possible. For example, instead of the point-to-point architecture of Figure 13, a system may

implement a multi-drop bus or other such architecture.

Referring now to Figure 14, shown is a block diagram of a second more specific
exemplary system 1400 in accordance with an embodiment of the present invention. Like
elements in Figures 13 and 14 bear like reference numerals, and certain aspects of Figure 13

have been omitted from Figure 14 in order to avoid obscuring other aspects of Figure 14.

Figure 14 illustrates that the processors 1370, 1380 may include integrated memory and

I/O control logic (“CL”) 1372 and 1382, respectively. Thus, the CL 1372, 1382 include

26

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

integrated memory controller units and include I/O control logic. Figure 14 illustrates that not
only are the memories 1332, 1334 coupled to the CL 1372, 1382, but also that I/O devices 1414
are also coupled to the control logic 1372, 1382. Legacy 1/O devices 1415 are coupled to the
chipset 1390.

Referring now to Figure 15, shown is a block diagram of a SoC 1500 in accordance with
an embodiment of the present invention. Similar elements in Figure 11 bear like reference
numerals. Also, dashed lined boxes are optional features on more advanced SoCs. In Figure 15,
an interconnect unit(s) 1502 is coupled to: an application processor 1510 which includes a set of
one or more cores 202A-N and shared cache unit(s) 1106; a system agent unit 1110; a bus
controller unit(s) 1116; an integrated memory controller unit(s) 1114; a set or one or more
coprocessors 1520 which may include integrated graphics logic, an image processor, an audio
processor, and a video processor; an static random access memory (SRAM) unit 1530; a direct
memory access (DMA) unit 1532; and a display unit 1540 for coupling to one or more external
displays. In one embodiment, the coprocessor(s) 1520 include a special-purpose processor, such
as, for example, a network or communication processor, compression engine, GPGPU, a high-

throughput MIC processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be implemented in hardware,
software, firmware, or a combination of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or program code executing on
programmable systems comprising at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least one input device, and at least one

output device.

Program code, such as code 1330 illustrated in Figure 13, may be applied to input
instructions to perform the functions described herein and generate output information. The
output information may be applied to one or more output devices, in known fashion. For
purposes of this application, a processing system includes any system that has a processor, such
as, for example; a digital signal processor (DSP), a microcontroller, an application specific

integrated circuit (ASIC), or a microprocessor.

The program code may be implemented in a high level procedural or object oriented
programming language to communicate with a processing system. The program code may also
be implemented in assembly or machine language, if desired. In fact, the mechanisms described
herein are not limited in scope to any particular programming language. In any case, the
language may be a compiled or interpreted language.

27

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

One or more aspects of at least one embodiment may be implemented by representative
instructions stored on a machine-readable medium which represents various logic within the
processor, which when read by a machine causes the machine to fabricate logic to perform the
techniques described herein. Such representations, known as “IP cores” may be stored on a
tangible, machine readable medium and supplied to various customers or manufacturing

facilities to load into the fabrication machines that actually make the logic or processor.

Such machine-readable storage media may include, without limitation, non-transitory,
tangible arrangements of articles manufactured or formed by a machine or device, including
storage media such as hard disks, any other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact disk rewritable’s (CD-RWs), and
magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access memories (DRAMs), static random
access memories (SRAMs), erasable programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type of media suitable for storing

electronic instructions.

Accordingly, embodiments of the invention also include non-transitory, tangible
machine-readable media containing instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, circuits, apparatuses, processors and/or
system features described herein. Such embodiments may also be referred to as program

products.
Emulation (including binary translation, code morphing, etc.)

In some cases, an instruction converter may be used to convert an instruction from a
source instruction set to a target instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary translation including dynamic
compilation), morph, emulate, or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction converter may be implemented in
software, hardware, firmware, or a combination thereof. The instruction converter may be on

processor, off processor, or part on and part off processor.

