

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
14 February 2008 (14.02.2008)

PCT

(10) International Publication Number
WO 2008/018656 A1(51) International Patent Classification:
H01M 2/16 (2006.01)

130-792 (KR). CHIN, Byung-Doo [KR/KR]; Jeongdeunmaeul 202-2102, 199, Jeongja-dong, Bundang-gu, Seongnam, Gyeonggi-do, 463-751 (KR).

(21) International Application Number:
PCT/KR2006/005364

(74) Agent: PARK, Jang-Won; Jewoo Bldg. 5th Floor, 200, Nonhyun-dong, Gangnam-ku, Seoul, 135-010 (KR).

(22) International Filing Date:
8 December 2006 (08.12.2006)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

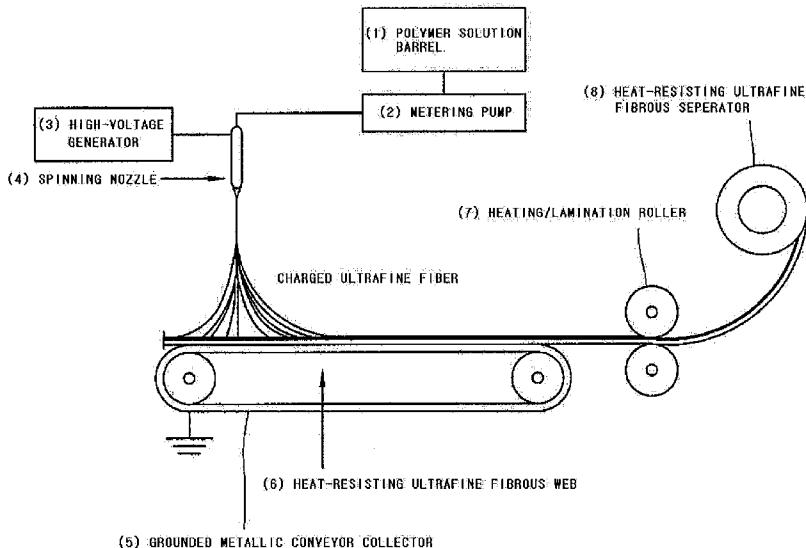
(25) Filing Language: Korean

(26) Publication Language: English

(30) Priority Data:
10-2006-0074389 7 August 2006 (07.08.2006) KR

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY [KR/KR]; 39-1, Hawolgok-dong, Sungbook-ku, Seoul, 136-791 (KR).


(72) Inventors; and

(75) Inventors/Applicants (for US only): JO, Seong-Mu [KR/KR]; 177-14, Seongbuk 1-dong, Seongbuk-gu, Seoul, 136-825 (KR). KIM, Dong-Young [KR/KR]; Sin Hyundai Apt. 1-1103, 65, Hoegi-dong, Dongdaemun-gu, Seoul,

Published:
— with international search report

[Continued on next page]

(54) Title: HEAT RESISTING ULTRAFINE FIBROUS SEPARATOR AND SECONDARY BATTERY USING THE SAME

(57) Abstract: A heat-resisting ultrafine fibrous separator of the present invention is prepared by an electrospinning process, formed of ultrafine fibers of heat-resisting polymer resin having a melting point more than 1800C or not having the melting point, or ultrafine fibers of polymer resin capable of swelling in an electrolyte, together with the ultrafine fibers of heat-resisting polymer resin. Also, polyolefine fine particles providing a shutdown function are dispersed in the heat-resisting resin or the polymer resin capable of swelling in the electrolyte. The heat-resisting ultrafine fibrous separator of the present invention has the shutdown function, low thermal contraction, thermal endurance, excellent ionic conductivity and excellent adhesive property with an electrode, so a battery having excellent cycling characteristics, and having high-energy density and high capacity can be prepared.

WO 2008/018656 A1

— *with amended claims*

HEAT RESISTING ULTRAFINE FIBROUS SEPARATOR AND

SECONDARY BATTERY USING THE SAME

TECHNICAL FIELD

5 The present invention relates to a heat resisting ultrafine fibrous separator, and more particularly, to heat resisting ultrafine fibrous separator having a shut-down function, excellent thermal endurance and excellent ionic permeability, accordingly having excellent charging/discharging characteristics, and an electrochemical device using the same.

10

BACKGROUND ART

As the needs of the consumers have been changed due to digitization and high-efficiency of electronics products, a new trend is driven to develop thin and light batteries with high capacity by high-energy density. And, in 15 order to deal with problems in the future energy and environment, the developments for hybrid electric vehicles or electric vehicles, and fuel cell vehicles have actively been progressed. Accordingly, large-sized batteries for an automobile electric power source are required.

A secondary battery including a lithium ion secondary battery, a lithium 20 ion polymer battery and a super capacitor (electric double layer capacitor and pseudo-capacitor), which has a high-energy density and a large capacity, should have a range of relatively high operating temperature, and the temperature thereof would increase when it is continuously used in a high-rate charging/discharging state, accordingly, it requires thermal 25 endurance and thermal stability for a separator used for these batteries higher than those which are required in a general separator. Also, it requires

excellent battery characteristics such as rapid charging/discharging and high ionic conductivity even at a low temperature.

A separator is disposed between an anode and a cathode of the battery for insulation, holds an electrolyte to provide a passage for an ionic 5 conduction, and has a shutdown function closing pores as the separator is partially melt to block an electric current when the temperature of the battery excessively rises.

When the separator is melt as the temperature goes higher, then a big hole is made, causing a short circuit between the anode and the cathode.

10 This temperature is called a "short circuit temperature." Generally, a separator should have a low shutdown temperature and a higher short circuit temperature. When a battery abnormally generates heat, a polyethylene separator is contracted at a temperature more than 150°C and exposes the electrode portion thereof, indicating the possibility to cause the short circuit.

15 Therefore, it is very important for the secondary battery of a high-energy density and a large size to have both the shutdown function and thermal endurance. That is, a separator is needed, which has less thermal contraction because of excellent thermal endurance and excellent cycling capability according to high ionic conductivity.

20 A lithium ion battery using a polyolefine separator and a liquid electrolyte, or a lithium ion polymer battery using a gel-coated polyolefine separator or using a gel polymer electrolyte film, in a conventional art, is very insufficient to be used for a battery having a high-energy density and a high capacity in an aspect of thermal endurance. Therefore, the thermal 25 endurance required from batteries having a high capacity and a large size for

automobiles is not satisfying a requirement for safety.

- In order to solve the above-mentioned problems, in United States Patent Laid Open Publication No. 2006/0019154 A1, there is provided a heat-resisting polyolefine separator, in which the polyolefine-based separator 5 is impregnated in a solution of polyamide, polyimide and polyamidimide having a melting point more than 180°C, and then is immersed into a coagulation solution, thereby extracting a solvent and adhering a porous heat-resisting resin thin layer thereto, claiming that it has less thermal contraction, excellent thermal endurance and excellent cycling performance.
- 10 The heat-resisting thin layer provides porosity through the solvent extraction, and the polyolefine separator is limited to use, of which air permeability is less than 200sec/min.
- In Japanese Patent Laid Open Publication No. 2005-209570, in order to secure sufficient safety for a high-energy density and a large size, there is 15 provided a polyolefine separator, in which both surfaces of the polyolefine separator is deposited with a heat-resisting resin solution such as aromatic polyamide, polyimide, polyethersulfon, polyetherketon, and polyetherimide having a melting point more than 200°C, and then is immersed-washed-dried in a coagulation solution, thereby adhering to a heat-resisting resin. In order 20 to reduce the deterioration of the ionic conductivity, the phase separating agent for providing a porosity is contained in the heat-resisting resin solution and is limited to the heat-resisting resin layer of 0.5-6.0g/m².
- However, immersion in the heat-resisting resin causes pores of the polyolefine separator to be blocked and the movement of the lithium ion to be 25 restricted, resulting in deterioration of charging/discharging characteristics.

