一种过滤射频信号 (102) 和选择性地连接到输出 (111, 112, 113) 的高性能开关模块 (100)，包括滤波器单元 (110, 410) 和多个开关 (131, 132, 133)。滤波器单元 (110, 410) 具有被配置成连接到射频信号 (102, 202, 302) 的滤波器 (410) 并且具有多个并联输出端口 (121, 122, 123)。多个开关 (131, 132, 133) 被连接在多个并联输出端口和输出之间。多个开关被配置成连接到控制输入以将多个并联输出端口的输出端口 (121, 122, 123) 选择性地连接到输出并且将多个并联输出端口的剩余部分选择性地连接到为滤波器单元的多个并联输出端口的剩余部分提供基本全反射的连接 (104, 106, 108)。
1. 一种过滤射频信号（102）和选择性地连接到输出（111, 112, 113）的高性能开关模块（100），包括：

滤波器单元（110, 410），具有被配置成连接到所述射频信号（102, 202, 302）的滤波器（440）并且具有多个并联输出端口（121, 122, 123）和/或

多个开关（131, 132, 133），被连接在所述多个并联输出端口和所述输出之间，所述多个开关被配置成连接到控制输入以将所述多个并联输出端口的一个输出端口（121, 122, 123）选择性地连接到所述输出，并且将所述多个并联输出端口的剩余部分选择性地连接到为所述滤波器单元的所述多个并联输出端口的所述剩余部分提供基本全反射的连接（104, 106, 108）。

2. 根据权利要求1所述的高性能开关模块，其中为所述滤波器单元的所述多个并联输出端口的所述剩余部分提供所述基本全反射的所述连接包括短路连接（104, 106, 108）。

3. 根据权利要求1-2中任一项所述的高性能开关模块，其中为所述滤波器单元的所述多个并联输出端口的所述剩余部分提供所述基本全反射的所述连接包括接地连接（305, 307）。

4. 根据权利要求1-3中任一项所述的高性能开关模块，其中所述输出包括多个输出（111, 112, 113）并且所述多个开关（131, 132, 133）中的每个开关被连接到所述多个输出中的相应输出。

5. 根据权利要求1-4中任一项所述的高性能开关模块，其中所述多个开关中的每个开关包括PIN二极管或微机电系统（MEMS）开关中的至少一个。

6. 一种在高性能开关模块（100）中实施以过滤射频信号（102）和选择性地连接到输出（111, 112, 113）的方法，所述方法包括：

利用所述高性能开关模块（100）接收（502）所述射频信号（102）；

利用具有连接到所述射频信号的滤波器（440）并且具有多个并联输出端口（121, 122, 123）的所述高性能开关模块的滤波器单元（210, 310, 410）来过滤（504）所述射频信号，其中多个开关（131, 132, 133）连接到所述多个并联输出端口和所述输出；以及

将控制输入传输（506）到所述多个开关，所述多个开关将所述多个并联输出端口的一个输出端口（121, 122, 123）选择性地连接到所述输出并且将所述多个并联输出端口的剩余部分选择性地连接到为所述滤波器单元的所述多个并联输出端口的所述剩余部分提供基本全反射的连接（104, 106, 108）。

7. 根据权利要求6所述的方法，其中所述传输步骤包括将所述控制输入传输到所述多个开关，所述多个开关将所述多个并联输出端口的所述输出端口选择性地连接到所述输出，并且将所述多个并联输出端口的所述剩余部分选择性地连接到利用短路连接（104, 106, 108）为所述滤波器单元的所述多个并联输出端口的所述剩余部分提供所述基本全反射的所述连接。

8. 根据权利要求6-7中任一项所述的方法，其中所述传输步骤包括将所述控制输入传输到所述多个开关，所述多个开关将所述多个并联输出端口的所述输出端口选择性地连接到所述输出，并且将所述多个并联输出端口的所述剩余部分选择性地连接到利用接地连接（305, 307）为所述滤波器单元的所述多个并联输出端口的所述剩余部分提供所述基本全反射的所述连接。
9. 根据权利要求6-8中任一项所述的方法，其中所述输出包括多个输出并且所述方法进一步包括将所述多个开关的每一个连接到所述多个输出中的相应输出。

10. 根据权利要求6-9中任一项所述的方法，其中所述传输路径包括将所述控制输入传输到PIN二极管或微机电系统(MEMS)开关中的至少一个，所述PIN二极管或所述微机电系统(MEMS)开关中的所述至少一个将所述多个并联输出端口的所述输出端口选择性地连接到所述输出，并且所述并联输出端口的选择性部分选择性地连接到所述滤波器单元的所述多个并联输出端口的所述其余部分提供基本全反射的所述连接。

11. 一种低噪声放大器模块(200、300)，具有旁路分支(203、303)，所述旁路分支将未从低噪声放大器(201、301)放大的射频信号(202、302)选择性地提供给输出(211、311)，所述低噪声放大器模块包括：