Figure 16 is a block diagram contrasting the use of a software instruction converter to
convert binary instructions in a source instruction set to binary instructions in a target instruction

set according to embodiments of the invention. In the illustrated embodiment, the instruction

28

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

converter is a software instruction converter, although alternatively the instruction converter may
be implemented in software, firmware, hardware, or various combinations thereof. Figure 16
shows a program in a high level language 1602 may be compiled using an x86 compiler 1604 to
generate x86 binary code 1606 that may be natively executed by a processor with at least one
x86 instruction set core 1616. The processor with at least one x86 instruction set core 1616
represents any processor that can perform substantially the same functions as an Intel processor
with at least one x86 instruction set core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on an Intel processor with at least one
x86 instruction set core, in order to achieve substantially the same result as an Intel processor
with at least one x86 instruction set core. The x86 compiler 1604 represents a compiler that is
operable to generate x86 binary code 1606 (e.g., object code) that can, with or without additional
linkage processing, be executed on the processor with at least one x86 instruction set core 1616.
Similarly, Figure 16 shows the program in the high level language 1602 may be compiled using
an alternative instruction set compiler 1608 to generate alternative instruction set binary code
1610 that may be natively executed by a processor without at least one x86 instruction set core
1614 (e.g., a processor with cores that execute the MIPS instruction set of MIPS Technologies
of Sunnyvale, CA and/or that execute the ARM instruction set of ARM Holdings of Sunnyvale,
CA). The instruction converter 1612 is used to convert the x86 binary code 1606 into code that
may be natively executed by the processor without an x86 instruction set core 1614. This
converted code is not likely to be the same as the alternative instruction set binary code 1610
because an instruction converter capable of this is difficult to make; however, the converted code
will accomplish the general operation and be made up of instructions from the alternative
instruction set. Thus, the instruction converter 1612 represents software, firmware, hardware, or
a combination thereof that, through emulation, simulation or any other process, allows a
processor or other electronic device that does not have an x86 instruction set processor or core to

execute the x86 binary code 1606.

In the description and claims, the term “logic” may have been used. As used herein, the
term logic may include but is not limited to hardware, firmware, software, or a combination
thereof. Examples of logic include integrated circuitry, application specific integrated circuits,
analog circuits, digital circuits, programmed logic devices, memory devices including
instructions, etc. In some embodiments, the logic may include transistors and/or gates

potentially along with other circuitry components.
29

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

In the description and claims, the terms “coupled” and “connected,” along with their
derivatives, may have been used. It should be understood that these terms are not intended as
synonyms for each other. Rather, in particular embodiments, “connected” may be used to
indicate that two or more elements are in direct physical or electrical contact with each other.
“Coupled” may mean that two or more elements are in direct physical or electrical contact.
However, “coupled” may also mean that two or more elements are not in direct contact with each

other, but yet still co-operate or interact with each other.

The term “and/or” may have been used. As used herein, the term “and/or” means one or

the other or both (e.g., A and/or B means A or B or both A and B).

In the description above, for the purposes of explanation, numerous specific details have
been set forth in order to provide a thorough understanding of the embodiments of the invention.
It will be apparent however, to one skilled in the art, that one or more other embodiments may be
practiced without some of these specific details. The particular embodiments described are not
provided to limit the invention but to illustrate it. The scope of the invention is not to be
determined by the specific examples provided above but only by the claims below. All
equivalent relationships to those illustrated in the drawings and described in the specification are
encompassed within embodiments of the invention. In other instances, well-known circuits,
structures, devices, and operations have been shown in block diagram form or without detail in

order to avoid obscuring the understanding of the description.

