wo 2009/115779 A1 I A0FVO OO OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization. /25 |)| HINIHND 00O 10 0 0O 00
A 5 (10) International Publication Number
(43) International Publication Date Vs

24 September 2009 (24.09.2009) WO 2009/115779 Al
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 9/38 (2006.01) kind of national protection available). AE, AG, AL, AM,
(21) International Application Number: ég’ éﬁ’ ég’ éé’ gg’ 23’ gg’ gg ?]])31}({, 3\1\}[]’ gg’ gé’
PCT/GB2009/000693 EC, EE, EG, ES, FL GB, GD, GE, GH, GM, GT, HN,
(22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
13 March 2009 (13.03.2009) I\K/[ZG IﬁKL&I\?Iid\I{/Rh/If)S(IIC/EY LI\I/J[ZL?\{IAMSGMI\]I)I 1\1\/%
(25) Filing Language: English NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
(26) Publication Language: English SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,

UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data:

0805144 .3 19 March 2008 (19.03.2008) GB (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

(71) Applicant (for all designated States except US): IMAGI- GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
NATION TECHNOLOGIES LIMITED [GB/GB]; ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
Home Park Estate, Kings Langley, Herts WD4 8LZ (GB). TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SL, SK, TR),
OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, ML,

(72) Inventor; and
(75) Inventor/Applicant (for US only): WEBBER, Andrew,

David [GB/—]; 17 Fields End, Tring, Hertfordshire
HB23 SER (GB). MR, NE, SN, TD, TG).

(74) Agent. ROBSON, Aidan, John; Reddie & Grose, 16 T uPlished:
Theobalds Road, London WC1 8PL (GB). — with international search report (Art. 21(3))

(54) Title: PIPELINE PROCESSORS

Control [

Multi-threaded
register file

26~ Mux / \ Mux £~28

Operand1 Operand 2

1 | |

Use — |— Use

‘slow’ ‘Slow' | ‘Fast’ ‘fast’

path path | path path
20—~ |-—~22

30

Write fo register

FIG. 7

Diverse pipeline

(57) Abstract: A method and apparatus are provided for executing instructions from a plurality of instruction threads on a multi-
threaded processor. The instruction threads may each include instructions of different complexity. A plurality of pipelines for exe-
cuting instructions are provided and an instruction scheduler determines on each clock cycle the pipelines upon which instructions
will be executed. Some of the pipelines are configured to appear to the instruction threads as single pipelines but in fact comprise
two pipeline paths, one for executed instructions of lower complexity and the other. The instruction scheduler determines on
which of the two pipeline paths an instruction should execute.

WO 2009/115779 PCT/GB2009/000693

10

15

20

25

Pipeline Processors

Field of the Invention

This invention relates to pipeline processors of the type which may be
used to execute instructions from a plurality of instruction threads
(pipelines), and in particular seeks to schedule instructions from pipelines
to a microprocessor with a high clock speed while maintaining
compatibility with an existing revision of that microprocessor by using
multiple pipelines to provide the functionality previously provided by a

single pipeline such that low latency may be maintained where possible.
Background of the Invention

In the field of microprocessor implementation and development it is
common practice to continually advance the capabilities of a
microprocessor core by means of improvements to clock speed and/or
performance. Clock speed may be improved by advanced silicon process
technology where feature sizes on integrated circuits may be made
smaller and smaller as implementation techniques improve. However, it is
more likely that large improvements in clock speed will need an overhaul
of the implementation of the logic of the device. Typically, in a
microprocessor this will entail reorganising the processor’s instruction
pipeline such that an instruction takes more pipeline steps and each step
has a shorter period than used on previous implementations of that

microprocessor.

However, performance-per-cycle is likely to be somewhat impaired by the
re-pipelining as a longer pipeline takes more cycles to complete the same
task. To improve performance-per-cycle many advanced techniques may
need to be employed such as predicting the outcome of certain operations
— in particular predicting the outcome of instruction sequences that control

the flow of the program (branches, jumps, calls, return etc.). Generally

WO 2009/115779 PCT/GB2009/000693

10

15

20

25

functions such as arithmetic have slightly lower performance relative to the
previous implementations of a microprocessor, but the increase in top
clock speed and the improvements in program flow improve the overall

software performance more than the longer pipeline reduces it.