 滤波器单元(210、310、410)，具有被配置成连接到所述射频信号的滤波器(440)，并且具有第一并联输出端口(221、321)和第二并联输出端口(222、322)；

 输出开关(233、333)，将所述输出选择性地连接到所述低噪声放大器和所述旁路分支；以及

 开关(231、232、331、332)，将所述第一并联输出端口选择性地连接到所述低噪声放大器和为所述第一并联输出端口提供基本全反射的所述连接(204、305)，并且所述开关将所述第二并联输出端口选择性地连接到所述旁路分支和为所述第二并联输出端口提供基本全反射的所述连接(206、307)。

 其中所述输出开关和所述开关中的至少一个被配置成连接到控制输入。

12. 根据权利要求11所述的低噪声放大器，其中所述开关包括第一开关(231、331)和第二开关(232、332)，并且所述第一开关将所述第一并联输出端口选择性地连接到所述低噪声放大器和为所述第一并联输出端口提供所述基本全反射的所述连接，并且所述第二开关将所述第二并联输出端口选择性地连接到所述旁路分支和为所述第二并联输出端口提供所述基本全反射的所述连接。

13. 根据权利要求11-12中任一项所述的低噪声放大器，其中每个开关包括PIN二极管和微机电系统(MEMS)开关中的至少一个。

14. 根据权利要求11-13中任一项所述的低噪声放大器，其中为所述第一并联输出端口提供所述基本全反射的所述连接和为所述第二并联输出端口提供基本全反射的所述连接中的至少一个包括短路连接(204、206)。

15. 根据权利要求11-13中任一项所述的低噪声放大器，其中为所述第一并联输出端口提供所述基本全反射的所述连接和为所述第二并联输出端口提供基本全反射的所述连接中的至少一个包括接地连接(305、307)。

16. 一种无线通信系统的基站，包括权利要求11-15中任一项所述的低噪声放大器模块。

17. 一种在低噪声放大器模块(200、300)中实施的方法，所述低噪声放大器模块具有旁路分支(203、303)，所述旁路分支将未从低噪声放大器(201、301)放大的射频信号(202、302)选择性地提供给输出(211、311)，所述方法包括：

 利用所述低噪声放大器模块接收(602)所述射频信号；

 利用滤波器单元(210、310、410)过滤(604)所述射频信号，所述滤波器单元(210、310、
410）具有连接到所述射频信号的滤波器（440）并且具有第一并联输出端口（221, 321）和第二并联输出端口（222, 322）；

利用输出开关（233, 333）将所述输出选择性地连接（606）到所述低噪声放大器和所述旁路分支中的一个；

当所述输出开关将所述输出连接到所述低噪声放大器时，利用开关（231, 232, 331, 332）将所述第一并联输出端口选择性地连接（606）到所述低噪声放大器并且将所述第二并联输出端口选择性地连接到为所述第二并联输出端口提供基本全反射的连接（206, 307）；以及

当所述输出开关将所述输出连接到所述旁路分支时，利用开关将所述第一并联输出端口选择性地连接（610）到为所述第二并联输出端口提供基本全反射的连接（204, 305）并且将所述第二并联输出端口选择性地连接到所述旁路分支。

18. 根据权利要求17所述的方法，包括：

当所述输出开关将所述输出连接到所述低噪声放大器时，利用第一开关（231, 331）选择性地将所述第一并联输出端口连接到所述低噪声放大器并且将所述第二并联输出端口连接到为所述第二并联输出端口提供所述基本全反射的所述连接；以及

当所述输出开关将所述输出连接到所述旁路分支时，利用第二开关（232, 332）将所述第一并联输出端口选择性地连接到为所述第一并联输出端口提供所述基本全反射的所述连接并且将所述第二并联输出端口选择性地连接到所述旁路分支。

19. 根据权利要求17-18中任一项所述的方法，包括：

当所述输出开关将所述输出连接到所述低噪声放大器时，利用PIN二极管或微机电系统（MEMS）开关中的至少一个选择性地将所述第一并联输出端口连接到所述低噪声放大器并且将所述第二并联输出端口连接到为所述第二并联输出端口提供所述基本全反射的所述连接；以及

当所述输出开关将所述输出连接到所述旁路分支时，利用PIN二极管或微机电系统（MEMS）开关中的至少一个将所述第一并联输出端口选择性地连接到为所述第一并联输出端口提供所述基本全反射的所述连接并且将所述第二并联输出端口连接到所述旁路分支。

20. 根据权利要求17-19中任一项所述的方法，包括：当所述输出开关将所述输出连接到所述低噪声放大器时，利用开关选择性地将所述第一并联输出端口连接到所述低噪声放大器并且将所述第二并联输出端口连接到为所述第二并联输出端口提供基本全反射的短路连接（206）。

