(57) Abrégé/Abstract:
A lock ring for use as a one way movement restrictor between two telescopingly arranged tubulars to permit movement in one direction and prevent movement in the other direction of one tubular relative to the other tubular; the lock ring comprising: a profile having one or more formations formed on the outer circumference for engagement with a suitable formation profile formed on the inner circumference of the outer telescopical tubular; and one or more teeth formed on its inner circumference, the teeth being adapted to dig into the outer surface of the inner telescopical member; such that the profile having one or more formations on the outer circumference and/or the said one or more teeth permits the lock ring to be pushed along the outer surface of the inner telescopical tubular when pushed by the outer telescopical tubular in one direction; and is further adapted to dig the teeth into the outer surface of the inner telescopical tubular when the push in said one direction is removed or when it is pushed by the outer telescopical tubular in the other direction in order to prevent the lock ring from moving in the other direction relative to the inner telescopical tubular.
ABSTRACT

A lock ring for use as a one way movement restrictor between two telescopically arranged tubulars to permit movement in one direction and prevent movement in the other direction of one tubular relative to the other tubular; the lock ring comprising: a profile having one or more formations formed on the outer circumference for engagement with a suitable formation profile formed on the inner circumference of the outer telescopic tubular; and one or more teeth formed on its inner circumference, the teeth being adapted to dig into the outer surface of the inner telescopic member; such that the profile having one or more formations on the outer circumference and/or the said one or more teeth permits the lock ring to be pushed along the outer surface of the inner telescopic tubular when pushed by the outer telescopic tubular in one direction; and is further adapted to dig the teeth into the outer surface of the inner telescopic tubular when the push in said one direction is removed or when it is pushed by the outer telescopic tubular in the other direction in order to prevent the lock ring from moving in the other direction relative to the inner telescopic tubular.
INTERLOCKING AND SETTING SECTION FOR A DOWNHOLE TOOL

FIELD OF THE DISCLOSURE

The present invention relates to an apparatus and method, and particularly relates to downhole tools used in oil and gas wellbores.

BACKGROUND

Conventionally, many different types of tools are used when drilling for oil and gas and, conventionally, such tools are connected together into a string of tubulars and run into the wellbore. There are several different stages when creating a wellbore ready to produce oil and gas such as drilling, casing, cementing and completing the wellbore. Each stage requires a different set of tools and processes.

For example, completing the wellbore normally occurs toward the end of the process of creating an oil and gas production well. In many such wells there is a requirement for example to prevent sand being produced along with the oil or gas from the production zone and this is normally achieved by using sand screens which are placed in the production zone of the wellbore and act very much like sieves, in that they allow the oil or gas to pass through their side walls but prevent the sand from passing through their side walls by utilising a mesh which is sufficiently sized such that its apertures are smaller than the grains of sand. It is important however to anchor the sand screens in the wellbore and this is conventionally achieved by using a mechanically set or hydraulically set slips anchor or a hanger which can be actuated to move a set of anchoring slips
outwards to grip into or bite into the open hole formation and thus can be used to
transfer load from the anchor and any other tools connected to the anchor such as
sand screens, etc. into the formation. Conventionally, a mechanically set slip anchor
comprises a set of slips that sit in a wedge shaped recess and which, when pushed
axially, will be also forced radially outwardly. However, such conventionally
mechanical slips suffer from the disadvantage that they are somewhat limited to the
extent that they can extend radially outwardly.

Accordingly, it is an object of a first aspect of the present invention to
provide embodiments of a slip mechanism that provides the possibility of a greater
radial expansion or a higher expansion slip system than available with conventional
tools.

From another and more important aspect, it is well known in the oil
and gas completion field and in many other oil and non-oil fields to use lock rings
that operate on a ratchet mechanism principle to provide a one way locking
mechanism such that an outer telescopic tubular and the lock ring can be moved
one way along a ratchet mechanism (formed upon the outer circumference of an
inner tubular telescopingly arranged within the outer tubular) upon actuation of
mechanical or hydraulic operation in order to actuate e.g. a slips system or a packer
but the one way lock ring ratchet mechanism prevents the outer tubular and the lock
ring from moving back in the opposite direction. Similarly, the one way locking
mechanism can be configured such that an inner telescoping tubular and the lock
ring can be moved one way along a ratchet mechanism (formed upon the inner
circumference of an outer tubular telescopingly arranged outwith the inner tubular).
Thus, the one way lock ring ratchet mechanism prevents e.g. deflation of the packer or prevents a slips system from moving radially inward. However, such conventional lock ring ratchet mechanisms suffer from the disadvantage that they have a reasonably high backlash distance because of the reasonably high pitch of the lock ring ratchet mechanism profile. In other words, the lock ring has to be moved the relatively long distance of the length of each tooth until each tooth clears the next respective tooth of the ratchet upon which the lock ring sits around before the lock ring is prevented from moving back. Therefore, if the lock ring does not clear the tooth before the pressure of the mechanical actuation mechanism is removed then the lock ring will relax back to the last point it cleared. There are also a number of failure modes with conventional lock rings including the ratchet mechanism teeth shearing or the supporting tubular failing due to burst or collapse. Conventional ways to prevent such burst or collapse can include increasing the length of the lock ring because doing so spreads the load but sometimes this cannot be achieved due to space limitations. Furthermore, conventional lock rings have back lash in two areas:

1) on the static ratchet mechanism profile there is axial slop because the lock ring must be allowed to expand; and

2) on the moveable ratchet mechanism profile because it has to jump a thread form as it moves along axially, as discussed above.

Typically, a conventional body lock ring will comprise a 16 Thread Per Inch (TPI) moveable ratchet mechanism profile and an 8 TPI static thread profile. It is also known to try and reduce back lash by increasing the pitch on the moveable
ratchet mechanism profile but the lock ring then becomes difficult to manufacture
and also the lock ring then becomes very prone to failure due to any debris getting
between it and the static tubular member and thus becomes less reliable. It should
also be noted that should the lock ring fail then the user will experience catastrophic
failure of the tool. Conventional lock rings are typically formed of 4140 (18-22
Rockwell C hardness) steel which is typically the same as the mandrel or tubular
about which the lock ring is placed.

Accordingly, it is an object of another aspect of the present invention
to provide a reduced backlash lock ring ratchet mechanism that can be used on a
wide variety of tools whether downhole or otherwise.

From a yet further aspect, there is a problem with conventional
mechanical actuation mechanisms for e.g. slips or packers in that they can be
unintentionally/accidentally set whilst running in the hole.

Accordingly, it is an object of another aspect of the present invention
to overcome such problems with conventional mechanical actuation mechanisms
for e.g. any tools that require to be actuated downhole by mechanical means by
providing a setting section that is locked until actuation is desired and the setting
section is positively actuated.

