AUTOMATIC HELIOSTAT TRACK ALIGNMENT METHOD

Inventor: Kenneth W. Stone, Huntington Beach, Calif.

Filed: Jun. 21, 1984

Abstract

A method of automatically aligning heliostats by comparing the actual sunbeam centroid position on a target to a command reference position to determine the error in the sunbeam centroid location. The sunbeam centroid position error is then analyzed to correlate the error to errors in the heliostats' track alignment system. New coefficients are established for the heliostats' track alignment system to automatically correct for errors in the system, this eliminates the need for resurveying and field work normally associated with aligning heliostats.

5 Claims, 18 Drawing Figures
FIG. 4

MIRROR CENTERED SURFACE REFERENCE SYSTEM

HELIOSTAT INERTIAL REFERENCE SYSTEM

CENTER LINE

TRANSFORM 1
ERRORS TRANSFORM TO HELIOSTAT REFERENCE SYSTEM

TRANSFORM 2
HELIOSTAT REFERENCE ERRORS TRANSFORM TO COMMAND REFERENCE SYSTEM

TRANSFORM 3
COMMAND REFERENCE ERRORS TRANSFORM TO GIMBAL ANGLE ERROR

TRANSFORM 4
GIMBAL ANGLE ERROR TRANSFORM TO MEASUREMENT

FIG. 5
FIG. 8

\[\begin{align*}
X_R & \rightarrow \sin \psi & + & dY \\
& \leftarrow \cos \psi \sin \gamma & - \\
Y_R & \rightarrow \sin \psi & - & dZ \\
& \leftarrow \cos \psi \cos \gamma & + \\
Z_R & \rightarrow \cos \psi \cos \gamma & + & dX \\
& \leftarrow \cos \psi \sin \gamma & -
\end{align*} \]

FIG. 9

\[\begin{align*}
dX & \rightarrow \sin \gamma & - & d\psi \\
& \leftarrow \cos \psi & + \\
dY & \rightarrow \cos \gamma \sin \psi & + \\
& \leftarrow \cos \gamma \cos \psi & - \\
dZ & \rightarrow \sin \psi \sin \gamma & - & d\psi \\
& \leftarrow \cos \psi & +
\end{align*} \]
FIG. 10

TIME

CALCULATE SUN POSITION

REFRACTION CORRECTION

CALCULATE MIRROR ANGLES

TRACK ALIGNMENT COEFFICIENTS

GRAVITATIONAL CORRECTION

ELEVATION TRANSFER FUNCTION

POSITION AND RATE COMMANDS

AZIMUTH TRANSFER FUNCTION
AUTOMATIC HELIOSTAT TRACK ALIGNMENT
METHOD

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to control apparatus for delivering solar energy from a heliostatic field to a receiver and, more particularly, to control systems that automatically correct for error between the heliostat's command reference system and its inertial reference system.

2. Description of the Prior Art

In order for a heliostat field to deliver the required sun energy to its receiver, the heliostats require a beam pointing control accuracy of less than 1.5 m m over the day. There are many different classes of errors that can result in a beam pointing error. One such class of errors is track alignment error which produces a difference between the inertial reference system and the heliostat command reference system. This error may be produced in the original construction of the foundation, subsequent foundation settling, movement resulting from high winds, earthquakes, etc.

The aimpoint may be altered by improper centering of the foundation. Also, if the foundation, pedestal, and drive are not installed vertically, the heliostat azimuth rotational point at the top of the pedestal will be displaced from the desired aimpoint.

Azimuth rotational axis tilt results from misalignment between the actual azimuth rotational axis and the local vertical. The verticality of the foundation, tilt of the pedestal, or a misalignment of azimuth drive, etc., are some of the things which cause rotational tilt errors.

All position commands for the heliostat are calculated with respect to the local horizontal plane and a south reference line. If the heliostat reference system is not aligned to this system, then a beam error will result.

A number of alignment measuring methods have been investigated and have been proven to be unable to meet the accuracy requirement or were very costly because of extensive field labor required to correct for misalignment in the system. Time consuming methods require resurveying the heliostat site to minimize alignment errors, taking physical heliostat measurements in the field, and making calculations in order to determine the track alignment error source values for a single heliostat. It would be desirable if there were provided an efficient, time and cost saving method in which to set up a heliostat for tracking operations having the additional capability to automatically reset the heliostat track alignment which may change as a result of continuous operation over time.

SUMMARY OF THE INVENTION

There is provided by this invention a heliostat track alignment method that eliminates resurveying and field work and provides a method of aligning a single heliostat or a number of heliostats at the same time. This method corrects heliostat track alignment by comparing the sunbeam centroid position to a reference sunbeam centroid position and analyzes any sunbeam position error to correlate this error to misalignments in the heliostat track alignment system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates apparatus for a heliostat track alignment system incorporating the principles of this invention;

FIG. 2 illustrates a system flow chart for a heliostat field incorporating the principles of this invention;

FIG. 3 is a diagram for the heliostat inertial reference system; and

FIG. 4 is a diagram of the heliostat mirror centered reference system.

FIG. 5 illustrates a block diagram for the error transfer function model.

FIGS. 6A-6E illustrate diagrams for error transformation of non-orthogonality in the heliostat reference system;

FIGS. 7A-7E illustrate diagrams for error transformation of azimuth in the heliostat reference system;

FIG. 8 illustrates a diagram for reference error transformation to differential errors;

FIG. 9 illustrates a diagram for mirror normal differential error transformation to gimble angle errors;

FIG. 10 illustrates a flow chart of the control software for tilt and non-orthogonality error correction;

BRIEF DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1, there is shown a heliostat 10 that automatically updates its heliostat tracking aimpoint and monitors its optical performance. The heliostat reflects the sun's rays to a target 12 generally located on the tower 14 beneath the heliostat receiver 16. A digital image radiometer 18 evaluates the heliostat by measuring the total beam power, irradiance distribution, beam centroid, tracking accuracy, and overall mirror reflectivity.

The digital image radiometer herein described is generally of the type described in the copending U.S. Application Ser. No. 33,668 entitled "Digital Image Radiometer", filed on Dec. 23, 1981 and assigned to the assignee of the instant application. In as much as the digital image radiometer is of the type disclosed in the aforementioned application, to which reference is made for complete description of structure and operation, the description herein is limited to those portions essential to the operation of the present invention. The digital image radiometer 18 may be a video camera similar to a Model 2850C-207 low light television camera manufactured by Cohu, Inc. Electronics Div. The camera is equipped with a silicon diode array video tube and a 10:1 zoom lens. Circuit modifications eliminate the camera's AGC response and a black level mask located at the edge of the image is used as a reference to assure constant black level over a wide temperature range. These modifications allow the camera to operate as a radiometer, with light level controlled by iris settings and filters.

The camera has a relay lens for the black level mask and space for a variety of filters used to flatten the response of the camera over its spectral response range.

The observed light level monitored by the digital image radiometer is reduced to digitized form employing digitization equipment, not shown, which provides a one to one correspondence of the digital number assigned to the analog signal received from each picture element (pixel) of the radiometer in terms of location and magnitude. This information is used to determine the location of the beam centroid.
The digitizing equipment employed with the radiometer 18 may be a Quantex Model DS-12 Digital Image Memory/Processor. This system accepts the video signal from the camera, converts the signal to digital form; stores the digital data, and transmits the data to a control system computer 20 upon command. Incoming composite video is stripped of sync and applied to a high-speed A/D converter. Data from the A/D passes through the arithmetic processor where it is combined with memory data through wired arithmetic processes.

A heliostat controller 23 is connected to the heliostat 10 which controls the position of the heliostat upon command from the system computer. A heliostat field controller (not shown) may interface with the system computer and a multitude of heliostats in the field to selectively control each heliostat.

The computer 20 is capable of aligning, monitoring, and evaluating a large number of heliostats in a field. The arrangement shown generally in FIG. 1 is typical of each heliostat in the field. When a heliostat is tested, the control system computer moves the heliostat to change the aimpoint from the receiver to a reference position on the target. As the heliostat is trained on the target, the digital image radiometer is switched to view the beam and the video signal is then digitized and transmitted to the control system computer. The control system computer corrects its aimpoint data and thus maladjustments in the heliostat reference system by correlating the sunbeam centroid errors to errors in the heliostat reference system. A beam centroid error is calculated by taking the difference between the actual centroid and the commanded centroid.

