WARHEAD DELIVERY SYSTEM

Inventor: David K. Harding, Pompton Plains, NJ (US)

Correspondence Address: EDWARD M. LIVINGSTON, PA 963 TRAIL TERRACE DRIVE NAPLES, FL 34103 (US)

Appl. No.: 11/768,517
Filed: Jun. 26, 2007

Related U.S. Application Data
Continuation-in-part of application No. 11/328,638, filed on Jan. 10, 2006.

ABSTRACT

A warhead delivery system (25) including a multi-hydrogen bomb warhead (5) preferably having a plurality of bombs (3) located behind a door (2) of a nose cone (1) of the warhead (5). A plurality of decoys (4) may be used in conjunction with the bombs (3). The bombs (3) and decoys (4) are spring-ejected from the nose cone (1) through the doors (2). However, the bomb (3) may be transported via missile or via alternative delivery systems (23), such as aircraft (19), the back of a pick-up truck (6) or via flat-bed trailer (21).
WARHEAD DELIVERY SYSTEM

CROSS REFERENCE TO RELATED APPLICATION

[0001] This is a continuation-in-part of application of Ser. No. 11/328,638 filed on Jan. 10, 2006.

BACKGROUND OF THE INVENTION

[0002] The present invention relates to bomb warheads, more particularly, a warhead delivery system that utilizes an efficient delivery system wherein an aircraft, pick-up truck or flat bed trailer is utilized.

[0003] The race to build the atomic bomb by third world nations has made news headlines for the past seven (7) years. The next phase of building better bombs has already begun and is focused towards hydrogen bombs.

[0004] The first generation of the hydrogen bombs manufactured by the second and third world nations will be made in bulk and have weight incorporated in the design. In addition, terrorists have already begun manufacturing hydrogen bombs by using consumer chemicals, such as hydrogen peroxide. However, in order to achieve the highest efficiency, these bombs must be stream-lined for a delivery system.

[0005] During the Vietnam war, F-4 and F-14 aircraft were used for combat. However, because the F-4 and F-14 are fast-traveling aircraft, they proved to be poor choices for combat use in Vietnam because they flew over the narrow and long Vietnam terrain too quickly to permit the firing of arms thereupon. In addition, the fighter pilots were cautious of trespassing on the airspace of Vietnam's neighbors.

[0006] Thus, it would have been more advantageous to use a slower-moving propeller aircraft, such as a twin-engine Cessna, in such a small area combat zone. However, commercial propeller aircraft are not equipped with artillery.

[0007] Companies such as Northrup Grumman have developed propeller aircraft capable for combat use in jungle and other small area combat zones. However, only wealthy countries such as the United States are able to take advantage of such an aircraft, thereby excluding third world countries from purchasing same. However, commercial propeller aircraft without artillery are within the budgetary realm of third world countries.

[0008] In addition, vehicles have become popular delivery systems of various weaponry as they tend to oftentimes be overlooked by government and military officials.

[0009] Thus, the need exists for a stream-lined warhead delivery system that utilizes an efficient delivery system wherein an aircraft, pick-up truck or flat-bed trailer is utilized.

[0010] The relevant prior art includes the following references:

<table>
<thead>
<tr>
<th>Pat. No. (U.S. unless stated otherwise)</th>
<th>Inventor</th>
<th>Issue/Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,027,648</td>
<td>Woodland</td>
<td>Jul. 27, 1999</td>
</tr>
<tr>
<td>2,233,918</td>
<td>Fey</td>
<td>Mar. 04, 1941</td>
</tr>
<tr>
<td>5,111,729</td>
<td>Tamie</td>
<td>May 12, 1992</td>
</tr>
<tr>
<td>2,056,478</td>
<td>Ream, Zr. et al.</td>
<td>Oct. 18, 1960</td>
</tr>
<tr>
<td>3,362,289</td>
<td>Guin</td>
<td>Jan. 09, 1968</td>
</tr>
<tr>
<td>4,028,991</td>
<td>Koby</td>
<td>Jun. 14, 1977</td>
</tr>
<tr>
<td>4,287,809</td>
<td>Egli et al.</td>
<td>Sep. 08, 1981</td>
</tr>
<tr>
<td>4,086,841</td>
<td>MacDonald</td>
<td>May 02, 1978</td>
</tr>
</tbody>
</table>

SUMMARY OF THE INVENTION

[0011] The primary object of the present invention is to provide a warhead delivery system that utilizes an efficient delivery system, which may be an aircraft, pick-up truck or flat-bed trailer.