SUMMARY

According to a first aspect of the present invention there is provided a
lock ring for use as a one way movement restrictor between two telescopingly
arranged tubulars to permit movement in one direction and prevent movement in
the other direction of one tubular relative to the other tubular; the lock ring
comprising:

a profile having one or more formations formed on the outer
circumference for engagement with a suitable formation profile formed on the inner
circumference of the outer telescopic tubular; and

one or more teeth formed on its inner circumference, the teeth being
adapted to dig into the outer surface of the inner telescopic member;

such that the profile having one or more formations on the outer
circumference and/or the said one or more teeth permits the lock ring to be pushed
along the outer surface of the inner telescopic tubular when pushed by the outer
telescopic tubular in one direction; and

is further adapted to dig the teeth into the outer surface of the inner
telescopic tubular when the push in said one direction is removed or when it is
pushed by the outer telescopic tubular in the other direction in order to prevent the
lock ring from moving in the other direction relative to the inner telescopic tubular.

Preferably, at least the one or more teeth of the lock ring are formed
from a harder material than the material of the inner telescopic member and
typically, the at least the one or more teeth of the lock ring are formed from a
material that is in the region of 20 Rockwell C greater than the hardness of the
material of the inner telescopic tubular. Alternatively or in addition, the material of
the lock ring may be surface treated to provide the teeth with at least an outer
surface formed from a harder material than the material of the inner telescopic
member.
Typically, the lock ring is hardness treated during manufacture.

Typically, the outer surface of the inner telescopic tubular is relatively smooth and is preferably provided without a ratchet mechanism that the teeth would otherwise have to climb and jump when moving in the said one direction.

Preferably, the profile having one or more formations formed on the outer circumference of the lock ring comprises a thread profile and the suitable formation profile formed on the inner circumference of the outer telescopic tubular also comprises a suitable thread profile.

Preferably, the thread profile of the outer circumference of the lock ring comprises a flank angle in the region of 20 degrees and a cut back rear face angle in the region of 80 degrees radially outwardly in the other direction from the longitudinal axis of the lock ring.

Preferably, the lock ring further comprises a spring member adapted to bias the lock ring in the said one direction. The spring member preferably acts to push the lock ring in the said one direction and is preferably pre-loaded during installation to a pre-determined amount of loading.

Preferably, the pre-loading of the spring member ensures that there is a constant spring load exerted onto the flank angle of the pitch profile on the outer circumference of the lock ring and the flank angle on the inner circumference of the outer telescopic tubular. Preferably, the thread profile of the outer circumference of the lock ring comprises a flank angle in the region of 20 degrees and a cut back rear face angle in the region of 80 degrees radially outwardly in the other direction from the longitudinal axis of the lock ring.
Typically, the spring member acts between an end of the lock ring that faces in the direction of the said other direction and a portion of the outer telescopic tubular.

In one embodiment the lock ring may be a split ring or "C" shaped lock ring and in such an embodiment, the lock ring is formed separately from the spring member.

In a preferred embodiment, the lock ring is formed integrally with the spring member and in such an embodiment, the lock ring is preferably castellated and/or is provided in circumferentially equi-spaced tongues, each having a part circular extent. The lock ring may further comprise an annular ring at one end comprising a screw thread formation thereon to provide for fixing of that end to the outer telescopic tubular and in such an embodiment, the spring member is typically located in between the lock ring section and the annular ring, with the lock ring, the spring member and the annular ring all being integrally formed in a one piece unit.

Preferably, the inner diameter of the lock ring teeth is preferably slightly less than the outer diameter of the inner telescopic tubular.

The spring member may be a wave spring, a coil spring, one or more "S" shaped springs, or any other suitable spring.

According to the present invention there is also provided a method of actuating a one way locking system comprising a lock ring in accordance with the first aspect of the present invention, the method comprising preloading the spring member to a pre-determined amount and applying load to the outer telescopic member relative to the inner telescopic member to move the lock ring in said one
direction and relaxing the load such that the outer telescopic tubular is prevented
from moving in the other direction relative to the inner telescopic member.

According to a second aspect of the present invention there is
provided a lock ring for use as a one way movement restrictor between two
telescopingly arranged tubulars to permit movement in one direction and prevent
movement in the other direction of one tubular relative to the other tubular; the lock
ring comprising:

a profile having one or more formations formed on the inner
circumference for engagement with a suitable formation profile formed on the outer
circumference of the inner telescopic tubular; and

one or more teeth formed on its outer circumference, the teeth being
adapted to dig into the inner surface of the outer telescopic member;

such that the profile having one or more formations on the inner
circumference and/or the said one or more teeth permits the lock ring to be pushed
along the inner surface of the outer telescopic tubular when pushed by the inner
telemoscopic tubular in one direction; and

is further adapted to dig the teeth into the inner surface of the outer
telemoscopic tubular when the push in said one direction is removed or when it is
pushed by the inner telescopic tubular in the other direction in order to prevent the
lock ring from moving in the other direction relative to the outer telescopic tubular.

Preferably, at least the one or more teeth of the lock ring are formed
from a harder material than the material of the outer telescopic member and
typically, the at least one or more teeth of the lock ring are formed from a material
that is in the region of 20 Rockwell C greater than the hardness of the material of
the outer telescopic tubular. Alternatively or in addition, the material of the lock ring
may be surface treated to provide the teeth with at least an outer surface formed
from a harder material than the material of the outer telescopic member.

Typically, the lock ring is hardness treated during manufacture.

Typically, the inner surface of the outer telescopic tubular is relatively
smooth and is preferably provided without a ratchet mechanism that the teeth would
otherwise have to climb and jump when moving in the said one direction.

Preferably, the profile having one or more formations formed on the
inner circumference of the lock ring comprises a thread profile and the suitable
formation profile formed on the outer circumference of the inner telescopic tubular
also comprises a suitable thread profile.

Preferably, the thread profile of the inner circumference of the lock
ring comprises a flank angle in the region of 20 degrees and a cut back rear face
angle in the region of 80 degrees radially outwardly in the other direction from the
longitudinal axis of the lock ring.

Preferably, the lock ring further comprises a spring member adapted
to bias the lock ring in the said one direction. The spring member preferably acts to
push the lock ring in the said one direction and is preferably preloaded during
installation to a pre-determined amount of loading.

Preferably, the pre-loading of the spring member ensures that there is
a constant spring load exerted onto the flank angle of the pitch profile on the inner
circumference of the lock ring and the flank angle on the outer circumference of the
inner telescopic tubular. Preferably, the thread profile of the inner circumference of
the lock ring comprises a flank angle in the region of 20 degrees and a cut back rear
face angle in the region of 80 degrees radially outwardly in the other direction from
the longitudinal axis of the lock ring.

Typically, the spring member acts between an end of the lock ring that
faces in the direction of the said other direction and a portion of the outer telescopic
tubular.

In one embodiment the lock ring may be a split ring or "C" shaped lock
ring and in such an embodiment, the lock ring is formed separately from the spring
member.

In a preferred embodiment, the lock ring is formed integrally with the
spring member and in such an embodiment, the lock ring is preferably castellated
and/or is provided in circumferentially equi-spaced tongues, each having a part
circular extent. The lock ring may further comprise an annular ring at one end
comprising a screw thread formation thereon to provide for fixing of that end to the
inner telescopic tubular and in such an embodiment, the spring member is typically
located in between the lock ring section and the annular ring, with the lock ring, the
spring member and the annular ring all being integrally formed in a one piece unit.