21. 根据权利要求17-20中任一项所述的方法，包括：当所述输出开关将所述输出连接到所述旁路分支时，利用开关选择性地将所述第一并联输出端口连接到为所述第一并联输出端口提供所述基本全反射的短路连接（204）并且将所述第二并联输出端口连接到所述旁路分支。

22. 根据权利要求17-21中任一项所述的方法，包括：当所述输出开关将所述输出连接到所述低噪声放大器时，利用开关选择性地将所述第一并联输出端口连接到所述低噪声放大器并且将所述第二并联输出端口连接到为所述第二并联输出端口提供基本全反射的接地连接（307）。

23. 根据权利要求17-22中任一项所述的方法，包括：当所述输出开关将所述输出连接
到所述旁路分支时，利用开关选择性地将所述第一并联输出端口连接到为所述第一并联输出端口提供所述基本全反射的接地连接(305)并且将所述第二并联输出端口连接到所述旁路分支。
低噪声放大器模块及其实施的方法

技术领域
[0001] 本发明的实施例涉及无线通信系统的领域，并且更具体地涉及例如用于在无线通信系统的基站中使用的高性能开关以及低噪声放大器模块。

背景技术
[0002] 在通常的无线通信系统中（例如，移动或蜂窝式无线电网络），移动用户设备单元经由无线电接入网络与一个或者多个核心网络通信。移动用户设备单元可以是具有移动终端的诸如移动电话（即手机）和笔记本电脑、平板电脑等的移动站，并且因此可以与无线电接入网络通信信号和/或数据的例如便携式、口袋式、手持式、包括计算机的或者车载的移动设备。
[0003] 无线电接入网络覆盖被分成小区区域的地理区域，每个小区区域由无线通信系统的基站服务。小区是由在基站位置处的基站设备提供无线电覆盖的地理区域。每个小区由在小区中广播的唯一的标识（identity）来标识。无线电基站经过空中接口（例如，射频信号）与基站的范围内的用户设备单元通信。基站的天线接收无线电“输入”（例如，射频信号）并且然后将不需要的噪声过滤掉并且将射频信号放大。有时这些放大器被称作低噪声放大器（LNA）并且可以是安装在通信塔上的放大器。低噪声可以是指噪声因数低于不期望的水平（例如，如以分贝测量）。
[0004] 然而，当放大器有问题时，例如因为向放大器供电的故障，为了使射频信号能被接收，经常提供输出接收到的未经放大的射频信号的旁路分支。这允许基站即便在放大器不工作的情况下也能运行。以这种方式，即便放大器不起作用，运营商（operator）也可以继续提供（例如，受限的）服务。因此，旁路分支可以以所谓的旁路模式连接到被输入的射频信号（例如，从天线）。
[0005] 现有的旁路解决方案可能需要在旁路分支中提供阻抗（例如，可变阻抗）以平衡放大器的阻抗和/或提供一个或多个放大器以创建平衡的放大器模块。
[0006] 现有的旁路解决方案可以具有相互影响的低噪声放大器和旁路路径，即，（例如，未使用的）端口不具有基本全反射并且因此影响其他端口。此外，在现有的旁路解决方案中，在旁路模式下，放大器输入阻抗是任意的，因此在旁路路径中的信号是任意的，并且与此同时，放大器是有源部件，因此旁路线性度也受到放大器路径限制。

发明内容
[0007] 在一个实施例中，过滤射频（RF）信号（102）和选择性地连接到输出（111, 112, 113）的高性能开关模块（100）包括滤波器单元（110, 410）和多个开关（131, 132, 133），该滤波器单元具有被配置成连接到射频信号（102, 202, 302）的滤波器（440）并且具有多个并联输出端口（121, 122, 123）。多个开关（131, 132, 133）被连接在多个并联输出端口和输出之间。多个开关被配置成连接到控制输入以将多个并联输出端口的输出端口（121, 122, 123）选择性地连接到输出并且将多个并联输出端口的剩余部分选择性地连接到为滤波器单元的多个
并联输出端口的剩余部分提供基本全反射的连接（104、106、108）。

[0008] 在一个实施例中，在高性能开关模块（100）中实施一种方法以过滤射频信号（102）并且选择性地连接到输出（111、112、113）。该方法可以包括利用高性能开关模块（100）接收（502）射频信号（102），利用具有连接到射频信号的滤波器（440）并且具有多个并联输出端口（121、122、123）的高性能开关模块的滤波器单元（210、310、410）过滤（504）射频信号。多个开关（131、132、133）被连接到多个并联输出端口和输出。将控制输入传输（506）到多个开关，该多个开关将多个并联输出端口的输出端口（121、122、123）选择性地连接到输出并且将多个并联输出端口的剩余部分选择性地连接到为滤波器单元的多个并联输出端口的剩余部分提供基本全反射的连接（104、106、108）。