Referring to FIG. 2 a system flow chart is shown for automatically aligning a number of heliostats in a heliostat field 50. An Alignment Measurement Program 52 systematically selects a heliostat such as 40 from the heliostat field 50 for alignment. A heliostat array controller 54 interfaces the individual controllers in the field such as 22, in the system. A master control station 58 provides manual override for the system and allows the operator to be in complete control of the heliostat field. The heliostat selected from the field is identified, the time of day noted, and the computer makes a measurement to check its position using the digital image radiometer 18 as previously described. Each heliostat must have several position measurements made periodically to collect enough data to make the necessary alignment calculations. Three measurements are taken for each heliostat with approximately a two hour interval between the measurements. One measurement may only take a couple of minutes. If the beam is not on the target, a position change and the heliostat's position is changed to place the beam on the target before measurement is made and another heliostat is selected. The computer selects each heliostat for the first measurement in a first supervision of the field. After the first measurements are made, the measurement process is repeated for the second supervision of the field at a stored time interval for each heliostat. When the last set of measurements are being made, the first heliostat selected has its alignment coefficients checked by the alignment calculation program 56. The Alignment Calculation Program 56 determines a new set of coefficients for the heliostat by analyzing the beam centroid error. The new alignment data is stored and the heliostat array controller 54 then commands the heliostat to its new position by means of its individual controller. The next heliostat is then selected and the last measurement is made, the alignment coefficients checked, and new coefficients are stored and sent to the controller.

In the Alignment Program 56, calculations are made for the sun's position based upon the stored time data when the measurements were made. Such factors as the sun's azimuth and elevation are calculated. This process is represented by the sun model block in the flow chart diagram. The program then calculates the position of the heliostat based upon the sun's position and the command position of the sunbeam. Once the program has calculated the optimum heliostat position, this information is compared with the stored measurements made. In the error transformation routine errors between the command position and the measured positions are used to calculate the alignment error coefficients.

FIGS. 3 and 4 illustrate the vector information for the heliostat inertial reference system and the mirror centered reference system. By taking a number of digital image radiometer measurements spaced over a day, a set of equations which relates the beam centroid error to the error sources in the heliostat reference system through the heliostat kinematics can be written in the matrix form as follows:

$$\mathbf{BE} = \mathbf{FES}$$

where

- $\mathbf{ES} = \text{The error sources}$
- $\mathbf{F} = \text{Transfer function}$
- $\mathbf{BE} = \text{Centroid error measurements}$

An estimate of the error source (ES) is:

$$\hat{\mathbf{ES}} = \mathbf{F}^{-1} \mathbf{BE}$$

where

$$\Delta\theta_1 \text{ Elevation Beam Error Measurement }\#1$$
$$\Delta\theta_2 \text{ Azimuth Beam Error Measurement }\#1$$
$$\Delta\theta_3 \text{ Elevation Beam Error Measurement }\#2$$
$$\Delta\theta_4 \text{ Azimuth Beam Error Measurement }\#2$$
$$\Delta\theta_5 \text{ Elevation Beam Error Measurement }\#3$$
$$\Delta\theta_6 \text{ Azimuth Beam Error Measurement }\#3$$
$$\Delta\theta_7 \text{ Elevation Beam Error Measurement }\#4$$
$$\Delta\theta_8 \text{ Azimuth Beam Error Measurement }\#4$$

$$\mathbf{F} = \begin{bmatrix}
 f_1 & f_2 & f_3 & \ldots & f_8 \\
 f_9 & f_{10} & f_{11} & \ldots & f_{16} \\
 f_{17} & f_{18} & f_{19} & \ldots & f_{24} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 f_{49} & f_{50} & f_{51} & \ldots & f_{64}
\end{bmatrix}$$

$$\hat{\mathbf{ES}} = \begin{bmatrix}
 CE \\
 AH \\
 BS \\
 CR \\
 AR \\
 BR \\
 DT \\
 DB
\end{bmatrix}$$

The \mathbf{F} matrix is the relationship between the error sources and the measurement errors. This matrix is divided into four separate transformations as shown in FIG. 5.

Transformation #1—The error models for the first transformation are shown in FIGS. 6E and 7E. Referring to FIG. 6A, the equations for the first rotation of non-orthogonality are:

$$\begin{align*}
\hat{\mathbf{ES}} &= CE \\
\hat{\mathbf{ES}} &= AH \\
\hat{\mathbf{ES}} &= BS \\
\hat{\mathbf{ES}} &= CR \\
\hat{\mathbf{ES}} &= AR \\
\hat{\mathbf{ES}} &= BR \\
\hat{\mathbf{ES}} &= DT \\
\hat{\mathbf{ES}} &= DB
\end{align*}$$
Referring to FIGS. 6B and 6C the equations for elevation rotation, including elevation reference error are:

\[
\begin{bmatrix}
X_E \\
Y_E \\
Z_E
\end{bmatrix} =
\begin{bmatrix}
\sin \phi & 0 & 0 \\
0 & 0 & 0 \\
-\cos \phi & 0 & 0
\end{bmatrix}
\begin{bmatrix}
CE
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

Referring to FIG. 6D, the equations for the second rotation of non-orthogonality are:

\[
\begin{bmatrix}
X_H \\
Y_H \\
Z_H
\end{bmatrix} =
\begin{bmatrix}
\cos BS & 0 & -\sin BS \\
0 & 1 & 0 \\
\sin BS & 0 & \cos BS
\end{bmatrix}
\begin{bmatrix}
X_R \\
Y_R \\
Z_R
\end{bmatrix} +
\begin{bmatrix}
AH \\
0 \\
0
\end{bmatrix}
\]

Referring to FIG. 7A, the equations for transforming this error vector through the azimuth angle are:

\[
\begin{bmatrix}
X_P \\
Y_P \\
Z_P
\end{bmatrix} =
\begin{bmatrix}
\cos \gamma & \sin \gamma & 0 \\
-\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X_R \\
Y_R \\
Z_R
\end{bmatrix} +
\begin{bmatrix}
AR \\
0 \\
0
\end{bmatrix}
\]

Referring to FIG. 7B, the equations for azimuth reference error are:

\[
\begin{bmatrix}
X_A \\
Y_A \\
Z_A
\end{bmatrix} =
\begin{bmatrix}
\cos CR & \sin CR & 0 \\
-\sin CR & \cos CR & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X_P \\
Y_P \\
Z_P
\end{bmatrix} +
\begin{bmatrix}
AR \\
0 \\
0
\end{bmatrix}
\]

Referring to FIG. 7C, the equations for the first azimuth tilt angle are:

\[
\begin{bmatrix}
X_A \\
Y_A \\
Z_A
\end{bmatrix} =
\begin{bmatrix}
\cos AR & 0 & \sin AR \\
0 & 1 & 0 \\
-\sin AR & 0 & \cos AR
\end{bmatrix}
\begin{bmatrix}
X_P \\
Y_P \\
Z_P
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

Referring to FIG. 7D, the equations for the second azimuth tilt angle are:

\[
\begin{bmatrix}
X_R \\
Y_R \\
Z_R
\end{bmatrix} =
\begin{bmatrix}
\cos BR & 0 & -\sin BR \\
0 & 1 & 0 \\
\sin BR & 0 & \cos BR
\end{bmatrix}
\begin{bmatrix}
X_P \\
Y_P \\
Z_P
\end{bmatrix} +
\begin{bmatrix}
BR \\
0 \\
0
\end{bmatrix}
\]

Transformation #2—This transformation takes the reference error vector and transforms it to heliostat mirror normal differential errors as shown in FIG. 8. The equations are:

\[
\begin{bmatrix}
d_x \\
d_y \\
d_z
\end{bmatrix} =
\begin{bmatrix}
\sin \psi & -\sin \psi & \cos \psi \sin \gamma \\
\cos \psi & 0 & -\cos \psi \cos \gamma \\
-\cos \psi \sin \gamma & \cos \psi \cos \gamma & 0
\end{bmatrix}
\begin{bmatrix}
X_R \\
Y_R \\
Z_R
\end{bmatrix}
\]

Transformation #3—This transformation takes the mirror normal differential errors and transforms them to gimbal angle errors as shown in FIG. 9. The equations are:
The tilt and non-orthogonality errors are corrected by the open loop control software as shown in FIG. 10. After the gimbal angles have been calculated, they are rotated to the tilt plane and non-orthogonality plane to obtain the gimbal angles the heliostat will be commanded to. The equations defining the rotation are:

\[
d\psi = \left\{ \sin^{-1} \sin\psi \cos AR + \cos\psi \sin\gamma \sin AR \right\} - \psi + \left\{ \sin^{-1} \left[\sin\psi \cos BR - \cos\psi \cos\gamma \sin BR \right] - \psi \right\} + \sin^{-1} \left[\sin\psi / \cos AH \right] - \psi + \left\{ \sin^{-1} \left[\sin\psi / \cos CE \right] - \psi \right\}
\]

\[
d\gamma = \left\{ -\sin^{-1} \left[\sin CE / \cos \gamma \right] \right\} - \sin^{-1} \left[\sin \left(\psi + DS \right) \right] \sin AH / \cos \gamma \right\} + \cos^{-1} \left[\cos \psi \cos \gamma / \cos \left(\psi + DARS \right) \right] + \sin^{-1} \left[\cos \psi / \cos \left(\psi + DARS \right) \sin \gamma \right]
\]

where:

DS, DARS and DBRS are elevation error terms.

