The invention described herein may be manufactured and used by or for the Government for governmental purposes without the payment of any royalty thereon.

This invention relates to a system for transporting and erecting a self-contained lightweight transporter-erector for use with large missiles. In missiles of this type, lifting points or bolts are usually designed and provided on the missile structure.

The system to be described is directly applicable to the JUPITER, a missile developed by the U.S. Air Force. However, a system based on the same principles could be used for any other missile of that structural type. An extension of the principles involved could be adapted to non-self-supporting missiles, if desired, by applying the erecting forces to a frame-like structure capable of withstanding the loads. The frame, together with the missile, could then be erected, and the frame lowered after being disengaged from the missile.

In addition, although the JUPITER system herein described employs a separate launcher, a system could easily be used where the launcher is an integral part of the transporter-erector. Actually, when this JUPITER system is rigged for erecting, the transporter and launcher are connected in such a manner that they are, for all purposes, a single mechanical and structural entity. The system described is adaptable to, and designed around existing equipment now in use, using standard Army equipment as far as practical, and requiring a minimum of modification of that equipment.

In the past, it has been necessary to utilize a great deal of equipment for the erection of large missiles. For example, a separate winch truck which carried a vast assortment of lifting cables and pulleys was required to be erected to a height of 60 feet.

One object of this system is to provide a highly mobile missile transporting device. Another object is to provide a self-contained erection system which will operate rapidly and with a minimum amount of manpower.

The system to be described eliminates the winch truck and its equipment and reduces the manpower and set-up time to a very small fraction of that now required. It utilizes a tractor and a trailer, with a small amount of additional equipment and minor changes to existing equipment, as the erecting medium. There are no extraneous vehicles needed for the erection of the missile since the tractor and trailer are required at the firing site.

This system can easily erect a missile in 15 minutes from the time of arrival at the site, using four men, whereas previously no handwork, against a minimum time of 45 minutes, for the previous system, which required a small crane as well as the use of about 10 men and much labor.

The foregoing and other objects and advantages of the present invention will become more fully apparent from the following detailed description of the exemplifying apparatus shown in the accompanying drawings in which:

FIGURE 1 is an elevation of the system used to erect the missile;

FIGURE 2 is a plan view of the system in the same position as indicated in FIGURE 1; and

FIGURE 3 is a view similar to that of FIGURE 1 but illustrating force diagrams of the lifting apparatus.

Referring now to FIGURES 1 and 2, the missile is carried on a transporter which includes a tractor 4 and a trailer 9. Tractor 4 represents the automotive unit and source of power while trailer 9 supports the missile. A pair of rear steering wheels 13 are controllable from a station at the rear (not shown). A retractable jack 6, located near the forward portion of the trailer, is utilized for initial raising of trailer 9 relative to the tractor. Provision is made for two heavy adjustable struts 16, one on each side and at the rear of the transporter. An adjustable support arm 7 is mounted on each side of the forward portion of trailer 9. These support arms engage V-sling 36 which is attached to the missile 41 for the erection of the missile. Support arm 42 is mounted on each side of the rear portion of trailer 9 for engagement with missile bolts 38. The adjustable arms can be operated together, or individually, as a forward set or a rear set to raise or lower the end portions of the missile as desired. Wheels 13 are individually or simultaneously adjustable, to give rotational adjustment to the transporter so that it can be leveled transversely. Jack 6 is the same, except that it need not be synchronized with the rear wheels. In addition, the transporter is equipped with a pair of outriggers 14 and 15, which are attached to the truck and extend to the ground in the bottom of the trailer. The outriggers can be folded flat against the sides of the transporter for transporting where clearances permit, or they may be removed completely and carried elsewhere where road or railway clearances do not permit the additional width. On top of the outrigger-jack combination are hinged a pair of tubular columns 34, which are pivoted at 35. A pair of saddles 8 at the forward end of the trailer support the columns when the transporter erector is traveling. A cross bar 31 (see FIGURE 2) is hinged at the top of each column 34 and engages a remotely releasable latch at the top end of the column 34 on the opposite side of the trailer. The bar has an arm 32 for releasing and lowering it from a station on the ground. The bars may be carried extended collinearly with one of the columns, or can be removed for storage elsewhere.

Before initiating erection the nose of the missile must be raised to a predetermined height above the trailer so as to lighten the initial load on the erecting system. This height is attained by raising arms 7 to their uppermost position, and obtaining the rest of the height with jack 6 before inserting adapter 5. Another solution would be to mount fifth wheel 45 on a jack arrangement, so that the transporter could be raised while remaining connected to it.

Tractor 4 provides motive power for towing trailer and missile, and power for operating the winch during erection. A pivoted sheave 3 mounted on the tractor can be folded up for travel. Sheave 3 serves to guide winch cable 12 under the tractor and transporter.

Launch pad 24 is provided with a hydraulic snubber assembly 29 which controls the missile erection rate after the missile center of gravity passes over the top point. The launch pad is also provided with two removable brackets 28 and attendant swivel snatch blocks 27. Two snatch blocks 26 (FIGURE 2) are connected to the forward legs of launch pad 24 for guiding the lift cables.