[0009] 在一个实施例中，例如，公开了用于在无线通信系统的基站中使用的具有旁路分支（203、303）以将未从低噪声放大器（201、301）放大的射频信号（202、302）选择性地提供给输出（211、311）的低噪声放大器（LNA）模块（200、300）。LNA模块可以包括滤波器单元（210、310、410），该滤波器单元具有被配置成连接到射频信号的滤波器（440）并且具有第一并联输出端口（221、321）和第二并联输出端口（222、322）。LNA模块可以进一步地包括将输出选择性地连接到低噪声放大器的输出开关（233、333）以及将第一并联输出端口选择性地连接到低噪声放大器和为第一并联输出端口提供基本全反射的连接（204、305）的开关（231、232、331、332）。该开关将第二并联输出端口选择性地连接到旁路分支和为第二并联输出端口提供基本全反射的连接（206、307）的开关。输出开关和开关中的至少一个被配置成连接到控制输入。无线通信系统的基站可以包括根据本文公开的任意的低噪声放大器模块。

[0010] 在一个实施例中，公开了在低噪声放大器模块（200、300）中实施的方法，该低噪声放大器模块（200、300）具有将未从低噪声放大器（201、301）放大的射频信号（202、302）选择性地提供给输出（211、311）的旁路分支（203、303）。方法可以包括利用低噪声放大器模块接收（602）射频信号并且利用滤波器单元（210、310、410）过滤（604）射频信号，该滤波器单元（210、310、410）具有连接到射频信号的滤波器（440）并且具有第一并联输出端口（221、321）和第二并联输出端口（222、322）。利用输出开关（233、333）将输出选择性地连接到（606）低噪声放大器和旁路分支中的一个。当输出开关将输出连接到低噪声放大器时，方法利用开关（231、232、331、332）将第一并联输出端口选择性地连接（608）到低噪声放大器并且将第二并联输出端口选择性地连接到为第二并联输出端口提供基本全反射的连接（206、307）。当输出开关将输出连接到旁路分支时，方法还利用开关将第一并联输出端口选择性地连接（610）为第一并联输出端口提供基本全反射的连接（204、305）并且将第二并联输出端口选择性地连接到旁路分支。无线通信系统的基站可以包括配置成执行本文公开的任何方法的低噪声放大器模块。

附图说明

[0011] 通过参考用来说明本发明的实施例的以下描述和附图可以最好地理解本发明。在附图中：

[0012] 图1图示了根据本发明的一个实施例的高性能开关。

[0013] 图2A图示了根据本发明的一个实施例的LNA模式下的低噪声放大器（LNA）模块。
具体实施方式

在以下的描述中阐述了众多特定细节，然而，应当理解可以不带有这些特定细节实践本发明的实施例。在其他实施例中，公知的电路、结构和技术未被详细地示出以避免模糊该描述的理解。然而，本领域的技术人员将理解可以不带有这种特定细节实践本发明。在其他实施例中，控制结构，门级电路和完整的软件指令序列未被详细地示出以避免模糊本发明。利用所包括的描述，在有限的试验情况下，本领域的技术人员将能够实施适当的功能。

在说明中对“一个实施例”、“实施例”、“示例实施例”的参考指示描述的实施例可以具有特定的特征、结构或特性，但是每个实施例不一定包括该特定的特征、结构或特性。而且，这种短语不一定指代相同的实施例。进一步地，当特定的特征、结构或特性与实施例相关联地描述时，应当指出，无论是否显式地描述，影响与其他实施例相关的特征、结构或特性在本领域的技术人员的常识内。

在以下的描述和权利要求中，可以使用术语“耦合”和“连接”连同它们的衍生词。应当理解这些词并不旨在作为彼此的同义词，可以使用“耦合”连同它的衍生词指示可能或可能不与彼此直接物理或电接触的两个或多个元件与彼此相互协作或相互作用。可以使用“连接”连同它的衍生词指示与彼此耦合的两个或多个元件之间的通信的建立。可以使用“选择性地连接”连同它的衍生词指示例如响应于控制输入，在第一状态下（例如，电气地和/或物理地）连接在一起并且在第二状态下取消的两个或多个元件。例如，可以选择性地连接端口A、B和C使得可以在第一状态下将端口A连接到端口B以及可以在第二状态下将端口A连接到端口C。例如，可以选择性地连接端口A、B和C使得可以在第一状态下将端口A连接到端口B以及可以在第二状态下将端口A连接到端口C。在一个实施例中，一次只可以将端口A连接到端口B和端口C中的一个。