A multi-threaded microprocessor of the type discussed above is described
in our British Patent No. GB2311882. This comprises a multithreaded
processor, which may receive and execute instructions from a plurality of
instruction pipelines. Scheduling logic which monitors the status of the
various executing pipelines determines which pipeline’s instructions should
be executed on each clock cycle. Developments of this system improve
the scheduling by monitoring more specific attributes of each instruction
pipeline, such as time to complete execution, average execution rate for

instructions etc.

However, these characteristics are not essential to embodiments of the
present invention. One characteristic that is significant for embodiments of
the present invention is that there is differentiation between different
instruction sets such as Reduced instruction set computer (RISC) and

digital signal processor (DSP) instruction sets in a single pipeline.

We have appreciated that it would be desirable to maintain current relative
performance while increasing the clock speed limit for a microprocessor. In
effect, to improve performance on two counts at once — one count is the

clock speed, and the other is instructions per clock cycle.
Summary of the Invention

Preferred embodiments of the present invention seek to provide multiple
pipelines of differing lengths which appear to a programmer as being the
same as a single pipeline from prior implementations of a corresponding
microprocessor. This is achieved by means of providing multiple pipelines
associated with a single arithmetic pipeline or ALU combined with

WO 2009/115779 PCT/GB2009/000693

10

15

20

25

30

intelligent instruction scheduling that routes instructions to the right
pipeline based upon that instruction’s requirements. In addtion to this the
instruction scheduler needs to correctly model the latency for a specific

instruction given that it may vary depending upon which pipeline is used.
Brief Description of the Drawings

A preferred embodiment of the invention will now be described in detail by
way of example with reference to the accompanying drawings in which:

Figure 1 is a block diagram of a multithreaded processor;

Figure 2 is a diagram showing the steps on each clock cycle of an
executing thread;

Figure 3 is a modification of figure 2 showing the effect of a shorter
clock cycle;

Figure 4 shows the steps for two separate paths through the same
thread;

Figure 5 shows the problems which may arise with incorrect
scheduling of instructions through two paths on the same thread;

Figure 6 shows a correctly scheduled version of figure 5;

Figure 7 is a block diagram of a thread with two pipelines;

Figure 8 is a block diagram of a fast pipeline; and

Figure 9 is a block diagram of a slow pipeline.

The multithreaded microprocessor described in our British Patent No.
GB2311882 is of the type shown in Figure 1. This processor has a total of
N + 1 executing threads shown at 2 which pass to a thread instruction
scheduler 1 which determines which next instruction or instructions to
provide for execution. In this example, there are two pipelines, firstly the
address unit 4 and secondly the data unit 5. The microprocessor supports
a number of different capabilities. Firstly, it can run system programs e.g.
embedded software or operating systems as expected of a typical modern
microprocessor. |t may, however, also be geared to perform digital signal

processing (DSP) activities. DSP is commonly employed when dealing

WO 2009/115779 PCT/GB2009/000693

10

15

20

25

30

with application areas such as radio, audio, and video where specific DSP
algorithms are applied to data streams to turn them into useful end user
information. It is usual that over their life span, microprocessors will be
redesigned in order to achieve higher performance from either executing
more processes per clock cycle or from executing more processor clock

cycles per second (CPI or MIPS).

Embodiments of the present invention use more processor clock cycles
per second. To achieve this, each individual clock cycle must take less
time and it is therefore necessary to perform a pipeline task such as an
arithmetic operation in less time. Sometimes this is possible because of a
change in the silicon process used to fabricate a device (a process known
as die shrink). It appears, however, also necessary to make improvements

without changing the process.

One alternative to the process of die shrink is to use more pipeline stages
to perform a given operation. For example, a pipeline that has 1 cycle
allocated to perform an arithmetic operation could employ two cycles to
perform the same operation so that each cycle could take half as long and
therefore go twice as quickly. If such an approach is used, then the extra
pipeline stages comprise additional latency in the pipeline which is visible
to a software programmer. This means such that a program running on the
microprocessor may need to wait for results to become available before
using them in follow on operations. If a pipeline runs twice as fast the
program needs to wait a cycle for a result, and the end result will be that
the device has a much higher clock speed but does not actually perform

any better than earlier generations of that microprocessor.