Where considered appropriate, reference numerals have been repeated among the figures
to indicate components that may optionally be substantially the same and have similar
characteristics. In other instances, terminal portions of reference numerals have been repeated
among the figures to indicate corresponding or analogous elements, which may optionally have
similar or the same characteristics unless specified or clearly apparent otherwise. In some cases,
where multiple components have been shown and described, they may be incorporated into a
single component. In other cases, where a single component has been shown and described, it
may be separated into two or more components. In the drawings, arrows represent couplings and

bidirectional arrows represent bidirectional couplings.

Various operations and methods have been described. Some of the methods have been
described in a relatively basic form in the flow diagrams, but operations may optionally be added
to and/or removed from the methods. In addition, while the flow diagrams show a particular
order of the operations according to example embodiments, it is to be understood that that
particular order is exemplary. Alternate embodiments may optionally perform the operations in

30

10

WO 2014/105122 PCT/US2013/045691

different order, combine certain operations, overlap certain operations, etc. Many modifications

and adaptations may be made to the methods and are contemplated.

It should also be appreciated that reference throughout this specification to "one
embodiment”, "an embodiment”, or “one or more embodiments”, for example, means that a
particular feature may be included in the practice of the invention. Similarly, it should be
appreciated that in the description various features are sometimes grouped together in a single
embodiment, Figure, or description thereof for the purpose of streamlining the disclosure and
aiding in the understanding of various inventive aspects. This method of disclosure, however, is
not to be interpreted as reflecting an intention that the invention requires more features than are
expressly recited in each claim. Rather, as the following claims reflect, inventive aspects may lie
in less than all features of a single disclosed embodiment. Thus, the claims following the
Detailed Description are hereby expressly incorporated into this Detailed Description, with each

claim standing on its own as a separate embodiment of the invention.

31

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

CLAIMS
What is claimed is:
1. A processor comprising:

operation mode check logic to determine whether to allow an attempted access to
an operation mode and access type protected memory based on an operation mode that is to

indicate whether the attempted access is by an on-die processor logic;

access type check logic to determine whether to allow the attempted access to the
operation mode and access type protected memory based on an access type of the attempted

access to the operation mode and access type protected memory; and

protection logic coupled with the operation mode check logic, and coupled with
the access type check logic, the protection logic to deny the attempted access to the operation
mode and access type protected memory if at least one of the operation mode check logic and the

access type check logic determines not to allow the attempted access.

2. The processor of claim 1, further comprising at least one register to indicate a set
of one or more allowed access types for the operation mode and access type protected memory,
and wherein the access type check logic is to determine whether to allow the attempted access by
comparing the access type of the attempted access to the set of the one or more allowed access

types indicated by the at least one register.

3. The processor of claim 2, wherein the at least one register is to explicitly specify a

set of access types.

4. The processor of claim 2, wherein a set of access types are to be implicit to the at

least one register.

5. The processor of claim 1, further comprising a translation lookaside buffer (TLB)
having access type check and protection logic to check and protect against an attempted access

with a physical address to the operation mode and access type protected memory via the TLB.

6. The processor of claim 5, wherein the access type check and protection logic of
the TLB is to prevent the attempted access with the physical address to the operation mode and
access type protected memory if an access type of the attempted access with the physical address
is not among a set of one or more allowed access types that are to be indicated by a

corresponding entry of the TLB.

32

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

7. The processor of claim 6, wherein paging attribute bits of the entry are to indicate
the set of the one or more allowed access types, and wherein corresponding paging attribute bits
in corresponding positions in other entries are to be used for virtual to physical address
translations and for virtual address protection by one or more of an operating system and a

virtual machine monitor.

8. The processor of claim 6, wherein bits of the entry that are to indicate the set of
the one or more allowed access types are different than paging attribute bits of the entry that are

to be used for virtual to physical address translations.

0. The processor of claim 1, wherein the operation mode check logic is to determine
to allow the attempted access if the operation mode indicates that the attempted access is by the
on-die processor logic and is to determine not to allow the attempted access if the operation

mode indicates the attempted access is by executing software.

