发明名称
R-(+)- 硫代四氢呋喃-2- 甲酸的合成方法

摘要
本发明属于医药化工领域，具体涉及 R-(+)- 硫代四氢呋喃-2- 甲酸的合成方法。本发明要解决的技术问题是现有方法反应步骤较多，收率低，需要使用高毒性、高危险性的原料，对环境不友好。本发明解决上述技术问题的技术方案是提供一种 R-(+)- 硫代四氢呋喃-2- 甲酸的合成方法，包括以下步骤：将 R-(+)- 四氢呋喃-2- 甲酸在有机溶剂中溶解，然后加入氢化氯化素和有机碱，反应得到 R-(+)- 硫代四氢呋喃-2- 甲酸。该方法减少了反应步骤，不使用高毒性、高危险性原料，对环境友好，且提高了收率。
1. R-(+) - 硫代四氢呋喃 -2- 甲酸的合成方法，包括以下步骤：将 R-(+) - 四氢呋喃 -2- 甲酸在有机溶剂中溶解，然后加入氢化黄原素和有机碱，反应得到 R-(+) - 硫代四氢呋喃 -2- 甲酸；所述氢化黄原素的结构式为

 ![结构式]

2. 根据权利要求 1 所述的 R-(+) - 硫代四氢呋喃 -2- 甲酸的合成方法，其特征在于：所述的有机溶剂为 N, N- 二甲基甲酰胺、N- 甲基吡咯烷酮或二甲基亚砜中的任意一种。

3. 根据权利要求 1 所述的 R-(+) - 硫代四氢呋喃 -2- 甲酸的合成方法，其特征在于：所述的氢化黄原素与 R-(+) - 四氢呋喃 -2- 甲酸的摩尔比为 1 ∼ 5 ∶ 1。

4. 根据权利要求 1 所述的 R-(+) - 硫代四氢呋喃 -2- 甲酸的合成方法，其特征在于：所述的有机碱为咪唑、吡啶或 4-N, N- 二甲基胺基吡啶中的任意一种。

5. 根据权利要求 1 所述的 R-(+) - 硫代四氢呋喃 -2- 甲酸的合成方法，其特征在于：所述的有机碱与 R-(+) - 四氢呋喃 -2- 甲酸的摩尔比为 0.05 ∼ 0.5 ∶ 1。

6. 根据权利要求 1 所述的 R-(+) - 硫代四氢呋喃 -2- 甲酸的合成方法，其特征在于：所述反应的温度为 80 ∼ 120℃。

7. 根据权利要求 1 所述的 R-(+) - 硫代四氢呋喃 -2- 甲酸的合成方法，其特征在于：所述反应的时间为 24 ∼ 72 小时。
R- (+) - 硫代四氢呋喃 -2- 甲酸的合成方法