Common methods employed to balance these trade offs include super
scalar execution and out of order completion. These techniques allow
stalled instructions to be overtaken by unrelated instructions nearby.

However, the down side of this approach is much greater complexity.

WO 2009/115779 PCT/GB2009/000693

10

15

20

25

30

A microprocessor of the type shown in Figure 1 has two main aspects
which need to be considered. Firstly, it can support general purpose
software from embedded systems or operating systems such as LINUX.
Secondly, it can support digital signal processing (DSP). At least as far as
the arithmetic pipeline is concerned there is a difference in these two sets
of functions. DSP functions add extra operations to those in the general
purpose set. For example, a general purpose addition becomes a DSP
addition by extending the function to incorporate the concepts of rounding

and saturation (amongst others).

Embodiments of the invention take a pipeline which is able to perform all
of these functions and duplicates the general purpose section without any
DSP additional operations so that the general purpose pipeline can be
kept shorter to avoid latency problems. Therefore, a microprocessor which
previously had a single pipeline with general purpose software and DSP
functions now has two pipelines, one for performing only the general
purpose software functions and the other for performing general purpose
software functions and DSP functions. These two pipelines can then be
used for different purposes i.e. general purpose functionality and DSP
functionality. This enables the majority of instructions used to run an
application and/or the operating system to be run at a higher clock speed
without increasing the latency. At the same time, DSP code can be run
and will perform as previously. It will however have the potential for stalling
more frequently if it is dependent on data from the other pipeline.

A block diagram of a microprocessor of the type, which may embody the
present invention, is shown in Figure 1 as discussed above. This
comprises instruction fetch engines and instruction decoders 2, which
provide instructions to a thread instruction scheduler. Instructions may be
retrieved from an instruction cache 3 or from on chip RAM. Examples of
pipelines in this figure are the address unit 4 and the data unit 5. Other

possibilities exist.

WO 2009/115779 PCT/GB2009/000693

10

15

20

25

Figure 2 shows the main functions of an instruction pipeline which is
contained within one clock cycle. This is the ALU cycle. A pipeline such as
this may support a number of different instruction types, in particular it may
be concerned with running general purpose operating system codes or
DSP functions. Being able to support and differentiate between DSP and
non DSP programs within a single processor is known within the field of

microprocessor design.

In Figure 2, each box represents a clock cycle. The steps performed on
each clock cycle are as follows:
1. Instruction cache address issue, which sends an address to

the instruction cache to retrieve an instruction.

2. Instruction fetch data return in which the fetched instruction
is returned.
3. Branch predict ALU, in which a prediction is made as to

whether or not the instruction will require a branch to be performed by the
ALU.

4. Pre-decode in which the instruction goes through a pre-
decode stage.

5. [ssue, in which the instruction is issued.

6. Post decode in which the instruction goes through its post

" decode phase concurrently with instruction issue.

7. Operand fetch in which the data on which the instruction is to
operate is retrieved.

8. ALU in which the instruction executes on the operand in the
ALU.

9. Register write back in which the output of the ALU is written
back to the appropriate register.

10. Data fetch address issue.

WO 2009/115779 PCT/GB2009/000693

10

15

20

25

11. Data fetch hit/miss.
12. Data return and write back.

Steps 10, 11, and 12 are steps which are a integral part of a processor

since they provide access to a data cache or data memory.

If such a microprocessor is based around a reduced instruction set
computer (RISC) then DSP instructions can be considered to be
extensions beyond the basic instruction set. It is most common for these
extensions only to be applicable in certain areas. Typical areas include
multiplication and other arithmetic where DSP requires additional

capabilities such as saturation and rounding.

In a preferred embodiment of the present invention, as the clock speed
ceiling is raised, the microprocessor cycle time becomes smaller. There is
therefore progressively less time to perform the functions required in each
cycle. For the main arithmetic operations such as addition, subtraction,
shifts, multiplications etc the DSP variants of these operations will be
under more time pressure than the none DSP variants. This is because
the DSP variants have additional steps on top of the none-DSP

functionality.

In order to ensure that it is possible to increase the top speed of the
microprocessor beyond that of previous implementations, it is necessary to
re-pipeline the design so that there are more cycles with each cycle taking
less time. An example of the re-pipelining of the pipeline of Figure 2 is

shown in Figure 3.