The following program is typical of a program that may be used to solve the equations and implement the steps of the Alignment Calculation Program 56:

THIS PROGRAM CALCULATES THE BEAM ERROR FOR DIFFERENT ALIGNMENT ERRORS USING THREE DIFFERENT BEAM ERROR MODELS.

1. **BEAM** - BEAM ERROR MODEL
2. **ALGS** - REAL WORLD BEAM ERROR MODEL
3. **ALIGM** - ALIGNMENT ERROR MODEL

VARIABLES:

\[\text{BER}(I,J,K) - \text{BEAM ERROR FOR TIME I AND MODEL J (1=BEAM, 2=ALGS, 3=ALIGM) AND AXIS K (1=AZIMUTH, 2=ELEVATION)} \]
DOUBLE PRECISION GAM, SIC, THA, BET, ELP, ALP
1, AZ, BZ, ARZ, CZ, BRZ, DZ, EZ, FZ, BSX, CRX, ARX, BRX, AHX
3, CA, CEE, D12, AZIM, ELER, RANGE, XX

INTEGER*2 IANS

DIMENSION RNAP(14,2)BER(10,3,2), GRANGE(14)
COMMON /AIMP/ CA, CEE, RANGE
COMMON /PRINT/ IPR(20), ICF(3)
COMMON /ERROR/ XX(10)
DATA ICF/0, 0, 0/

GROUND RANGE IN FEET

DATA GRANGE /
1 4797., 3347., 2398., 1450., 446., 460., 3626., 2774.
2, 2012., 1923., 4690., 4217., 3679., 2996./

AZIMUTH AIMPOINT

DATA RNAP /
1 3.1416, 3.1416, 3.1416, 3.1416, 3.1416, 1.8158,
 2.7468, 2.6150
2, 2.3758, 1.3865, 2.6726, 2.4875, 2.2811, 2.0761
25 3.0.1474, 0.2096, 0.2886, 0.4564, 1.0117, 0.9972,
 0.1939, 0.2512
4, 0.3401, 0.3546, 0.1507, 0.1673, 0.1912, 0.2333

YEAR / MONTH / DAY / START TI. / TIME
INC. / HEL ID
DATA IYEAR/1984/, MONTH/, IDAY/, TIMO/14./,
DTIM/2.0/, IHEL/1/

ERROR COR. / LOOPS
DATA ICOR/0/, IEM/2/
CALL ASNLUN(1, 'TI', 0)
CALL ASNLUN(3, 'LP', 0)
CALL ASNLUN(6, 'LP', 0)

SET AIMPOINTS

***** AZIMUTH
CA = RNAP(IHEL, 1)
***** ELEVATION
CEE = RNAP(IHEL, 2)
***** RANGE
RANGE = GRANGE(IHEL)

DO 1 I = 1, 8
1 XX(I) = 0.0
100 WRITE(1, 1000)
1000 FORMAT('/MAKE CHANGES TO:', '/ 1. PRINT DEVICE'/
2. HEL.AT ID/
1/' 3. START TIME '/' 4. PRINT FLAGS'/'
2/' 5. # OF LOOP'
2/' 6. ALIG. ERRORS'/ 7. RUN PROGRAM'/ 8. MAKE
ERROR COR.'
3/' 9. STOP'/ 10. CONFIGURATION')
READ(1, 1006) IAN
GOTO(120, 130, 160, 180, 200, 220, 600, 240,
900, 260), IAN

CHANGE PRINT DEVICE

120 WRITE(1, 1311)
1311 FORMAT('/DOES THE OPERATOR WISH THE PROGRAM'
1 ', 'OUTPUT TO PRINT', '/ TO THE CONSOLE'
2 ', '[TI] OR LINE PRINTER [LP]?'
READ(1, 1035) IANS
1034 FORMAT(A2)
IF ((IANS .NE. 2HTI) .AND. (IANS .NE. 2HLP))
GO TO 120
CALL ASNLUN(3, IANS, 0)
CALL ASNLUN(6, IANS, 0)
GO TO 100

SELECT HELIOSTAT ID

WRITE(1,1003)
1003 FORMAT ('// FOR WHICH HELIOSTAT DOES THE OPERATOR WISH',
' TO DETERMINE ERROR SOURCE',/' VALUES (TYPE ''1'',
' OR ''2'') ?')
READ(1,1006) IHEL
1006 FORMAT(3I7)
IF(IHEL .GT. 14)
GO TO 140

****** AZIMUTH
CA = RNAP(IHEL,1)

****** ELEVATION
CEE = RNAP(IHEL,2)

****** RANGE
RANGE = GRANGE(IHEL)

GO TO 100

****** CHANGE START TIME
WRITE(1,1520)
1520 FORMAT(/' ENTER START TIME '/)
READ(1,1036) TIMO

1036 FORMAT(F12.6)
GO TO 100

****** CHANGE PRINT FLAGS
DO 1550 IX=1,20
1550 IPR(IX) = 0

WRITE(1,1500)
1 1500 FORMAT(//' CHANGE PRINT FLAG(Y/N)?'')
 READ(1,1035) IANS
 IF(IANS .NE. 2HY)
 GO TO 100
5 WRITE(1,1511)
 IPR(1),IPR(2),IPR(3),IPR(4),IPR(5),IPR(6)
1511 FORMAT(//' 1. MAIN= /I2,' 2.ALGS= ',I2,' 3.SUN= ',I2
 1,' 4. BEAM= ',I2,' 5. PCOM= ',I2,' 6. ALGM= ',I2)
 READ(1,1006) IXX
10 IPR(IXX) = 1
 GO TO 1560
 NUMBER OF LOOPS
200 WRITE(1,1512)
1512 FORMAT(//' INPUT * OF LOOP EST.'))
15 READ(1,1006) IEM
 GO TO 100

 CHANGE ERROR SOURCES

20 220 WRITE(1,1600)
1600 FORMAT(//' DOES THE OPERATOR WISH TO SET ANY OF
 THE'
 1 ', CE,BS,AH,CR,ER,AR,EB,DT ERROR VALUES?')
 READ(1,1035) IANS
25 IF (IANS .NE. 2HY)
 GO TO 100
304 WRITE(1,1610)
1610 FORMAT(//' INPUT WHICH ERROR NUMBER
 (CE=1,BS=2,ETC..):')
30 READ(1,1006) IERNO
 IF (IERNO .GT. 8) GOTO 304
 WRITE(1,1620)
1620 FORMAT(//' INPUT THE ERROR VALUE DESIRED:')
 READ(1,1013) XX(IERNO)
35 1013 FORMAT(F14.0)
 GO TO 220
*** Configuration change, gravity, pivot point offset.

WRITE(1,1630)
FORMAT('/ CHANGE ERROR CORRECTION FLAG,
0(NO COR) OR 1 (MAKE COR)')
READ(1,1035) ICOR

GO TO 100

WRITE(1,1640)
FORMAT('/1.GRAV(,0=Y,1=N) 2.TYPE OFFSET(0=HFC,1=EX)'
'1,' 3.OFFSET(0=Y,1=N)')
READ(1,1006) ICX
WRITE(1,1650)
FORMAT('/ VALUE OF')
READ(1,1006) ICF(ICX)

GO TO 100

CALL DBDAT (ICOR)
CALL CXCY(IYEAR,MONTH,IDAY)
WRITE(3,1040) CA,CEE,ICOR,ICF

FORMAT(1H,5X, 'BEAM AIMPOINTS '/1H ,2X,
'AXIMUTH= ',F9.5
1/1H ,2X, 'ELEVATION= ',F9.5/1H , 'SOFTWARE CORRECTION FLAG= ',I4
1/1H , 'GRAVITY CORRECTION FLAG(0=GRAVITY,1=NO
25 GRAVITY)= I4,
1/1H , 'OFFSET FLAG(ICF(2)=0-HFC CODE,=1-EXACT), I4
1/1H , 'OFFSET FLAG(ICF(3)=0-OFFSET,=1-NO OFFSET)
',I4)
WRITE(3,1050 (XX(I),XX(I+4),I=1,4)