图1示出了根据本发明的一个实施例的高性能（例如，高性能是低插入损耗[IL]）开关100。射频信号102可以被发射（例如，输出和/或从天线输出）到滤波器单元110的输入。滤波器单元110包括滤波器，例如以从射频信号102中过滤掉任何不需要的射频信号（例如，波）。可以选滤波器以接收射频信号102并且输出带有可接受的噪声因子（例如，如以分贝测量）的射频信号。滤波器可以是腔体滤波器、表面声波（SAW）滤波器、体声波（BAW）滤波器或者它们的任意组合。滤波器单元110被描绘成具有三个并联输出端口121-123，但是在不
脱离本发明的精神的情况下，可以使用任意多个并联输出端口。例如滤波器单元可以具有两个或更多的并联输出端口、三个或更多的并联输出端口、四个或更多的并联输出端口等。

0025 每个并联输出端口可以连接到相应的开关。例如，在图1中，并联输出端口1(121)连接(例如，通信的建立)到开关1(131)的输入，并联输出端口2(122)连接到开关2(132)的输入以及并联输出端口3(123)连接到开关3(133)的输入(133)。尽管未图示，然而每个并联输出端口可以连接到例如带有与并联输出端口的数量相对应的输入的数量的单独开关。期望的输入可选择性地连接到单个输出。例如，在图1中，开关1(131)将并联输出端口1(121)选择性地连接到输出1(111)和为并联输出端口1(121)提供基本全反射的连接104，例如，将并联输出端口1(121)选择性地连接到输出1(111)和提供基本全反射的连接104中的一个。在图1中，开关2(132)将并联输出端口2(122)选择性地(例如，电气地)连接到输出2(112)和为并联输出端口2(122)提供基本全反射的连接106，例如，将并联输出端口2(122)选择性地连接到输出2(112)和提供基本全反射的连接106中的一个。在图1中，开关3(133)将并联输出端口3(123)选择性地(例如，电气地)连接到输出3(113)和为并联输出端口3(123)提供基本全反射的连接108，例如，将并联输出端口3(123)选择性地连接到输出3(113)和提供基本全反射的连接108中的一个。选择性的连接可以由至少一个控制输入控制，例如，可以将控制器连接到开关(或所有开关)，其被连接以向控制输入发送暂态的机器可读传输介质(例如信号)。

0026 尽管连接(104, 106, 108)被图示为短路连接，然而，在电气领域公知地，本领域技术人员将会理解它可以是接地连接或其他类型的连接以为并联输出端口提供基本全反射。尽管所有连接(104, 106, 108)被图示为同类型(例如，短路连接)，然而可以使用类型的任意组合。

0027 如在本文中使用地，“基本全反射”可以指的是以最低水平的损耗(例如，给定特定用途的可接受水平)将接收的波反射回去。基本全反射连接可以是短路连接，使得那个连接(例如，负载)的阻抗被认为是大约0欧姆(例如，全反射并且与反射的波相反的极性)。基本全反射连接可以是接地连接，使得那个连接(例如负载)的阻抗被认为是无穷大的欧姆(例如，全反射并且与反射的波相同的极性)。如在本文中使用的开关指的是用于在电路中做出、中断或改变连接的器件。开关可以是PIN二极管(例如，被配置成起开关的作用)、微机电系统(MEMS)开关或其他开关。

0028 高性能开关可以被用在无线通信系统的基站中，针对不同功率水平输出选择的下行链路中，和/或用于上行链路和下行链路交换的低功率时分双工(TDD)系统中。例如，发射器可以具有两个输出，一个用于高功率输出以及一个用于低功率输出，其中本文公开的高性能开关选择高功率输出和低功率输出中的一个来连接到它的输出，作为附加的示例，在TDD系统中，当发射器(TX)输出功率低时(例如，低于大约5瓦特)，本文公开的高性能开关可以被用来替换发射器(TX)开关。在这种实施例中，发射器和接收器(TX/RX)可以利用相同的滤波器，例如腔体滤波器。

0029 根据本公开的高性能开关和/或方法可以被用在(例如，被集成到)移动用户设备中，例如，在带有移动终端的诸如移动电话(即手机)和/或笔记本电脑、平板电脑等的移动站中。移动用户设备可以包括但不限于与无线电接入网络通信声音和/或数据的便携式、口袋式、手持式、包括计算机的或者车载的移动设备。
图2A图示了根据本发明的一个实施例的在LNA模式下的低噪声放大器（LNA）模块200，图2B图示了根据本发明的一个实施例的处于旁路模式下的低噪声放大器（LNA）模块。