As can be seen, an increase in the ceiling of the clock speed can be
achieved by using additional cycles to complete parts of the pipeline. For
example, in Figure 1 instruction cache look up takes two cycles (1 and 2),
but in Figure 2 it takes four cycles (13, 14, 15, and 16). These additional

WO 2009/115779 PCT/GB2009/000693

10

15

20

25

cycles are required because less is performed in each individual cycle.
Therefore, as the time for a cycle needs to be shorter for the device to
clock at higher speeds the same quantity of work needs to be spread over

a larger number of cycles.

In Figure 3, the additional steps are labelled 14 and 15 and comprise the
additional time required to retrieve instructions to be issued from the
instruction cache. This additional time is the result of the shortened cycle
period.

Step 17 is fetch predict ALU. This includes branch and return prediction

relating to the instructions and is a well-known process.

Step 18, Pre-decode strips an instruction to its requirements including
DSP or non DSP characterises and uses this to determine which pipeline
path will be used. A flag is output from the pre-decode step indicating
whether the fast or slow pipeline path is to be used. This has no impact on
the issue of an instruction, but does on future issues because the unit is
either busy when an instruction issue is required, or the register being
written to will have a longer read or write after write (i.e. register hazards).
Therefore it is only for these arithmetic units that the slow path flag and
variable future scheduling hazards are applied in this particular

embodiment.

Steps 22 and 23 are labelled ALU1 and ALU2 and are the additional timing
the ALU requires to execute the instruction because of the reduced cycle

period.

The main advantage of this re-pipelining exercise is that the device can
achieve more cycles per second. If an instruction can be started on each
cycle this would directly lead to more instructions per second. However,
there is a disadvantage in that if an instruction must wait for a prior

instruction to complete (e.g. to utilise its result) it will need to wait for more

WO 2009/115779 PCT/GB2009/000693

10

15

20

25

cycles after re-pipelining. This additional waiting time can counteract the
increase in speed obtained by shorter cycle periods such that a
microprocessor could end up pursuing the same number of instructions

per second.

Preferred embodiments of the invention separate out easily performed
instructions from more difficult to perform instructions. The ones which are
easier to perform are then attempted to be executed with the same latency
as in prior implementations of the microprocessor. To achieve this, the
arithmetic pipeline is replicated for a set of critical functions such that there
exists a fast path for low latency easier to complete instructions and a slow
path for more complex instructions such as DSP instructions. In addition,
the instruction scheduling requires changes to route the relevant
instructions to the required fast or slow pipeline, and to track the registers
in flight such that it can be accurately determined when a follow on
instruction may be issued. Meanwhile, as far as the programmer producing
instructions to run when the microprocessor is concerned, it appears that
there is a single pipeline of the same form as previous implementations of

the device.

The important parts of this arrangement are shown in Figure 4. As far as
the program is concerned the processor appears to have the same
pipelines as were present in earlier implementations. However, in
accordance with the embodiment of the invention changes in the
scheduling of instructions are made such that one or more threads
employs a pair of pipelines with sufficient coherency that these pipelines
do not clash. Hazards exist because the two pipelines have different
latency. In the example of Figure 4, the faster pipeline has one ALU cycle
28 while the third pipeline has two ALU cycles 32 and 33. If, therefore, an
instruction issue is made down the slower pipeline then it may not be

possible for an instruction issue to be made down the faster pipeline on

WO 2009/115779 PCT/GB2009/000693

10

15

20

25

the next cycle. This is because the two pipelines would end up finishing on

the same cycle as shown in Figure 5, and there would be a data clash.

In order to resolve this problem, the instruction scheduler can be
programmed such that it can refuse to issue an instruction if it determines
that this clash would be triggered. For example, it can be programmed to
not issue the second instruction until it determines that this can be
executed without generating the conflict between the slow path and fast
path. This is shown in figure 6. As can be seen, the first instruction issues
two cycles after the slow instructions. However, it executes one cycle
quicker than the slow instruction and therefore completes execution one

cycle after the slow instruction.