10. The processor of claim 1, further comprising logic to determine that a physical
address of the attempted access is within the operation mode and access type protected memory
by determining whether the physical address is within a plurality of other operation mode
protected memories and evaluating a logical combination of whether the physical address is

within the other operation mode protected memories.

11. The processor of claim 1, wherein the access type is one of read, write, and

execute.
12. A method comprising:

determining that an operation mode of an attempted access to an operation mode
and access type protected memory is allowed because the attempted access is by an on-die

processor logic;

determining that an access type of the attempted access to the operation mode and

access type protected memory is not allowed; and

denying the attempted access to the operation mode and access type protected
memory by the on-die processor logic based on the determination that the access type of the

attempted access is not allowed.

13. The method of claim 12, wherein determining that the access type is not allowed

comprises:

33

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

comparing the access type of the attempted access with all of one or more allowed
access types indicated by at least one register that corresponds to the operation mode and access

type protected memory; and

determining that the access type of the attempted access is different than all of the

allowed access types indicated by the at least one register.

14. The method of claim 13, wherein the at least one register explicitly specifies a set

of access types.

15. The method of claim 13, wherein a set of access types are implicit to the at least

one register.

16. The method of claim 12, wherein determining that the access type is not allowed
comprises determining that the access type of the attempted access does not match a set of one or
more allowed access types indicated in an entry of a translation lookaside buffer (TLB) that

corresponds to the attempted access.

17. The method of claim 16, wherein paging attribute bits of the entry indicate the
one or more allowed access types, and wherein corresponding paging attribute bits of other
entries are used for virtual to physical address translations and for virtual address protection by

one or more of an operating system and a virtual machine monitor.

18. The method of claim 16, wherein bits of the entry that indicate the one or more
allowed access types are different than paging attribute bits of the entry that are used for virtual

to physical address translations.

19. The method of claim 12, wherein the operation mode of the attempted access

would not be allowed if the attempted access was be executing software.

20. The method of claim 12, further comprising determining that a physical address

of the attempted access is within the operation mode and access type protected memory by:

determining whether the physical address is within a plurality of other operation

mode protected memories; and

evaluating a logical combination with the determinations of whether the physical

address is within the other operation mode protected memories.

21. The method of claim 12, wherein determining comprises determining that at least

one of a read, write, and execute access type is not allowed.

34

10

15

20

25

30

WO 2014/105122 PCT/US2013/045691

22. A system comprising:

a dynamic random access memory (DRAM) having an operation mode and access

type protected memory region; and
a processor coupled with the DRAM, the processor including:

operation mode check logic to determine whether to allow an attempted access to
the operation mode and access type protected memory region based on an operation mode that is
to indicate whether the attempted access is by an on-die logic of the processor selected from
hardware, firmware, and a combination thereof, wherein the operation mode check logic is to
determine not to allow the attempted access if the attempted access is from software executing

on the processor;

access type check logic to determine whether to allow the attempted access to the
operation mode and access type protected memory region based on an access type of the
attempted access to the operation mode and access type protected memory region, wherein the

access type is selected from a read, a write, and an execute; and

protection logic coupled with the operation mode check logic, and coupled with
the access type check logic, the protection logic to deny the attempted access to the operation
mode and access type protected memory region if at least one of the operation mode check logic

and the access type check logic determines not to allow the attempted access.

23. The system of claim 22, further comprising at least one register to indicate a set of
one or more allowed access types for the operation mode and access type protected memory

region.

24. The system of claim 22, further comprising a translation lookaside buffer (TLB)
having access type check and protection logic to check and protect against an attempted access

with a physical address to the operation mode and access type protected memory via the TLB.

25. The processor of claim 1, wherein the operation mode check logic is to determine
to allow the attempted access to the operation mode and access type protected memory if the
operation mode indicates that the attempted access is by the on-die processor logic, and wherein
the access type check logic is to determine to allow the attempted access to the operation mode
and access type protected memory if the access type of the attempted access matches one or
more allowed access types corresponding to the operation mode and access type protected

memory.