Thereby, even though thermal endurance is secured, the need for a large-capacity battery for automobiles is not satisfied. Further, even though the porous structure of the polyolefine porous film is not blocked by the immersion of the heat-resisting resin, the porosity of the polyolefine separator 5 which is conventionally used is about 40% and the size of the pore is several tens nm, so there is limited on ion conductivity for large capacity batteries.

In United States Patent Laid Publication No. 6,447,958 B1, there is provided a preparation process of a heat-resisting separator, that is, a slurry made through a dissolution and a dispersion of ceramic powder and 10 heat-resisting nitrogen-contained aromatic polymer in an organic solvent performs a function as a support, then coated with porous fabric cloth, such as polyolefine, rayon, vinylon, polyester, acryl, polystyrene, nylon, etc, non-woven fabric, paper, porous film and so on, from which the solvent is eliminated. But, the preparation process for the heat-resisting polymer layer, 15 in which the heat-resisting polymer layer is deposited and then is immersed-washed-dried in the coagulation solution, is very complicated and requires high preparing cost.

In Japanese Patent Laid Open Publication No. 2001-222988 and 2006-59717, there is provided a heat-resisting electrolyte film, in which fabric 20 cloth, non-woven fabric, cloth, porous film, etc. of polyaramide and polyimide having a melting point more than 150°C are impregnated with polymer gel electrolyte such as polyethylene oxide, polypropylene oxide, polyether, polyvinylidene, etc.. However, even though thermal endurance is secured as required, in the aspect of ionic conductivity, the movement of the ion in the 25 support or the heat-resisting aromatic polymer layer is still limited, similar to

that of the separator or the gel electrolyte in the conventional lithium ion battery.

Therefore, the thermal endurance and the ionic conductivity still can not be satisfactory at the same time, there is nothing mentioned about the 5 shutdown function of the separator and it is not still satisfactory for a battery having a high-energy density and a large capacity, such as for automobiles requiring excellent functions in severe conditions such as thermal endurance and rapid charging/discharging.

10

DISCLOSURE OF THE INVENTION

Technical Problem

To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described herein, there is provided a separator having a shutdown function, low thermal 15 contraction, thermal endurance, excellent ionic conductivity and adhesive property with an electrode, thereby, usable for a secondary battery including a lithium ion secondary battery, a lithium ion polymer battery and a super capacitor a battery, which has excellent cycling characteristics and has a high-energy density and a high capacity when a battery is prepared, and a 20 secondary battery using the same

Technical Solution

To achieve these and other advantages and in accordance with an aspect of the present invention, there is provided a heat-resisting ultrafine fibrous separator, in which a heat-resisting polymeric material having a 25 melting point more than 180°C or not having a melting point exists in a fibrous

phase formed by electrospinning.

Preferably, the separator may further include a fibrous phase formed by electrospinning of a swelling polymeric material which swelling occurs in an electrolyte.

5 Further, the electrospinning may include electro-blown, meltblown, or flash spinning.

Further, the separator may further include polyolefine-based fine particles.

Meanwhile, to achieve these and other advantages and in accordance
10 with another aspect of the present invention, there is provided a secondary battery including two different electrodes; a heat-resisting ultrafine fibrous separator intervened between the two electrodes, in which a heat-resisting polymeric material having a melting point more than 180°C or not having the melting point exists in a fibrous phase by the electrospinning; and an
15 electrolyte.

Preferably, the separator may further include a fibrous phase formed by the electrospinning of a swelling polymeric material in which swelling occurs in the electrolyte.

20

EFFECT OF THE INVENTION

A heat-resisting ultrafine fibrous separator in accordance with the present invention has a shutdown function, low thermal contraction, thermal endurance, excellent ionic conductivity and excellent adhesive property with an electrode, so a battery having excellent cycling characteristics and having
25 a high-energy density and a high capacity can be prepared. Since forming an

ultrafine fibrous layer as well as removing solvent and forming pores are performed at the same time through an electrospinning process, so it can be prepared in a very simple and easy process compared to the process in the conventional art.

5 Therefore, the heat-resisting ultrafine fibrous separator is particularly useful to electrochemical devices (a secondary battery including a lithium ion secondary battery, a lithium ion polymer battery and a super capacitor) requiring high thermal endurance and thermal stability, such as a hybrid electric automobile, an electric automobile and a fuel cell automobile.

10

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagram showing a preparation process of a heat resisting ultrafine fibrous separator by an electrospinning in accordance with an embodiment of the present invention,

15 Figure 2 is a SEM picture of surface of poly (meta-phenylene isophthalamide) ultrafine fibrous separator prepared by the electrospinning in accordance with an embodiment of the present invention,

Figure 3 is a diagram showing a preparation process of a secondary battery using the heat-resisting fibrous separator in accordance with an embodiment of the present invention,

20 Figure 4 is a graph showing a thermal behavior of a polyethylene porous film and a heat-resisting polymer ultrafine fibrous separator (Example 1-2).

25 MODES FOR CARRYING OUT THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the preferred embodiments of the heat-resistant separator having ultrafine fibrous layer according to the present invention.

The present invention provides a heat-resisting ultrafine fibrous separator having a shutdown function, low thermal contraction, thermal endurance, excellent ionic conductivity and adhesive property with an electrode, thereby, capable of preparing a battery having excellent cycling characteristics as well as a high-energy density and a high capacity.

The heat-resisting ultrafine fibrous separator is prepared by a process such as an electrospinning and formed of an ultrafine fibrous phase of heat-resisting polymeric resin having a melting point more than 180°C or not having the melting point.

Further, the separator of the present invention may include a fibrous phase formed by the electrospinning of a swelling polymeric material which swelling occurs in an electrolyte, together with the ultrafine fibrous phase of the heat-resisting polymeric resin. Herein, the fibrous phase of the swelling polymeric material performs functions of reinforcing an adhesive force between the ultrafine fibrous separator and the electrode, and enhancing an electrolyte retention of the ultrafine fibrous separator.

Further, in the separator of the present invention, polyolefine-based fine particles providing a shutdown function may be spread in the heat-resisting resin or the swelling polymer resin.

According to the present invention, the electrospinning is a method for forming an ultrafine fibrous phase. A typical principle of electrospinning is mentioned in many literatures, such as G. Taylor. Proc. Roy. Soc. London A,

313, 453(1969); J. Doshi and D. H. Reneker, K. Electrostatics, 35 151(1995).

