
US0060676O1A

United States Patent (19) 11 Patent Number: 6,067,601
Sollars (45) Date of Patent: May 23, 2000

54) CACHE MEMORY BASED INSTRUCTION 5,940,626 8/1999 Sollars 71.2/41
EXECUTION 5,946,710 8/1999 Bauman et al. 711/129

75 Inventor: Donald L. Sollars, Milpitas, Calif.

73 Assignee: Brecis Communications, San Jose,
Calif.

21 Appl. No.: 08/963,389

22 Filed: Nov. 3, 1997
(51) Int. Cl." .. G06F 12/00
52 U.S. Cl. 711/131; 711/145; 711/147;

711/149; 711/156
58 Field of Search 711/131, 141,

711/123, 130, 133, 129, 145, 147, 149,
156; 712/238, 41

56) References Cited

U.S. PATENT DOCUMENTS

4,525,780 6/1985 Bratt et al..
4,959,777 9/1990 Holman, Jr. 711/141
5,185,878 2/1993 Baror et al. 711/123
5,228,135 7/1993 Ikumi 711/131
5,287,490 2/1994 Sites.
5,404,469 4/1995 Chung et al..
5,430,862 7/1995 Smith et al..
5,438,668 8/1995 Coon et al..
5,568,401 10/1996 Narayanaswami.
5,574,873 11/1996 Davidian.
5,574,927 11/1996 Scantlin.
5,701,432 12/1997 Wong et al. 711/130
5,742,802 4/1998 Harter et al..
5,774,710 6/1998 Chung 712/238
5,787,478 7/1998 Hicks et al. 711/141
5,893,147 4/1999 Deng 711/130
5,909,695 6/1999 Wong et al. 711/133

INSTRUCTION

OTHER PUBLICATIONS

Computer Architecture and Quantitative Approach;
Authors: John L. Hennessy, David A. Patterson; Morgan
Kaufmann Publishers, Inc., 1990, Chapter 3, entitled
“Instruction Set Design: Alternatives and Principles”, pp.
89-137.

Computer Architecture and Quantitative Approach;
Authors: John L. Hennessy, David A. Patterson; Morgan
Kaufmann Publishers, Inc., 1990, Chapter 5, entitled “Basic
Processor Implementation Techniques”, pp. 199-248.

Primary Examiner John W. Cabeca
Assistant Examiner Fred F. Tzeng
Attorney, Agent, or Firm Blakely, Sokoloff, Taylor &
Zafman, LLP
57 ABSTRACT

An apparatus employing a cache memory based approach to
instruction execution includes a cache memory and one or
more control units. The control units operate the cache
memory to directly Supply appropriate ones of a plurality of
values Stored in Selected ones of Said cache locations for a
plurality of variables to one or more arithmetic logic units
(ALU) as inputs to arithmetic/logic operations, and/or to
directly accept and Store results of arithmetic logic opera
tions from the one or more ALU as values of the variables
in Selected ones of Said cache locations. The direct Supplying
and the direct accepting and Storing are performed respon
Sive to instructions Specifying Said arithmetic/logic opera
tions and logically designating the variables associated with
the Specified arithmetic/logic operations.

49 Claims, 2 Drawing Sheets

00

114 4

OPCODE | LOGICAL VARIABLE DESIGNATION(S) CONSTANTS

LOGICAL VARIABLE DESIGNATION(S)
ADDRESSMAPPING

CONTROL

CACHE
MEMORY

U.S. Patent May 23, 2000 Sheet 2 of 2 6,067,601

20

v MACA VLD1

f/(7, 2 22 VMACAVID)

ADDRESS SPACE n. 1

VOLUME
O

6,067,601
1

CACHE MEMORY BASED INSTRUCTION
EXECUTION

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to the field of processors.

More specifically, the present invention relates to the art of
instruction execution practiced on processors.

2. Background Information
Prior art approaches to instruction execution practiced by

processors can be broadly classified into three approaches
based on the manner operand Storage is handled. Broadly
defined, the three approaches are Stack based approach,
accumulator based approach and register based approach.
Stack, accumulator and registers are different functional
forms of temporary Storage medium employed in processor
datapaths, which in addition to the temporary Storage
medium, includes arithmetic logic units (ALU) and So forth.
Register is characterized by their symbolic designations
through register identifiers, i.e. R1, R2 and so forth. The
term processor as used herein in the present Specification is
intended to include micro-controllers (MCU), digital signal
processors (DSP), general purpose microprocessors (uP),
and the like, whereas the term instruction as used herein is
intended to include macro-instructions visible to program
merS or compiler writers as well as micro-instructions,
micro-operations, or primitive operations and the like that
are not visible to programmerS and compiler writers.

In the case of the Stack based approach, one of the Source
as well as the destination operands of an instruction are
implicitly defined to be located at the top of the Stack,
whereas, in the case of the accumulator based approach, one
of the Source as well as the destination operand of an
instruction are implicitly defined to be located in the accu
mulator. Typically, the other Source operand is located in a
register. In the case of the register Set based approach, the
Source and the destination operands of an instruction are
either located in registers or in memory locations. While
registers are specified by their identifiers, memory locations,
whether cached or not, are specified by either physical or
Virtual addresses, depending on the manner in which
memory is managed.