To provide a rigid pivot assembly, an auxiliary ring 43 is equipped with hinged 28 which are hinged on the pad. Hinges 28 are mounted on the opposite side of ring 43 to keep V-sling 36 clear of accessories and to assist in the initial column lift. Snubbers
3 22 is mounted on the auxiliary ring for engagement with the hydraulic snubber assembly. During erection the launch pad would be emplaced before connection with the trailer assembly. When the pad is emplaced the transporter is backed to the pad, with the rear wheels steered and controlled at the rear station (not shown). The adjustable missile support arms 7 and 42 are then extended to raise the missile to its maximum height. The transporter is guided to engage the hinges 28 for insertion of hinge pins 19. The rear portion of the trailer can then be lowered to engage bumper connection plates 25 for insertion of pins 18. The adjustable v-grooves 16 are lowered and adjusted to enable them to be hooked to pad 20 with pins 41. The jacks 15 are then lowered to contact the ground firmly. The rear missile support arms 42 can be disengaged at this time if desired. It should be noted that the lower the missile nose, the greater the erecting loads imposed initially.

Prior to this time, folding bracket assembly 2 with its pivoted sheave 3 have been swung into operating position and winch cable 12 rigged as shown.

When the winch is started columns 34 rise together with cross bar 31 extended from one of them. When the columns are almost to the top of the missile, the cross bar is dropped and latched in the other column. At this point, the system is ready for final erection in one or two minutes, and may serve as a standby.

When the center of gravity of the missile passes over the snubber 29 engages lug 22 and permits ring 43 to descend gradually to its final position on the pad. Slings 36 are then used to return the columns to their cradles with the winch paying out and restraining the columns. The transporter is then disconnected and removed thus completing the erection.

The design of the erection equipment components, in order to be most efficient, economical, and lightweight, should proceed in a particular fashion, hereinafter described.

Referring now to FIGURE 3, the location of E, the missile erecting point, is fixed and determined by the design of the missile. The sheave at D is also fixed within fairly close limits by the launcher configuration and should be as far to the rear as practical. The location of pivot 35, denoted by X, is important and the object of most of the calculations. Its position largely determines the magnitude of the erecting forces required.

The first determination is to establish the vertical hoisting force Fv required to erect the missile. This is done by taking moments about the hinge point of the missile at G considering the weight and center of gravity location of the missile and the position of the erecting point E. Then the limiting load F_{2} which imposes a compressive stress on the missile is determined. Obviously, the loads on both sides of the missile enter into this figure. Utilizing an appropriate factor of safety for both values, they are resolved to establish the resultant required and permissible force F_{2} which also determines the angle θ and the line of action of slings 36 which lead to the top of the column 34 at point C. The length a between point E and columns 34 is fixed and does not vary during erection, although the angle θ between the slings and the missile centerline will change during erection.

The exact length a and the length of column 34, the latter of which should be kept to a minimum, is determined as follows: Angle α, in the interest of obtaining the minimum length of 34, is a right angle. Point X, at the lower end of 34, falls on the line AB which is an arbitrary line parallel to the top of the transporter. This line would generally be at about the level of the upper rail of the transporter, and is not too critical.

The position of the erecting point E in the fully erected position E_{1} must now be determined. A vertical line is placed a distance c to the left of the left surface of the fully erected missile. The distance c must be no less than that required to allow the crossbar 31 to clear the missile when it is fully erected. Otherwise, the length of $E_{1}C_{1}$ is equal to c, regardless of its position. Consequently, the length b of columns 34 is determined to satisfy the condition that the columns be perpendicular to EC with the missile horizontal and reach from X to C with the missile erected. This locates X and gives a definite length to the sling and direction but can act only in compression between the launcher feet and the ground since they are not staked down.

When the leading edge of the missile passes over the snubber 29, the missile becomes self-erecting and is restrained from falling violently upon the launch by snubber 29.

The above outlined procedure gives the loadings for minimum sizes of the structural members and wire ropes required, and yields their basic dimensions.

Although the preferred form of the embodying apparatus has been described in considerable detail in fully disclosing a practical application of the invention, it is to be understood that the modified structures shown and various other modifications of the apparatus may be utilized to advantage without departing from the spirit and scope of the invention as defined in the subjoined claims.

The principles of this invention having now been fully explained in connection with the foregoing description of illustrative embodying apparatus, I hereby claim as my invention:

1. A missile transporter erecting comprising: a tractor having a winch; a trailer attached thereto; a launching pad attached to the rear of said trailer; a pair of movable columns each having one end pivotally connected to said trailer and a rear end fixed thereto, each end of said columns being free to swing in a vertical plane; cable means extending from said winch beneath said tractor and trailer; said columns having one end attached to said cable means; said sling means extending to the rear of said launching pad on said columns and adapted to be attached to the forward portion of a missile.

2. In combination a missile and a transporter erecting for said missile, said combination comprising: a tractor; a trailer attached to said tractor; said missile being horizontally positioned upon said trailer and having a base portion, a nose portion and an erecting bolt adjacent said nose portion; launch pad means rigidly attached to the rear of said trailer; an auxiliary ring pivotally attached to said launch pad and rigidly attached to the base of said missile; a pair of outriggers, one of said outriggers being mounted on each side of said trailer; a pair of columns, each of said columns having an end thereof attached to each of said outriggers, said columns extending generally upwardly; a winch attached to said tractor; cable means attached to said winch and extending into the missile; said cable means adapted to be attached to said outrigger; and said launch pad, upwardly to the distal end of said columns and downwardly to the erecter bolt of said missile.

3. A device as set forth in claim 2 wherein a cross bar is pivotally attached to the distal end of one of said columns and detachably connected to the distal end of the other of said columns, one end of said cross bar having
an actuating means for raising and lowering of said cross bar.

4. A device as set forth in claim 2 wherein a snubber means is mounted on the transporter erector for controlling the ascent of said missile during the final stages of erection.

5. A device as set forth in claim 2 wherein means are provided for raising or lowering the forward portion of said trailer.

6. A device as set forth in claim 5 wherein means are provided for raising or lowering the rear portion of said trailer.