As shown in Figure 1, unlike the electrostatic spray in which liquid having low viscosity is sprayed in ultrafine droplets under an electric field in high-voltage more than a threshold voltage, the electrospinning refers to a process that 5 ultrafine fiber is formed when a polymeric solution or a polymer melt having sufficient viscosity is provided with a high-voltage electrostatic force. An electrospinning apparatus includes a barrel (1) storing a heat-resisting polymer resin solution, a metering pump (2) discharging the heat-resisting polymer solution at a constant speed and a spinning nozzle (4) connected to 10 a high-voltage generator (3). The polymer solution discharged through the metering pump is discharged as ultrafine fibers through the spinning nozzle charged by the high-voltage generator, and porous ultrafine fibers (6) are collected on a grounded collector that is shaped like a conveyor and moves at a constant speed. The polymer solution through the electrospinning process 15 results in the preparation of ultrafine fibers with several nm to several thousands nm, upon the formation of fibers, a porous web that is fused and laminated as a 3-dimensional network structure may also be prepared. This ultrafine fiber web is ultra-thin film, ultra light, extremely high in the ratio of volume to surface area compared to conventional fibers, and high in porosity 20 (refer to Figure 2).

The formation of the ultrafine fibrous phase in the present invention is possible by a modified process of the conventional meltblown spinning or flash spinning process, and the like, extending the concept of the above electrospinning process, for example, an electro-blowing method. Therefore,

the electrospinning process in the present invention may include all those methods.

In the cited references, a polyolefine separator is coated with a heat-resisting polymer resin solution dissolved in an organic solvent. A 5 heat-resisting polymer layer and a porous structure are formed by immersing-coagulating-washing-drying the separator coated using the coagulation solution of water or aqueous solution of the organic solvent. Accordingly, the porous structure of the polyolefine film is blocked by the heat-resisting polymer resin, thereby dropping the ionic conductivity, making it 10 very difficult to control the porosity and the pore size distribution of the heat-resisting polymer layer, and performing very complicated processes such as a solvent extraction, washing-drying, and the like.

However, in the formation of the heat-resisting ultrafine fibrous layer through the electrospinning according to the present invention, a solvent is 15 evaporated during the formation process of the ultrafine fibers and the porous structure is formed by a gap between the accumulated ultrafine fibers and fibers. Thereby a solvent extraction process or a pore formation process is not additionally required as used in the cited references for forming uniform pores.

20 A lithium secondary battery generates much gas inside the battery at the time of the first electric charging after the battery is sealed. This generation of gas causes bubbles to be generated between the electrode and the polymer electrolyte layer, thereby rapidly deteriorating the battery performance due to poor contact. The coated heat-resisting porous layer in 25 the cited references may cause the deterioration in the battery performance due to the generated gas. However, the heat-resisting ultrafine fibrous layer in

accordance with the present invention does not cause problems due to the gas generation.

The heat-resisting polymer resin used in the present invention is heat-resisting resin having a melting point more than 180°C, so that the 5 melt-down of the separator can be prevented even if the temperature continually rises. For example, the heat-resisting polymer resin forming the heat-resisting polymer ultrafine fibrous layer includes aromatic polyester, such as polyamide, polyimide, polyamidimide, poly(meta-phenylene isophthalamide), polysulfon, polyether keton, polyether imide, polyethylene 10 terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, etc., a polyphosphazene group, such as polytetrafluoroethylene, poly diphenoxy phosphazene, poly{bis[2-(2-methoxyethoxy)phosphazene]}, polyurethane copolymer including polyurethane and polyetherurethane, resin having a melting point more than 180°C or not having the melting point, such as 15 cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, etc., and the like. Herein, the resin not having the melting point refers to the resin which is burned without a melted process even at a temperature more than 180°C. Preferably, the heat-resisting polymer resin used in the present invention is dissolved in an organic solvent for an ultrafine fiberization such as 20 the electrospinning.

Preferably, in order to enhance an adhesive force between the polymeric ultrafine fibers and an electrode, an adhesive force between the heat-resisting ultrafine fibers, and the retention capacity of electrolyte, the heat-resisting ultrafine fibrous separator according to the present invention 25 may contain ultrafine fibers of polymer resin having a swelling characteristic in

the electrolyte.

This swelling polymer resin is not limited to a certain type as long as it can be formed into ultrafine fibers by the electrospinning process. As examples of the resin having the swelling characteristic in the electrolyte are as follows:

5 polyvinylidene fluoride, poly(vinylidene fluoride-co-hexafluoropropylene), perfluoropolymer, polyvinylchloride or polyvinylidene chloride and copolymer thereof, polyethylene glycol derivatives including polyethylene glycol dialkylene ether, polyethylene glycol dialkylene ester, poly-oxide including poly(oxymethylene-oligo-oxyethylene), polyethylene oxide and polypropylene

10 oxide, polyvinyl acetate, poly(vinylpyrrolidone-vinyl acetate), polystyrene, and polystyrene acrylonitrile copolymer, polyacrylonitrile copolymer including polyacrylonitrile, polyacrylonitrile methylmethacrylate copolymer, polymethylmethacrylate, polymethylmethacrylate copolymer and mixtures thereof. However, without being limited to the aforementioned examples, any

15 polymer may be used as long as it has an electrochemical stability, an affinity to organic electrolyte solution, and an excellent adhesive force with the electrode. In the present invention, a fluorine resin, such as polyvinylidene fluoride, is more preferable.

Preferably, the heat-resisting ultrafine fibrous separator in accordance with the present invention may contain polyolefine-based fine particles in order to have the shutdown function. The polyolefine-based fine particles used in the present invention are polyolefine-based resin including polyethylene(PE), polypropylene(PP), and copolymer thereof. The fine particles have 100-180°C of the melting point for the shutdown function, and

25 preferably 120-150°C.

The size of the fine particles should be smaller than the size of pores of the heat-resisting ultrafine fibrous separator, since the fine particles larger than the pores may block the pores, thereby ionic conduction may be prevented. In addition, when the polyolefine particles are too large, it is 5 difficult to perform the eletrospinning process with a polymer solution in which the polyolefine particles are dispersed, thereby to form the ultrafine fibers. Therefore, the size of the polyolefine fine particles is $0.05\text{-}5\mu\text{m}$, preferably 0.05- $3\mu\text{m}$, and more preferably smaller than $1\mu\text{m}$.

10 Preferably, the content of the polyolefine fine particles is as much as to implement the shutdown function. Properly, it is in the range of $1\text{-}50\text{g}/\text{m}^2$ with respect to the heat-resisting ultrafine fibrous separator.

According to the present invention, an average diameter of the fiber forming the heat-resisting ultrafine fibrous separator greatly affects the porosity and the pore size distribution of the separator. That is, the shorter the 15 diameter of the fiber, the smaller the pore size, thereby being smaller the pore size distribution. Further, the shorter the diameter of the fiber, the more increased the specific-surface area of the fiber, thereby increasing the holding capacity of the electrolyte and decreasing the possibility of the electrolyte being leaked. Thus, the diameter of the fiber in the heat-resisting ultrafine 20 fibrous separator is in the range of $1\text{-}3000\text{nm}$, preferably $1\text{-}1000\text{nm}$, and more preferably $50\text{-}800\text{nm}$.

And, the pore size of the heat-resisting ultrafine fibrous separator is in the range of $1\text{-}5000\text{nm}$, preferably $1\text{-}3000\text{nm}$, and more preferably $1\text{-}1000\text{nm}$, so that an excellent holding capacity of the electrolyte can be maintained 25 without leakage.

The porosity of the heat-resisting ultrafine fibrous separator is 30-95%, and preferably 40-90%. If the porosity is below 30%, the ionic conductivity may decrease, and if it is over 80%, mechanical characteristics of the separator may be deteriorated.

5 The thickness of the heat-resisting ultrafine fibrous separator in accordance with the present invention is 5-200 μm , preferably 5-100 μm , and more preferably 5-30 μm .