While the Stack based approach enjoys the advantage of
providing a simple model for expression evaluation, and
Short instruction, the approach Suffers from at least the
disadvantages of forcing all the operands onto the Stack, and
yet not being able to randomly access the pushed down
operands in the Stack, resulting in inefficient coding. AS to
the accumulator approach, while it minimizes the internal
States of a processor, and provides for short instructions, it
also Suffers from at least the disadvantage of very high
memory traffic, Since the accumulator is the only temporary
Storage. The register based approach has the advantage of
being the most general model for code generation, however,
because of the access and related circuitry required to
Support a register, most prior art register based processors
tend to provide only a limited number of registers, resulting
in a relatively Small working Set. The disadvantage becomes
especially limiting for heavily pipelined Super-Scalar pro
CCSSOS.

Thus, a more efficient and effective approach to instruc
tion execution without Some of the disadvantages of the
prior art approaches is desired.

SUMMARY OF THE INVENTION

An apparatus, Such as a processor, a System embedded
with a processor, and the like, employing a cache memory

5

15

25

35

40

45

50

55

60

65

2
based approach to instruction execution is disclosed. The
apparatus includes a cache memory having a plurality of
cache lines of cache locations, and one or more control units.
The one or more control units operate the cache memory to
directly Supply appropriate ones of a number of values
Stored in Selected ones of the cache locations for a number
of variables to one or more ALU as inputs to arithmetic/logic
operations, and/or to directly accept and Store results of
arithmetic/logic operations from the one or more ALU as
values of the variables in Selected ones of the cache loca
tions. The direct Supplying as well as the direct accepting
and Storing are performed responsive to instructions Speci
fying the arithmetic/logic operations and logically designat
ing the variables associated with the Specified arithmetic/
logic operations.

In one embodiment, the one or more control units operate
to map logical variable designations of the instructions to
physical/virtual addresses of the variables and/or cache
addresses to either content address or positionally access the
cache memory to facilitate the direct Supply of Stored
variable values and the direct acceptance and Storing of
results of arithmetic/logic operations. The one or more
control units further operate to maintain logical variable
designation to address mappings, creating and updating
logical variable designation to address mappings responsive
to instructions logically defining variables and Specifying
physical/virtual addresses of the variables being defined.
The physical/virtual addresses may be explicitly as well
implicitly Specified in terms of an arithmetic expression of
one or more logically designated variables. The arithmetic
expression may employ the physical/virtual address of at
least one of the one or more logically designated variables,
Symbolically Specified.

In one embodiment, the specified arithmetic/logic opera
tion may employ the physical/virtual address of a logically
designated variable, Symbolically Specified. The one or more
control units further operate the cache memory to directly
execute assignment instructions logically designating the
variables associated with the assignments. The assignment
instructions may include employment of the physical/virtual
address of at least one of the logically designated variable,
Symbolically Specified.

In one embodiment, the variables include control vari
ables of the apparatus, which include the above described
mapping information. The one or more control units operate
the cache memory to allocate the various cache lines to Store
values of variables with physical/virtual addresses of a
number of memory pages, with a first of the memory pages
being reserved for the control variables of the apparatus. The
various memory pages are organized into an hierarchy of
logical units of at least two levels.

BRIEF DESCRIPTION OF DRAWINGS

The present invention will be described by way of exem
plary embodiments, but not limitations, illustrated in the
accompanying drawings in which like references denote
Similar elements, and in which:

FIG. 1 illustrates an exemplary processor incorporated
with the teachings of the present invention;

FIG. 2 illustrates one embodiment of logical variable
designation to address mapping, and

FIG. 3 illustrates one embodiment of memory space
organization.

DETAILED DESCRIPTION OF THE
INVENTION

In the following description, various aspects of the
present invention will be described. Those skilled in the art

6,067,601
3

will also appreciate that the present invention may be
practiced with only Some or all aspects of the present
invention. For purposes of explanation, Specific numbers,
materials and configurations are set forth in order to provide
a thorough understanding of the present invention. However,
it will also be apparent to one skilled in the art that the
present invention may be practiced without the Specific
details. In other instances, well known features are omitted
or Simplified in order not to obscure the present invention.

Referring now to FIG. 1, wherein one embodiment of an
exemplary processor incorporated with the teachings of the
present invention is shown. AS shown, exemplary processor
100 includes cache memory 102 having tag array 104 and
data array 106. Data array 106 includes a number of data
lines of cache locations for Storing values of variables,
whereas tag array 104 includes a number of corresponding
tag entries for Storing address tags for the variables whose
values are Stored in the corresponding data lines. Each of the
tag entries also includes a number of control bits. In
particular, each tag entry includes a control bit for denoting
the corresponding data line is to be “locked down” for
positional access, i.e. by cache address, as opposed to being
accessed through content address using the physical/virtual
address of a variable. Positional acceSS has a shorter acceSS
latency than content address acceSS. Together, the tag entries
and the corresponding data lines form the cache lines. The
address tags are associated with either the physical or virtual
addresses of the memory locations where the variables are
Stored, depending on the memory management model, i.e.
physical or virtual. Cache memory 102 may be content
addressed using the physical/virtual addresses associated
with the variable or positionally accessed using cache
addresses of the cache locations. For the illustrated
embodiment, cache memory 102 includes two read ports (X
and Y) and one write port (Z). The outputs on read ports X
and Y may be by-passed to write port Z. Except for the
teachings of the present invention incorporated in cache
memory 102, which will be described in more detail below,
cache memory 102 is intended to represent a broad category
of cache memory known in the art.

Exemplary processor 100 further includes control unit
108, mapping unit 110 and arithmetic logic unit 112, coupled
to cache memory 102 and each other as shown. In particular,
output of mapping unit 110 may be by-passed to ALU 112.
ALU 112 is intended to represent a broad category of ALU
known in the art. Except for the teachings of the present
invention incorporated into control unit 108 and mapping
unit 110, which are further described below, control unit 108
and mapping unit 110 are also intended to represent a broad
category of these elements known in the art. Notwithstand
ing these teachings to be incorporated, as will be apparent
from the description to follow, control unit 108 and mapping
unit 110 may nevertheless be implemented in hardware or
firmware or combination thereof, employing any number of
circuitry and/or programming techniques known in the art.