FORMAT(1H ,/ ' CE-MIRROR SUPPORT ALIGNMENT
ERROR',F8.4
1,10X, 'AR-FIRST TILT PLANT ROTATION.....',F8.4
2,1H , 'BS-ELEVATION REFERENCE ERROR.....',F8.4
3,10X, 'BR-SECOND TILT PLANE ROTATION.....',F8.4
35 4,/1H, 'AH-AZIMUTH DR.PIVOT POINT ALIG.ER',F8.4
19 4,564,275

1 5,10X. 'DB-AZIMUTH POSITION LOCATION ER..', F8.4
6./1H, 'CR-AZIMUTH REFERENCE ERROR........', F8.4
7.10X, 'DT-ELEVATION BEAM POSITION ERROR.', F8.4

BEGINNING OF TIME LOOP

TIME = TIMO
DO 800 I=1,IEM

----- CALCULATE SUN POSITION -----
CALL SPOS(TIME,ELP,ALP)

----- CALCULATE GIMBAL ANGLES -----
CALL PCOM(ALP,ELP,GAM,SIC)

CALL BEAM(ALP,ELP,GAM,SIC, AZID,ELVD,BER
(I,1,2),BER(I,1,1))

CALCULATE BEAM ERROR FROM ALGS

IFR = 0
CALL
ALGS(ELP,ALP,SIC,GAM,THA,BET,BER(I,2,2)BER(I,2,1),IFR)

IFR = 1
CALL ALGS(ELP,ALP,SIC,GAM,THA,BET,BER(I,2,2),
BER(I,2,1),IFR)

CALCULATE BEAM ERROR FROM ALIGM

CALL ALIGM(ELP,ALP,SIC,GAM,BER(I,3,2),
BER(I,3,1))

800 TIME = TIME + DTIM
TIME = TIMO
WRITE(3,1020)
1020 FORMAT (1H ,3X ' TIME ',12X, ' AZINUTH ',50X,' ELEVATION '

35
5 DO 850 I =1,IEM
AZMER = (BER(I,2,1) - BER(I,3,1)) * 1000.0
ELMER = (BER(I,2,2) - BER(I,3,2)) * 1000.0
WRITE(3,1010)
T,(BER(I,J,1),J=1,3),AZMER,(BER(I,J,2),J=1,3),ELMER
10 1010 FORMAT(1H,F8.2,1X,4F12.8,14X,4F12.8)
850 T = T + DTIM
TO TO 100
900 END

15 SUBROUTINE PCOM(AZIM,ELER,GAMC1,SIC2)

SUBROUTINE PCOM

THIS ROUTINE CALCULATES THE HELIOSTAT GIMBAL
ANGLES WHICH WILL REFLECT THE BEAM AT THE DESIRED
AIMPOINT.

INPUTS:
AZIM - SUN AZIMUTH ANGLE (RADS)
ELER - SUN ELEVATION ANGLE (RADS)

OUTPUTS:
GAMC1 - HELIOSTAT AZIMUTH GIMBAL
ANGLE (RADS)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
30 REAL NE,NUCA,NUCE,NA,NER,NAR
REAL*8 TEMP,COSIC
COMMON/DBCAL2/C5,C6,C7,C8,C9,D1,C10,D4,D5,D6,D7,D8,D9,
D10,D11,D12
1,D13,C11
35 COMMON /DBFIX2/A14,E1,E2,E3,E4,E5,E6,E7,F1,F2,
F3,F4,F5,PI
COMMON /DBFIX4/ A21,A22,A23,A24
COMMON /AIMP/ CA,CEE,GRANGE
COMMON /PRINT/ IPR(20),ICF(3)
COMMON /HEL/ AX,BX,CX,AX1,BX1,CX1

IF(IPR(5) .GT. 0.0) WRITE(3,1010)

CA,CEE,GRANGE

1010 FORMAT(1HO, '***** PCOM /IH , 'AIMPOINT
(CA,CEE,GRANGE)' ,3E10.4)

CALCULATE GIMBAL ANGLE FOR HELIOSTAT

INCLUDES PIVOT POINT OFFSET

NUM = 0
DCE = 0.0
DCA = 0.0
IF(ICF(2) .GT. 0)

GO TO 100

66 TOP = DCOS(CEE-DCE)*DSIN(CA-DCA)
BOT = DCOS(CEE-DCE)*DCOS(CA-DCA)
PHI = DARCOS(DSIN(CEE-DCE)*DSIN(ELER)-
 DCOS(CEE-DCE)*

1

DCOS(ELER)*DCOS(CA-DCA-AZIM))

SIC =
DARSIN((DSIN(ELER)+DSIN(CEE-DCE))/2./DCOS(PHI/2.))

GAMC1 = DATAN2(DCOS(ELER)*DSIN(AZIM)-
 TOP,DCOS(ELER)

1

*DCOS(AZIM)-BOT)

IF(IPR(5) .GT. 0) WRITE(6,3000)GAMC1,
 SIC,CA,CEE,DCA,DCE

3000 FORMAT('GAMC1='F14.8,' SIC''F14.8,' C5','F14.8
1 ', 'C6','F16.8,'DCA','F8.4,'DCE','F8.4)

RX = (CX1+BX1*DCOS(SIC)-AX1*DSIN(SIC))
 *DCOS(GAMC1)
RY = (CX1+BX1*DCOS(SIC)-AX1*DSIN(SIC))
 *DSIN(GAMC1)
RZ = BX1*(DSIN(SIC)-1.)

35 DCA = (DCOS(CA)*RY-DSIN(CA)*RX)/GRANGE
DCE = DCOS(CEE)**2*(RZ+DSIN(CEE)*DCOS(CEE))
 *(DCOS(CA)*RX
 +DSIN(CA)*RY))/GRANGE

IF(IPR(5),GT.0)WRITE(6,3010)
CA,CEE,DCA,DEC,RX,RY,RZ

3010 FORMAT (1H , 'CA,CEE,DCA,DCE,RX,RY,RZ=', 7F14.8)
NUM=NUM+1
IF (NUM.LE.1)
GO TO 66

SIC1 = SIC
GO TO 200

100 TOP = DCOS(CEE-DCE)*DSIN(CA-DCA)
BOT = DCOS(CEE-DCE)*DCOS(CA-DCA)
PHI = DARCOS(DSIN(CEE-DCE)*DSIN(ELER)-DCOS
 (CEE-DCE)*
 DCOS(ELER)*DCOS(CA-DCA-AZIM))
SIC = DARSIN((DSIN(ELER)+DSIN(CEE-DCE))/2./DCOS(PHI/2.))
GAMC1 = DATAN2(DCOS(ELER)*DSIN(AZIM)-TOP,
 DCOS(ELER)
 *DCOS(AZIM)-BOT)

IF(IPR(5) .GT. 0)WRITE(6,3000)GAMC1,SIC,CA,CEE,
DCA,DCE

RR = CX1 + BX1*DCOS(SIC) - AX1*DSIN(SIC)
GRC = GRANGE + RR*DCOS(CA-GAMC1)
DOF = RR*DSIN(CA-GAMC1)
DCA = DATAN2(DOF,GRC)
GR = GRC/DCOS(DCA)
RZ = BX1*(DSIN(SIC)-1.0)+AX1*DCOS(SIC)
CEP = DATAN2(-RZ + GRANGE*TAN(CEE) , GR)
DCE = CEE - CEP

IF(IPR(5) .GT.0)WRITE(6,3012) DCA,DCE,RR,GRC,DOF,
 GR,RZ,CEP
SUBROUTINE BEAM (SNAZ, SNEL, GAM, PSI, AZID, ELVD, EREB, ERAB)

THIS ROUTINE CALCULATES THE REFLECTED BEAM POSITION AND ERROR BETWEEN THE REFLECTED BEAM AND AIMPOINT.