According to the present invention, the heat-resisting ultrafine fibrous phase forming the heat-resisting fibrous separator and the ultrafine fibrous 10 phase of polymer resin having the swelling characteristic in the electrolyte are mixed to form the separator, meanwhile, the heat-resisting ultrafine fibrous layer and the ultrafine fibrous layer of the polymer resin having the swelling characteristic in the electrolyte can be laminated alternately to form the separator.

15 According to the present invention, the content of the ultrafine fibrous phase of the polymer resin which forms the heat-resisting ultrafine fibrous separator and has the swelling characteristic in the electrolyte is 1-95 wt% with respect to polymer components of the separator.

According to the present invention, an inorganic additive may be added 20 into the heat-resisting ultrafine fibrous layer, that is, the heat-resisting polymer resin, or the polymer resin having the swelling characteristic, or both thereof, in order to enhance mechanical characteristics, ionic conductivities and electrochemical characteristics. The inorganic additives which may be used in the present invention are TiO_2 , BaTiO_3 , Li_2O , LiF , LiOH , Li_3N , BaO , Na_2O , 25 Li_2CO_3 , CaCO_3 , LiAlO_2 , SiO_2 , Al_2O_3 , PTFE and mixtures thereof. The content

of the inorganic additives is generally 1-95 wt% with respect to the polymer forming an ultrafine fibrous layer, and preferably 5-50 wt%. In particular, it is preferable to use glass components containing SiO_2 in order to suppress an increase of a battery temperature due to a disintegration reaction between the 5 cathode and the electrolyte and a chemical reaction causing a gas generation.

In order to enhance the adhesive force between the ultrafine fibers and to adjust the porosity and the thickness of the separator, the heat-resisting ultrafine fibrous separator of the present invention, as shown in Figure 1, is 10 laminated by pressurization below a certain temperature, or as shown in Figure 3, is laminated by pressurization below a certain temperature after being inserted between the anode and the cathode. Herein, the lamination temperature is room temperature-180°C, preferably room temperature-150°C, and more preferably room temperature-120°C.

15 The heat-resisting ultrafine fibrous separator of the present invention, in order to enhance the mechanical characteristics, may be maintained between a melting point of a polymer forming the ultrafine fibers and a transition temperature of glass to enhance the crystallization, or may be processed with hot-drawing. The hot-drawing may be performed before the 20 lamination process or performed together with the lamination process.

In a secondary battery in accordance with another aspect of the present invention, a heat-resisting ultrafine fibrous separator in the present invention is inserted between an anode containing a positive active material and a cathode containing a negative active material, laminated, and then 25 injected with an organic electrolyte or a polymer electrolyte. The positive

active material may include lithium-cobalt complex oxide, lithium nickel complex oxide, nickel manganese complex oxide, olivin-type phosphate compound. The negative active material is not specifically limited to, as long as it can be used as anhydrous electrolyte battery such as a lithium 5 secondary battery. For example, there are carbon ingredients such as graphite and coke, tartaric oxide, metallic lithium, silicon dioxide, oxide titanium compound and mixtures thereof.

The kinds of lithium salts contained in the organic electrolyte or the polymer electrolyte are not specifically limited to, and can be any lithium salts 10 which is generally used in the lithium secondary battery field. For example, it can be one or a mixture of LiPF₆, LiClO₄, LiAsF₆, LiBF₄, LiCF₃SO₃, LiN(SO₂CF₃)₂, LiN(SO₂C₂F₅)₂, LiPF₆-x(C_nF_{2n+1})_x(1<x<6, N=1 or 2). Among them, LiPF₆ is more preferable. The concentration of lithium salts is 0.5~3.0M, but an organic electrolyte of 1M is generally used.

15 Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. It will also be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention.

20 [Example 1-1]

In order to prepare a heat-resisting polymer ultrafine fiber by an electrospinning, 10g of poly(meta-phenylene isophthal amide) and 5g of poly (vinylidene fluoride-co-hexafluoropropylene) copolymer (Kynar 2801) are added into 85g of dimethylacetamide(DMAc), and then stirred at a room 25 temperature, thereby a heat-resistant polymer resin solution is obtained. Also, the heat-resisting polymer resin solution is inputted to a barrel of an

electrospinning apparatus as shown in Figure 1, and then discharged using a metering pump at a speed of $150\mu\text{l}/\text{min}$. Herein, electric charge of 17kV is applied to a spinning nozzle (4) using a high-voltage generator, so that ultrafine fiber web with the thickness of $40\mu\text{m}$ is prepared from a mixture of 5 the poly (meta-phenylene isophthal amide) and the poly (vinylidene fluoride-co-hexafluoropropylene). That is, the fiber forming the separator includes a phase of a heat-resisting polymeric material and a phase of a swelling polymeric material.

An ultrafine fiber web which is the mixture of the poly (meta-phenylene isophthal amide) and the poly (vinylidene fluoride-co-hexafluoropropylene) 10 laminated by pressurization at a temperature of 100°C , so that a heat-resisting ultrafine fibrous separator having the thickness of $20\mu\text{m}$ is prepared. An apparent porosity, the electrolyte uptake (%), Shrinkage rates at the temperature of 120°C and 150°C of this separator are shown in Table 1.

15

[Example 1-2]

In order to prepare a heat-resisting polymer ultrafine fiber by an electrospinning, 15g of poly(meta-phenylene isophthal amide) is added into 20 85g of dimethylacetamide(DMAc), and then stirred at a room temperature, thereby a heat-resistant polymer resin solution is obtained. Also, 5g of poly (vinylidene fluoride) [Kynar 761] is dissolved in 95g of dimethylacetamide(DMAc), into which 10g of polyethylene fine powders (0.1 μm) having 132°C of softening point are dispersed to prepare a dispersed solution. Two polymer solutions are electrospun through separated spinning 25 nozzles, respectively, in a same discharging speed, accordingly, a web which

is a mixture of poly (meta-phenylene isophthal amide) ultrafine fibrous phase and poly (vinylidene fluoride)/ polyethylene ultrafine fibrous phase and has the thickness of $40\mu\text{m}$ is prepared. That is, the separator includes two kinds of fibers, one is a fiber including the fibrous phase of heat-resisting polymer material, the other is the fiber including the fibrous phase of swelling polymeric material and polyolefine-based fine particles.

The prepared web is laminated by compression at a temperature of 120°C , so that a heat-resisting ultrafine fibrous separator having the thickness of $20\mu\text{m}$ is prepared. An apparent porosity, the electrolyte uptake (%),
10 Shrinkage rates at the temperature of 120°C and 150°C of this separator are shown in Table 1.

[Example 1-3]

A web which is a mixture of poly (meta-phenylene isophthal amide) ultrafine fibrous phase and poly (vinylidene fluoride)/ polyethylene ultrafine fibrous phase and has the thickness of $60\mu\text{m}$ is prepared in the same method with the example 1-2, and then is laminated by compression at a temperature of 125°C , so that a heat-resisting ultrafine fibrous separator having the thickness of $20\mu\text{m}$ is prepared. An apparent porosity, the electrolyte uptake (%), Shrinkage rates at the temperature of 120°C and 150°C of this separator
20 are shown in Table 1.