In accordance with the present invention, control and
mapping units 108 and 110 together operate cache memory
102 to directly Supply appropriate ones of a number of
values Stored in Selected ones of the cache locations for a
number of variables to ALU 112 as inputs to arithmetic/logic
operations, and/or to directly accept and Store results of
arithmetic logic operations from ALU 112 as values of the
variables in Selected ones of the cache locations. The direct
Supplying as well as the direct accepting and Storing are
performed responsive to instructions 114 specifying the
arithmetic/logic operations and logically designating the
variables associated with the Specified arithmetic/logic

15

25

35

40

45

50

55

60

65

4
operations. In other words, the instructions are executed
directly using the values of the designated variables Stored
in cache memory 102, and unlike the prior art, neither a
Stack, an accumulator, nor a register file is employed.

Before describing the present invention in further detail,
it should be noted that while for ease of understanding,
control unit 108 and mapping unit 110 are shown as two
Separate units, from the descriptions to follow, those skilled
in the art will appreciate that the present invention may be
practiced with control unit 108 and mapping unit 110
implemented as one or more units. Also, while two read
ports and one write port are provided to cache memory 102,
and only one ALU 112 is shown, the present invention may
also be practiced with one or more read/write ports as well
as multiple ALU 112. Furthermore, processor 100 may take
the form of a functional block of a larger integrated circuit
(chip), a single chip or multiple chips.
AS shown, each instruction 114 comprises opcode 116 and

one or more logical variable designations 118. Opcode 116
specifies the operation to be performed. For the illustrated
embodiment, the operation may be a variable definition
operation, an arithmetic or logic operation, or a variable
assignment operation, to be explained more fully below.
Logical variable designations 118 specify the variables
asSociated with the Specified operation. Note that logical
variable designations 118 designate the variables, not the
registers containing the variables, nor the physical/virtual
addresses of the memory locations containing the variables.
For Some operations, a constant (also referred to as an
immediate) may be specified in lieu of a logical variable
designation.

In the case of the variable definition operation
(DEFVAR), the physical/virtual address of the memory
location of the variable being defined is specified.
Hereinafter, the physical/virtual address of the memory
location of the variable will simply be referred to as the
memory address of the variable. The memory address may
be explicitly specified, e.g. DEFVARV1, 1000H, or implic
itly specified employing an arithmetic expression, e.g. DEF
VARV1, (V2+V3), meaning the memory address of variable
V1 is 1000H in the first case, and given by the sum of
variables V2 and V3 in the second case. For the illustrated
embodiment, the arithmetic expression may also employ the
memory address of a variable, Symbolically specified, e.g.
DEFVAR V1, (GV2+V3), meaning the memory address of
variable V1 is given by the adding the value of variable V3
to the memory address of variable V2.

Additionally, for the illustrated embodiment, a variable
definition may also specify whether the value of the variable
is to be “locked down” in the cache memory to facilitate
positional access using the cache address of the Storing
cache location, and an initial value for the variable being
defined, e.g. DEFVAR V1, 1000H, L, 1234, meaning the
memory address of variable V1 is 1000H, and furthermore
the value of variable V1 is to be "locked down” in cache
memory 102, starting with the initial value of 1234.
Preferably, all variables of an application are “locked down”
in cache memory 102 and retrieved through positional
addressing of cache memory 102. However, depending on
the size of cache memory 102 employed in a particular
implementation, as well as the number and Size of the
variables involved in an application, one may selectively
“lock down' only the variables that are frequently needed.
Values of the variables haven’t been “locked down” are
retrieved by content addressing cache memory 102. The
manner in which control unit 108 and mapping unit 110
operate cache memory 102 to execute these variable defi
nition operations will be described in more detail below.

6,067,601
S

Similarly, for the illustrated embodiment, symbolically
Specified memory address of a variable may be employed in
arithmetic/logic operations and assignment operations. An
example of an arithmetic/logic operation employing Sym
bolically specified physical address of a variable is MAC
(GV2+V3), K, meaning multiplying the constant K to the
variable whose memory address is given by the Sum of the
memory address of variable V2 and the value of variable V3,
and accumulate the product in the given memory address.
Note that by forming a loop with the above described MAC
statement and a DEFVAR V2, (GV2+V3, the operation of
multiplying and accumulating the constant K with variable
V2 of an array (accessed with stride size V3) is compactly
Specified. Examples of assignment operations employing
Symbolically Specified memory address of a variable are
a=(ob, a-*b, *a-b, *a-(ob, *a-*b, (G)a=b, (G)a=(ob, and
(G)a=fb. In the first case, a-Gb means assign the memory
address of variable b to variable a, whereas in the second
case, a-*b means assign the data of a variable whose
memory address is given by the value Stored in variable b to
variable a. In the third case, *a-b means assign the value of
b to a variable whose memory address is given by the value
of variable a. In the fourth case, *a-Gb means assign the
memory address of variable b to a variable whose memory
address is given by the value of variable a. In the fifth case,
*a=*b means assign the value of a variable whose memory
address is given by the value of variable b to a variable
whose memory address is given by the value of variable a.
In the Sixth case, (G)a=b means assign the value of variable
b as the memory address of variable a. In the Seventh case,
(G)a=(Gb means change the memory address of variable a to
be the memory address of variable b. Last but not least, in
the eighth case, (G)a=*b means assign the value of a variable
whose address is given by variable b to be the memory
address of variable a. The manner in which control unit 108
and mapping unit 110 operate cache memory i02 to execute
these arithmetic/logic and assignment operations will be
described in more detail below.