The instruction scheduler is therefore programmed to track when a slow
pipeline instruction has just been issued so that it may prevent issuing an
instruction to the corresponding fast pipeline on the next cycle. This is
done by maintaining a data record for each pipeline that records the last
action performed on the pipeline. This can then be used to determine the
next action allowed to the same pipeline. This part of the instruction
scheduler applies to all of the threads and so is controlled on per-pipeline
basis rather than a per-thread basis.

Each executing thread of instructions needs to determine whether an
instruction may be issued on a cycle. This is dependent upon whether that
thread has dependencies upon instructions that were issued in the past.
For example, an instruction may load a register from memory and be
followed by an arithmetic operation on that register. It is therefore
necessary for the thread to monitor the dependencies between old
instructions and new ones to determine if the result from an old instruction
is required by a new one. Register interlocks maintain a record of
operations which are still in progress, and the change from one pipeline to
two where one is slower than the other affects these register interlocks.

10

WO 2009/115779 PCT/GB2009/000693

10

15

20

25

30

Instructions sent to a slow pipeline may require extra interlocks compared
to those sent down a fast pipeline. These extra hazards occur because it
takes more cycle instructions to pass down the slow pipeline and return
the result to the registers. As with pipeline interlocks, these hazards and
interlocks are managed by recording when instructions have been issued
into the slow pipeline and using this information to determine when
another instruction may be issued. External factors such as other threads
winning access to pipelines may prevent the thread from issuing on that
cycle, but at least the thread knows when it is safe to issue an instruction
or not and may therefore signal that it may issue or not to the main

multithreaded instruction scheduler.

Figure 7shows hardware embodying the fast and slow pipelines with some
additional infrastructure. This comprises a slow path and a fast path
through pipelines, 20 and 22 respectively. Register files 24 are held for
each thread. These are grouped together in a register array with a
separate set of registers held for each thread in the multithreaded
processor. Data from the multithreaded register files are selected to
prbvide data to slow or fast paths 22 and 24 via multiplexers 26 and 28.
The outputs from these multiplexers may be provided to either the slow
path or the fast path. A control signal is also provided to each path along
with a signal indicating, “use slow path” or “use fast path”. After processing
by either the slow path or the fast path, a further multiplexer 30 selects the
output to write back to the respective register file or files. For example, to
be able add or subtract a pair of numbers it is necessary to look up pairs of
registers so that two ends are fetched on each cycle. As can be seen, a
control signal needs to be sent to the two pipelines. This is a common
signal, as only one pipeline will be used on any given cycle. This control
signal is therefore common to both pipelines.

However, as each pipeline is to execute independently a separate control
signal (USE SLOW PATH : USE FAST PATH) is provided for each one to

11

WO 2009/115779 PCT/GB2009/000693

10

15

20

25

control which is active. These controls are mutually exclusive as only one

pipeline may be in operation on the specific cycle.

It should be noted that it is necessary to multiplex the outputs from the two
pipelines with multiplexer 30 to present a unified single write back to the
register file on each cycle. Generally speaking, the fast pipeline is a subset
of a slow pipeline. An example of a fast pipeline is shown in Figure 8.This
shows the principle features of an arithmetic pipeline. These are pipeline
register stages 32 and 34 to control the flow of information over time,
arithmetic functions such as addition 36, subtraction 38, shifts and logical
operations 40, and a multiplexing unit 42 to be used to merge the assorted

possible arithmetic functions into a single result.

The slow path follows a similar form which is shown in Figure 9. As can be
seen from this, the structure of the fast and slow pipelines are
fundamentally the same. The principle difference is that the slow pipeline
takes an extra pipeline stage in order to perform the work. In this example
the extra work being performed is DSP arithmetic comprising ROUNDING
42 and SATURATION 44. This may require other materials from other
pipelines. For example, memory generators may have modular addressing
functionality associated with them for DSP purposes. A further register 46

is provided at the end of the slow path.

For the instruction scheduler fo determine the correct routing for each
instruction it requires some means to differentiate between types of
instruction. This is achieved with a relatively straightforward method in a
single instruction which is used to differentiate instructions of the same

general form as those shown in Figure 10.

As can been seen from this figure, instructions contain similar information.
The main difference arises from a single bit which makes an instruction a

DSP instruction or not. Flags control certain aspects of what an instruction

12

WO 2009/115779 PCT/GB2009/000693

is doing. For Example a flag could be used to designate that one of the

operands is a zero as opposed to data from a register.