[Example 1-4]

A web which is a mixture of poly (meta-phenylene isophthal amide)

ultrafine fibrous phase and poly (vinylidene fluoride)/ polyethylene ultrafine fibrous phase and has the thickness of $45\mu\text{m}$ is prepared in the same method with the example 1-2, except that polypropylene fine powders ($0.2\mu\text{m}$) having a softening point of 148°C is used, instead of polyethylene fine powders (0.1 μm) having a softening point of 132°C , and then is laminated by compression at a temperature of 140°C , so that a heat-resisting ultrafine fibrous separator having the thickness of $20\mu\text{m}$ is prepared. An apparent porosity, the electrolyte uptake (%), Shrinkage rates at the temperature of 120°C and 150°C of this separator are shown in Table 1.

10

[Example 1-5]

As the heat-resisting separator prepared in Example 1 is shown in Figure 3, the heat-resisting separator is inserted between the anode and the cathode, is experienced a lamination process for a hot-press by using a preheated roller at approximately 80°C , is immersed in a 1M LiPF₆ EC/DMC/DEC(1/1/1) solution, and then is injected by an electrolyte, and is vacuum-sealed with an aluminum plastic pouch, thus to prepare a lithium secondary battery. Then, the prepared lithium secondary battery is stored and aged at approximately 50°C before use. The capacity of the batteries maintained after a 200-cycling charging/discharging is performed at a room temperature is shown in Table 1.

[Comparison Example 1]

7.5g of poly (meta-phenylene isophthalamide) and 7.5g of poly

(vinylidene fluoride-co-hexafluoropropylene) copolymer (Kynar 2801) are added into 85g of dimethylacetamide (DMAc), and then is stirred at a room temperature, thereby a transparent heat-resisting polymer resin solution is obtained. A polyethylene porous film (Celgard® 2730) having a thickness of 5 μm and a porosity of 43% is impregnated into the heat-resisting polymer resin solution, thereby coating films having two surfaces, each surface having the thickness of 5 μm are prepared. And then, the coating films are immersed into a coagulation solution mixed with dimethylacetamide and water (1:1), washed, and then dried. An apparent porosity, the electrolyte uptake (%), 10 shrinkage rates at the temperature of 120 °C and 150 °C, and the capacity of the battery maintained after a 200-cycling charging/discharging is performed at a room temperature of this separator are shown in Table 1.

<Table 1>

	Thermal Shrinkage		Electrolyte solution uptake (%)	Apparent porosity (%)	Charging/discharging efficiency (%, 200cycle)
	120 °C	150 °C			
PE separator	10	38	119	45	
Comparison 1	0.15	2.3	125	-	83
Example 1-1	0.1	3.8	300	82	90
Example 1-2	0.2	2.3	340	83	97
Example 1-3	0.1	0.15	395	65.7	96
Example 1-4	0.12	0.18	320	76	96

15 [Example 2-1]

In order to prepare a heat-resisting polymer ultrafine fibrous separator by an electrospinning, a polyimide/poly (vinylidene fluoride-co-hexafluoropropylene) ultrafine fiber web having the thickness of

50 μm is prepared in the same method with Example 1-1, except for using a solution in which 10g of a polyimide [Matrimid 5218, Ciba Specialty Co.] and 10g of poly (vinylidene fluoride-co-hexafluoropropylene) copolymer (Kynar 2801) are added into 80g of a solution mixed with dimethylacetamide(DMAc) and tetrahydrofuran(7:3). And the web is laminated by compression at a temperature of 120°C, so that a heat-resisting ultrafine fibrous separator having the thickness of 20 μm is prepared. An apparent porosity, the electrolyte uptake (%), Shrinkage rates at the temperature of 120°C and 150°C, and the capacity of the battery maintained after a 200-cycling 10 charging/discharging is performed at a room temperature of this separator are shown in Table 2.

[Example 2-2]

A web which is a mixture of polyimide ultrafine fibrous phase and poly 15 (vinylidene fluoride-co-hexafluoropropylene)/polyethylene ultrafine fibrous phase and has the thickness of 60 μm is prepared in the same method with the example 1-2, except that polyimide [Matrimid 5218, Ciba Specialty Co.] is used instead of poly (meta-phenylene isophthal amide). And the prepared web is laminated by compression at a temperature of 120°C, so that a 20 heat-resisting ultrafine fibrous separator having the thickness of 20 μm is prepared. An apparent porosity, the electrolyte uptake (%), Shrinkage rates at the temperature of 120°C and 150°C, and the capacity of the battery maintained after a 200-cycling charging/discharging is performed at a room temperature of this separator are shown in Table 2.

[Example 2-3]

A heat-resisting polymer ultrafine fibrous separator, which is a mixture of a polytrimethylene terephthalate ultrafine fiber and a poly (vinylidene fluoride-co-hexafluoropropylene)/polyethylene ultrafine fibrous phase and has the thickness of 40 μm is prepared in the same method with the example 1-2, except for using a solution in which 10g of a polytrimethylene terephthalate (intrinsic viscosity of 0.92, Shell Co.) is dissolved into 90g of a solution mixed with trifluoroacetic acid and methylene chloride(1:1). And the prepared web is 10 laminated at a temperature of 120°C, so that a heat-resisting ultrafine fibrous separator having the thickness of 20 μm is prepared. An apparent porosity, the electrolyte uptake (%), Shrinkage rates at the temperature of 120°C and 150°C, and the capacity of the battery maintained after a 200-cycling 15 charging/discharging is performed at a room temperature of this separator are shown in Table 2.

[Example 2-4]

In order to prepare a heat-resisting polymer ultrafine fiber by an electrospinning, a web which is a mixture of a polyurethane ultrafine fiber and 20 a poly (vinylidene fluoride-co-hexafluoropropylene)/polyethylene ultrafine fibrous phase and has the thickness of 40 μm is prepared in the same method with the example 1-2, except for using a solution in which 15g of polyurethane [Pelletan2 2363-80AE, Dow Chemical Co.] is dissolved into 85g of a solution mixed with a dimethylacetamide(DMAc) and acetone(7:3). And the prepared 25 web is laminated by compression at a temperature of 120°C, so that a

heat-resisting ultrafine fibrous separator having the thickness of 20 μm is prepared. An apparent porosity, the electrolyte uptake (%), Shrinkage rates at the temperature of 120°C and 150°C, and the capacity of the battery maintained after a 200-cycling charging/discharging is performed at a room 5 temperature of this separator are shown in Table 2.

<Table 2>

	Thermal Shrinkage		Electrolyte solution uptake (%)	Apparent porosity (%)	Charging/discharging efficiency (%), 200 cycle)
	120°C	150°C			
Example 2-1	0.1	0.15	285	68	95.4
Example 2-2	0.11	0.16	270	73.4	93.8
Example 2-3	0.15	2.1	290	80	91
Example 2-4	0.20	3.5	320	81	97

Porosity measurement

10 An apparent porosity (%) of the heat-resisting ultrafine fibrous separator was determined according to the following formula.

$$P(\%) = \{1 - (\rho_M / \rho_P)\} \times 100\%$$

(P: apparent porosity, ρ_M : density of heat-resisting fibrous separator, ρ_P : density of heat-resisting polymer)

15

Measurement of an electrolyte uptake

The heat-resisting ultrafine fibrous separator of 3cm by 3cm prepared in Example 1-1, is immersed into 1M LiPF₆ EC/DMC/DEC(1/1/1) electrolyte solution for about 2 hours at a room temperature, and then any excessive 20 electrolyte remaining on the surface thereof is removed by a filter paper,

thereby weighing to determine an absorption rate of the electrolyte.