Continuing to refer to FIG. 1, for the illustrated
embodiment, mapping unit 110 operates to map logical
Variable designations of the instructions to memory
addresses of the variables as well as cache addresses to
facilitate either content address or positionally address cache
memory 102 to directly supply stored variable values as well
as directly accept and Store results of arithmetic/logic opera
tions. More Specifically, mapping unit 110 performs the
mapping employing logical variable designation to address
mappings created by control unit 108 responsive to instruc
tions logically defining variables and Specifying the memory
addresses of the variables being defined, and Subsequently
maintained responsive to the various data movement
resulted from the instruction execution.

FIG. 2 illustrates one embodiment of the logical variable
designation to address mappings created and maintained. AS
shown, for the illustrated embodiment, logical variable
designation to address mappingS 122 are maintained in
mapping table 120. Each logical variable designation to
address mapping 122 includes logical variable designation
124, memory address 126 of the designated variable, cache
address 128 of the cache location where the designated
variable is stored, and valid bit 130 denoting whether cache
address 128 is valid or not. Valid bit 130 is set to denote valid
cache address when the cache location is allocated to the
variable, and reset to denote invalid cache address if the
cache location is reallocated to another variable. Mapping
table 120 may be stored in storage medium internal or
external to mapping unit 110. Other data structure/

15

25

35

40

45

50

55

60

65

6
organization and/or disposition may be employed. For
example, in an alternate embodiment, cache address 128 and
valid bit 130 are not maintained as part of each logical
variable designation to address mapping 122. The values of
the logical variable are retrieved through content addressing.
In yet another alternate embodiment, memory address 126
of the designated variable is not maintained as part of each
logical variable designation to address mapping 122.
Memory address 126 is retrieved from tag array 104 using
cache address 128.

Referring back to FIG. 1, in response to a basic variable
definition operation where the physical address of the Vari
able being defined is explicitly specified, control unit 108
causes mapping unit 110 to create the appropriate logical
variable designation to address mapping employing the
memory address explicitly Specified, and then output the
mapped memory address to content address cache memory
102 to cause a cache location to allocated for the variable
being defined. The cache allocation is handled in the con
ventional manner, meaning if the allocation results in a
cache miss, the value Stored in the memory location is
accessed and brought into the allocated cache location.

In response to a variable definition operation where the
memory address of the variable being defined is implicitly
specified, control unit 108 first operates cache memory 102
to output the stored values for the variables employed in the
arithmetic expression, using either the mapped memory
addresses or the cache addresses of the variables output by
mapping unit 110 to content address or positionally address
cache memory 102, and then causes mapping unit 110 to
create the appropriate logical variable designation to address
mapping employing the result of the arithmetic operation, as
well as output the mapped memory address to cache
memory 102 to allocate a cache location for the variable
being defined as described earlier. If the arithmetic operation
employs a Symbolically Specified memory address of a
variable, control unit 108 further causes the mapped
memory address output by mapping unit 110 to be by-passed
to ALU 112.

If the value of the variable being defined is to be “locked
down” in cache memory 102, control unit 108 further
operates to cause the "lock down” bit of the corresponding
cache tag entry to be set, "locking down the Storing cache
line, and cause the cache address of the allocated cache
location to be included in the logical variable designation to
address mapping, and the associated valid bit be set. For the
illustrated embodiment, a Storing cache line is "locked
down” by removing the cache line from being considered for
reallocation. Other approaches may be employed. If the
variable being defined is also Supposed to be initialized to a
specified initial value, control unit 108 further operates to
cause the initial immediate value to be stored into the
allocated cache location, overwriting the value brought in
from memory.
AS in conventional cache memory operation, if a content

address access results in a cache miss, when evaluating an
arithmetic expression for a logical variable definition
operation, the required data is fetched from memory and
loaded into cache memory 110, Victimizing an existing
cache line if necessary. Note that it is not possible to have
a cache miss if the variable is positionally addressed, as a
variable is positionally accessed only if it has been "locked
down” in cache memory. Note that employment of the above
described DEFVAR operation substantially eliminates the
need for the LOAD instruction. For the illustrated
embodiment, cache memory 102 is a write back cache,
meaning “dirty data Stored in a cache line are written back

6,067,601
7

into memory when the cache line is re-allocated. Note that
by employing a write back cache, the instruction Set of
processor 100 needs not include a STORE instruction. Data
are automatically Stored into memory as an integral part of
the cache line reallocation process.

In response to an instruction Specifying an arithmetic or
logic operation, control unit 108 in conjunction with map
ping unit 110 operate cache memory 102 in like manner as
described earlier for the variable definition operation where
the memory address of a variable being defined is implicitly
defined employing an arithmetic expression, except the
result output by ALU 112 is stored in a cache location in
accordance with the mapped memory address or cache
address of the destination variable output by mapping unit
110 instead. Again, as described earlier, in each case, if the
value of a variable is accessed via content address, i.e. the
variable value is not “locked down” in cache memory 102,
and the memory address is currently not cached in cache
memory 102, a cache miss is resulted. The cache miss is
handled in a conventional manner.