35

PCT/US2013/045691

WO 2014/105122

1/15

S AYOW3IW
I (31041044 3Ln23X3

(R AHOWaN
| 0310310¥d LM

— AONIW
| @3103104d avay

AHOWIW 03L0310¥d IdAL SSIOIY

81y

(AMOW3W Q3L03L0Md JAOW NOILYHIdO “93)

1907 40SS300ud

JI0-NO Ag 3SN 04 A3IALISIH AHOWIW

ZIr
F4VYML40S ONILNOIX3
A8 SN YO AHOWIN

9Ir

J4YM140S

('013 'SNOILYOITddY ‘S0 “9°3)

L AHOWaN

L "OI4

vil

| ———— T T T
! — 0l [
) —

|| gy | ©uaisieay|| BOF !
| || sago0y [NOLLYOHIO3AS || 3q0m |
| |
|

|

|

AHOWIW | | NOILYY3d0 _
AIMOTIV| q34y3s3y 507!

_ mem_omm_
| __ [_ _ NOUYEN9IENod,

|
|
l <

N
S
=
<O
~—
0H
(=)
o~

3dAL SS30JY
/1SS34aav
SS300V

€0t
J1901

40SS300¥d
3id-NO

X 3dAL SS30V

/SS3HAAvV
501 SS300V

JI907TNOILO310Yd
AHOW3W Q3AY3S3Y

OPERATION MODE

PROTECTION LOGIC
ACCESS TYPE
CHECK LOGIC
CHECK LOGIC

JHVMLH0S
ONLLNO3X3

10} H0SS3004d

(/\ 00} W3LSAS ¥31NdINOJ

PCT/US2013/045691

WO 2014/105122

2/15

]

|

|

|

|

" (TYNOILdO)
| MIOT

|

He

(013
‘NOILYNIGWOD ‘3LND3X3T
‘JLIEM ‘QY3Y "9'3)
3dAL $S300V

("TYNOILO)
%001

(T¥NOILdO)
ALIAITVA

g¢ "old
154 0€C
ASYI ss3uaay
Ss3yaay 3svd
X qosz

ve "Old

(I¥NOILdO)
ALIQITYA

3dAL SSFOTV LIOMdINI HLIM
H3LS193d NOILYDIHI03dS AYOWIN
(310310¥d 3dAL SS3OJV

Lec 0€e

NSV Ss3yaay
SS3yaav 3Svd

h. Voile

3ddAL SS30JV LIOITdXT HLIM
43151934 NOILYIIHI03dS AYONIN
(3193108d 3dAL SSF2V

WO 2014/105122 PCT/US2013/045691

3/15

FIG. 3
3210 (START)
V‘
342
DETERMINE 341 \
WHETHER PHYSICAL

ADDRESS OF ATTEMPTED ACCESS %Lﬁ‘évM/ggYESS .
IS WITHIN OPERATION MODE AND oHYSIOAL ADD ;é\ETs >

ACCESS TYPE PROTECTED S

O Ny
_~~" DETERMINE > L -
NO _—~ WHETHER OPERATION MODE ™~ _
—<{_ ANDACCESS TYPE PROTECTED _ >
~~_ MEMORYISVALD .~
~~ _(OPTIONAL) -~
345
N
DETERMINE DENY ATTEMPTED

WHETHER OPERATION MODE ACCESS TO OPERATION R
OF ATTEMPTED ACCESS MODE AND ACCESS TYPE [

IS ALLOWED PROTECTED MEMORY

A

346

DETERMINE
WHETHER ACCESS TYPE
OF ATTEMPTED ACCESS
IS ALLOWED

NO

YES
» 347
v y
ALLOW ATTEMPTED ACCESS

TO OPERATION MODE AND ACCESS
TYPE PROTECTED MEMORY

PCT/US2013/045691

WO 2014/105122

4/15

v OId

207

001
NOILO310¥d

(S)3dAL SS300V

GG
NOILYOIQNI
$$300V v
YOI
/YO
NOILYDIONT 997
SSIVY —
MOTIV LON N
IMOTIV [91907]. NOILYDIQNI
] aYIHL [T GIYANIT aIvA)
b 21907
NOILYDIGNI | NOSIMYdW0D
HOLYI LON L