[0012] Another object of the present invention is to provide a warhead delivery system that may be manufactured by second and third world nations.

[0013] A further object of the present invention is to provide a warhead delivery system kit that may be manufactured by terrorists.

[0014] An even further object of the present invention is to provide a warhead delivery system that may utilize an atomic bomb explosion as a trigger.

[0015] An even further object of the present invention is to provide a warhead delivery system that may utilize at least one decoy.

[0016] Another object of the present invention is to provide a warhead delivery system that may be secured to an underside or fuselage of an aircraft.

[0017] A further object of the present invention is to provide a warhead delivery system that includes the addition of avionics grayboxes which may be controlled within the cockpit of the aircraft.

[0018] Another object of the present invention is to provide a warhead delivery system that may be used in conjunction with a moving or stationary pick-up truck or vehicle having a flat-bed trailer.

[0019] The present invention fulfills the above and other objects by providing a warhead delivery system that is developed, miniaturized and placed within a delivery system that includes a three (3) or eight (8) door warhead design. Once secured to or located within the delivery system, test equipment is developed so as to test the effectiveness of the hydrogen bomb.

[0020] The above and other objects, features and advantages of the present invention should become even more readily apparent to those skilled in the art upon a reading of the following detailed description in conjunction with the drawings wherein there is shown and described illustrative embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] In the following detailed description, reference will be made to the attached drawings in which:

[0022] FIG. 1 is a front plan view of the present invention installed in a three-door warhead;

[0023] FIG. 2 is a side plan view of the embodiment of FIG. 1;

[0024] FIG. 3 is a rear view of the embodiment of FIG. 1;

[0025] FIG. 4 is a front plan view of the present invention installed in an eight-door warhead;

[0026] FIG. 5 is a side plan view of the embodiment of FIG. 4;

[0027] FIG. 6 is a rear view of the embodiment of FIG. 4;

[0028] FIG. 7 is a perspective view of the present invention installed in a three-door warhead and placed on an aircraft delivery system;

[0029] FIG. 8 is a perspective view of the present invention installed in a three-door warhead and placed on a pick-up truck delivery system;
FIG. 9 is a perspective view of the present invention installed in a three-door warhead and placed on a flat-bed trailer delivery system; and

FIG. 10 is a perspective view of a control panel utilized in conjunction with the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

For purposes of describing the preferred embodiment, the terminology used in reference to the numbered components in the drawings is as follows:

1. nose cone
2. door
3. bomb
4. decoy
5. multi-hydrogen bomb
6. pick-up truck
7. bed
8. tailgate
9. support brace
10. control panel
11. toggle switch
12. light generally
13. clock
14. lip
15. back surface
16. recess
17. connector
18. graybox
19. aircraft
20. fuselage
21. flat-bed trailer
22. brace
23. delivery system, generally
24. cockpit
25. warhead delivery system,

With references to FIGS. 1-3, various views of the present invention installed in a three-door multi-hydrogen bomb warhead are shown. The bomb is located behind a door of the nose cone of the warhead. A plurality of decoys may be used in conjunction with the bomb. The bomb and decoys are spring-ejected from the nose cone through the doors. In this embodiment, the doors are located on the same side of the nose cone, which is reminiscent of warheads used in the 1960s.

The nose cone has a substantially planar back surface wherein a lip is located around a perimeter of the back surface to provide an air-tight fit against a delivery system (shown in FIGS. 7-9). In addition, at least one recess is located on the back surface of the multi-hydrogen bomb warhead to permit a user to secure the multi-hydrogen bomb. The delivery system (shown in FIGS. 7-9) via a fastening means, which may be brackets, rivets or bolts wherein spacers, washers and other hardware may also be used. The back surface is preferably made of a metal material and is preferably recessed a predetermined amount. The hydrogen bomb(s) may be from a variety of classes, including a hydrogen bomb with an atomic bomb trigger, a hydrogen bomb without an atomic bomb trigger and/or a low level hydrogen bomb, i.e., a hydrogen bomb made of a water and aluminum explosive mixture.