Preferably, the outer diameter of the lock ring teeth is slightly greater
than the inner diameter of the outer telescopic tubular.

The spring member may be a wave spring, a coil spring, one or more
"S" shaped springs, or any other suitable spring.
According to the present invention there is also provided a method of actuating a one way locking system comprising a lock ring in accordance with the second aspect of the present invention, the method comprising pre-loading the spring member to a pre-determined amount and applying load to the inner telescopic member relative to the outer telescopic member to move the lock ring in said one direction and relaxing the load such that the inner telescopic tubular is prevented from moving in the other direction relative to the outer telescopic member.

According to a third aspect of the present invention there is provided an expandable slips system for use on a mandrel having a longitudinal axis, the mandrel adapted to be run into a borehole, the expandable slips system comprising:

at least one slip which in use is adapted to be moved outwardly from the longitudinal axis of the mandrel to grip against and thereby engage a downhole formation, the at least one slip comprising at least one angled member;

at least one cone member for engagement with the at least one slip, the cone member comprising at least one angled member for engagement with the at least one angled member of the slip; and

at least one cone member expansion device for engagement with the at least one cone member, the cone member expansion device comprising at least one angled member for engagement with another at least one angled member of the cone member.

According to the third aspect of the present invention there is provided a method of actuating an expandable slips system in accordance with the apparatus of the first aspect of the present invention, comprising:
moving the cone member expansion device in a direction parallel with
the longitudinal axis of the mandrel such that the cone member is moved radially
outwardly and the slip is moved radially outwardly from a running in lying flat
configuration to an extended in use configuration.

Typically, the slip system is arranged such that movement of the at
least one cone member expansion device in a direction parallel to the longitudinal
axis of the mandrel causes the cone member to move:

 in a direction parallel to the longitudinal axis of the mandrel; and

 in a radially outwards direction perpendicular to the longitudinal axis of
the mandrel.

Typically, the slip system is further arranged such that the said
movement of the at least one cone member causes the slip to move in a radially
outwards direction perpendicular to the longitudinal axis of the mandrel.

Preferably, there are two cone member expansion devices spaced
apart along the longitudinal axis of the mandrel, where one cone member expansion
device may be fixed to the mandrel and the other cone member expansion device
may be moveable along the longitudinal axis of the mandrel with respect to the said
one cone member expansion device such that the moveable cone member
expansion device can be selectively moved toward and away from the said one
fixed cone member expansion device.

Preferably, there are two cone members spaced apart along the
longitudinal axis of the mandrel, where one cone member may be engaged with the
fixed cone member expansion device and the other cone member may be engaged
with the moveable cone member expansion device such that the said one cone
member can be selectively moved toward and away from the said other cone
member when the moveable cone member expansion device is selectively moved
toward and away from the said one fixed cone member expansion device to
respectively move the slip radially outwardly and inwardly with respect to the
mandrel.

Typically, the pair of cone members are telescopingly coupled to one
another such that they are prevented from relative movement with respect to one
another other than longitudinal movement.

Typically, longitudinal movement of the moveable cone member
expansion device toward the said one fixed cone member expansion device causes
longitudinal movement of one cone member toward the other cone member and
also radially outwards movement of both cone members which in turn causes
radially outwards movement of the slip such that the slip moves from a running in
lying flat configuration to an extended in use configuration.

Furthermore, longitudinal movement of the moveable cone member
expansion device away from the said one fixed cone member expansion device
causes longitudinal movement of one cone member away from the other cone
member and also radially inwards movement of both cone members which in turn
causes radially inwards movement of the slip such that the slip returns to the
running in lying flat configuration from the radially extended in use configuration.

Typically, the expandable slips system comprises one slip.
One or more expandable slips systems are preferably provided on one mandrel and in a preferred embodiment, three expandable slips systems are provided on one mandrel, where the three expandable slips systems are preferably provided equi-spaced 120 degrees around the circumference of the mandrel.

Preferably, the or each angled member of the slip comprises a surface provided at an angle between the longitudinal and the perpendicular with respect to the mandrel and preferably, the or each angled member of the respective cone member also comprises a similarly angled surface that engages with and co-operates with the angled surface of the slip.

Preferably, the or each angled member of the or each cone member expansion device comprises a surface provided at an angle between the longitudinal and the perpendicular with respect to the mandrel and preferably, the or each another angled member of the or each cone member also comprises a similarly angled surface that engages with and co-operates with the angled surface of the cone member expansion device.

Typically, the or each angled member/angled surface comprises either an angled key or an angled slot within which the key moveably resides and is retained. Preferably, the angled surface of the slip comprises one of a key or a slot and the similarly angled surface of the respective cone member comprises the other of the key or the slot, wherein the angled surface angles from radially innermost to radially outermost away from the longitudinal centre of the slip. Preferably, the angled surface of the cone member expansion device comprises one of a key or a slot and the similarly angled surface of the respective cone member comprises the
other of the key or the slot, wherein the angled surface angles from radially innermost to radially outermost away from the longitudinal centre of the respective cone member.

Typically, the downhole formation can comprise a natural formation such as the sidewall of a section of open hole borehole or a manmade formation such as a downhole cemented section or a section of installed downhole tubular such as casing or liner.

Typically, the mandrel is adapted to be included in a string of downhole tubulars and preferably has suitable connections such as screw threaded connections to enable such inclusion.

According to a fourth aspect of the present invention there is provided an interlock and setting section for a downhole tool system, the interlock and setting section comprising:

a shifting profile located within a throughbore of the downhole tool system, wherein the shifting profile is capable of being coupled to by a shifting tool in the throughbore of the downhole tool system, in order to move the shifting profile with respect to the downhole tool system;

a load connector member coupled to the shifting profile and further coupled to a load setting member arranged to deliver a load to a tool as required;

wherein there is further provided a selective locking mechanism to selectively lock at least the load setting member to at least one of the downhole tool system and the shifting profile.
Preferably, the downhole tool system comprises a static mandrel against which a load is to be generated, wherein the static mandrel may be rigidly connected back to the surface of the downhole well.

Typically, the selective locking mechanism may be unlocked by movement of the shifting profile with respect to the static mandrel such that the lock acting between the load setting member and the at least one of the downhole tool system and the shifting profile is removed.

Typically, the locking mechanism selectively locks the load setting member to the static mandrel.

Preferably, the selective locking mechanism comprises a two lock members located in a recess in the static mandrel and which, in a locking configuration, are arranged such that one of the lock members is restrained from longitudinal movement with respect to the static mandrel and wherein the lock members radially support one another to permit load to be transferred from the load setting member to the static member and preferably to the shifting profile.