图2A—图2B描绘了连接到滤波器单元210的（例如，从天线接收的）射频信号202。如所描绘的滤波器单元210包括第一并联输出端口221和第二并联输出端口222。并联输出端口（221, 222）可以是滤波器单元210输出端（例如，射频信号）。滤波器单元210可以包括滤波器，例如，以从射频信号202中过滤掉任何不需要的射频信号（例如波）。可以选择滤波器以接收射频信号202并且输出带有可接受的噪声因数（例如，以分贝测量）的射频信号。滤波器可以是腔体滤波器、表面声波（SAW）滤波器、体声波（BAW）滤波器或者它们的任意组合。滤波器单元210被描绘成具有两个并联输出端口（221, 222），但是在不偏离本发明的精神的情况下，可以使用任意多个并联输出端口。例如，滤波器单元可以具有三个或更多的并联输出端口，四个或更多的并联输出端口等。每个并联输出端口可以连接到相应的开关。尽管未图示，但每个并联输出端口可以连接到例如带有与并联输出端口的数量相对应的输入的数量的单独开关，期望的输入可以选择性地连接到分支（例如，LNA 201分支或旁路分支203）。在图2A—图2B中，开关1(231)将第一并联输出端口（221）选择性地（例如，电气地）连接到输出（211）和为第一并联输出端口（221）提供基本全反射的连接204，例如将第一并联输出端口（221）选择性地连接到输出（211）和提供基本全反射的连接204中的一个。在图2A—图2B中，开关2(232)将第二输出端口（222）选择性地（例如，电器地）连接到输出（212）和为第二并联输出端口（222）提供基本全反射的连接206，例如将第二并联输出端口（222）选择性地连接到输出（211）和提供基本全反射的连接206中的一个。选择性的连接可以由至少一个控制输入控制。例如，可以将控制器连接到被连接以向控制输入发送能量的机器可读传输媒介（例如信号）的开关（或所有开关）。

尽管示图示了两个分支，即LNA 201分支和旁路分支203，然而在不偏离本发明的精神的前提下还可以包括多个任一类型或两种类型的分支。

图2A描绘了LNA模式，其中开关1(231)将第一并联输出端口221（例如，电器地）连接到低噪声放大器（LNA）201的输入并且开关2(232)将第二并联输出端口222（例如，电器地）连接到为第二并联输出端口222提供基本全反射的连接206。进一步地，图2A描绘了将输出211连接到低噪声放大器201输出的输出开关233，例如，使得被滤波和被放大的波（例如，射频信号）被输出到输出211。输出开关233可以是任意类型的开关。输出开关或其他开关的选择性连接可以由至少一个控制输入控制。例如，可以将控制器连接到被连接以向控制输入发送能量的机器可读传输媒介（例如信号）的开关（或所有开关）。

图2B描绘了旁路模式，其中开关2(232)将第二并联输出端口222（例如，电器地）连接到旁路分支203（例如，其可以是导线，其中导线可以具有大约0欧姆的电阻）并且开关1(231)将第一并联输出端口221连接到为第一并联输出端口221提供基本全反射的连接204。进一步地，图2B描绘了将输出211连接到旁路分支203的输出开关233，例如，使得被滤波和未被放大的波（例如，射频信号）被输出到输出211。输出开关233可以是任意类型的开关。输出开关或其他开关的选择性连接可以由至少一个控制输入来控制。例如，可以将控制器连接到被连接以向控制输入发送能量的机器可读传输媒介（例如信号）的开关（或所有开关）。在一个实施例中，控制器可以将静态的机器可读传输媒介（例如信号）发送到开关（231, 232）的控制输入和/或输出开关211的控制输入以(i)将第一并联输出端
口221选择性地连接到LNA 201的输入和/或将LNA201的输出选择性地连接到输出211，例如在图2A中的LNA模式，和/或以(ii)将并联输出端口222选择性地连接到旁路分支303的输入和/或将旁路分支303的输出选择性地连接到输出211，例如在图2B中的旁路模式。附带地或备选地，控制器可以将便携的系统可读传输媒介（例如信号）发送到开关(231, 232)的控制输入和/或将开关211的控制输入以(i)将第一并联输出端口222选择性地连接到提供基本全反射的连接206和/或从输出211断开旁路分支303的输出，例如在图2A中的LNA模式，和/或以(ii)将第二并联输出端口222选择性地连接到提供基本全反射的连接204和/或从输出211断开LNA 201的输出，例如在图2B中的旁路模式。

[0035] 尽管连接(204、206)被图示成短路连接，然而，如在电气领域公知地，本领域技术人员将会理解它可以是接地连接或其他类型的连接作为并联输出端口提供基本全反射。尽管所有连接(204、206)被图示成相同类型（例如，短路连接），然而可以使用类型的任意组合。