Next, FIGS. 4-6 show varying views of the present invention installed in an eight-door warhead. Rather than having the doors on a single side of the nose cone, the doors are located at the base of the warhead. A plurality of decoys may also be used in conjunction with the bomb. The doors in both embodiments are made of a material that will afford for quick dismantling to permit the bomb and/or decoy to become airborne. In addition, the nose cone includes a substantially planar back surface having a lip, at least one recess located on the back surface and at least one connector located on the back surface.

Although the nose cones are shown in a substantially triangular shape, the nose cone may be rectangular, square, circular or any other shape.

FIG. 7 shows a perspective view of the present invention installed in a three-door warhead and placed on an aircraft delivery system. The warhead delivery system, generally includes a delivery system which may be an aircraft, which may be commercial or military in nature and which may be a twin-engine light aircraft, four-engine propeller aircraft, a jet aircraft with at least one jet engine or any other type of aircraft, having a fuselage. The nose cone is secured to an underside of the fuselage wherein the lip is located adjacent to the fuselage. At least one avionics box located within a cockpit of the aircraft to permit a user to open the door(s) of the nose cone to release the bomb(s) and/or decoy(s). The avionics box may be ejected from the fuselage at a time or separately so as to become airborne. If airborne strikes are desired, then a terrorist places the warhead so as to be facing towards the tailgate of the pick-up truck. Then, he or she lowers the tailgate, thereby allowing for the airborne ejection of the bomb.

In the alternative, the bombs may be released using a simultaneous delayed fuses having one large explosion of the bombs to provide for a non-airborne bombing. In the event of this non-airborne strike, the driver of the pick-up truck will most likely lose his or her life as the fuses will be short in length so as to create a short time interval between ignition and explosion. Thus, the use of the present invention as a non-airborne attack is a suicide mission which causes maximum destruction as the target area and the pick-up truck containing the terrorists is destroyed.

By utilizing a pick-up truck as the delivery system, terrorists may transport the bombs in full view of the public eye. Although this seems counter-intuitive, it is this strategy that permits a terrorist to travel with deadly weapons. As law enforcement, and even the public at large, deem vans and other large, commercial, armored vehicles with overweight cargo in the rear and lowered shocks suspicious, they will most likely not consider a standard pick-up truck carrying an object in the bed suspicious. Because the multi-hydrogen bomb warhead acts as camouflage to hide the bombs contained within, law enforcement will not focus its suspicions on the pick-up truck and, rather than searching a run-of-the-mill residential pick-up truck, law enforcement...
focuses its efforts on the vehicles conventionally deemed as vehicles for transportation of weapons, such as vans and commercial vehicles.

In FIG. 9, a perspective view of a warhead delivery system 25 of the present invention having a delivery system 23 wherein a three-door warhead is placed on a flat-bed trailer 21 delivery system 23 is shown. Rather than securing the nose cone 1 directly to the flat-bed trailer 21, the nose cone 1 may be secured to a brace 22 having a predetermined size and shape wherein the brace 22 is secured to or located on a flat-bed trailer 21.

In addition, although the delivery systems 23 of the present invention are shown as an aircraft 19, pick-up truck 6 and flat-bed trailer 21, other delivery systems 23 may be used.

Finally, FIG. 10 shows a perspective view of a control panel 10 operatively connected to the present invention. The control panel 10 is preferably for the airborne ejection of separate hydrogen bombs 3 located within the multi-hydrogen bomb warhead 5 that is secured to or located within the delivery system 23. The control panel 10 includes breadboards (which are developed first and then inserted into the control panel), toggle switches 11, lights 12 and a clock 13. The ejection of bombs 3 via use of the control panel 10 may be by the driver of a transportation vehicle from inside the vehicle or a second terrorist located in the rear of the vehicle. The control panel 10 may be operatively connected to the multi-hydrogen bomb warhead 5 of the present invention by wired or wireless configurations. In addition, the control panel 10 may be electrically or battery operated.

The time line for manufacturing the delivery system differs if dealing with a high level, mid-level or low (terrorist) level delivery system for the hydrogen bomb. However, regardless of what level delivery system is used, the process is as follows: 1) develop the bomb, 2) miniaturize the bomb, 3) develop the electro/mechanical warhead delivery system design and 4) develop the test equipment.