JHOLYWSSTAQY 4oy O

roy \

JIO0TNOILO3L0Yd
AJONIN Q3AT3STY

sy

D017
anNv
1SHi4

aamoTIy
LLb
0% P N
01907 %03HD
3dAL 88300V < Q
LGY
88300V
Q3LdW3LLY
— 40 3dAL
o7 $$300V
01907 ¥0FHD mllﬂl
300N NOILY¥3dO
60
fmmmmmmm - $S300V
! 75F | Q3LdW3LLY
“ (1YNOILdO) | 400N
| ALIGINVA _
0S¥
$S300V A3LdWALLY
40 $534QAY WOISAHd
ey
XSYW SSTIaqY
q
ocr
e $$3¥aay Isve

PCT/US2013/045691

g OId

\thm \ Y,

(¥X LON ONY XM¥) a \

5/15

S AdONIN
v0LS (Xmy) 4310

- 03LI9IHOYd 3LN03X3 ok on
5o RIONIN | [GS080606000RRRIIR5] | TaLLISa e

YA 3dAL 55300V

WO 2014/105122

s | RRRRESER LRSI

) (4X) AdOWaN 8045
L Q3LIGHONd FLNM «<—> mw.%_omm
L ‘03LLINY3d vy NV

< ONV 3Lno3x3 X

v/mem
166
30VdS SSIMaay
TYOISAHd 66

AYOW3W 310310¥4d

3dAL SS300V

PCT/US2013/045691

WO 2014/105122

6/15

9 'OId
209
< TVMLA0S
$35S3aav
99 TVNLYIA ONLNIX3
01907
NOILO3LOMd ONY ¥93HD
3dAL $$300V
€09

< 01907
099 m_wom_%mmx\ ¥08S300Yd
oL AAa-NO

709 ¥0SS300¥d

WO 2014/105122 PCT/US2013/045691

715
TLB 760
ENTRY 762
LOGIC TO REUSE
CONVENTIONAL PAGING CONVENTIONAL PAGING
ATTRIBUTE BITS FOR ATTRIBUTE BITS
PHYSICAL ACCESSES
764
766
FIG. 7
TLB 860
ENTRY 862
CONVENTIONAL PAGING
ATTRIBUTE BITS
864
LOGIC TO USE ADDITIONAL BITS TO SPECIEY
ADDITIONAL BITS FOR MEMORY ACCESS TYPES
PHYSICAL ACCESSES
870 —

FIG. 8

PCT/US2013/045691

WO 2014/105122

8/15

I
_

| LIWWOOD

L —

96 |, 7.6
<p| LINN LINN FHOVO Yiva | 046 LINN
IHOVD AHOWIW
Z1
3
y 096 (SIHALSNTO NOILNDIX3
796 (S)LINN 96 P
$S300V (S)LINN -
AHOWIN NOILND3X3
A A
- T g o e — T ——
|
656 (S)LINN STTI4 ¥IALSIOTFY TVIISAHd "
i e— I
oo e el e - 756 | :
A T Tl ooEE
w. ¢s6 LINN J__ 0$6 LINN
- —mE%B%@Ezmme - INIONI NOILNDIXT
ﬁ 0¢6
0v6 LINN 300030 1INA OGNS LNONH
A
626 HOL34 NOILONMLSNI ;/faa@mmoo
96 LINN 971L NOILONYLSNI €6 1INN
T 7£6 LINN JHOVD NOILONYLSNI NOLLDIATMd HONVSE
EMN 616 716 B I B l&%
ONFaNyH | ZLEm 916 AV AHOWAN Z16 o6 | 906 onianoaal 2%
NOLLAIDXT AYOW3WN | 39VIS 31n03X3 1avay FINA3IHOS PNINYNIH 00TV 300030 HioNg [HoL3d
_ _iMova ALy EETNRES I R _ e
V6 914 006 INITAdId ~——