INPUTS:
SNAZ - SUN AZIMUTH (RADS)
SNEL - SUN ELEVATION (RADS)
GAM - HELIOSTAT AZIMUTH GIMBAL ANGLE (RADS)
PSI - HELIOSTAT ELEVATION GIMBAL ANGLE (RADS)

OUTPUTS:
AZID - BEAM AZIMUTH DIRECTION (HELIOSTAT REF)
ELVD - BEAM ELEVATION DIRECTION (HELIOSTAT REF)
ERAB - AZIMUTH BEAM ERROR (RADS)
ERAB - ELEVATION BEAM ERROR (RADS)

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
COMMON/DBFIX2/A14,E1,E2,E3,E4,E5,E6,E7,F1,F2,F3,F4, F5,PIX
COMMON /AIMP/ CA,CEE,GRANGE
COMMON /HEL/ AX,BX,CX,AX1,BX1,CX1
COMMON/D123/D1,D2,D3
COMMON/PRINT/ IPR(20),ICF(3)
DATA PI/3.141592654D0/
IF (IPR(4) "GT. 0) WRITE(3,1000) CA,CEE,GRANGE

1000 FORMAT(1H ,"**** BEAM "/1H,"AIMPOINTS
CA,CEE,GRANGE 1,2F10.4,2X,F10.3)
FIND MIRROR NORMAL IN INERTIAL XP,YP,ZP
(SOUTH EAST UP)
15 D4 = DCOS(D1)
D5 = DSIN(D1)
D7 = DCOS(D2)
D10 = DSIN(D2)*SIN(D1)
D11 = DSIN(D2*DCOS(D1)
D12 = DCOS(D3)
IF (IPR(4) .GT. 0) WRITE(3,1030) D1,D2,D3,D4,
D5,D7,D10,D11,D12
1030 FORMAT(1H ,'D1,D2,D3,D4,D5,D7,D10,D11, D12',
10F9.5)
25 ALF1 = D4*D4_D7*D5*D5
ALF2 = (1.0D0-D7)*D5*D4
ALF3 = D5*D5_D7*D4*D4
DSD = DSIN(D3)
CGAMC2 = DCOS(GAM)
30 SGAMC2 = DSIN(GAM)
G = (((E6*PSI+E5)*PSI+E4)*PSI+E3)
*PSIE2)*PSI+E1
IF (ICF(1) .GT. 0) G = 0.0
IF (IPR(4) .GT. 0)WRITE(3,1040)ALF1,ALF2,ALF3,
DSD,CGAMC2, SGAMC2,G
4,564,275

1 1040 FORMAT(1H , 'ALF1,2,3',3F8.5,'DSD',F8.5,
 'C&SGAMC2',2F8.5,'G',F9.6)
 PSIG = PSI+G
 CSIC3 = DCOS(PSIG)
 EGA = DSIN(PSIG)
 GCC1 = CGAMC2*CSIC3+SGAMC2*EGA*DSD
 GCC2 = SGAMC2*CSIC3-CGAMC2*EGA*DSD
 GCC3 = EGA*D12
 XP1 = ALF1*GCC1+ALF2*GCC2+D10*GCC3
 YP1 = ALF2*GCC1+ALF3*GCC2=D11*GCC3
 ZP1 = -D10*GCC1+D11*GCC2+D7*GCC3

HELIOSTAT NORMAL UNIT VECTOR

15 XMAG = DSQRT(XP1*XP1 + YP1*YP1 + ZP*ZP1)
 XP1 = XP1/XMAG
 YP1 = YP1/XMAG
 ZP1 = ZP1/XMAG
 IF(IPR(4) "GT.)) WRITE(3,1010) XP1,YP1,ZP1

20 1010 FORMAT(1H , ' XP1,YP1,ZP1 ','3F10.5)

CALCULATE SUN DIRECTION IN ZP,YP,ZP
(SOUTH,EAST UP) CO-OR

25 SX = DCOS(SNEL)*DCOS(SANZ)
 SY = DCOS(SNEL)*DSIN(SNAZ)
 SZ = DSIN(SNEL)

CALCULATE THE ANGLE BETWEEN THE SUN AND THE REFLECTED BEAM

30 TCOS2=2.0*(SX*XP1+SY*YP1+SZ*ZP1)

CALCULATE REFLECTED BEAM FROM HELIOSTAT
1 COMPUTE SLANT RANGE
 SNDZP = -SZ + TCOS2*ZP1
 ELBEAM = DARSIN(SNDZP)
 SRANGE = GRANGE/DCOS(ELBEAM)
5 IF(IPR(4) .GT. 0) WRITE(3,1050)
 TCOS2,SNDZP,ELBEAM,SRANGE
1050 FORMAT(1H , 'TCOS', F12.6, 'SND', F12.8, 'ELBEAM',
 F12.8, 'SRANGE', F12.4)
 SNDX = (+SX+TCOS2*XP1)*SRANGE
10 SNDY = (-SY+TCOS2*YP1)*SRANGE
 SNDZ = (+SZ+TCOS2*ZP1)*SRANGE

 COMPUTE VECTOR FROM MIRROR SURFACE AT ASSUMED MIRROR
 CENTER OF ROTATIONS TO THE ACTUAL CENTER OF MIRROR MODULE
 AT THE CALCULATED PSI AND GAMMA
15
 RX = (CX+BY*DCOS(PSIG)-AX*DSIN(PSIG))
 *DCOS(GAM)
 RY = (CX+BX*DCOS(PSIG)-AX*DSIN(PSIG))
 *DSIN(GAM)
20 RZ = BX*(DSIN(PSIG)-1.) + AX*DCOS(PSIG)

 WHERE A=THE ASSUMED CENTER OF ROTATION RELATIVE TO
 THE AZIMUTH AXIS AND THE MIRROR SURFACE
25 B=THE ACTUAL CENTER OF THE MIRROR MODULE AT THE
 MIRROR SURFACE RELATIVE TO THE AZIMUTH AXIS
 C=THE PERPENDICULAR FROM THE AZIMUTH AXIS TO THE
 ELEVATION AXIS
30 RMGX = SNDX + RX
 RMY = SNDY + RY
 RMGZ = SNDZ + RZ
CALCULATE BEAM ANGLES

AZID = DATAN2(RMGY, RMGX) + PI
DUMMY = DSQRT(RMGX*RMGX + RMGY*RMGY)
ELVD = DATAN2(RMGZ, DUMMY)
ERAB = -CA + AZID + XX(7)
ERE = ELVD + CEE + XX(8)

IF(IPR(4) .GT. 0) WRITE(3,1020) SX,SY,SZ,
SNDX, SNDY, SNDZ, RX, RY, RZ

1, RMGX, RMGY, RMGZ, AZID, ELVD, SRANGE

1020 FORMAT(1H 'SX, SY, SZ', 3F8.4, 'SND(XYZ)',
3F10.5, 'R(XYR)', 3F10.5,
1/1H 'RMGX, RMGY, RMGZ', 3F10.5, 'AZID, ELVD', 2F8.5,
'SRANGE', F8.3)

RETURN
END

SUBROUTINE ALIGM(ELP, ALP, SIC, GAM, EREM,ERAM)

SUBROUTINE ALIGM

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION A(10), B(10)
COMMON /ERROR/ XX(10)

COMMON /PRINT/ IPR(20), ICF(3)
COMMON/DBIX2/ A14, E1, E2, E3, E4, E5, E6, E7, F1, F2,
F3, F4, F5, PI

IF (IPR(6) .GT. 0) WRITE(3,1000) ELP, ALP, SIC, GAM

1000 FORMAT(1HO, '*** ALIGM /ELP, ALP, SIC, GAM', 4F12.6)

DO 100 I = 1, 5
A(I) = DCOS(XX(I+1))
B(I) = DSIN(XX(I+1))

COORDINATE SYSTEM - CE error

G = (((E6*SIC+E5)*SIC+E4)*SIC+E3)*SIC+E2)
 *SIC+E1
IF (ICF(1) .GT. 0) G = 0.0

XE = XX(1)*DSIN(SIC+G)
YE = 0.0
ZE = -XX(1)*DCOS(SIC+G)

H COORDINATE SYSTEM - BS error

XH = XE*A(1) - ZE*B(1)
YH = YE + XX(2)
ZH = ZE*A(1) + XE*B(1)

D COORDINATE SYSTEM - AH error

XD = XH + XX(3)
YD = YH*A(2) - YH*B(2)
ZD = ZH*A(2) - YH*B(2)

B COORDINATE SYSTEM - GAM rotation

XB = XD*DCOS(GAM) = YD*DSIN(GAM)
YB = YD*DCOS(GAM) + XD*DSIN(GAM)
ZB = ZD

A COORDINATE SYSTEM - CR error

XA = XB*A(3) + YB*B(3)
YA = YB*A(3) - XB*B(3)
ZA = ZB + XX(4)

X, Y, Z P COORDINATE SYSTEM - AR error

XP = XA + XX(5)
YP = YA*A(4) + ZA*B(4)
ZP = ZA*A(4) - YA*B(4)

R COORDINATE SYSTEM - BR error

XR = XP*A(5) - ZP*B(5)
YR = YP + XX(6)
ZR = ZP*A(5) + XP*B(5)