In response to a basic assignment operation, i.e. a =b,
control unit 108 in conjunction with mapping unit 110
operate cache memory 102 to first output the value stored for
variable b, using either the mapped memory address or
cache address of variable b output by mapping unit 110, and
then store the value output for variable b in the cache
location Specified by the mapped memory address or cache
address of variable a output by mapping unit 110. In
response to the a=(ob assignment instruction, control unit
108 and mapping unit 110 operate cache memory 102 to
Store the mapped memory address of variable b output by
mapping unit 110 as the value of variable a in a cache
location Specified by the mapped memory address or cache
address of the variable a output by mapping unit 110. In
response to the a=*b assignment operation, control unit 108
and mapping unit 110 operate cache memory 102 to first
output the stored value of variable b from a first cache
location using the mapped memory address or cache address
of variable b output by mapping unit 110, then output the
Stored value of another variable from another cache location
using the first output as the memory address of the other
variable, and then Store the Second output as value of
variable a in a cache location Specified by the mapped
memory address or cache address of variable a output by
mapping unit 110.

In response to the a=bassignment operation, control unit
108 and mapping unit 110 operate cache memory 102 to first
output the stored values of variables a and b stored in a first
and a Second cache location using the mapped memory
addresses or cache addresses of variables a and b output by
mapping unit 110, and then Store the output value of the
variable b as value of another variable in a cache location
Specified by the output value of the variable a as the memory
address of the other variable. In response to the * a=(Gib
assignment operation, control unit 108 and mapping unit 110
operate cache memory 102 to output the value of variable a
using the mapped memory address or cache address output
by mapping unit 110, and then Store the memory address of
variable b output by mapping unit 110 as value of the
variable whose address is given by the value of variable a.
In response to the a=*b assignment operation, control unit
108 and mapping unit 110 operate cache memory 102 to
output the values of variables a and b using the mapped
memory addresses or cache addresses output by mapping
unit 110, and then store the value of a first variable whose
address is given by the value of variable b as value of a
Second variable whose address is given by the value of
variable a.

15

25

35

40

45

50

55

60

65

8
In response to the (G)a=b assignment operation, control

unit 108 and mapping unit 110 operate cache memory 102
to first output the stored values of variables a and b from a
first and a Second cache location using the mapped memory
addresses or cache addresses of variables a and b output by
mapping unit 110, then Store the output value of variable a
as value of another variable using the output value of
variable b as the memory address of the other variable. In
response to the (G)a=(ob assignment operation, control unit
108 and mapping unit 110 operate cache memory 102 to first
output the Stored value of variable a from a cache location
using the mapped memory address or cache address of
variable a output by mapping unit 110, then Store the output
value of variable a as value of another variable using the
memory address of variable b. In response to the (G)a=*b
assignment operation, control unit 108 and mapping unit 110
operate cache memory 102 to first output the stored values
of variables a and b from a first and a Second cache location
using the mapped memory addresses or cache addresses of
variables a and b output by mapping unit 110, then output the
value of a first other variable whose address is given by the
value of variable b and store the output value of variable a
as value of a Second other variable using the output value of
the first other variable as the memory address of the second
other variable.

In each of these last three cases, control unit 108 further
operates mapping unit 110 to update the logical variable
designation to address mapping for variable a to map
variable a to the memory address of the “last other variable.
In each of these eight cases, if the memory address is
currently not cached in cache memory 102 whenever cache
memory 102 is content addressed, a cache miss is resulted.
The cache miss is handled in a conventional manner.

Those skilled in the art will appreciate that the above
described cache memory based instruction execution over
comes in particular the working Set limitation commonly
encountered in register based processors. The above
described operations employing both Symbolically Specified
memory addresses as well as data variables also provide
Significant advantages over prior art instructions.

FIG. 3 illustrates one embodiment of the memory space
organization for exemplary processor 100. AS shown, for the
illustrated embodiment, the memory space is organized into
an hierarchy of logical units. Specifically, for the illustrated
embodiment, the memory Space is divided into multiple
address Spaces, with each address Space further divided into
volumes, and each volume divided into books. Each book is
in turn divided into chapters, with each chapter divided into
pages. For the illustrated embodiment, the first page of each
address Space is reserved for Storing control variables of
exemplary processor 100. In other words, exemplary pro
ceSSor 100 neither employs a general purpose register file
nor control registers. In one embodiment, the earlier
described mapping table 120 is also stored in this reserved
memory page. Control unit 108 and mapping unit 110
operate cache memory 102 to allocate the cache lines to
different memory pages. In other words, control variables
are cached in cache memory 102, and may be accessed and
manipulated by instructions as described earlier for data
variables. In other embodiments, other memory page(s) may
be reserved for the control variables instead.

In one embodiment, control unit 108 and mapping unit
110 can also operate cache memory 102 to execute
instructions, utilizing cache memory 102 to implement a
virtual register file. In other words, in addition to the above
described manner of executing instructions, where inputs
and outputs of arithmetic/logic operations are Specified

6,067,601

using logical variable designations, control unit 108 and
mapping unit 110 can also operate cache memory 102 to
execute instructions, where inputs and outputs of arithmetic/
logic operations are Specified in the conventional manner,
that is in terms of the registers and/or memory locations
holding the operands. Operating cache memory 102 to
implement a virtual register file to execute instructions in
Such a manner is the Subject matter of the co-pending
application, entitled Virtual Register File, filed
contemporaneously, and having common inventorship as
well as assignee as the present application. The copending
application is hereby fully incorporated by reference.
While the present invention has been described in terms

of the above described embodiments, those skilled in the art
will recognize that the invention is not limited to the
embodiments described. The present invention can be prac
ticed with modification and alteration within the spirit and
Scope of the appended claims. The description is thus to be
regarded as illustrative instead of restrictive on the present
invention.