Preferably, the other of the lock members can be moved longitudinally with respect to the static mandrel by a pre-determined length, when in the locking configuration, such that the radial support between the two lock members is removed and the locking mechanism is unlocked. Preferably, the locking members comprise one or more radially projecting and cooperating formations in the locking configuration which are adapted to no longer co-operate when the said other locking member is moved relative to the said one locking member.
Typically, at least one of the couplings between the load connecting member and i) the shifting profile and ii) the load setting member allows the shifting tool to move by a slightly greater distance than the said predetermined length before the coupling therebetween is capable of transferring load from the shifting profile to the load setting member.

Preferably, the shifting profile is initially secured to the static mandrel by disruptable device to prevent any unwanted movement therebetween prior to the selective unlocking occurring and more preferably, the disruptable device comprises a sheaf screw or shear pin or the like.

There is also provided a method of operating an interlock and setting section in accordance with the fourth aspect of the present invention from an initial locking configuration to an unlocked and load setting configuration, the method comprising:

running a shifting tool into the throughbore of the downhole tool system;

engaging the shifting tool with the shifting profile;

pulling or pushing the shifting tool to destroy or otherwise disable the disruptable device;

further pushing or pulling the shifting tool to move the shifting profile the pre-determined length such that the radial support between the two lock members is removed and the locking mechanism is unlocked; and

further pushing or pulling the shifting tool to move the shifting profile thereby transferring load into the setting sleeve with respect to the static mandrel.
Typically, the load setting member is coupled to a tool that requires a load to be applied to it to actuate said tool.

Preferably, the load setting member is located on the outside of the downhole tool system.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be described by way of example only, with reference to the accompanying drawings, in which:

Fig. 1 is a part cross-sectional side view of the first of five portions of a mechanical set slips anchor in accordance with the first, second and third aspects of the present invention and is shown in a running-in hole or prior-to-actuation configuration, where the portion shown in Fig. 1A is the upper most in use end of the mechanical set slips anchor;

Fig. 1B is a part cross-sectional side view of a second portion of the mechanical set slips anchor of Fig. 1A, where the portion shown in Fig. 1B in use is immediately below the portion shown in Fig. 1A and immediately above the portion shown in Fig. 1C;

Fig. 1C is a part cross-sectional side view of a third portion of the mechanical sets slips anchor of Fig. 1A and which in use is immediately below the portion shown in Fig. 1B and immediately above the portion shown in Fig. 1E;

Fig. 1D is a close up and more detailed cross-sectional view of one part of the third portion of the mechanical sets slips anchor of Fig. 1C, where the
part shown in Fig. 1D is an embodiment of a reduced back lash lock ring in accordance with the third aspect of the present invention;

Fig. 1DA is an even more close up and even more detailed cross-sectional view of the lock ring shown in Fig. 1D;

Fig. 1DB is a relatively close up and detailed cross-sectional view of an alternative and preferred embodiment of a reduced back lash lock ring in accordance with the third aspect of the present invention which can be used instead of the lock ring shown in Fig. 1DA;

Fig. 1E is a part cross-sectional side view of a fourth portion of the mechanical sets slips anchor of Fig. 1A and which in use is immediately below the portion shown in Fig. 1C and immediately above the portion shown in Fig. 1H;

Fig. 1F is a close up and more detailed cross-sectional side view of a part of the fourth portion of the mechanical set slips anchor of Fig. 1E and shows an interlock which forms a part of the interlock mechanism embodiment in accordance with the second aspect of the present invention;

Fig. 1G is a closer up and more detailed cross-sectional side view of a setting key which forms a part of the interlock mechanism embodiment in accordance with the second aspect of the present invention;

Fig. 1H is a part cross-sectional side view of a fifth portion of the mechanical set slips anchor of Fig. 1A and which in use is located immediately below the portion shown in Fig. 1E and forms the lower most portion of the mechanical set slips anchor in use;
Fig. 2A is a cross-sectional side view of the mechanical set slips anchor of Figs. 1A to 1H but shown in a post actuation or set configuration where the portion shown in Fig. 2A is the upper most in use end of the mechanical set slips anchor;

Fig. 2B is a cross-sectional side view of a second portion of the mechanical set slips anchor of Fig. 2A, where the portion shown in Fig. 2B in use is located immediately below the portion shown in Fig. 2A and immediately above the portion shown in Fig. 2C, and more particularly shows the slips having been actuated radially outwardly;

Fig. 2C is a cross-sectional side view of a third portion of the mechanical set slips anchor of Fig. 2A and which in use is located immediately below the portion shown in Fig. 2B and immediately above the portion shown Fig. 2D, and more particularly shows an embodiment of a lock ring in accordance with the third aspect of the present invention;

Fig. 2D is a cross-sectional side view of a fourth portion of the mechanical set slips anchor of Fig. 2A and which in use is located immediately below the portion shown in Fig. 2C and immediately above the portion shown in Fig. 2E, and more particularly shows an embodiment of an interlock mechanism in accordance with the second aspect of the present invention;

Fig. 2E is a cross-sectional side view of a fifth portion of the mechanical set slips anchor of Fig. 2A and which in use is located immediately below the portion shown in Fig. 2D, and which forms the lower most portion in use of the mechanical set slips anchor;
Fig. 3A is a perspective side view (with a portion cut away from the slip section for clarity) of the mechanical set slips anchor of Figs. 2A to 2E in the post-actuation or set configuration;

Fig. 3B is a more detailed view of the actuated slips of Fig. 3A;

Fig. 4 is a cross-sectional end view of the slip section taken through section 1-1 on Fig. 2B;

Fig. 5A is a part cross-sectional perspective view of some of the components of the mechanical set slips anchor that form the interlock mechanism in accordance with the second aspect of the present invention;

Fig. 5B is a more detailed view of the setting keys of Fig. 5A;

Fig. 5C is a more detailed view of the gap between the teeth of the setting keys of Fig. 5B;

Fig. 5D is a more detailed view of the interlock keys of Fig. 5A;

Fig. 6A is a perspective side view of the reduced backlash lock ring of Fig. 1D and Fig. 1DA;

Fig. 6B is an end view of the reduced backlash lock ring of Fig. 6A;

Fig. 6C is a cross-sectional side view across section AA of Fig. 6B of the reduced backlash lock ring;

Fig. 6D is a perspective side view of the reduced backlash lock ring of Fig. 6A with a quarter circle of a portion of the lock ring removed for clarity and comparison purposes;
Fig. 6E is a side view of the lock ring of Fig. 6D with the quarter circle portion removed to aid comparison purposes between the outer and inner ratchet mechanisms;

Fig. 7A is an exploded perspective view of the slips mechanism of Fig. 3B;

Fig. 7B is a perspective view of a cone of the slips mechanism of Fig. 7A;

Fig. 7C is another perspective view taken from a different angle of the cone of Fig. 7B;

Fig. 8A is a perspective side view of the preferred reduced backlash lock ring of Fig. 1DB;

Fig. 8B is an end view of the preferred reduced backlash lock ring of Fig. 8A;

Fig. 8C is a cross-sectional side view across section D-D of Fig. 8B of the preferred embodiment of reduced backlash lock ring;

Fig. 8D is a cross-sectional side view across section E-E of Fig. 8B of the preferred embodiment of reduced backlash lock ring; and

Fig. 8E is a detailed view of the section highlighted G of one tongue of the preferred reduced backlash lock ring of Fig. 8D.