With respect to a high level delivery system, the explosion of an atomic bomb will act as a trigger to begin developing and miniaturizing the hydrogen bomb of the present invention. This will take several thousand man-hours.

The miniaturization of the delivery design is foremost as it will enable the delivery system of a missile warhead to be designed similar to the three (3) and eight (8) door warheads depicted in FIGS. 1-3 and 4-6, respectively.

Finally, the test equipment design can take several thousand man-hours to finalize.

With respect to a mid-level delivery system, the explosion of an atomic bomb is not necessary to trigger the development and miniaturization of the hydrogen bomb. Thus, the miniaturized design may be developed within the same time line as when utilizing a high-level system.

Finally, the low (terrorist) level delivery system is utilized without the actuation of an atomic bomb and can be made from consumer chemicals, such as by separating the hydrogen from a hydrogen peroxide solution. In addition, a non-missile delivery system, such as a mobile delivery system from the bed 7 of a pick-up truck 6, may be used. This delivery system will also use a spring-release ejection and may also include decoys.

All of the above processes may be accomplished with computer aid design software.

It is to be understood that while a certain form of the invention is illustrated, it is not to be limited to the specific form or arrangement of parts herein described and shown. It will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not considered limited to what is shown and described in the specification and drawings.

Having thus described my invention, I claim:

1. A warhead delivery system comprising:
 a delivery system;
 a hollow nose cone having at least one door;
 said nose cone having a substantially planar back surface;
 a means for securing said back surface to said delivery system; and
 at least one bomb located within said nose cone wherein said at least one bomb is removable from said nose cone through said at least one door.

2. The warhead delivery system of claim 1 further comprising:
 at least one decoy located within said nose cone.

3. The warhead delivery system of claim 1 wherein:
 said delivery system is an aircraft.

4. The warhead delivery system of claim 1 wherein:
 said delivery system is a pick-up truck.

5. The warhead delivery system of claim 1 wherein:
 said delivery system is a flat-bed trailer.

6. The warhead delivery system of claim 2 wherein:
 said delivery system is an aircraft.

7. The warhead delivery system of claim 2 wherein:
 said delivery system is a pick-up truck.

8. The warhead delivery system of claim 2 wherein:
 said delivery system is a flat-bed trailer.

9. The warhead delivery system of claim 1 further comprising:
 a control panel operatively connected to said multi-hydrogen bomb warhead.

10. The warhead delivery system of claim 2 further comprising:
 a control panel operatively connected to said multi-hydrogen bomb warhead.

11. The warhead delivery system of claim 3 further comprising:
 a control panel operatively connected to said multi-hydrogen bomb warhead.

12. The warhead delivery system of claim 4 further comprising:
 a control panel operatively connected to said multi-hydrogen bomb warhead.

13. The warhead delivery system of claim 5 further comprising:
 a control panel operatively connected to said multi-hydrogen bomb warhead.

14. The warhead delivery system of claim 3 further comprising:
 at least one avionics graybox located in a cockpit of said aircraft.

15. The warhead delivery system of claim 6 further comprising:
 at least one avionics graybox located in a cockpit of said aircraft.

16. A warhead delivery system comprising:
 a delivery system;
 at least one brace secured to said delivery system;
 a hollow nose cone having at least one door;
 said nose cone having a substantially planar back surface;
 a means for securing said back surface to said at least one brace; and
at least one bomb located within said nose cone wherein said at least one bomb is removable from said nose cone through said at least one door.

17. The warhead delivery system of claim 16 further comprising:
 at least one decoy located within said nose cone.

18. The warhead delivery system of claim 16 wherein said delivery system is flat-bed trailer.

19. The warhead delivery system of claim 16 further comprising:
 a control panel operatively connected to said multi-hydrogen bomb warhead.

20. A warhead delivery system comprising:
 a delivery system;
 a hollow nose cone having at least one door;
 said nose cone having a substantially planar back surface;
 a means for securing said back surface to said delivery system;
 at least one decoy located within said nose cone; and
 at least one bomb located within said nose cone wherein said at least one bomb is removable from said nose cone through said at least one door.