[0036] 图3图示了根据本发明的一个实施例的低噪声放大器(LNA)模块300。图3描绘了连接到滤波器单元310的输入的射频信号302（例如，从天线接收）。如所描绘的滤波器单元310包括第一并联输出端口321和第二并联输出端口322。并联输出端口(321, 322)可以同滤波器单元310输出波（例如，射频信号）滤波器单元310可以包括滤波器，例如，以从射频信号202过滤掉任何不需要的射频信号（例如波）。可以选择滤波器以接收射频信号302并且输出带宽可接受的噪声因素（例如，如以分贝测量）的射频信号。滤波器可以是有腔体滤波器、表面声波（SAW）滤波器、本体声波（BAW）滤波器或者它们的任意组合。滤波器单元310被描绘成具有两个并联输出端口(321, 322)，但是在不脱离本发明的精神的前提下，可以使用任意多个并联输出端口。例如，滤波器单元可以具有三个或更多的并联输出端口，四个或更多的并联输出端口等。每个并联输出端口可以连接到相应的开关。尽管未图示，但每个并联输出端口可以连接到例如带有与并联输出端口的射频相对应的输入的射频的单独开关。期望的输入可以是选择性地连接到分支（例如，LNA 301分支或旁路分支303）。在图2中，开关1(331)将第一输出端口(321)选择性地（例如，电气地）连接到输出(311)和为第一并联输出端口(321)提供基本全反射的连接305，例如，将第一并联输出端口(321)选择性地连接到输出(311)和提供基本全反射的连接305中的一个。在图2中，开关2(332)将第二输出端口(322)选择性地（例如，电气地）连接到输出(312)和为第二并联输出端口(322)提供基本全反射的连接307，例如将第二并联输出端口(322)选择性地连接到输出(311)和提供基本全反射的连接307中的一个。选择性地连接可以由至少一个控制输入控制。例如，可以将控制器连接到并联接地清全反射输入发送信号的系统可读传输媒介（例如信号）的开关（或所有开关）。尽管只图示了两个分支，即LNA 301分支和旁路分支307，然而在不脱离本发明的精神的前提下还可以包括多个任意类型或多种类型的分支。

[0037] 描绘的开关1(331)包括二极管342，例如PIN二极管，被(例如，电气地)连接到第一并联输出端口321和到低噪声放大器(LNA)301的输入之间。描绘的开关1(331)还包括连接到二极管342和电容器338（例如，去耦电容器）的电感器336，电容器338被连接到地305。描绘的开关2(332)包括二极管341，例如PIN二极管，被(例如，电气地)连接到第二并联输出端口322和到旁路分支303的输入之间。描绘的开关2(332)还包括被连接到二极管和电容器339（例如，去耦电容器）的电感器337，电容器339被连接到地307。如本领域所公知地，电感
器可以被用于射频滤波（RFC）功能。例如，在允许较低频率的AC电流和/或DC电流通过的同时，在电路中阻挡高频交流电（AC）。

[0038] 在一个实施例中，暂态的机器可读传输介质（例如信号）是向相应的开关（331、332）电路提供的电压（Vctrl[334]，例如，Vcontrol 1）（Vctr[335]，例如，Vcontrol 2）。例如，如果Vctr1[334]是例如经过电感器336施加到二极管342的小于在第一并联输出端口321处的电压的（例如，负）电压，那么描绘的二极管是“断开”的，并且因此基本没有信号流经二极管，并且因此第一并联输出端口321选择性地连接（例如，电气地）到LNA 301。附加地或备用地，如果Vctr1[334]是例如经过电感器336施加到二极管342的在第一并联输出端口321处的电压的（例如，正）电压，那么描绘的二极管是“导通的”并且因此信号（例如，射频信号或波）流经二极管以及流经电容器（可选的）338到地305，因此第一并联输出端口321选择性地连接（例如，电气地）到地305以提供基本全反射。

[0042] 电路领域的本领域技术人员将会理解在不脱离本发明的精神的情况下，可以利用其它电路以为并联输出端口提供基本全反射。这包括可以提供短路连接或提供如在图3中所示的接地连接。

[0043] 注意到图3中的二极管被以电子的正向流是电流的正向流的方向的常规示出，如同与电流的正向流是电子流的相反方向的位置相反。在不脱离本发明的精神的情况下，电路领域的本领域技术人员将理解如何在任一常规下构造这种电路。

[0044] 图4A-图4C示出了根据本发明的一个实施例的具有滤波器单元410的低噪声放大器（LNA）模块400。描绘的滤波器单元410包括滤波器440以从接收的射频信号中过滤掉任何不需要的电流（例如信号）。在图4中的滤波器440是具有三个腔体的金属腔体滤波器。但是可以使用单个腔体或任意多个腔体。例如，射频信号（或其他信号）等可以流入到LNA模块400的输入444中并且之后流入到串联的腔体滤波器（440）中的每个腔体中以及到并联输出端口（421, 422）。如参考图2A-图3讨论的，在图4中，第一并联输出端口421连接到LNA 401并且第二并联输出端口422可以选择性地连接到旁路分支403。然后输出445可以选择性地连接到期望的分支，例如，被LNA放大的输出或者来自旁路支路的输出，和/或可以被连接到
提供基本全反射的连接的其他分支。