PCT/US2013/045691

WO 2014/105122

9/15

Y900l

JHOVO Yivad 11

a

B

HHOMLIN ONIY

<001

4
A4

¥001

AHOVO

Z13HL 40

1388NS Tvo0O1
A

A 4

9001

AHOVYD L1

4
A

viol
SHALSIOIY
HOLIIA

clol
SHILSIHa
HY1VOS

R s B

0L0b
LINNM
HOLO3A

4

4

B

8001
1INN
HY YOS

Y

gzz01 Y2201
LY3IANOD LHIANOD
OININNN DIM3INNN
A
vL0L
SHILSIOTY
HOLD3IA
I\

Y VY \
0Z01 ¥201
I1ZZIMS 31LYOI1d3y

Y VY i
8z0L
NV "HOLO3A IAIM-9L
\
Y
9z04
SHALSIDIY USYIN T LINM
g0L '9l4

30003d

0001
NOILONYLSNI

V0l "Oid

PCT/US2013/045691

WO 2014/105122

10/15

9LLL (S)LINN
YITIOULNOD
sng

| PLLLS)INN

| YITIONINOD |
| AMOWIW |
| C3LVHOIINI |

0LLL LINN
INJOV WILSAS

I NpouL o
LN | e mm
| 3Hovo |

—— — o— o)

NCOLL 3H0O |

YH0LL -
(SILINN
JHOVD

V2011 3400

8041 01907
3S0ddnd
I03dS

o — o rmmane vk

1L 'Old

/ 0011 HOSS300Yd

WO 2014/105122 PCT/US2013/045691

11/15

1215
1200 - — — ﬁ
— 1210

| m ==
|
- b — PROCESSOR |— —
| — /1295!
— l_.../‘ 1245 — { _—— 1240
[1 | CONTROLLER
co- l—— il MEMORY
| PrOCESSOR | [| cvor I
l |
1
1260 —_ - L=
o . 10H1250 |
|
i l

FIG. 12

PCT/US2013/045691

WO 2014/105122

12/15

j/r 00¢!L

viva ¢l 914
AN 0eel
- LNV 3do9 | s30n3a | 3snow
JOVHOLS Y1V L2kl INNOD ceel QUYOFATN
» 0z8l 14 P i
S18l yzgl yLgl 8LEl
¥08SID0Nd o/l olany SIIAIA O/l 39014g 8N
arer - ﬂ _ : _
9eel —1 M | zegL — 4 | gegl
96¢) —— d-d 0681 13SdIHD] dd L gegy ~%mmm8§oo_
TBe] — —_——
) 258l
s
oge |dd| fdd]| |dd dd| gl
986} — ggg) — \ \ L g
8151
0581
= 788} 4
NI NI
yee) zesl
AHOWIN
¥0S$SIO0U0D AHONEN
MOSSIO0Nd H0SSI00Nd

PCT/US2013/045691

WO 2014/105122

13/15

¥l old

143
AJONIN

ceel
AJONIN

Gyl
Ofl AOYOTT
06€} 96¢L —1
d
86¢} —1 d'd L8O e —{
pSel |\» e Zael t\» «
P>
08¢} d-d d-d d-d d-d 061
9881 — ggo; —\ \ o Lo
8LE!
03¢l
— clel =7
10 10
H0SS3004d ¥0S$SI00Nd
T
| saoiazaon !