Measurement of thermal shrinkage

The heat-resisting ultrafine fibrous separator of 5cm by 2cm prepared
5 in Example 1-1, is inserted between two slide glasses, and then is tightened
by a clip, thereafter is left alone for 10 minutes at a temperature of 120°C and
150°C, respectively, so as to calculate a shrinkage rate.

Thermal behavior of separator

10 Researches on the thermal behavior of the heat-resisting fibrous
separator, that is, a shutdown function and a short circuit temperature, etc.
are measured in a speed of 10°C/min under an atmosphere filled with
nitrogen gas, using DSC-7 (Perkin-Elmer Co.).

15 Electrode preparation

In the aforementioned embodiments and comparison examples, for the
anode, slurry including PVdF binder, super-P carbon, and LiCoO₂ (product of
Japan Chemical Co.) is cast into an aluminum foil. For the cathode, slurry
including MCMB(product of Osaka Gas Co. Ltd.), PVdF, super-P carbon is
20 cast into a copper foil. A theoretical capacity of the electrode is 145mAh/g.
However, the anode and the cathode included in the lithium secondary
battery of the present invention are not limited to have the above-mentioned
construction. The lithium secondary battery according to the present invention
may be constructed by using the anode and the cathode which are widely
25 known to those skilled in the art. Further, in order to enhance an adhesive

force between particles and metallic foils, the slurries of the anode and the cathode are cast so that the thickness of the electrode can be approximately 50 μ m through a roll pressing.

5 Charging/discharging performance

The battery is charged in a condition for charging of a constant current and a constant voltage, which is 0.68 mA/cm²(0.2C) of a current density and 4.2V, and discharged to 2.75V in 3.4 mA/cm²(1C). The charging/discharging cycling test performed by assessing maintained capacity (%) after 200-cycling
10 at a room temperature.

CLAIMS

1. A heat-resisting ultrafine fibrous separator in which a heat-resisting polymeric material having a melting point more than 180°C or not having the 5 melting point exists in a fibrous phase formed by electrospinning.

2. The heat-resisting ultrafine fibrous separator of claim 1, wherein the heat-resisting polymeric material comprises one selected from a group of aromatic polyester, such as polyamide, polyimide, polyamidimide, 10 poly(meta-phenylene isophthalamide), polysulfon, polyether keton, polyether imide, polyethylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, etc., a polyphosphazene group, such as polytetrafluoroethylene, poly diphenoxy phosphazene, poly{bis[2-(2-methoxyethoxy)phosphazene]}, polyurethane copolymer including 15 polyurethane and polyetherurethane, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, or a combination thereof.

3. The heat-resisting ultrafine fibrous separator of claim 1, wherein the separator further comprises a fibrous phase which is formed by 20 electrospinning of a swelling polymeric material in which swelling occurs in an electrolyte.

4. The heat-resisting ultrafine fibrous separator of claim 3, wherein the separator comprises fibers having a fibrous phase of the heat-resisting 25 polymeric material and a fibrous phase of the swelling polymeric material.

5. The heat-resisting ultrafine fibrous separator of claim 3, wherein the separator comprises a fiber including the fibrous phase of the heat-resisting polymeric material and a fiber including the fibrous phase of the swelling 5 polymeric material.

6. The heat-resisting ultrafine fibrous separator of claim 3, wherein the content of the fibrous phase of the swelling polymeric material is 0-95 wt% with respect to the polymer components of the separator.

10

7. The heat-resisting ultrafine fibrous separator of claim 3, wherein the swelling polymeric material is one selected from a group of polyvinylidene fluoride, poly(vinylidene fluoride-co-hexafluoropropylene), perfluoropolymer, polyvinylchloride or polyvinylidene chloride and copolymer thereof, 15 polyethylene glycol derivatives including polyethylene glycol dialkylene ether, polyethylene glycol dialkylene ester, poly-oxide including poly(oxymethylene-oligo-oxyethylene), poly(ethylene oxide), polypropylene oxide, polyvinyl acetate, poly(vinylpyrrolidone-vinyl acetate), polystyrene, and polystyrene acrylonitrile copolymer, polyacrylonitrile copolymer including 20 polyacrylonitrile, polyacrylonitrile methylmethacrylate copolymer, polymethylmethacrylate, polymethylmethacrylate copolymer, or a combination thereof.

8. The heat-resisting ultrafine fibrous separator of claim 1 or claim 3, 25 wherein the electrospinning comprises electro-blown, meltblown, or flash spinning.

9. The heat-resisting ultrafine fibrous separator of claim 1 or claim 3, wherein the separator further comprises polyolefine-based fine particles.

5 10. The heat-resisting ultrafine fibrous separator of claim 9, wherein a melting point of the fine particles is in the range of 100-180°C.

11. The heat-resisting ultrafine fibrous separator of claim 9, wherein the size of the fine particles is in the range of 0.05~5 μ m.

10 12. The heat-resisting ultrafine fibrous separator of claim 9, wherein the content of the fine particles is in the range of 1~50g/m² with respect to the separator.

15 13. The heat-resisting ultrafine fibrous separator of claim 1 or claim 3, wherein an average diameter of the fibrous phase forming the separator is in the range of 1-3000nm.

14. The heat-resisting ultrafine fibrous separator of claim 1 or claim 3, 20 wherein a porosity of the separator is in the range of 30-80%.

15. The heat-resisting ultrafine fibrous separator of claim 1 or claim 3, wherein a thickness of the separator is in the range of 5~200 μ m.

25 16. The heat-resisting ultrafine fibrous separator of claim 1 or claim 3,

wherein the separator further comprise inorganic additives, and the inorganic additives is one selected from a group of TiO₂, BaTiO₃, Li₂O, LiF, LiOH, Li₃N, BaO, Na₂O, Li₂CO₃, CaCO₃, LiAlO₂, SiO₂, Al₂O₃, or a mixture thereof.

- 5 17. A secondary battery, comprising:
 two different electrodes;
 a separator inserted between the two electrodes and having the
heat-resisting ultrafine fibrous separator in claim 1 or claim 3; and
 an electrolyte.

10

18. The secondary battery of claim 17, wherein the separator is
coupled to at least one electrode of the two electrodes.

AMENDED CAIMS

received by the International Bureau on 07 December 2007(07.12.2007)

1. (amended) A heat-resisting ultrafine fibrous separator, comprising:
a fibrous phase which is formed by electrospinning of a heat-resisting
5 polymeric material having a melting point more than 180°C or not
having the melting point; and
a fibrous phase which is formed by electrospinning of a swelling
polymeric material in which swelling occurs in an electrolyte.

10 2. The heat-resisting ultrafine fibrous separator of claim 1, wherein the
heat-resisting polymeric material comprises one selected from a group of
aromatic polyester, such as polyamide, polyimide, polyamidimide,
poly(meta-phenylene isophthalamide), polysulfon, polyether keton, polyether
imide, polyethylene terephthalate, polytrimethylene terephthalate,
15 polyethylene naphthalate, etc., a polyphosphazene group, such as
polytetrafluoroethylene, poly diphenoxy phosphazene,
poly{bis[2-(2-methoxyethoxy)phosphazene]}, polyurethane copolymer including
polyurethane and polyetherurethane, cellulose acetate, cellulose acetate
butylate, cellulose acetate propionate, or a combination thereof.