技术领域
[0001] 本发明属于医药化工领域，具体涉及 R- (+) - 硫代四氢呋喃 -2- 甲酸的合成方法。

技术背景
[0002] R- (+) - 硫代四氢呋喃 -2- 甲酸是制备碳青霉烯类抗生素法罗培南钠的重要中间体，如在欧洲专利 EP0410727 中，公开了以 R- (+) - 硫代四氢呋喃 -2- 甲酸合成法罗培南钠的方法。
[0003] R- (+) - 硫代四氢呋喃 -2- 甲酸的结构式如下:
[0004]
[0005] 通常，合成 R- (+) - 硫代四氢呋喃 -2- 甲酸的方法是:采用 R- (+) - 四氢呋喃 -2- 甲酸为原料，先用卤代试剂将 R- (+) - 四氢呋喃 -2- 甲酸制成 R- (+) - 四氢呋喃 -2- 甲酰卤，再与硫氢酸盐作用，将卤素原子取代得到 R- (+) - 硫代四氢呋喃 -2- 甲酸。
[0006] 如：(R- (+) - 硫代四氢呋喃 -2- 甲酸的合成》（《应用化工》2009年第12期）中公开的方法:先用氯化亚砜将 R- (+) - 四氢呋喃 -2- 甲酸制成 R- (+) - 四氢呋喃 -2- 甲酰卤，再与硫氢化钠作用，得到 R- (+) - 硫代四氢呋喃 -2- 甲酸，其合成路线如下:
[0007]
[0008] 上述方法需要两步反应才能得到 R- (+) - 硫代四氢呋喃 -2- 甲酸，总收率仅为 53.3%，而且，采用的反应试剂具有刺激性强、毒性大，易燃，污染环境等缺点，不利于大规生产，劳动保护以及环境保护。原料中的氯化亚砜对眼睛，粘膜，皮肤和上呼吸道有强烈的刺激作用，可引起灼伤，吸入后可引起支气管痉挛，炎症和水肿而致死。原料中的硫氢化钠遇酸释放出剧毒的硫化氢气体，残余硫氢化钠排入自然水体对水生生物具有高毒性，硫氢化钠还具有自然性，存储使用过程都存在火灾隐患。
[0009] 氯化黄原素是由硫氰酸铵三分子缩合而成的一种高硫含量的环状分子，常温下为固体，不溶于水，无刺激性，不释放有毒物质，其分子式为:C_{2}H_{2}N_{2}S_{3}，具有以下的结构式:
[0010]
[0011] 氯化黄原素曾作为黄色色素添加于油漆以及塑料制品中，最近研究发现，氯化黄原素用于磷化合物的硫代反应具有良好的效果，如：美国专利 US2011137021 中揭示的，在含磷寡核苷酸的磷原子硫酰化反应中，将氯化黄原素作为氧化试剂，将磷原子硫酰化，其反
应通式如下：

[0012]

[0013] 本领域目前急需发展不使用高毒性、高危险性原料，对环境友好，且收率更高的 R−(+)−硫代四氢呋喃−2−甲酸合成方法。

发明内容

[0014] 本发明要解决的技术问题是现有方法反应步骤较多，收率低，需要使用高毒性、高危险性的原料，对环境不友好。

[0015] 本发明解决上述技术问题的技术方案是提供一种 R−(+)−硫代四氢呋喃−2−甲酸的合成方法，包括以下步骤：将 R−(+)−四氢呋喃−2−甲酸在有机溶剂中溶解，然后加入氢化黄原素和有机碱，反应得到 R−(+)−硫代四氢呋喃−2−甲酸。

[0016] 其中，上述 R−(+)−硫代四氢呋喃−2−甲酸的合成方法，所述的有机溶剂为 N,N−二甲基甲酰胺、N−甲基吡咯烷酮或二甲基亚砜中的任意一种。

[0017] 其中，上述 R−(+)−硫代四氢呋喃−2−甲酸的合成方法，所述的氢化黄原素与 R−(+)−四氢呋喃−2−甲酸的摩尔比为 1 ∼ 5:1。

[0018] 其中，上述 R−(+)−硫代四氢呋喃−2−甲酸的合成方法，所述的有机碱为咪唑、吡啶或 4−N,N−二甲基胺基吡啶中的任意一种。所述的有机碱与 R−(+)−四氢呋喃−2−甲酸的摩尔比为 0.05 ∼ 0.5:1。

[0019] 其中，上述 R−(+)−硫代四氢呋喃−2−甲酸的合成方法，所述反应的温度为 80 ∼ 120℃。

[0020] 其中，上述 R−(+)−硫代四氢呋喃−2−甲酸的合成方法，所述反应的时间为 24 ∼ 72 小时。

[0021] 其中，上述 R−(+)−硫代四氢呋喃−2−甲酸的合成方法的反应式为：

[0022]

[0023] 本发明提供的 R−(+)−硫代四氢呋喃−2−甲酸的合成方法，将氢化黄原素作为硫代试剂，在温和的条件下取代羟基中的氧原子，仅需一步反应将 R−(+)−四氢呋喃−2−甲酸转变为 R−(+)−硫代四氢呋喃−2−甲酸。该方法减少了反应步骤，不使用高毒性、高危险性原料，对环境友好，且大大提高了收率。
具体实施方式

R-(+)- 硫代四氢呋喃 -2- 甲酸的合成方法，包括以下步骤：将 R-(+)- 四氢呋喃 -2- 甲酸在有机溶剂中溶解，然后加入氢化黄原素和有机碱，反应得到 R-(+)- 硫代四氢呋喃 -2- 甲酸。