: 1/// oovi

PCT/US2013/045691

WO 2014/105122

14/15

PLLL(SILINN
) 085} ¥ITIONLNOD
LINN Avdsia | | 89 INDVATE 1 e vas ANONIN
Q3LVH9ILNI
9111 (S)LINN
YITIONLNOD
sng
_ ~
~
| 9011 (S)LINN IHOVD QIHYHS
|| NvOb VoLl
I LN | | sme | | (SIUNN
0LL LINN b2V | 3HIVD
N3OV WILSAS | Neov w00 | AENY)
0151 HOSSINON NOILYOIddY

0Z51 (S)40883004d0D

/ 005}

diHO ¥V NO W3LSAS

§1'91d

PCT/US2013/045691

WO 2014/105122

15/15

v09) Y3 dNOD 98X

9091 3000 AYVNIg 98X

<09} JOVNONYT TIAITHOIH

8091 ¥3TIdNOD
135 NOLLONYLSNI
JALLYNY3LTY

2191 ¥3LYIANOD
NOILONYLSNI |
91 "o 019} 30D A¥YNIE
L3S NOLLONYLSNI
VLIS IALYNSILTY
) THYMONYH
v
o9k 719} 30D L3S NOLLONYLSNI
340D 138 NOLLONNLSNI
20 3N Lo 98X NY LNOHLIM ¥OSSID0Nd
LV HLIM H0SSI00Nd

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/045691

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 13/16(2006.01)i, GOGF 12/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOOF 13/16; GOGF 12/14; GOGF 12/00; GO6F 21/22

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: memory, deny, software, access and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 5513337 A (BYRON R. GILLESPIE et al.) 30 April 1996 1-25
See column 4, line 1 — column 7, line 65; claim 2; and figure 3a.

A US 2012-0042144 A1 (RICHARD ROY GRISENTHWAITE) 16 February 2012 1-25
See paragraphs 54-57; and figure 3.

A US 2004-0078590 A1 (CARL M. ELLISON et al.) 22 April 2004 1-25
See paragraphs 75-77; and figure 4.

A US 2009-0276844 A1 (CHRISTIAN GEHRMANN et al.) 05 November 2009 1-25
See paragraphs 18-21; and figure 2.

A US 2008-0276051 A1 (ERIK KNUTSEN RENNO) 06 November 2008 1-25
See paragraphs 64-67; and figure 7.

|:| Further documents are listed in the continuation of Box C. g See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
12 November 2013 (12.11.2013) 14 November 2013 (14.11.2013)
Name and mailing address of the [ISA/KR Authorized officer

Korean Intellectual Property Office
\ 189 Cheongsa-ro, Seo-gu, Dacjeon Metropolitan City, BYUN, Sung Cheal
. 302-701, Republic of Korea
Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8262

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2013/045691
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 05513337 A 30/04/1996 CN 1147775 C 28/04/2004
CN 1149342 A 07/05/1997
EP 0760975 Al 12/03/1997
EP 0760975 A4 03/09/1997
EP 0760975 Bl 28/07/2004
US 5657475 A 12/08/1997
WO 95-32460 Al 30/11/1995
US 2012-0042144 Al 16/02/2012 CN 103069398 A 24/04/2013
EP 2603872 Al 19/06/2013
GB 1013466 DO 22/09/2010
GB 2482700 A 15/02/2012
JP 2013-533567 A 22/08/2013
TW 201207615 A 16/02/2012
WO 2012-020236 Al 16/02/2012
US 2004-0078590 Al 22/04/2004 US 6633963 Bl 14/10/2003
US 6934817 B2 23/08/2005
US 2009-0276844 Al 05/11/2009 EP 2297665 Al 23/03/2011
WO 2009-132908 Al 05/11/2009
US 2008-0276051 Al 06/11/2008 TW 200903255 A 16/01/2009
US 8051263 B2 01/11/2011
WO 2008-137316 Al 13/11/2008

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - wo-search-report
	Page 53 - wo-search-report