IF (IPR(6) .GT. 0) WRITE(3,1010) XE,YE,ZE,XH,YH,
ZH,XD,YD,ZD
1, XB, YB, ZB, XA, YA, ZA, XP, YP, ZP
2, XR, YR, ZR

1010 FORMAT(1H, 'XE, YE, ZE=', 3F7.4, ' XH, YH, ZH=', 3F7.4
1, 'XD, YD, ZD=', 3F7.4, ' XB, YB, ZB=', 3F7.4
2 /1H, 'XA, YA, ZA=', 3F7.4, ' XP, YP, ZP=', 3F7.4
3, 'XR, YR, ZR=', 3F12.9)

DEMO = DCOS(ELP)*DCOS(GAM-ALP)
DEM1 = 2.0*DCOS(SIC+G)**2*DEMO
DEM3 = DSIN(2.0*(SIC+G))*DEMO

TEM0 = DCOS(ELP)*DSIN(GAM-ALP)
TEM2 = DSIN(2.0*(SIC+G))*DSIN(ELP)
TEM3 = DCOS(2.0*(SIC+G))*DEMO
TEM4 = -DSIN(2.0*(SIC+G))*TEM0
TEM5 = DCOS(2.0*(SIC+G))*DSIN(ELP)
TEM6 = (DCOS(SIC+G)*TEM0)**2

V = -DCOS(ELP)*DCOS(ALP)+TEM2*DCOS(GAM)+
 DEM1*DCOS(GAM)

THSI = 2.0*(TEM2+TEM3)/DCOS(THA)
THGA = TEM4/DCOS(THA)
BESI = -DCOS(BET)**2*2*TEM0*(TEM5-DEM3)/
 V**2
BEGA = (((TEM2+TEM3)*(TEM2+DEM1))
 + 2.0*TEM6)*DCOS(BET)**2)/V**2

BEAM ERROR EQUATIONS FROM ALIG

DX = ZR*DCOS(SIC+G)*DSIN(GAM)-
 YR*DSIN(SIC+G)
DY = XR*DSIN(SIC+G)-ZR*DCOS(SIC+G)
 *DCOS(GAM)
DZZ = YR*DCOS(SIC+G)*DCOS(GAM)-
 XR*DCOS(SIC+G)*DSIN(GAN)
4,564,275

IF(IPR(6).GT.0)WRITE(3,1043) DX,DY,DZZ

1043 FORMAT(//' DX,DY,DZZ = '',3F11.7)

15 CONTINUE

DGA = (-DSIN(GAM)*DX + DCOS(GAM*DY)/DCOS(SIC+G))

DSI = DZZ /DCOS(SIC+G)

EREM = THSI*DSI + THGA*DGA + XX(8)

ERAM = BESI*DSI + BEGA*DGA + XX(7)

IF (IPR(6).GT.0)WRITE(3,1162) THSI,THGA,BESI,

BEGA,DSI,DGA

1162 FORMAT(//'THSI,THGA,BESI,BEGA,DSI,DGA =

',6F11.7)

IF(IPR(6).GT.0)WRITE(3,1160) EREM,ERAM

1160 FORMAT(//' EREM,ERAM = ',F11.7,2X,F11.7)

RETURN

END

SUBROUTINE ALGS(ELP,ALP,SIC,GAM,THA,BET,

ERES,ERAS,IFR)

THIS ROUTINE CALCULATES THE REFLECTED BEAM
POSITION AND ERROR BETWEEN THE REFLECTED BEAM AND
AIMPOINT.

INPUTS:

ELP - SUN AZIMUTH (RADS)
ALP - SUN ELEVATION (RADS)
GAM - HELIOSTAT AZIMUTH GIMBAL ANGLE (RADS)
SIC - HELIOSTAT ELEVATION GIMBAL ANGLE
(RADS)

OUTPUTS:

BET - BEAM AZIMUTH DIRECTION (HELIOSTAT REF)
THA - BEAM ELEVATION DIRECTION (HELIOSTAT REF)
ERAS - AZIMUTH BEAM ERROR (RADS)
ERES - ELEVATION BEAM ERROR (RADS)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(10),B(10),XER(10)

COMMON/DBFIX2/ A14,E1,E2,E3,E4,E5,E6,E7,F1,
5 F2,F3,F4,F5,PI
COMMON /AIMP/ CA,CEE,GRANGE
COMMON /DBCAL2/ C5,C6,C7,C8,C9,C10,D4,D5,D6,
1 D7,D8,D9,D10,D11,D12,D13,C11
COMMON/PRINT/IPR(20)
10 COMMON /ERROR/ XX(10)
COMMON/TRAN1/A,B
COMMON /HEL/ C,THICK,NER,NAR,AX,AY,AZ,BX,BY,BZ
COMMON/HELSIM/AZ,BX,CX
IF(IPR(2) .GT. 0) WRITE(3,1000) IFR
15 1000 FORMAT(1HO,'*** ALGS '/1H,' IFR',I4)

IF(IFR .GT. 0
GO TO 100
20 DO 60 I=1,10
60 XER(I) = 0.0
GO TO 200
100 DO 120 I =1,10
120 XER(I) = XX(I)
200 DO 10 I=1,5
25 A(I) = DCOS(XER(I+1))
10 B(I) = DSIN(XER(I+1))

S COORDINATE SYSTEM - CE error
30 XS = 0.0
30 YS = DSIN(XER(1))
ZS = DCOS(XER(1))

E COORDINATE SYSTEM - SIC rotation
G = ((((E6*SIC+E5)*SIC+E4)*SIC+E3)*SIC+E2*SIC+E1
35 XE = ZS*DCOS(SIC+G)
Transform vector to inertial reference system.
CALL TRAN1(XE, YE, ZE, XR, YR, ZR, GAM)

IF(IFR .GT. 0)
GO TO 600
XRL = XR
YRL = YR
ZRL = ZR

GO TO 900

XRD = XR - XRL
YRD = YR - YRL
ZRD = ZR - ZRL
GAML = DATAN2(YRL, XRL)

GAMX = DATAN2(YR, XR)
SICL = DARSIN(ZRL)
SICA = DARSIN(ZR)
GAMD = GAMX - GAML
SICD = SICA - SICL

IF(IPR(7) .GT. 0) WRITE(3,1060)
XRL, YRL, ZRL, XRD, YRD, ZRD, GAML
1, GAMX, GAMD, SICL, SICA, SICD

1060 FORMAT(1H, 'XRL, YRL, ZRL', 3F10.6, 'XRD, YRD, ZRD', 3F10.6)

Calculate SUN unit vector in inertial reference system.
SX = DCOS(ELP)*DCOS(ALP)
SY = DCOS(ELP)*DSIN(ALP)
SZ = DSIN(ELP)

Calculate 2 times the angle between sun unit vector mirror normal.
TCOS2 = 2.0*SX*XR + SY*YR + SZ*ZR

TX = -SX + TCOS2*XR
TY = -SY + TCOS2*YR
TZ = -SZ + TCOS2*ZR

Calculate the pivot point offset vector.

RX = (CX + EX*DCOS(SIC) - AX*DSIN(SIC))
 *DCOS(GAM)
RY = RX * DSIN(GAM) / DCOS(GAM)
RZ = EX * DSIN(SIC) + AX*DCOS(SIC)

IF(IPR(2) .GT. 0) WRITE(3,1010)
 SX,SY,SZ,TX,TY,TZ,RX,RY,RZ
1010 FORMAT(1H ,'SX,SY,SZ',3F10.6,'TX,TY,TZ',
 3F10.6,'RX,RY,RZ',3F10.6)

Transform vector to inertial reference system.

CALL TRAN1(RX,RY,RZ, HX,HY,HZ,GAM)
IF(IPR(2) .GT. 0) WRITE(3,1020) HX,HY,HZ
1020 FORMAT(1H ,'HX,HY,HZ',3F10.6)

Transform beam vector to aimpoint reference system.

CALL TRAN2(TX,TY,TZ,TTX,TTY,TTZ, CA - PI)
Transform pivot point vector to aimpoint reference system.

CALL TRAN2(HX,HY,HZ, HTX,HTY,HTZ, CA - PI)
IF(IPR(2) .GT. 0) WRITE(3,1030)
 TTX,TTY,TTZ,HTX,HTY,HTZ
1030 FORMAT(1H ,'TTX,TTY,TTZ",3F10.6,'HTX,HTY,
 HTZ",3F10.6

Calculate scale factor.

SCA = ABS((GRANGE - HTX)/TTX)

XB = GRANGE
YB = HTY + TTY*SCA
ZB = HTZ + TTZ*SCA

Calculate beam error.