Thus, a cache memory based approach to executing
instructions has been disclosed.
What is claimed is:
1. An apparatus comprising:
cache memory having a plurality of cache lines of cache

locations, and
one or more control units coupled to Said cache memory

that operate the cache memory to directly Supply appro
priate ones of a plurality of values Stored in Selected
ones of Said cache locations for a plurality of variables
to one or more arithmetic logic units (ALU) as inputs
to arithmetic/logic operations, and/or to directly accept
and Store results of arithmetic logic operations from the
one or more ALU as values of the variables in selected
ones of Said cache locations, responsive to instructions
Specifying Said arithmetic/logic operations and logi
cally designating the variables associated with the
Specified arithmetic/logic operations,

wherein Said cache lines include data lines and corre
sponding tag entries to the data lines, Said one or more
control units further operate the cache memory to Store
a plurality of address tags in Said tag entries for the
variables whose values are Stored in the corresponding
data lines, the address tags being associated with
memory addresses of the variables, and each of Said tag
entries further includes a control bit to be employed to
effectuate locking down the cache line.

2. The apparatus as Set forth in claim 1, wherein Said one
or more control units operate to map logical variable des
ignations of the instructions to at least one of memory
addresses of the variables and cache addresses of cache
locations employed to Store the variables, to at least one of
content address and positionally address Said cache memory
to facilitate Said direct Supplying of Stored variable values
and Said direct acceptance and Storing of results of
arithmetic/logic operations.

3. The apparatus as Set forth in claim 2, wherein Said one
or more control units further operate to maintain logical
variable designation to address mappings, creating and
updating logical variable designation to address mappings
responsive to instructions logically defining variables and
Specifying memory addresses of the variables being defined.

4. The apparatus as Set forth in claim 3, wherein the one
or more control units further operate the cache memory to
allocate a cache line, and Store the value of a logical variable
being defined into an appropriate one of the cache locations

15

25

35

40

45

50

55

60

65

10
of the allocated cache line, whenever a logical variable
designation to address mapping is created for a logical
variable being defined, if the value of the logical variable
being defined is not already Stored in the cache memory.

5. The apparatus as Set forth in claim 4, wherein the one
or more control units further operate the cache memory to
conditionally write back the current content of the cache line
being allocated as appropriate, if the cache line being
allocated is currently allocated and Storing values of other
logical variables.

6. The apparatus as set forth in claim 3, wherein the
memory address of at least one of the variables being defined
is either explicitly specified or implicitly Specified in terms
of an arithmetic expression of one or more logically desig
nated variables.

7. The apparatus as set forth in claim 6, wherein for each
variable whose memory address is implicitly Specified in
terms of an arithmetic expression of one or more logically
designated variables, the one or more control units first
operating the cache memory to Supply the Stored values of
the one or more logically designated variables to the one or
more ALU using the mapped addresses of the logically
designated variables, then operating to create or update an
appropriate one of the logical variable designation to address
mapping using the result of the arithmetic expression.

8. The apparatus as set forth in claim 7, wherein the
arithmetic expression includes employment of the memory
address of at least one of the one or more logically desig
nated variables, Symbolically Specified, the one or more
control units further operate to effectuate provision of the
mapped memory address of each of the at least one of the
one or more logically designated variables to the one or
more ALU.

9. The apparatus as Set forth in claim 2, wherein Said one
or more control units include a mapping unit that operates to
perform Said maintenance of logical variable designation to
address mappings and Said mapping of logical variable
designations to at least one of memory addresses of the
variables and cache addresses of cache locations employed
to store the variables.

10. The apparatus as set forth in claim 1, wherein at least
one of the Specified arithmetic/logic operation employs the
memory address of a logically designated variable, Symboli
cally specified, the one or more control units further operate
to provide the mapped memory address of the logically
designated variable to the one or more ALU.

11. The apparatus as Set forth in claim 1, wherein the one
or more control units further operate the cache memory to
directly execute assignment instructions logically designat
ing the variables associated with the assignments.

12. The apparatus as Set forth in claim 11, wherein at least
one of assignment instructions include employment of at
least one of an implicitly designated variable and the
memory address of at least one of the logically designated
variable, Symbolically Specified.

13. The apparatus as set forth in claim 12, wherein the one
or more control units operate the cache memory to Store the
mapped memory address of a first variable (b) into a first
cache location as the value of a second variable (a) using one
of the mapped memory and cache addresses of the Second
variable (a), responsive to an instruction So Specifying,
employing only a Symbolic designation for the memory
address of the first variable (b).

14. The apparatus as Set forth in claim 12, wherein the one
or more control units further operate the cache memory to
first output the stored value of a first variable (b) from a first
cache location using one of the mapped memory and cache

6,067,601
11

addresses of the first variable (b), then output the stored
value of a Second variable from a Second cache location
using the first output as the memory address of the Second
variable, and then Store the Second output in a third cache
location as value of a third variable (a) using one of the
mapped memory and cache addresses of the third variable
(a), responsive to an instruction so specifying employing an
implicit designation for the Second variable.

15. The apparatus as set forth in claim 12, wherein the one
or more control units further operate Said cache memory to
first output the Stored values of a first and a Second variable
(a and b) Stored in a first and a second cache location using
one of the mapped memory and cache addresses of each of
the first and Second variables (a and b), and then Store the
output value of the second variable (b) in a third cache
location as value of a third variable using the output value
of the first variable (a) as the memory address of the third
variable, responsive to an instruction So Specifying employ
ing an implicit designation for the third variable.

16. The apparatus as Set forth in claim 12, wherein the one
or more control units further operate Said cache memory to
first output the stored values of a first variable (a) from a first
cache location using one of the mapped memory and cache
addresses of the first variable (a), then Store the memory
address of a Second variable (b) into a second cache location
as value of a third variable using the output value of the first
variable as the memory address of the third variable, respon
Sive to an instruction So Specifying employing an implicit
designation for the third variable and a symbolic designation
of the memory address of the second variable.