其中，上述 R-(+)- 硫代四氢呋喃 -2- 甲酸的合成方法，所述的有机溶剂为 N,N- 二甲基甲酰胺，N- 甲基吡咯烷酮或二甲基亚砜中的一种。其他溶剂均无法良好溶解氢化黄原素。

其中，上述 R-(+)- 硫代四氢呋喃 -2- 甲酸的合成方法，所述的氢化黄原素与 R-(+)- 四氢呋喃 -2- 甲酸的摩尔比为 1～5:1。

其中，上述 R-(+)- 硫代四氢呋喃 -2- 甲酸的合成方法，所述的有机碱为咪唑、吡啶或 4-N,N- 二甲基氨基吡啶中的任意一种。所述的有机碱与 R-(+)- 四氢呋喃 -2- 甲酸的摩尔比为 0.05～0.5:1。

其中，上述 R-(+)- 硫代四氢呋喃 -2- 甲酸的合成方法，所述反应的温度为 80 ～ 120℃。

其中，上述 R-(+)- 硫代四氢呋喃 -2- 甲酸的合成方法，所述反应的时间为 24 ～ 72 小时。

本发明提供的一种用氢化黄原素作为硫代试剂将 R-(+)- 四氢呋喃 -2- 甲酸转化为 R-(+)- 硫代四氢呋喃 -2- 甲酸的方法，是首次发现可将氢化黄原素作为硫代试剂用于取代氧化五元环。本发明方法是将氢化黄原素作为取代剂，巧妙的取代了羟基中的氢原子，整个反应也并发生碳原子价态的改变，如下式所示；

![反应示意图]

而美国专利 US2011137021 中揭示的则是用氢化黄原素对寡核苷酸磷酸原进行硫酰化的反应，该反应是利用氢化黄原素的氧化性对三价磷原子进行氧化硫酰化使之成为五价磷原子，没有发生取代，与本发明对氢化黄原素的使用方式和反应原理都有本质区别。

实施例 1：R-(+)- 硫代四氢呋喃 -2- 甲酸的合成—氢化黄原素用量的选择

将 8 批 11.6 克 R-(+)- 四氢呋喃 -2- 甲酸分别溶解于 300 毫升 N,N- 二甲基甲酰胺中，分别向反应体系中加入 2 克咪唑，随后分别加入与 R-(+)- 四氢呋喃 -2- 甲酸摩尔比为 0.5:1, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1 的氢化黄原素，分别为 7.5 克, 15 克, 30 克, 45 克, 60 克, 75 克, 90 克, 105 克，分别在搅拌下加热至 100℃，反应 48 小时，随后在减压情况下将溶剂蒸干，分别加入 500 毫升二氯甲烷溶解溶液，向二氯甲烷中通入干燥的氯化氢气体到饱和（通入干燥的氯化氢使咪唑等有机碱生成盐酸盐沉淀，以便于除去），压滤除去不溶的固体，滤液减压蒸干，得到黄色固体残渣，将残渣分别加热溶解于刚可以溶解残渣的苯中，搅拌下缓慢冷却到 0℃，过滤析出的固体，减压干燥，得到白色结晶性固体，该固体为 R-(+)- 硫代四氢呋喃 -2- 甲酸，重量与收率分别为 3.6 克, 27.3%, 7.9 克, 59.8% ; 8.6
实施例2. R(+)--四氢呋喃-2-甲酸的合成—有机碱种类的选择