20

3. (deleted)

4. (amended) The heat-resisting ultrafine fibrous separator of claim 1,
wherein the separator comprises fibers having a fibrous phase of the

heat-resisting polymeric material and a fibrous phase of the swelling polymeric material.

5. (amended) The heat-resisting ultrafine fibrous separator of claim 1,
5 wherein the separator comprises a fiber including the fibrous phase of the
heat-resisting polymeric material and a fiber including the fibrous phase of the
swelling polymeric material.

6. (amended) The heat-resisting ultrafine fibrous separator of claim 1,
10 wherein the content of the fibrous phase of the swelling polymeric material is
0-95 wt% with respect to the polymer components of the separator.

7. (amended) The heat-resisting ultrafine fibrous separator of claim 1,
wherein the swelling polymeric material is one selected from a group of
15 polyvinylidene fluoride, poly(vinylidene fluoride-co-hexafluoropropylene),
perfluoropolymer, polyvinylchloride or polyvinylidene chloride and copolymer
thereof, polyethylene glycol derivatives including polyethylene glycol
dialkylene ether, polyethylene glycol dialkylene ester, poly-oxide including
20 poly(oxymethylene-oligo-oxyethylene), poly(ethylene oxide), polypropylene
oxide, polyvinyl acetate, poly(vinylpyrrolidone-vinyl acetate), polystyrene, and
polystyrene acrylonitrile copolymer, polyacrylonitrile copolymer including
polyacrylonitrile, polyacrylonitrile methylmethacrylate copolymer,
polymethylmethacrylate, polymethylmethacrylate copolymer, or a combination
thereof.

8. (amended) The heat-resisting ultrafine fibrous separator of claim 1, wherein the electrospinning comprises electro-blowing, meltblown, or flash spinning.

5

9. (amended) The heat-resisting ultrafine fibrous separator of claim 1, wherein the separator further comprises polyolefine-based fine particles.

10. The heat-resisting ultrafine fibrous separator of claim 9, wherein a 10 melting point of the fine particles is in the range of 100-180 °C.

11. The heat-resisting ultrafine fibrous separator of claim 9, wherein the size of the fine particles is in the range of 0.05~5 μ m.

15 12. The heat-resisting ultrafine fibrous separator of claim 9, wherein the content of the fine particles is in the range of 1~50g/m² with respect to the separator.

20 13. (amended) The heat-resisting ultrafine fibrous separator of claim 1, wherein an average diameter of the fibrous phase forming the separator is in the range of 1-3000nm.

14. (amended) The heat-resisting ultrafine fibrous separator of claim 1, wherein a porosity of the separator is in the range of 30-80%.

15. (amended) The heat-resisting ultrafine fibrous separator of claim 1, wherein a thickness of the separator is in the range of 5-200 μ m.

5 16. (amended) The heat-resisting ultrafine fibrous separator of claim 1, wherein the separator further comprise inorganic additives, and the inorganic additives is one selected from a group of TiO₂, BaTiO₃, Li₂O, LiF, LiOH, Li₃N, BaO, Na₂O, Li₂CO₃, CaCO₃, LiAlO₂, SiO₂, Al₂O₃, or a mixture thereof.

10 17. (amended) A secondary battery, comprising:
two different electrodes;
a separator inserted between the two electrodes and having the heat-resisting ultrafine fibrous separator in claim 1; and
an electrolyte.

15

18. The secondary battery of claim 17, wherein the separator is coupled to at least one electrode of the two electrodes.

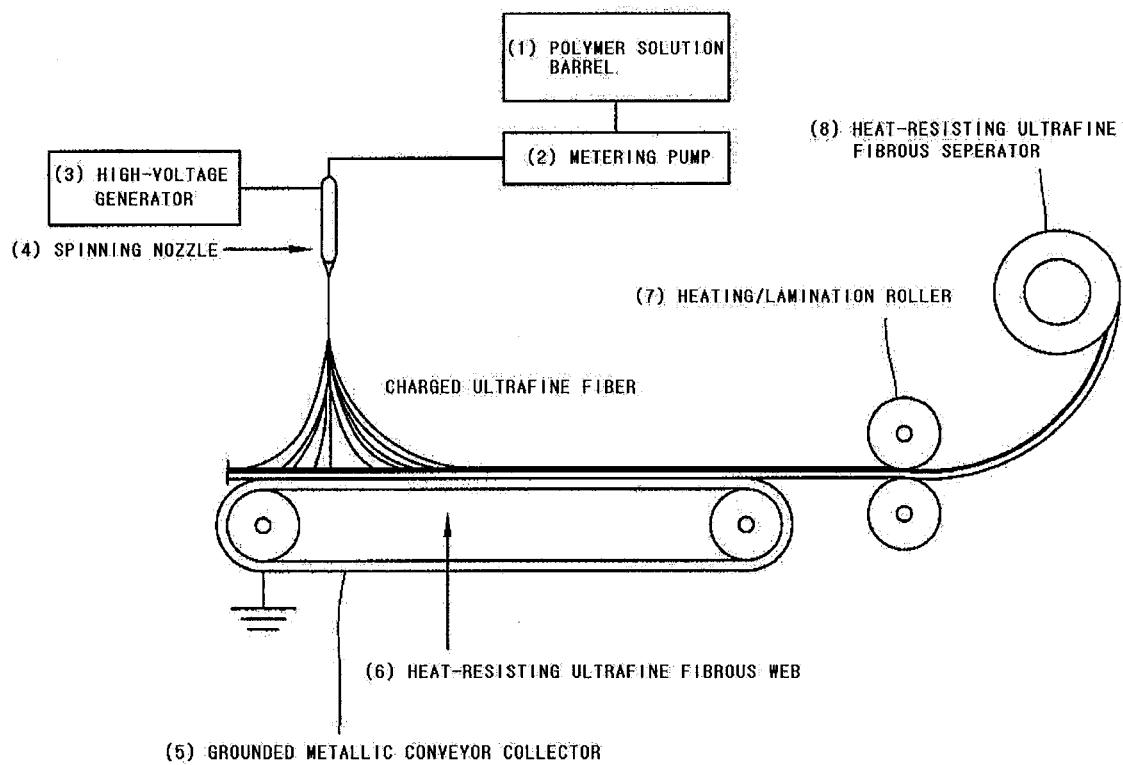
19. (new) A method for fabricating a heat-resisting ultrafine fibrous
20 separator, comprising:
electrospinning a mixing solution containing a heat-resisting polymeric
material having a melting point more than 180°C or not having the melting
point and a swelling polymeric material in which swelling occurs in an
electrolyte to form a ultrafine fiber web composed of a heat-resisting

polymeric ultrafine fibrous phase and a swelling polymeric ultrafine fibrous phase; and

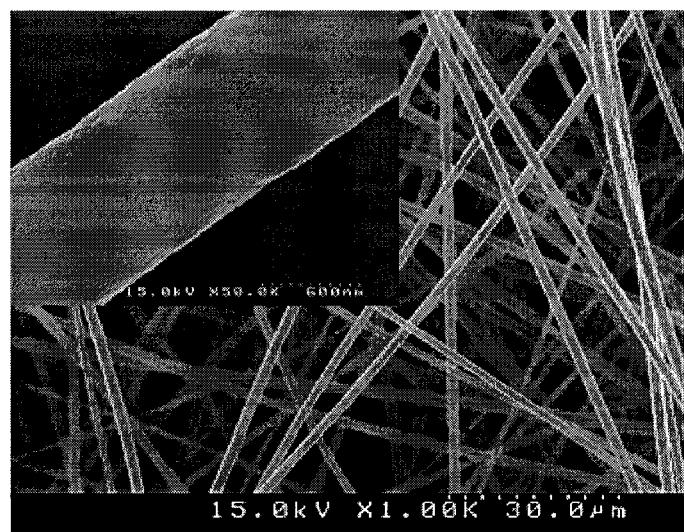
thermally laminating the ultrafine fiber web by pressurization.