17. The apparatus as set forth in claim 12, wherein the one
or more control units further operate Said cache memory to
first output the Stored values of a first and a second variable
(a and b) from a first and a Second cache location using one
of the mapped memory and cache addresses of each of the
first and Second variables (a and b), then Store the value of
a third variable whose memory address is given by the
output value of the second variable (b) into a third cache
location as value of a fourth variable using the output value
of the first variable as the memory address of the fourth
variable, responsive to an instruction So Specifying employ
ing an implicit designation for each of the third and fourth
variables.

18. The apparatus as set forth in claim 12, wherein the one
or more control units further operate Said cache memory to
first output the Stored values of a first and a Second variable
(a and b) from a first and a Second cache location using one
of the mapped memory and cache addresses of each of the
first and Second variables (a and b), then store the output
value of the first variable into a third cache location as value
of the first variable using the output value of the Second
variable as the memory address of the first variable, respon
Sive to an instruction So Specifying employing a symbolic
designation for the memory address of the first variable.

19. The apparatus as set forth in claim 12, wherein the one
or more control units further operate Said cache memory to
first output the stored value of a first variable (a) from a first
cache location using one of the mapped memory and cache
addresses of the first variable (a), then Store the output value
of the first variable into a Second cache location as value of
the first and a Second variable using the memory address of
the second variable (b) as the memory address of the first as
well as the Second variable, responsive to an instruction So
Specifying employing Symbolic designations for the
memory addresses of the first and Second variables.

20. The apparatus as set forth in claim 12, wherein the one
or more control units further operate Said cache memory to

15

25

35

40

45

50

55

60

65

12
first output the Stored values of a first and a Second variable
(a and b) from a first and a Second cache location using one
of the mapped memory and cache addresses of the first and
Second variables (a and b), then output the stored value of a
third variable from a third cache location using the output
value of the second variable (b) as memory address of the
third variable, and store the output value of the first variable
into a fourth cache location as the value of the first variable
using the output of the third variable as memory address of
the first variable (a), responsive to an instruction So Speci
fying employing Symbolic designation for the memory
address of the first variable and implicit designation for the
third variable.

21. The apparatus as set forth in claim 12, wherein for
Selected ones of the assignment operations, the one or more
control units further operate to update appropriate ones of
the logical variable designation to address mappings.

22. The apparatus as Set forth in claim 1, wherein the
variables include control variables of the apparatus.

23. The apparatus as Set forth in claim 22, wherein the one
or more control units operate the control memory to allocate
the plurality of cache lines of cache locations to Store values
of variables with memory addresses of a plurality of
memory pages, with a first of the memory pages being
reserved for Said control variables of the apparatus.

24. The apparatus as set forth in claim 23, wherein the
plurality of memory pages are organized into an hierarchy of
logical units of at least two levels.

25. A method for executing instruction comprising the
Steps of

(a) directly Supplying appropriate ones of a plurality of
values Stored in Selected ones of a plurality of cache
locations of a plurality of cache lines of a cache
memory for a plurality of variables to one or more
arithmetic logic units (ALU) as inputs to a plurality of
arithmetic/logic operations, responsive to instructions
Specifying Said arithmetic/logic operations, responsive
to instructions Specifying Said arithmetic/logic opera
tions and logically designating the variables associated
with the Specified arithmetic/logic operations,

(b) directly accepting and storing results of the arithmetic
logic operations from the one or more ALU as values
of the variables in Selected ones of Said cache locations,
responsive to Said instructions, and

(c) Storing a plurality of address tags in a plurality of
cache tag entries corresponding to data lines Storing the
variables, the address tags being associated with
memory addresses of the variables, and Setting control
bits in Selected ones of the plurality of address tags to
effectuate locking down of the Selected ones of the
cache lines.

26. The method as set forth in claim 25, said method
further comprises the step (c) mapping logical variable
designations of the instructions to at least one of memory
and cache addresses of the variables, and steps (a) and (b)
Selectively use the mapped memory and cache addresses to
content and positionally address Said cache memory to
facilitate Said direct Supply of Stored variable values and Said
direct acceptance and Storing of results of arithmetic/logic
operations.

27. The method as set forth in claim 26, wherein step (c)
comprises maintaining logical variable designation to
address mappings, creating and updating logical variable
designation to address mappings responsive to instructions
logically defining variables and Specifying memory
addresses of the variables being defined.

28. The method as set forth in claim 27, wherein step (c)
further comprises allocating a cache line, and Storing the

6,067,601
13

value of a logical variable being defined into an appropriate
one of the cache locations of the allocated cache line,
whenever a logical variable designation to address mapping
is created for a logical variable being defined, if the value of
the logical variable being defined is not already Stored in the
cache memory.

29. The method as set forth in claim 28, wherein step (c)
further comprises conditionally writing back the current
content of the cache line being allocated as appropriate, if
the cache line being allocated is currently allocated and
Storing values of other logical variables.

30. The method as set forth in claim 27, wherein the
memory address of at least one of the variables being defined
is explicitly Specified.

31. The method as set forth in claim 27, wherein the
memory address of at least one of the variables being defined
is implicitly specified in terms of an arithmetic expression of
one or more logically designated variables.

32. The method as set forth in claim 31, wherein step (c)
further comprises, for each variable whose memory address
is implicitly specified in terms of an arithmetic expression of
one or more logically designated variables, Supplying the
Stored values of the one or more logically designated Vari
ables to the one or more ALU using one of the mapped
memory and cache addresses of the logically designated
variables, then operating to create or update an appropriate
one of the logical variable designation to address mapping
using the result of the arithmetic expression.