Complex methods for differentiating between each instructions may be
used. If this is the case it may be necessary for additional decode stages
5 before the pre-decoding stage in Figure 2 or 3. The extra work can be
achieved without effecting the clock speed of the instruction decoder
stages. Providing a determination has been made in advance and the
instruction has been presented to the instruction scheduler, ail manner of

levels of instruction complexity are possible.

10

13

WO 2009/115779 PCT/GB2009/000693

10

15

20

25

Claims

1. A multithreaded processor for executing instructions on a plurality of
instruction pipelines, and capable of executing instructions of differing
complexity comprising a processor, a plurality of executing pipelines, and
an instruction scheduler for determining on which pipeline instructions will
be executed on each clock cycle wherein at least some of the instruction
pipelines comprise two paths, one for executing instructions of lower
complexity than the other, and the instruction scheduler comprises means

to determine on which of the two paths an instruction should execute.

2. A multithreaded processor according to claim 1 wherein the
instructions of differing complexity comprise instructions from different

instruction sets.

3. A multithreaded processor according to claim 2 in which one of the

instruction sets is a digital signal processing (DSP) instruction set.

4, A multithreaded processor according to claim 2 or 3 in which one of

the instruction sets is a reduced instruction set computer (RISC) set.

5. A multithreaded processor according to claims 1, 2, 3 or 4 in which
the paths on a pipeline with two paths execute instructions with a common

clock signal.

6. A multithreaded processor according to any preceding claim in
which instructions have a flag associated with them indicating whether or
not they are of greater complexity and comprising means to detect the flag
associated with an instruction and means to determine which path an

instruction should be executed on in dependence on the detected flag.

14

WO 2009/115779 PCT/GB2009/000693

10

15

20

25

30

7. A multithreaded processor according to any preceding claim where

instructions may be executed on the two pipeline paths simultaneously.

8. A multithreaded processor according to claim 7 where the
instruction scheduler, schedules the instructions on the two pipeline paths

such that they complete execution on different clock cycles.

9. A method of executing instructions on a multithreaded processor
having a plurality of instruction pipelines and instructions of differing
complexity comprising the steps of determining in an instruction scheduler
which pipeline instructions will be executed upon, wherein the instruction
pipelines comprise two paths, and further comprising step of executing
instructions of lower complexity on one of the paths and executing
instructions of higher complexity on the other path, and determining in the
instruction scheduler on which the two paths and instruction should

execute.

10. A method according to claim 9 wherein the instructions have

differing complexity comprising instructions from different instruction sets.

11. A method according to claim 10 in which one of the instruction sets

is a digital signal processing (DSP) instruction set.

12. A fnethod according to claim 10 or 11 in which one of the instruction

sets is a reduced instruction set computer (RISC) set.

13. A method according to any of claims 9 to 12 including the step of
clocking the two paths on a pipeline with a common clock signal.

14. A method according to any of claims 9 to 13 including the step of
associating a flag with each instruction indicating whether or not the
instruction is of greater complexity and further including the step of

oy

15

WO 2009/115779 PCT/GB2009/000693

detecting the flag associated with an instruction and determining which
part of an instruction should be executed upon in dependence on the
detected flag.

5 15. A method according to any of claims 9 to 14 including the step of

executing instructions on the two pipeline paths simultaneously.

16. A method according to claim 15 including the step of scheduling the
instructions on the two pipeline paths such that they complete execution
10 on different clock cycle.

17. A multithreaded processor for executing instructions on a plurality of
instruction pipelines substantially as herein described with reference to the
accompanying drawings.

15
18. A method for executing instructions on a multithreaded processor

substantially as herein described.