DETAILED DESCRIPTION

The mechanical set slips anchor 100 shown in the Figures can be regarded as having three distinct sections, these being:
a) slips section 40 (shown mainly in Fig. 1B in the unset or running in
configuration and in Fig. 2B in the set or post-actuation configuration) in accordance
with the first aspect of the present invention;

b) locking section 50 (which can be best seen in Fig. 1C in the unset
or running in configuration and in Fig. 2C in the set or post-actuation configuration)
in accordance with the second aspect of the present invention; and

c) setting section 60 (which can be best seen in Fig. 1E in the running
in or pre-actuation configuration and Fig. 2D in the post-actuation or set
configuration) in accordance with the third aspect of the present invention.

However, it should be clearly noted that the slips section 40 could be
used with other locking sections 50 or with other setting sections 60; for instance,
the slips section 40 could be hydraulically set rather than mechanically set and in
such a situation would the tool would be provided with a hydraulic actuation
mechanism instead of the mechanical setting section 60. Furthermore, it should be
noted that the locking section 50 and/or setting section 60 could be used in different
applications and tools such as with e.g. packer tools used to create a pressure
barrier in the annulus in a wellbore, etc.

The three main sections of the tool will now be described in turn.

Slips Section 40

Slips section 40 comprises a top sub 21 which has a suitable
connection such as a pin or box screw threaded connection provided at its very
upper most end (left hand end as shown in Fig. 1A and 2A) for connection to a
suitable connection provided at the lower most end of a downhole string into which
the mechanical set slips anchor 100 is to be included. The lower end of the top sub
21 is securely screw threaded to the upper end of a cone mandrel 23. The cone
mandrel 23 is provided with an upper cone expander 20 which is securely screw
threaded at the upper end of the cone mandrel 23 and this can be best seen in Fig.
2A. Thus, in normal operation, the upper cone expander 20 is securely fixed to the
cone mandrel 23. A lower cone expander 17 is located about the mid to lower half
of the cone mandrel 23 and a number of cones 18 and slips 19 are located between
the upper cone expander 20 and lower cone expander 17 and, in general,
movement of the lower cone expander 17 toward the upper cone expander 20 in a
direction along the longitudinal axis of the cone mandrel 23 results in radially
outward movement of the cones 18 and subsequently the slips 19.

Operation and expansion of the slips 19 will now be described in more
detail.

As can be best seen in Fig. 4, there are three slips 19 equi-spaced
120° apart around the circumference of the cone mandrel 23 and, as best seen in
Figs. 3B and Fig. 7A, each slip 19 comprises a pair of outwardly projecting arms
25U, 25L. Each of the arms 25U, 25L are arranged at an angle such that they are
angled from radially inner most to radially outer most away from the centre of the
slip 19. The slips 19 are mounted in a cone 18U, 18L at each end where the arms
25U, 25L sit in respective angled recesses 27U, 27L formed in the cones 18U, 18L.
The angled recesses 27U, 27L are again angled from radially inner most to radially
outer most in a direction away from the centre of the two cones 18U, 18L as shown
in Fig. 7A. A pair of guide pins 22-telescopically and slidingly connect the pair of cones 18U, 18L to one another and the arms 25U, 25L and angled recesses 27U, 27L are arranged such that any movement of the lower cone 18L toward the upper cone 18U will result in radially outward movement of the slip 19. Furthermore, the respective upper 29U and lower 29L outward facing surface of the respective cones 18U, 18L is tapered at preferably the same angle as the respective angled recess 27U, 27L in order to ease radially outward movement of the slips 19 when the respective upper and lower ends of the slips 19 meet said outward facing surface 29.

In turn, the cones 18U, 18L are each provided with their own angled recesses 31U, 31L in their outer side faces and which are arranged to engage with angled arms 33U, 33L provided on the respective upper 20 and lower 17 cone expanders such that any movement of the lower cone expander 17 toward the upper cone expander 20 will result in longitudinal movement of the cone 18L toward the upper cone 18U. Furthermore, once the lower cone 18L has travelled sufficiently in the longitudinal direction to butt against the upper cone 18U (such that the guide pins 22 are entirely contained within the cones 18U, 18L), the interaction between the angled recesses 31U, 31L and angled arms 33U, 33L will result in radially outward movement of the cones 18U, 18L and will thus result in even further radial outward movement of the slips 19. Thus, a much greater radial outward movement of the slips 19 is possible with the slip section 40 than compared with conventional slip sections and thus a high expansion slip system 40 is provided. Again, as most clearly shown in Fig. 7A, the outward facing surfaces 35U, 35L provided at the ends
of the respective cone expanders 20, 17 are also tapered in a direction from radially
inner most to radially outer most away from each other and said tapered outward
facing surfaces 35U, 35L help promote radially outward movement of the cones
18U, 18L when their respective ends meet said surfaces 35U, 35L.

It should be noted that whilst the angles of the tapered surfaces 35U, 33U, 31U (and the other respective surfaces for the lower cone 18L) are preferably all the same, they need not be the same as the tapered surfaces 29U, 27U, 25U and in the embodiments shown in Fig. 7A they are indeed not the same because it is preferred to have a steeper angle of 20° (to the longitudinal axis of the slip section 40) acting between the slip 19 and the cone 18 (compared to a shallower angle of 15° between the cone 18 and the cone expanders 17, 20) in order to promote radial outward movement of the slip 19 first and then have movement in a radial outward direction of the cones 18U upon further longitudinal movement of the cone expander 17 towards the upper cone expander 20. However, it may in some other applications that it would be preferred to move the cones 18 outwards first before then moving the slips 19 with respect to the cones and in such a situation, the angle between the slip 19 and the cone 18 is shallower than the angle between the cone 18 and the cone expanders 17, 20.

Embodiments of the high expansion slip system in accordance with the first aspect of the present invention such as the slip section 40 can be used in any situation where an operator requires to transfer loads into a formation to for instance hang a load off a formation such as hanging off casing or tubing for production, injection or for the purpose of stimulation of the well or for any other
application where it is desirable to anchor the tubing/casing. By anchoring the tubing/casing, relative movement and loads are confined to the anchor points.

It should be noted that whilst the slips section 40 is actuated by the setting section 60 and locking section 50 in the preferred embodiment disclosed in the drawings, other embodiments of slips section 40 could be actuated by different types of setting sections for instance by hydraulic, hydrostatic or electrical downhole motors.

Setting Section 60

The setting section 60 is a mechanical setting section and comprises a bottom sub 1 securely screw threaded at its upper end to the lower end of a mandrel 3. A sleeve stop 2 is securely screw threaded into the inner surface of the bottom sub 1 and serves to act as a stop to shift sleeve 4 as will subsequently be described.