【0045】图5图示了根据本发明的一个实施例的在高性能开关模块中实施的方法500。在高性能开关模块(100)中实施以过滤射频信号(101)并且选择性地连接到输出(111、112、113)的方法包括利用高性能开关模块(100)接收(502)射频信号(102)；利用具有连接到射频信号的滤波器(440)并且具有多个并联输出端口(121、122、123)的高性能开关模块的滤波器单元(210、310、410)过滤(504)射频信号，其中多个开关(131、132、133)连接到多个并联输出端口和输出；以及将控制输入传输(506)到多个开关，该多个开关将多个并联输出端口的输出端口(121、122、123)选择性地连接到输出并且将多个并联输出端口的剩余部分选择性地连接到为滤波器单元的多个并联输出端口的剩余部分提供基本全反射的连接(104、106、108)。

【0046】图6图示了根据本发明的一个实施例的在低噪声放大器中实施的方法600。方法在低噪声放大器模块(200、300)中实施，该低噪声放大器模块(200、300)具有将未从低噪声放大器(201、301)放大的射频信号(202、302)选择性地提供给输出(211、311)的旁路分支(203、303)，方法包括利用低噪声放大器模块接收(602)射频信号；利用滤波器单元(210、310、410)过滤(604)射频信号；该滤波器单元(210、310、410)具有连接到射频信号的滤波器(440)并且具有第一并联输出端口(221、321)和第二并联输出端口(222、322)；利用输出开关(233、333)将输出选择性地连接(606)到低噪声放大器和旁路分支中的一个；当输出开关将输出连接到低噪声放大器时，利用开关(231、232、331、332)将第一并联输出端口选择性地连接(608)到低噪声放大器并且将第二并联输出端口选择性地连接到为第二并联输出端口提供基本全反射的连接(206、307)；以便当开关将输出连接到旁路分支时，利用开关将第一并联输出端口选择性地连接(610)到为第一并联输出端口提供基本全反射的连接(204、305)并且将第二并联输出端口选择性地连接到旁路分支。

【0047】根据本公开的低噪声放大器(LNA)模块和/或方法（例如，如被描绘成被在图中的虚线包围）可以被用在（例如，被集成到）移动用户设备中，例如，诸如在移动电话（即手机）和/或笔记本电脑、平板电脑等的移动站中的LNA模块。移动用户设备可以包括但不限于与无线电接入网络通信信号和/或数据的便携式、口袋式、手持式、包括计算机的或者车载的移动设备。

【0048】应当理解可以使用除在图1 图4中以外的本发明的实施例执行在图5和图6中的流程图的操作，并且参考这些其他附图讨论的本发明的实施例可以执行与参考着流程图讨论的那些不同的操作。

【0049】暂态的机器可读传输媒介可以包括电的、光学的、声学的或传播的信号或其他形式，诸如载波或红外信号。此外，控制器可以包括诸如一个或多个处理器的集合的硬件，该一个或多个处理器的集合被耦合到诸如非瞬态机器可读媒介（以存储代码和/或数据）、用户输入/输出设备（例如，键盘、触摸屏和/或显示器）和网络连接（以使用传播的信号传输代码和/或数据）的一个或多个其他部件。处理器的集合和其他部件的耦合通常是经过一个或多个总线和桥（也被称为总线控制器）。因此，给定的电子设备的非瞬态机器可读媒介通常存储用于在那个电子设备的一个或多个处理器上执行的指令。可以使用软件、固件和/或硬件的不同组合实现本发明的实施例的一个或多个部分。尽管在附图中的流程图示出了由本发明的某些实施例执行的操作的具体顺序，但是应当理解这种顺序是示例性的（例如，备
选的实施例可以以不同的顺序、组合某些操作、覆盖某些操作等执行操作）。

【0050】尽管已经按照几个实施例描述了本发明，但是那些本领域技术人员将认识到本发明并不被限于描述的实施例，本发明公开的范围和权利要求的范围内可以带有修改和改变地实施本发明。因此，描述应被认为是说明性而不是限制性的。
图4B

图4C
利用高性能开关模块接收射频信号

利用具有连接到射频信号的腔体滤波器和具有多个并联输出端口的高性能开关模块的滤波器单元过滤射频信号，其中多个开关连接到多个并联输出端口和输出

将控制信号传输到多个开关，该多个开关将多个并联输出端口的输出端口选择性地连接到输出并且将多个并联输出端口的剩余部分选择性地连接到为滤波器单元的多个并联输出端口的剩余部分提供全反射的连接

图5
利用低噪声放大器接收射频信号

利用具有连接到射频信号的腔体滤波器并且具有第一并联输出端口和第二并联输出端口的滤波器单元过滤射频信号

利用输出开关将输出选择性地连接到低噪声放大器和旁路分支中的一个

当输出开关将输出连接到低噪声放大器时，利用开关将第一并联输出端口选择性地连接到低噪声放大器并且将第二并联输出端口选择性地连接到为第二并联输出端口提供全反射的连接

当输出开关将输出连接到旁路分支时，利用开关将第一并联输出端口选择性地连接到为第一并联输出端口提供全反射的连接并且将第二并联输出端口选择性地连接到旁路分支

图6