ERAS = DATAN2(YB/XB)
ERES = DATAN2(ZB , DSQRT(YB**2 + XB**2)) - CEE
SUBROUTINE TRAN1(XE, YE, ZE, XR, YR, ZR, GAM)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
COMMON/TRAN1/A, B
COMMON/PRINT/IPR(20)
DIMENSION A(10), B(10)

H COORDINATE SYSTEM - BS error
15
XH = XE*A(1) - ZE*B(1)
YH = YE
ZH = ZE*A(1) + XE*B(1)

D COORDINATE SYSTEM - AH error
20
XD = XH
YD = YH*A(2) + ZH*B(2)
ZD = ZH*A(2) - YH*B(2)

B COORDINATE SYSTEM - GAM rotation
25
XB = XD*DCOS(GAM) - YD*DSIN(GAM)
YB = YD*DCOS(GAM) + XD*DSIN(GAM)
ZB = ZD

A COORDINATE SYSTEM - CR error
30
XA = XB*A(3) + YB*B(3)
YA = YB*A(3) - XB*B(3)
ZA = ZB

X, Y, Z PRIME COORDINATE SYSTEM
35
XP = XA
YP = YA*A(4) + ZA*B(4)
ZP = ZA*A(4) - YA*B(4)
R COORDINATE SYSTEM - BR error

XR = XP*A(5) - ZP*B(5)

IF (IPR(2) .GT. 0) WRITE(3,1010) XE,YE,ZE,XH,YH,
ZH,XD,YD,ZD

1010 FORMAT(1HO,'XYZ/E',3F8.5,'XYZ/H',3F8.5
1 , 'XYZ/D',3F8.5,'XYZ/B',3F8.5
2 /H , 'XYZ/A',3F8.5,'XYZ/P',3F8.5
10 3 , 'XYZ/R',3F12.9)

RETURN
END

SUBROUTINE TRAN2(X1,Y1,Z1,X2,Y2,Z2, ANG)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

X2 = X1*DCOS(ANG) + Y1*DSIN(ANG)
Y2 = Y1*DCOS(ANG) + X1*DSIN(ANG)
Z2 = Z1

RETURN
END

SUPPORT ROUTINES

THESE ARE SUBROUTINES CALL BY THE ALIGNMENT ANALYSIS
PROGRAM.

SUBROUTINE DBDAT(ICOR)
IMPLICIT DOUBLE PRECISION (A-H-O-Z)
COMMON/DBFIX1/ A4,A5,A6,A7,A8,A9,A10,A11,A12
1 A13,A15,A17,B1,B2,B3,B4,B5
COMMON /DBFIX2/ A14,E1,E2,E3,E4,E5,E6,E7,
F1,F2,F3,F4,F5
30 COMMON /CON/ CXX,CY,A18,A19,A1
COMMON /DBFIX4/ A21,A22,A23,A24
COMMON /DBCAL2/ C5,C6,C7,C8,C9,D1,C10,D4,D5,D6,
D7,D8,D9,D10,D11
1,D12,D13,C11,PI
35 COMMON /HEL/ AX,BX,CX,AX1,BX1,CX1
COMMON /AIMP/ CA,CEE,GRANGE
COMMON /ERROR/ XX(10)
COMMON/D123/DE1, DE2, DE3
COMMON/PRINT/IPR(20), ICF(3)
DATA A1/7.1006019D0/, A18/.5730726D0/, A19/.8195046D0/
SUN ELEVATION AND AZIMUTH ANGLE CONSTANTS
DATA A4/6.2297615D0/, A5/.00071674874D0/, A6/4.8720754D0/
1 A7/0.00071678297D0/, A8/.033380469D0 /
10 A9/0.000377515D0/
2, A10/0.409143225D0/, A11/0.25907058D-9/, A12/.26179939D0/
3, A13/0.05D0/, A14/0.2D0 /, A15/1.7399359D0/
4, A17/0.87918216D-17/, A21/0.0002441406D0/, A22/0.08976D0 /
15 A23/11.1408D0/, A24/200.0D0/
5,

REFRACTION CORRECTION CONSTANTS
DATA B1/-9.036938093D-5/, B2/-1.600076095D-5/, B3/2.948324656D-4/
20 B4/-3.278909000D-8/, B5/-1.234081940D-8/

GRAVITATIONAL CORRECTION CONSTANTS
DATA E1/0.0D0/, E2/0.00357052D0/, E3/-0.00750968D0/, E4/.0121311D0/
25 E5/-0.00801586D0/, E6/.00183415D0/

HELIOSTAT OFFSET CONSTANTS
DATA E7/897.893D0/
30
JACK TRANSFER CONSTANTS
DATA F2/12491.59698D0/, F3/0.1705025D0/, F4/1.033782D0/
35
F5/-6884.0D0/
PI=3.141592654D0
NER = 13736.84
TILT AND NON-ORTHOGONALITY CALCULATIONS

DE1 = DATAN2(SIN(XX(6))*COS(XX(5)), SIN(XX(5)))
IF(XX(5)*XX(6) .EQ. 0.0) DE1 = 0.0DO
100 DE2 = DARSIN(-DSIN(DE1)*DSIN(XX(6)))
5 /DCOS(XX(5))
1 - DSIN(XX(5))*DCOS(DE1)
2 + DSIN(DE1)*DTAN(XX(5))*DSIN(XX(5))
*DSIN(XX(6))

DE3 = 0.0
10 WRITE(6,1000) DE1,DE2,DE3
1000 FORMAT(1H ,'DE1',F11.6,'DE2',F11.6,'DE3',F11.6)
AX = 0.0D0
BX = 2.25D0
CX = 0.958333D0
15 AX1 = 0.0D0
BX1 = 2.25D0
CX1 = 0.958333D0
IF(ICF(3) .EQ. 0)
GO TO 120
20 AX = 0.0D0
BX = 0.0D0
CX = 0.0D0
AX1 = 0.0D0
BX1 = 0.0D0
25 CX1 = 0.0D0
120 C = CX1
IF(CX1 .EQ. 0.0) C = 0.00001
D1 = 0.0
D2 = 0.0
30 D3 = 0.0
IF(ICOR .EQ. 0)
GO TO 200
D1 = DE1
D2 = DE2
35 D3 = DE3
1 200 C5 = DCOS(CEE)*DSIN(CA)
C6 = DCOS(CEE)*DCOS(CA)
C7 = GRANGE/C
C8 = DTAN(CEE)
C9 = (C/GRANGE)**2+1
C10 = 2*C/GRANGE
C11=C8**2+C9

D4=DCOS(D1)
D5=DSIN(D1)
D6=DSIN(D2)
D7=DCOS(D2)
D8=DSIN(D1)*DCOS(D2)
D9=DCOS(D2)*DCOS(D1)
D10=DSIN(D2)*DSIN(D1)
D11=DSIN(D2)*DCOS(D1)
D12=DCOS(D3)
D13=DTAN(D3)
RETURN
END

SUBROUTINE SPOS(TC,ELER,AZIM)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
REAL JCENT
COMMON /DBFIX1/ A4,A5,A6,A7,A8,A9,A10,A11,A12,
1 A13,A15,A17,B1,B2,B3,B4,B5
COMMON /CON/ CX,CY,A18,A19,A1
COMMON/PRINT/IPR(20),ICF(3)
DIFF24=CX+TC
30 JCENT=CY
GSTOH=A15+A7*JCENT+A17*(JCENT**2)
ANGCR=A4+A5*DIFF24
ECLL=(A6+A7*DIFF24*A8*DSIN(ANGCR)+A9*DSIN
(2*ANGCR))
35 ECLO=(A10-A11*DIFF24)
RTAS=DATAN2(DSIN(ECLL)*DCOS(ECLO),DCOS(ECLL))
59 SLSE=DSIN(ECLL)*DSIN(ECLO)
60 DECL=DATAN2(SLSE,DSORT(1.0-SLSE**2))
 TMCR=A12*(1.0027379093*TC-A1
 HANG=GSTOH+TMCR-RTAS
5 ELEV=DA5R5N(A18*DSIN(DECL)+DCOS(DECL)*DCOS
 (HANG)*A19)
 IF(ELEV.LT.A13)ELEV=A13
 AZIM=-DATAN2(DSIN(HANG),(DCOS(HANG)*A18-DTAN
 (DECL)*A19))
10 RC=B1*(ELEV)+B2+B3*(1/ELEV)+B4*((1/ELEV)**2)+B5*
 ((1/ELEV)**3)
 ELER=ELEV+RC
 T1 = ELER
 DEGR=180.0/3.141592654
15 T1=T1*DEGR
 T2=A5IM*DEGR
 IED=T1
 IEM=ABS(T1-IED)*60.0
 TES=ABS(T1-IED)*3600.0-IEM*60
20 IAD=T2
 IAM=ABS(T2-IAD)*60.0
 TAS=ABS(T2-IAD)*3600.0-IAM*60.0
200 FORMAT(IHO,'TIME=',F10.6,' ELEV=',F10.6,' ('I4,
25 'D',I3,'M',F6.2,
 1,'S) AZIM=',F10.6,'(',I4,'D',I3,'M',F6.2,'S)')
 IF(IPR(3).GT.0) WRITE(6,210) TC,ELEV,IED,
 IEM,TES,AZIM,IAD,
 1 IAM,TAS
 IF(IPR(3).GT.0) WRITE(6,210) ANGCR,ECLL,ECLO,
30 RTAS,DECL,HANG
210 FORMAT(1H5,' ANGCR,ECLL,ECLO,RTAS,DECL,HANG
 =',6E16.9)
 RETURN
END
35 SUBROUTINE CXCY(IYEAR, MONTH, IDAY)
 IMPLICIT INTEGER*2 (I-N)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION XJUDAT,JD1958,JD1900,JD
COMMON /CON /CX,CY,A18,A19,A1