A shift sleeve 4 is also provided on the interior of the mandrel 3 and were it not for shear screw 8, inner interlock key 7 and setting load key 5, the shift sleeve 4 would be freely moveable in the mandrel 3. However, a shear screw 8 (initially at least) locks the shift sleeve 4 with respect to the cone mandrel 23. However, if a mechanical shifting tool (not shown) is run into the well bore and engages the shifting profile 37 and is pulled with sufficient force in the upward direction (left to right in e.g. Fig. 1E) the shear pin 8 will fail and be sheared. At this point, it is important to note that the inner most surface of the inner interlock key 7 is screw threaded to the outer surface of the shift sleeve 4 and the outer surface of the
outer interlock key is screw threaded to the inner surface of a setting sleeve 9. The outer surface of the inner interlock key has at least one and, as shown in Fig. 5D, preferably has three upset ridges which sit upon three inwardly projecting upset ridges provided on the inner most surface of the outer interlock key 6. Consequently, whilst the inner and outer interlock keys 7, 6 are in the configuration shown in Fig. 5D, the inner interlock key 7 is screw threaded to the shift sleeve 4 and more importantly the setting sleeve 9 is screw threaded to the outer interlock key 6. Because the outer interlock key 6 is the same length as the aperture within which it sits, this means that the setting sleeve 9 cannot move. However, once the shear screw 8 has ruptured, longitudinal movement of the inner interlock key 7 can occur with respect to the outer interlock key 6 until the three upset ridges clear one another at which point the inner 7 and outer 6 interlock keys can collapse in on one another thus breaking the respective screw threaded connections with the shift sleeve 4 and the setting sleeve 9.

The setting or load key 5 comprises a number of inwardly projecting ridges 42 which can move back and fore within corresponding outwardly projecting ridges 43 provided on the outer surface of the shifting sleeve 4 and it should be noted that the distance between the outwardly projecting ridges 43 on the shifting sleeve 4 is greater than the distance required for the ridges of the inner 7 and outer 6 interlock keys to clear one another. Accordingly, once the inner 7 and outer 6 interlock keys have collapsed in on one another, any continued upward movement of the shift sleeve 4 will result in the outwardly projecting ridges 43 butting against the inwardly projecting ridges 42 of the load setting key 5 and thus the load setting
key 5 will be carried upwards with the shift sleeve 4. It should be noted that the load key 5 is located in a longitudinal slot within the mandrel 3/cone mandrel 23 and thus because the load key 5 is screw threaded to the inner surface of the setting sleeve 9 at the lower end of the setting sleeve 9, any continued upward pulling of the shifting tool (not shown) will result in upward movement of the shift sleeve 4, the load key 5 and the setting sleeve 9.

The setting section 60 when used in conjunction with a mechanical set slips anchor 100 such as the preferred embodiment slip section 40 proves particularly advantageous in horizontal wells because the setting section 60 provides the feature of being able to positively lock the shift sleeve 4 to the rest of the tool 100. In addition to this, the setting section 60 will be able to withstand a high load on the outside of it (as experienced when running the tool 100 in the hole) without activating, whilst a low load will be required to trigger the setting section 60 from the inside of the tool 100 (when the shifting tool shifts the sleeve 4).

Accordingly, the setting mechanism in the form of the setting sleeve 9 on the outside of the tool 100 is mechanically locked until the internal shift sleeve 4 is manipulated by the shifting tool. This is particularly advantageous in horizontal wells as the drag on the tool 100 running in the well will not pre-set the tool 100 (which can happen with conventional tools without such a setting section 60).

Locking Section 50

The locking section 50 is best shown in Fig. 1C which shows the running in and pre-actuation configuration and in Fig. 2C which shows the post
actuation or set configuration. The locking section 50 comprises a C-shaped reduced backlash lock ring 15 in accordance with the third aspect of the present invention and as best seen in Figs. 6A-6E. As shown in Fig. 6A, the lock ring 15 is near circular but comprises a notch 45 provided therein at a point around its circumference such that the lock ring 15 covers in the region of 350-359°. Accordingly, the lock ring 15 can be compressed slightly to reduce its diameter if required. As can also be seen in Fig. 6A, the lock ring 15 comprises a right angled saw tooth 47 on its outer circumference having a pitch in the region of 8 TPI (0.125” pitch) and further comprises a much finer right angled saw tooth 49 formed on its inner circumference which is in the region of 16-32 TPI (0.031” to 0.062” pitch).

The lock ring 15 is placed around the relatively smooth outer circumference of the cone mandrel 23 such that its outer right angled saw toothed thread profile 47 engages with an inwardly projecting and corresponding right angled saw tooth thread profile provided on an inner circumference of the lower end of an adjustor sub 16 which is fixedly screw threaded to the lower end of the lower cone expander 17. A load ring 13 is butted up against the lower end of the reduced back lash lock ring 15 by means of a wave spring 11 and spring washer 12 arrangement that acts to bias the load ring 13 against the lock ring 15 and in practice tries to push the lock ring 15 upwards (from right to left in Fig. 1C) with respect to the adjustor sub 16.

A connector 14 is placed around the outer circumference of the lower end of the adjustor sub 16 and is threaded onto the upper end of the setting sleeve 9 by means of co-operating screw threads 51 as best seen in Fig. 1D. By adjusting
this thread the adjuster sub 16 is driven into the lock ring 15 in order to pre-load the
lock ring 15 which in turn compresses the wave springs 11. This is to ensure that
there is a constant spring load exerted onto the flank angles of the pitch profile on
the outside edge of the lock ring 15 and the inside profile of the adjuster sub 16.

As shown in Fig. 1D, a flat head screw 10 projects radially inwardly
from the setting sleeve 9 and projects into a longitudinally arranged slot 24 formed
in the cone mandrel 23 such that whilst the flat head screw 10 is located in the
longitudinally arranged slot 24, the setting sleeve 9 is prevented from rotating with
respect to the cone mandrel 23. As previously described, the shifting tool (not
shown) is used to pull the setting sleeve 9 upwards with great force and this acts
upon the load ring 13 via the wave spring 11 to move the lock ring 15 up the outer
surface of the cone mandrel 23.

With conventional lock rings, typically a right angled saw tooth ratchet
mechanism would be formed on the outer surface of the cone mandrel 23 to interact
with the inner surface of the lock ring such that the lock ring "climbs" up the ratchet
mechanism provided on the cone mandrel 23.

However, the lock ring 15 of the present invention provides the great
advantage that it does not require a ratchet mechanism to be formed on the outer
circumference of the cone mandrel 23. In fact, the outer surface of the cone
mandrel 23 can be simply lightly roughened (for instance with some scratches
provided on its outer surface) or even just left smooth because the lock ring 15 of
the preferred embodiment is formed from a very hard material such as nitrided steel
such as 50 Rockwell C compared to a softer steel such as for instance 20 Rockwell
C steel for the cone mandrel 23 and because the inner circumference of the lock ring 15 has a much finer right angled saw tooth ratchet mechanism compared to conventional lock rings, the inner circumference of the lock ring 15 will bite or dig into the outer circumference of the cone mandrel 23 as it is moved up the cone mandrel 23. Alternatively or in addition, the material of the lock ring 15 may be surface treated to provide the teeth 49 with at least an outer surface formed from a harder material than the material of the cone mandrel 23.