5 **20. (new) A method for fabricating a heat-resisting ultrafine fibrous separator, comprising:**

electrospinning separately a solution containing a heat-resisting polymeric material having a melting point more than 180°C or not having the melting point and a solution containing a swelling polymeric material in which
10 swelling occurs in an electrolyte to form a ultrafine fiber web composed of a heat-resisting polymeric ultrafine fiber including a heat-resisting polymeric ultrafine fibrous phase and a swelling polymeric ultrafine fiber including a swelling polymeric ultrafine fibrous phase; and

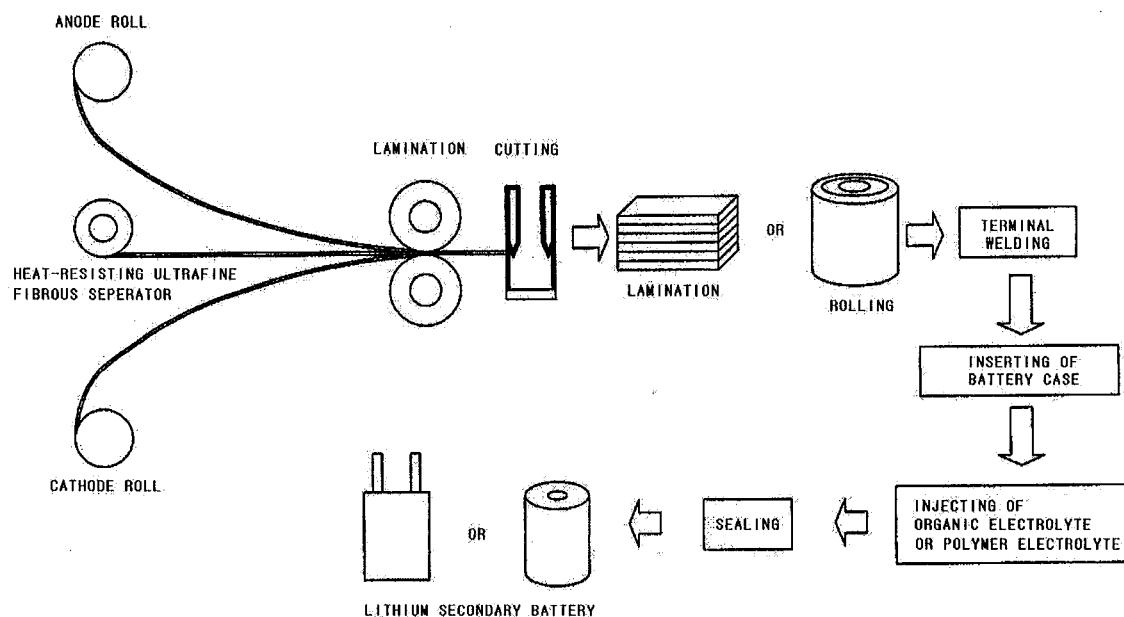

thermally laminating the ultrafine fiber web by pressurization.

15

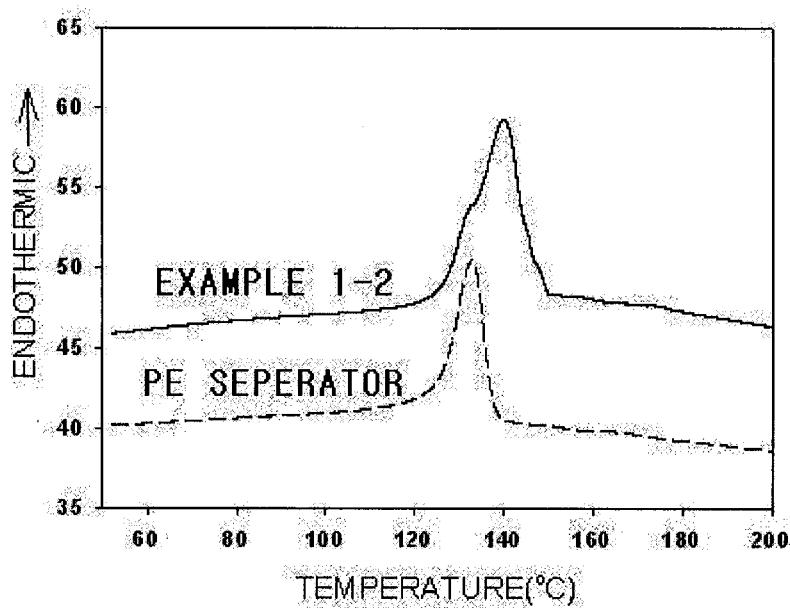

21. (new) The method of claim 19 or claim 20, wherein hot-drawing of the ultrafine fiber web is processed before or after the thermally laminating by pressurization thereof.

1/2

[Fig. 1]



[Fig. 2]



2/2

[Fig. 3]

[Fig. 4]

INTERNATIONAL SEARCH REPORT

International application No.
PCT/KR2006/005364

A. CLASSIFICATION OF SUBJECT MATTER

H01M 2/16(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 8 H01M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
KR.JP : classes as aboveElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS (KIPO internal)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 05609976 A, (Sanyo Electric Co., Ltd.), 11 March 1997 (11.03.1997) see the abstract, figures 1 - 5, column 5: line 7 - column 9: line 9, claims.	1 - 18
A	US 06296969 B1, (Noritake Co., Ltd.& Sanyo Chemical Industries, Ltd.), 02 October 2001 (02.10.2001) see the abstract, figure 1, claims.	1 - 18
A	US 04994335 A, (Ube Industries, Ltd.), 19 February 1991 (19.02.1991) see the abstract, figures 1 and 2, column 4: line 48 - column 20: line 35, claims 1 - 3.	1 - 18

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
07 MAY 2007 (07.05.2007)Date of mailing of the international search report
07 MAY 2007 (07.05.2007)Name and mailing address of the ISA/KR

 Korean Intellectual Property Office
 920 Dunsan-dong, Seo-gu, Daejeon 302-701,
 Republic of Korea
 Facsimile No. 82-42-472-7140Authorized officer
JOUNG, Meyoung Ju
Telephone No. 82-42-481-8493

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/KR2006/005364

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 05609976 A	11.03.1997	JP08111232 JP3499930B2 JP8111232A2 US5609976A	30.04.1996 23.02.2004 30.04.1996 11.03.1997
US 06296969 B1	02.10.2001	DE19914272A1 FR2776839A1 JP11283603A2 JP11283603 US6296969B1 US6296969BA	07.10.1999 01.10.1999 15.10.1999 15.10.1999 02.10.2001 02.10.2001
US 04994335 A	19.02.1991	JP02075151 JP02088649 JP2075151A2 JP2088649A2 JP6076502B4 JP7058613B4 US05173235 US4994335A US5173235A	14.03.1990 28.03.1990 14.03.1990 28.03.1990 28.09.1994 21.06.1995 22.12.1992 19.02.1991 22.12.1992