TIME VARIABLES WERE CONVERTED FROM INTEGER*4 TO REAL
FOR PDP
JULIAN DATE VARIABLES WERE MADE DOUBLE PRECISION REAL

ARITHMETIC STATEMENT FUNCTION

RNAINT(X) = AINT(X + 0.5)

DATA JD1958/2436203.5D0/,JD1900/2415020.0D0/

THE FOLLOWING THREE STATEMENTS WOULD BE VALID IF
32-BIT INTEGER CALCULATIONS WERE PERMISSIBLE.

++ JD =IDAY+1461*(IYEAR+4800+(MONTH-14)/12)/4
++ 1 +367*(MONTH-2-(MONTH-14)/12*12)/12
++ JD = JD-32075-3*((IYEAR+4900+(MONTH-14)
/12)/100)/4

FJD2 = RNAINT(FLOAT(IYEAR+4800+
(MONTH-14)/12))
FJD3 = 367*(MONTH-2-(MONTH-14)/12*12/12
FJD4 = RNAINT(FLOAT((IYEAR+4900+
(MONTH-14)/12)/100))
TYPE 8020, FJD2,FJD3,FJD4

8020 FORMAT (' FJD2, FJD3, FJD4 = ',3G16.8)
JD = IDAY + RNAINT(1461.*FJD2/4) + FJD3
JD = JD - 32075. - RNAINT(3.FJD4/4.)

XJUDAT = JD - 0.5D0
CX=24.* (XJUDAT-JD1958)
CY=24.* (XJUDAT-JD1900)
.WRITEx,6,6 IYEAR,MONTH,IDAY,JD,XJUDAT,CX,CY

6 FORMAT('H','YYYY.MM.DD='I4,2(1H.,I2),' JD=
'D17.9,' XJUDAT='D17.9,'
FUNCTION TAN(A)
 * SUBROUTINE TO CALCULATE THE TANGENT OF AN ANGLE USING THE LIBRARY SINE AND COSINE ROUTINES.
 TAN = SIN(A) / COS(A)
END

FUNCTION ARCOS(X)
 *
 * FUNCTION SUBPROGRAM TO CALCULATE THE ARCOSINE USING THE LIBRARY ARCSINE ROUTINE 'AR SIN' FROM THE HAC LIBRARY.
 ARCOS = ARSIN(-X) + 1.5707963
END

FUNCTION ARSIN(SINANG)
 GIVEN SINE OF AN ANGLE, ARSIN RETURNS THE ANGLE IN RADIANS UTILIZING LIBRARY FUNCTION, ATAN
 DATA PI2/ 1.57079633/
 COSANG = SQRT(1. - SINANG**2)
 CHECK FOR 90 DEGREE ANGLE
 IF (.NOT.(COSANG .EQ. 0.)) GO TO 100
 THEN
 ARSIN = SIGN(PI2,SINANG)
 GO TO 200
 C ELSE
DOUBLE PRECISION FUNCTION DTAN(A)
* * SUBROUTINE TO CALCULATE THE TANGENT OF AN ANGLE USING THE LIBRARY
* SINE AND COSINE ROUTINES.
* *
DOUBLE PRECISION A
DTAN = DSIN(A) / DCOS(A)
RETURN
END

DOUBLE PRECISION FUNCTION DARCOS(X)
* * FUNCTION SUBPROGRAM TO CALCULATE THE ARCCOSINE USING THE LIBRARY
* ARCSINE ROUTINE 'ARSSIN' FROM THE HAC LIBRARY.
DOUBLE PRECISION X
DARCOS = DARSIN(-X) + 1.570796327D0
RETURN
END

DOUBLE PRECISION FUNCTION DARSIN(SINANG)

GIVEN SINE OF AN ANGLE, ARSSIN RETURNS THE ANGLE IN RADIANS UTILIZING LIBRARY FUNCTION, ATAN

DOUBLE PRECISION SINANG, PI2, COSANG

DATA PI2/ 1.570796327D0/
COSANG = DSORT(1.0 - SINANG**2)

. CHECK FOR 90 DEGREE ANGLE
It can readily be seen that there is provided by this invention a unique and novel method of automatically aligning a multitude of heliostats in a field by systematically determining errors in the sun beam position and correlating these errors to the heliostats alignment coefficients. Using this technique, the alignment of heliostats that may be changed after the initial alignment may be checked and the heliostats automatically adjusted to correct for any errors.

Although there have been illustrated and described specific structure, it is clearly understood that the same were merely for purposes of illustration and that changes and modifications may be readily made therein by those skilled in the art without departing from the spirit and the scope of this invention.

What I claim is:
It can readily be seen that there is provided by this invention a unique and novel method of automatically aligning a multitude of heliostats in a field by systematically determining errors in the sunbeam position and correlating these errors to the heliostats alignment coefficients. Using this technique, the alignment of heliostats that may be changed after the initial alignment may be checked and the heliostats automatically adjusted to correct for any errors.

Although there have been illustrated and described specific structure, it is clearly understood that the same were merely for purposes of illustration and that changes and modifications may be readily made therein by those skilled in the art without departing from the spirit and the scope of this invention.

What I claim is:

1. A heliostat track alignment method, comprising the steps of:
 a. Commanding a sunbeam centroid to a target location to establish a reference position;
 b. Searching for the actual sunbeam centroid position;
 c. Determining the sunbeam centroid position error;
 d. Analyzing the sunbeam centroid position error to correlate the sunbeam centroid position error to errors in a heliostat reference system;
 e. Changing the heliostat reference system to correct for track misalignment to establish a revised heliostat reference system; and
 f. Adjusting the heliostat track alignment to a new position based on the revised heliostat reference system to correct the track misalignment.

2. A heliostat track alignment method as recited in claim 1 wherein determining the sunbeam centroid position error generally consists of detecting the sunbeam centroid on the reference target utilizing a digital image radiometer to determine the actual sunbeam centroid position and comparing the actual sunbeam centroid position to the reference position.

3. A heliostat track alignment method as recited in claim 1 wherein analyzing the sunbeam centroid position error generally consists of the steps of:
 a. Transforming the sunbeam centroid position errors to heliostat reference system errors;
 b. Transforming the heliostat reference system errors to command reference differential errors; and
 c. Transforming the command reference differential errors to gimbal angle errors; and
 d. Transforming the gimbal angle errors to alignment errors.

4. A control system for automatically monitoring and correcting heliostat track alignment errors in a heliostat reference system, comprising:
 a. A heliostat control means connected to a multitude of heliostats for selectively controlling the position of the heliostats;
 b. A memory means for storing the track alignment reference data for the multitude of heliostats; and
 c. A central control means connected to the heliostat control means for automatically selecting a heliostat to be supervised, comparing its track alignment data to the track alignment reference data stored in the memory means, and commanding the heliostat control means to reposition the heliostat to correct for alignment errors.

5. A control system as recited in claim 4, wherein the central control means determines the deviations between the heliostat's sunbeam position and the reference position stored in the memory means, analyzes the sunbeam centroid position error to correlate the deviations to errors in the heliostat track alignment system, and revises the track alignment data for the heliostat reference system.
UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 4,564,275
DATED : 14 January 1986
INVENTOR(S) : Kenneth W. Stone

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 2, line 39, [33,668] should be 333,668.

In column 4, line 61, [F] should be hat.

Signed and Sealed this
date: Tenth Day of August, 1993

Attest:

[Signature]

MICHAEL K. KIRK
Attesting Officer
Acting Commissioner of Patents and Trademarks