将6批11.6克R(+)-四氢呋喃-2-甲酸分别溶解于300毫升N,N-二甲基酰胺中, 分别向反应体系中加入2克咪唑, 吡啶-4-N, N-二甲基甲酰胺, 三乙胺-N, N-二异丙基-N-甲基胺, 1.8-二氯杂环二十一碳-7-烯, 然后分别加入45克氯化钠, 分别在搅拌下加热到100℃, 反应48小时, 随后在减压情况下将溶剂蒸干, 分别加入500毫升二氯甲烷溶解残渣, 向二氯甲烷中通入干燥的氯化氢气体到饱和（通入干燥的氯化氢气使咪唑等有机碱生成盐酸盐沉淀, 以便于除去), 压滤除掉不溶的固体, 滤液减压蒸干, 得到微黄色固体残渣, 将残渣分别加热溶解于刚好可以溶解残渣的苯中, 搅拌下缓慢冷却到0℃, 过滤析出的固体, 减压干燥, 得到白色结晶性固体, 该固体为R(+)-四氢呋喃-2-甲酸, 重量与收率分别为9.6克, 72.7%；8.4克, 63.6%；10.5克, 79.5%；2.6克, 19.7%；3.1克, 23.5%；2.5克, 18.9%。可见加入咪唑, 吡啶-4-N, N-二甲基胺基吡啶作为有机碱的反应, 收率较好, 因此确定有机碱为咪唑, 吡啶或4-N, N-二甲基胺基吡啶中的任意一种。

实施例3. R(+)-四氢呋喃-2-甲酸的合成—有机碱用量的选择

将7批11.6克R(+)-四氢呋喃-2-甲酸分别溶解于300毫升N,N-二甲基甲酰胺中, 分别向反应体系中加入咪唑, 吡啶与R(+)-四氢呋喃-2-甲酸的摩尔比分别为：0.01:1.03:1.05:1.1:0.1:1:0.2:1:0.5:1:1:1, 然后分别加入45克氯化钠, 分别在搅拌下加热到100℃, 反应48小时, 随后在减压情况下将溶剂蒸干, 分别加入500毫升二氯甲烷溶解残渣, 向二氯甲烷中通入干燥的氯化氢气体到饱和（通入干燥的氯化氢气使咪唑等有机碱生成盐酸盐沉淀, 以便于除去）, 压滤除掉不溶的固体, 滤液减压蒸干, 得到微黄色固体残渣, 将残渣分别加热溶解于刚好可以溶解残渣的苯中, 搅拌下缓慢冷却到0℃, 过滤析出的固体, 减压干燥, 得到白色结晶性固体, 该固体为R(+)-四氢呋喃-2-甲酸, 重量与收率分别为1.6克, 12.1%；4.4克, 33.3%；9.2克, 69.7%；9.4克, 71.2%；9.5克, 72.0%；9.6克, 72.7%；9.6克, 72.7%。可见加入的有机碱与R(+)-四氢呋喃-2-甲酸的比例在0.05:1到0.5:1之间时, 收率比较高, 低于该比例则收率迅速下降, 高于该比例对收率提高无贡献, 因此, 确定有机碱与R(+)-四氢呋喃-2-甲酸的摩尔比为0.05～0.5:1。
之间时，收率较好，因此确定反应温度为 80 ～ 120°C。

[0041] 本发明通过大量的条件筛选实验，最终确定：当氨化黄原酯与 R-(-) - 四氢呋喃 -2- 甲酸的摩尔比为 1 ～ 5:1，有机碱为咪唑、哌啶或 4-N,N- 二甲基胺基吡啶中任意一种，有机碱与 R-(-) - 四氢呋喃 -2- 甲酸的摩尔比为 0.05 ～ 0.5:1，反应温度在 80 ～ 120°C 之间时，能使 R-(-) - 硫代四氢呋喃 -2- 甲酸的收率较好，且纯度高。

[0042] 本发明实施例中使用的检测仪器是上海精科 SGW-5 自动旋光仪和 Bruker AV40 核磁共振波谱仪。

[0043] 实施例 5，R-(-) - 硫代四氢呋喃 -2- 甲酸的合成

[0044] 将 11.6 克 R-(-) - 四氢呋喃 -2- 甲酸溶解于 300 毫升 N,N- 二甲基甲酰胺中，向反应体系中加入 2 克咪唑，随后加入 45 克氢化黄原酯，后搅拌下加热至 100°C，反应 48 小时，随后在减压情况下将溶剂蒸干，加入 500 毫升二氯甲烷溶解残渣，向二氯甲烷中通入干燥的氯化氢气体到饱和（通入干燥的氯化氢使咪唑等有机碱生成盐酸盐沉淀，以便于除去），压滤除掉不溶的固体，滤液减压蒸干，得到微黄色固体残渣，将残渣加热溶解于 110 毫升苯中，搅拌下缓慢冷却到 0°C，过滤析出的固体，减压干燥，得到白色结晶性固体 9.6 克，该固体产物即为 R-(-) - 硫代四氢呋喃 -2- 甲酸，收率：72.7%，纯度：98.9%。