33. The method as set forth in claim 32, wherein the
arithmetic expression includes employment of at least one of
implicitly Specified variable and the memory address of a
logically designated variable, Symbolically Specified, and
step (c) further comprises providing the symbolically speci
fied memory address of the logically designated variable to
the one or more ALU.

34. The method as set forth in claim 26, wherein said step
(c) is performed using a mapping unit.

35. The method as set forth in claim 25, wherein at least
one of the Specified arithmetic/logic operation employs at
least one of implicitly Specified variable and the memory
address of a logically designated variable, Symbolically
Specified, the one or more control units further operate to
provide the Symbolically Specified memory address of the
logically designated variable to the one or more ALU.

36. The method as set forth in claim 25, wherein the
method further comprises step (c) directly effectuating by
Said cache memory execution of assignment instructions
logically designating the variables associated with the
assignments.

37. The method as set forth in claim 36, wherein at least
one of the assignment instruction execution effectuated in
Step (c) include employment of at least one of implicitly
Specified variable and the memory address of at least one of
the logically designated variable, Symbolically Specified.

38. The method as set forth in claim 37, wherein step (c)
comprises Storing the mapped memory address of a first
variable (b) as the value of a second variable (a) in a first
cache location using one of the mapped memory and cache
addresses of the Second variable (a), responsive to an
instruction So Specifying, employing only a Symbolic des
ignation for the memory address of the first variable (b).

39. The method as set forth in claim 37, wherein step (c)
comprises first outputting the Stored value of a first variable
(b) from a first cache location using one of the mapped
memory and cache addresses of the first variable (b), then
outputting the Stored value of a Second variable from a
Second cache location using the first output as the memory

15

25

35

40

45

50

55

60

65

14
address of the Second variable, and then Storing the Second
output as value of a third variable (a) in a third cache
location using one of the mapped memory and cache
addresses of the third variable (a), responsive to an instruc
tion So Specifying employing an implicit designation for the
Second variable.

40. The method as set forth in claim 37, wherein step (c)
comprises first outputting the Stored values of a first and a
Second variable (a and b) Stored in a first and a second cache
location using one of the mapped memory and cache
addresses of each of the first and Second variables (a and b),
and then Storing the output value of the Second variable (b)
as value of a third variable in a third cache location using the
output value of the first variable (a) as the memory address
of the third variable, responsive to an instruction So Speci
fying employing an implicit designation for the third Vari
able.

41. The method as set forth in claim 37, wherein step (c)
comprises first outputting the Stored values of a first variable
(a) from a first cache location using one of the mapped
memory and cache addresses of the first variable (a), and
then storing the memory address of a Second variable (b)
into a Second cache location as value of a third variable
using the output value of the first variable as the memory
address of the third variable, responsive to an instruction So
Specifying employing an implicit designation for the third
variable and a Symbolic designation of the memory address
of the second variable.

42. The method as set forth in claim 37, wherein step (c)
comprises first outputting the Stored values of a first and a
Second variable (a and b) from a first and a second cache
location using one of the mapped memory and cache
addresses of each of the first and second variables (a and b),
and then Storing the value of a third variable whose memory
address is given by the output value of the Second variable
(b) into a third cache location as value of a fourth variable
using the output value of the first variable as the memory
address of the fourth variable, responsive to an instruction So
Specifying employing an implicit designation for each of the
third and fourth variables.

43. The method as set forth in claim 37, wherein step (c)
comprises first outputting the Stored values of a first and a
Second variable (a and b) from a first and a second cache
location using one of the mapped memory and cache
addresses of the first and Second variables (a and b), and then
Storing the output value of the first variable into a third cache
location as value of the first variable using the output value
of the second variable as the memory address of the first
variable, responsive to an instruction So Specifying employ
ing a Symbolic designation for the memory address of the
first variable.

44. The method as set forth in claim 37, wherein step (c)
comprises first outputting the Stored value of a first variable
(a) from a first cache location using one of the mapped
memory and cache addresses of the first variable (a), and
then Storing the output value of the first variable into a
Second cache location as value of the first and a Second
variable using the memory address of the Second variable (b)
as the memory address of the first as well as the Second
variable, responsive to an instruction So Specifying employ
ing Symbolic designations for the memory addresses of the
first and Second variables.

45. The method as set forth in claim 37, wherein step (c)
comprises first outputting the Stored values of a first and a
Second variable (a and b) from a first and a cache location
using one of the mapped memory and cache addresses of
each of the first and Second variables (a and b), then

6,067,601
15

outputting the stored value of a third variable from a third
cache location using the output value of the Second variable
(b) as memory address of the third variable, and storing the
output value of the first variable into a fourth cache location
as the value of the first variable using the output of the third
variable as memory address of the first variable (a), respon
Sive to an instruction So Specifying employing Symbolic
designation for the memory address of the first variable and
implicit designation for the third variable.

46. The method as set forth in claim 37, wherein step (c)
further comprises updating appropriate ones of logical vari
able designation to address mappings for Selected ones of
the assignment operations.

16
47. The method as set forth in claim 25, wherein the

variables include control variables.
48. The method as set forth in claim 47, wherein the

method further comprises the step (c) allocating the plurality
of cache lines of cache locations to Store values of variables
with memory addresses of a plurality of memory pages, with
a first of the memory pages being reserved for Said control
variables.

49. The method as set forth in claim 48, wherein the
plurality of memory pages are organized into an hierarchy of
logical units of at least two levels.

k k k k k