The right angled saw tooth form of the outer circumference of the lock ring 15 is a tapered thread form which spreads the load across the length of the lock ring 15 in use. The flank angle of the outer right angle saw tooth thread form on the lock ring 15 is typically in the region of 20 degrees which is shallow enough so that when a given axial load is exerted on it, it reduces the required amount of inward radial load to initiate the hardened (much finer) saw tooth profile on the inside of the lock ring 15 to bite onto the mandrel 23.

It is this ability to exert a constant load onto the flank angle that provides great advantages to embodiments of the present invention and therefore the only backlash exerted by the lock ring 15 is the backlash that is induced when the hardened inner teeth "bite" into the mandrel 23.

Figs. 8A-8E show a preferred embodiment of a reduced backlash lock ring 150 in accordance with the third aspect of the present invention and Fig. 1DB shows the lock ring 150 located in situ within the tool 100. The lock ring 150 of Figs. 8A-8E is preferred to the lock ring 50 of Figs. 6A-6E for a number of reasons.

The lock ring 150 has three main sections:
i) lock ring section 152 comprising at least one saw tooth 147 thread profile formed on its outer circumference - as shown in the Figs., there are two such teeth 147. The lock ring section 152 also comprises a much more shallow and finer at least one right angled saw tooth 149 formed around its inner circumference (there are three such right angled saw teeth 149 shown on the embodiment of Figs. 8A-8E). The lock ring section 152 comprises a number of castellated tongues 151 equi-spaced around its circumference as will be described subsequently;

ii) spring section 154 comprising a repeating S-shaped spring and which in use will perform the same function as the load ring 13 and wave springs 11 of the less preferred load ring 15; and

iii) screw threaded section 156 which comprises a complete circular annular ring 157 and which on the outer surface thereof is formed a screw thread 158 to enable the lock ring 150 to be screw threaded to (and thereby secured directly to) the lower end of the adjustor sub 16.

The lock ring 150 is located around the relatively smooth outer circumference of the cone mandrel 23 such that its outer saw tooth thread profile 147 engages with an inwardly projecting and corresponding saw tooth thread profile 148 provided on the inner circumference of the lower end of the adjustor sub 16 (which again is fixedly screw threaded to the lower end of the lower cone expander 17). Depending upon the extent that the lock ring 150 is screwed into the lower end of the adjustor sub 16 via the threads 158, will determine how much pre-loading is included into the spring section 154 in order to bias and thereby push the lock ring section 152 upwards (from right to left in Fig. 1DB with respect to the rest of the
adjustor sub 16). This again ensures that there is constant contact between the
flank angles 148F and 147F during operation or actuation of the lock ring 150 and
moreover ensures a constant spring load exerted onto the flank angles 147F of the
pitch profile 147 on the outer circumference of the lock ring 150 and the flank angles
148F provided on the inside profile 148 of the adjustor sub 16.

Again, the outer surface of the cone mandrel 23 can be simply lightly
roughened (for instance with some scratches provided on its outer surface) or even
just left smooth because the lock ring 150 of the preferred embodiment is formed
from a very hard material, typically nitrided steel having a hardness of 50 Rockwell
C or greater (compared to the softer steel of the cone mandrel 23 which may be in
the region of 18 to 22 Rockwell C hardness). Again, alternatively or in addition, the
material of the lock ring 150 may be surface treated to provide the teeth 149 with at
least an outer surface formed from a harder material than the material of the cone
mandrel 23.

In any event there is preferably a difference of at least 20 Rockwell C
between the hardness of the teeth 149 and the hardness of the cone mandrel 23.

Furthermore, the teeth 149 have a lead face 149L which is relatively
shallow (the lead face 149L typically has an angle in the region of 30 degrees
radially outwardly in the direction from left to right of Fig. 1DB of the longitudinal axis
of the lock ring) which will tend to lift the teeth 149 radially outwardly when the lock
ring section 152 moves up the cone mandrel 23 during actuation.

In addition, the mating faces of the thread profiles 148T, 147T are
preferably arranged at 80° (radially outwardly in the direction from left to right of Fig.

34
1DB of the longitudinal axis of the lock ring 150) in order to provide a back angle to
the thread profiles 148T, 147T and this provides an advantage during assembly of
the lock ring 150 onto the cone mandrel 23. During assembly, the lock ring 150 is
initially screwed relatively far into the lower end of the adjustor sub 16 via the
threads 158 such that the flank faces 147F and 148F are compressed together due
to compression in the spring section 154. The end of the lock ring 150 beside the
screw threads 158 is then rotated in the reverse direction such that the compression
in the spring section 154 is removed and instead tension is induced in the spring
section 154. This causes the flank angles 147F, 148F to move apart and, instead,
the back angles 148T, 147T will come into contact with one another. This causes
the lock ring section 152 to open up or be moved radially outwardly such that the
teeth 149 are clear of the cone mandrel 23. Accordingly, the presence of the back
angles 148T, 147T and the contact therebetween enables the setting sleeve 9 and
adjuster sub 16 with the lock ring 150 to then be slid down the cone mandrel 23
during the next stage of assembly of the tool 100 (such downward movement (from
left to right in Fig. 1DB) normally being prevented during the actuation stage of
operation) until the inner circumference of the threaded end 158 of the lock ring 150
sits over a key 159 which prevents rotation of the lock ring 150 with respect to the
cone mandrel 23. The final step of the assembly of the lock ring section 150 is
completed by rotating the setting sleeve 9 and the adjuster sub 16 with respect to
the cone mandrel 23 and hence the lock ring 150 such that the setting sleeve 9 and
the adjuster sub 16 move downwards (from left to right in Fig. 1DB) with respect to
the stationary cone mandrel 23 to remove the tension in the spring section 154 such
that the connection between the back angles 148T and 147T is removed (this is the
exact configuration shown in Fig. 1DB) and further until compression is induced in
the spring section 154 such that the connection between the flank angles 148F and
147F is provided. The lock ring section 150 is thus ready for actuation. Accordingly,
the back angles and their contact during the assembly of the tool 100 aid free
movement of the lock ring section 152 in the assembly of the tool 100 but play no
part in the operation of the lock ring 150 during actuation thereof and thus the lock
ring 150 only allows movement in one direction (i.e. from right to left in Fig. 1DB)
and prevents movement of the setting sleeve 9 in the downwards or reverse
direction (from left to right in Fig. 1DB) during the actuation stage of the tool 100. In
other words, it should be noted that the possibility of free movement for the lock ring
150 as shown for example in Fig. 2DB from left to right is for assembly purposes
only and that, when the anchor 100 is installed and the spring section 154 is
compressed, movement of the setting sleeve 9 and adjustor sub 16 from left to right
when compared to the stationary cone mandrel 23 will be stopped by the anchor
100, while movement from right to left of the setting sleeve 9 and adjustor sub 16
when compared to the stationary cone mandrel 23 is allowed.