[0045] 产物的比旋光度 [α] = 35.4°，检测温度为 20°C，样品浓度为 1%（甲醇中）。

[0046] 实施例 6，R-(-) - 硫代四氢呋喃 -2- 甲酸的合成

[0047] 将 11.6 克 R-(-) - 四氢呋喃 -2- 甲酸溶解于 300 毫升 N,N- 二甲基甲酰胺中，向反应体系中加入 1 克 4-N,N- 二甲基胺基吡啶，后加入 45 克氢化黄原酯，在搅拌下加热至 100°C，反应 24 小时，随后在减压情况下将溶剂蒸干，加入 500 毫升二氯甲烷溶解残渣，向二氯甲烷中通入干燥的氯化氢气体到饱和，压滤除掉不溶的固体，滤液减压蒸干，得到微黄色固体残渣，将残渣加热溶解于 130 毫升苯中，搅拌下缓慢冷却到 0°C，过滤析出的固体，减压干燥，得到白色结晶性固体 10.5 克，该固体产物即为 R-(-) - 硫代四氢呋喃 -2- 甲酸，收率：79.5%，纯度：98.6%。

[0048] 产物的比旋光度 [α] = 35.2°，检测温度为 20°C，样品浓度为 1%（甲醇中）。

[0049] 实施例 7，R-(-) - 硫代四氢呋喃 -2- 甲酸的合成

[0050] 将 11.6 克 R-(-) - 四氢呋喃 -2- 甲酸溶解于 300 毫升 N- 甲基吡咯烷酮中，向反应体系中加入 2 克丙啶，后加入 45 克氢化黄原酯，在搅拌下加热至 100°C，反应 70 小时，随后在减压情况下将溶剂蒸干，得到黄色固体残渣，将残渣加热溶解于 100 毫升苯中，搅拌下缓慢冷却到 0°C，过滤析出的固体，减压干燥，得到白色结晶性固体 8.4 克，该固体产物即为 R-(-) - 硫代四氢呋喃 -2- 甲酸，收率：63.6%，纯度：98.2%。

[0051] 产物的比旋光度 [α] = 35.5°，检测温度为 20°C，样品浓度为 1%（甲醇中）。

[0052] 实施例 8，R-(-) - 硫代四氢呋喃 -2- 甲酸的合成

[0053] 将 11.6 克 R-(-) - 四氢呋喃 -2- 甲酸溶解于 300 毫升二甲基亚砜中，向反应体系中加入 1 克 4-N,N- 二甲基胺基吡啶，后加入 45 克氢化黄原酯，在搅拌下加热至 100°C，反应 60 小时，随后在减压情况下将溶剂蒸干，加入 500 毫升二氯甲烷溶解残渣，向二氯甲烷中通入干燥的氯化氢气体到饱和，压滤除掉不溶的固体，滤液减压蒸干，得到微黄色固体残渣，将残渣加热溶解于 100 毫升苯中，搅拌下缓慢冷却到 0°C，过滤析出的固体，减压干燥，得到白色结晶性固体 8.6 克，该固体产物即为 R-(-) - 硫代四氢呋喃 -2- 甲酸，收率：65.2%，纯
度 :97.6%。

[0054] 产物的比旋光度 \(\alpha = 35.1^\circ \), 检测温度为 20°C, 样品浓度为 1% (甲醇中)。

[0055] 经检测, 实施例 5 ~ 8 制备得到的产物具有以下特征: 1H-NMR (氘代氯仿) : \(\delta \) : 1.81 ~ 1.95 (2H, m), 2.02 ~ 2.27 (2H, m), 2.64 (1H, s), 3.70 ~ 3.82 (2H, m), 4.72 (1H, m)。

[0056] 本发明提供的方法在温和的条件下仅需一步反应将 R-(+) - 四氢呋喃 -2- 甲酸转变为 R-(+) - 硫代四氢呋喃 -2- 甲酸, 减少了反应步骤, 不使用高毒性、高危险性原料, 对环境友好, 且大大提高了收率。