Furthermore, the inner teeth 149 will tend to bite into or dig into the
outer circumference of the cone mandrel 23 whenever the lock ring section 152
stops moving up the cone mandrel 23. Furthermore, when the load being exerted by
the setting sleeve 9 reduces or is removed, the adjustor sub 16 will be prevented
from moving downwards (with respect to the cone mandrel 23/string of tubulars or
upwards as shown in Fig. 1DB when viewing it in portrait or from left to right when
viewing Fig. 1DB in landscape and any attempted movement of the adjustor sub 16
downwards with respect to the cone mandrel 23 means that the flank angles 148F
of the thread profiles 148 will force the flank angles 147F of the thread profile 147
radially inwardly thereby digging the inner teeth 149 even further into the cone
mandrel 23 and further preventing such downwards movement of the adjustor sub
16 with respect to the cone mandrel 23.

Preferably, the flank angles 147F, 148F are in the region of 20° to the
longitudinal axis of the tool 100 and this provides the advantage that this relatively
shallow angle requires less force to push the teeth 149 into the cone mandrel 23
than an otherwise greater angle would require.

As can be seen in Fig. 8A, the lock ring section 152 and spring section
154 are slotted or castellated in order to allow the individual tongues 151 (as shown
in Fig. 8A there are six in the embodiment of lock ring 150) to move radially inwardly
as required in order to bite into the cone mandrel 23. Furthermore, it should be
noted that the inner diameter of the lock ring section 152 and spring section 154 is
ever so slightly smaller than the outer diameter of the cone mandrel 23 (although
the inner diameter of the threaded section 156 is a close fit with or is just slightly
larger than the outer diameter of the cone mandrel 23) and this provides the
advantage that the outer edges of the teeth 149 on each tongue 151 will tend to bite
into the cone mandrel 23 first and then the rest of the teeth 149 (i.e. in between the
outer edges of each tongue 151) will then bite into the cone mandrel 23 and this
provides a better engagement between the teeth 149 and the cone mandrel 23.
Consequently, embodiments of the third aspect of the present invention provide the advantage that they provide much reduced back-off or back lash compared to conventional lock rings when the actuation force is removed and thus greater force can be maintained with the tool to which the locking section 50 is attached which in this case is a slip section 40 but could be for instance a packer mechanism or the like.

Accordingly, embodiments of the third aspect of the present invention have the advantage that, because the lock ring 15, 150 is preloaded with the spring 11, 154, this eliminates the back lash that would conventionally be experienced on the outer thread profile. Furthermore, because there is no inner ratchet mechanism for the inner teeth 49, 149 to jump, the back lash that would conventionally be experienced with conventional lock rings has been eliminated. It is believed that embodiments of the reduced back lash ring in accordance with the third aspect of the present invention will prove very beneficial to a wide variety of applications (downhole oil & gas related and non downhole) where a reduced backlash one way movement mechanism is required. Potential downhole oil and gas applications include setting of metal to metal seals (since these require relatively high setting forces and conventional lock rings with reasonably high backlash can be unreliable when setting them because the setting forces may be achieved but can then be lost when the backlash occurs), packers, bridge saddles, slips (such as the example given herein) liner hangers and others.

Modifications and improvements may be made to the embodiments hereinbefore described without departing from the scope of the invention.
For instance, the setting sleeve could be modified to allow a releasing shearing feature once a set load has been applied and this will allow the shift sleeve to stroke fully and release the shifting tool (not shown). In this modification, an interlock may be required to transfer initial setting forces through a path other than the releasing shear screws to avoid initial shearing of the screws as the initiation screws fail in the shift sleeve 4. This feature would disengage once a small amount of travel has been made by the setting sleeve 4.

Although embodiments have been described above with reference to the accompanying drawings, those of skill in the art will appreciate that variations and modifications may be made without departing from the scope thereof as defined by the appended claims.
WHAT IS CLAIMED IS:

1. An interlock and setting section for a downhole tool system, the interlock and setting section comprising:
 a shifting profile located within a throughbore of the downhole tool system, wherein the shifting profile is capable of being coupled to by a shifting tool in the throughbore of the downhole tool system, in order to move the shifting profile with respect to the downhole tool system;
 a load connector member coupled to the shifting profile and further coupled to a load setting member arranged to deliver a load to a tool as required;
 wherein there is further provided a selective locking mechanism to selectively lock at least the load setting member to at least one of the downhole tool system and the shifting profile.

2. The section of claim 1, wherein the downhole tool system comprises a static mandrel against which a load is to be generated, wherein the static mandrel is rigidly connected back to the surface of the downhole well.

3. The section of claim 2, wherein the selective locking mechanism can be unlocked by movement of the shifting profile with respect to the static mandrel such that the lock acting between the load setting member and the at least one of the downhole tool system and the shifting profile is removed.
4. The section of claim 2 or 3, wherein the selective locking mechanism comprises a two lock members located in a recess in the static mandrel and which, in a locking configuration, are arranged such that one of the lock members is restrained from longitudinal movement with respect to the static mandrel and wherein the lock members radially support one another to permit load to be transferred from the load setting member to the static member and preferably to the shifting profile.

5. The section of claim 4, wherein the other of the lock members can be moved longitudinally with respect to the static mandrel by a pre-determined length, when in the locking configuration, such that the radial support between the two lock members is removed and the locking mechanism is unlocked.

6. The section of claim 4 or 5, wherein the lock members comprise one or more radially projecting and co-operating formations in the locking configuration which are adapted to no longer co-operate when the said other lock member is moved relative to the said one lock member.

7. The section of any one of claims 2 to 6, wherein at least one of the couplings between the load connecting member and i) the shifting profile and ii) the load setting member allows the shifting tool to move by a slightly greater distance than the said pre-determined length before the coupling therebetween is capable of transferring load from the shifting profile to the load setting member.
8. The section of any one of claims 2 to 7, wherein the shifting profile is initially secured to the static mandrel by a disruptable device to prevent any unwanted movement therebetween prior to the selective unlocking occurring and wherein the disruptable device comprises a shear screw or shear.

9. A method of operating an interlock and setting section in accordance with any one of claims 1 to 8 from an initial locking configuration to an unlocked and load setting configuration, the method comprising:

running a shifting tool into the throughbore of the downhole tool system;

engaging the shifting tool with the shifting profile;

pulling or pushing the shifting tool to destroy or otherwise disable the disruptable device;

further pushing or pulling the shifting tool to move the shifting profile the pre-determined length such that the radial support between the two lock members is removed and the locking mechanism is unlocked; and

further pushing or pulling the shifting tool to move the shifting profile thereby transferring load into the setting sleeve with respect to the static mandrel.

10. The method of claim 9, wherein the load setting member is coupled to a tool that requires a load to be applied to it to actuate said tool.
11. The method of claim 9 or 10, wherein the load setting member is located on the outside of the downhole tool system.