16

WO 2009/115779 PCT/GB2009/000693

115
1
/[
{
241 Instruction fetch)
- _
engine Address unit | |]
instruction :
decoder (1 6x32 bit
registers)
Thread 0 pe
; Thread -
. instruction g ————
: schedular — I
2d4—~ Instruction fetch Data unit 1
engine + (32x32 bit
instruction registers) HINL_L5
decoder DSP RAM
Thread n e ——
Compressor [¢ > Memory
interfaces |e > mapped
registers F—l_L 6
; | cache D cache Internal registers
MMU ' Debug report >
A 4
A multi-threaded microprocessor core
SR N R
Inst Inst
cache | fetch | ;readr;gt Pre- lssue
7 8 9
.addr data ALU decode
issue | return 2 2 2
Post- | Operand ALU Register
decode | fetch writeback 121 122
3 Data
Data Data
6 f:ézl: fetch |return &
, hit/miss |writeback
FIG 2 lssueS
A microprocessor pipeline 10

SUBSTITUTE SHEET (RULE 26)

WO 2009/115779 PCT/GB2009/000693
2/5
123 124 125 126 17 18 129
Inst Inst
cache Inst Inst fetch ig?ilgt Pre- lssue
addr | cache | cache | data |P decode 21 22 23 24
. ALU
issue return 2 2 2
Post- |Operand Register
decode | feich ALUT | ALL2 writeback
FIG.3 @
High speed microprocessor pipeline
225 226
Pre- |
decode | o° 27 28 29
S —
Post- [Operand :Registerl P
decode | fetch ALU :writeback: Fast path
! 1
it b (
L et
30 311 ALUT 1 ALU2 19T o igiow path
| | ,wrlteback:
IR S J___XJ
32 33 34

FIG. 4

Diverse pipeline lengths

SUBSTITUTE SHEET (RULE 26)

WO 2009/115779

PCT/GB2009/000693
3/5
Time -
‘Slow’ ‘Fast
issue issue
R e —
|
Post- | Operand ! IRegister A
decode | fetch ALU1 : ALUZ |writebackI Slow’ path
-t
Post | Operand | Register y .~ o
decode | fetch ALU Iwriteback: Fast path
Two writes
FlG 5 on the same
Pipeline conflict cycle
Time _
Slow' | No ‘Fast’
issue issue issue
_— - —
I
Post- | Operand l IRegis’ter P
decode | fetch ALU1 i ALU2 |writebackI Slow’ path
—_——r — —i
Post |Operand |Register g
decode | fetch ALU |writeback| Fast path
R R
No writes on
FlG 6 the same
) cycle

Resolving pipeline conflict

SUBSTITUTE SHEET (RULE 26)

WO 2009/115779 PCT/GB2009/000693

415

Control

A 4

Multi-threaded 24
register file

QGW \ Mux /~28

Operand 1 Operand 2

1 l
Use — — Use
‘slow’ ‘Slow’ | ‘Fast ‘fast’
path path | path path
20—~ L —~22
30'_M_ux /

Write to register

FIG. 7

Diverse pipeline

control op1 op2

L

D> Registerstage |32

D Register stage |-—34

l

Result

FIG. 8

'Fast’ pipeline

SUBSTITUTE SHEET (RULE 26)

WO 2009/115779

5/%

control op1 op2

L

> Register stage

PCT/GB2009/000693

> Register stage

Rounding

e

> Register stage

l

Result

FIG. 9

‘Slow’ pipeline

Operation

Dest reg

Source 1

Source 2

Flags

Operation

Dest reg

Source 1

Source 2

DSP flags

SUBSTITUTE SHEET (RULE 26)

FIG. 10

Instruction encoding

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2009/000693

. GLASSIFICATION OF SUBJECT MATTER
06F9/38

A
INV.

According to International Patent Classification {IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation o the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

X WO 2006/094196 A. (QUALCOMM INC [US]; 1-18

[0051]

COLLOPY THOMAS K [US]; SARTORIUS THOMAS
ANDREW [US]) 8 September 2006 (2006-09-08)
paragraphs [0009], [0010]; figure 1
paragraphs [0023] - [0028]
paragraphs [0030], [0031]
paragraphs [0035], [0045], [0047],
paragraphs [0058] ~ [0061]; figure 3

Y-

Further documents are listed in the conlinuaticn of Box G.

See patent family annex.

* Special categories of cited documents :

A" document defining the general stale of the art which is not
considered to be of particular relevance

‘E' earlier document but published on or aiter the international
filing date

'L document which may throw doubts on priority claim(s) or
which is cited 1o establish the publication date of another
citation or other special reason (as specified)

*0" document referring to an oral disclosure, use, exhibition or
other means

'P* document published prior to the international filing date but
later than the priority date claimed

"T* later document published after the international filing date
or priority date and nol in conflict with the application but
cited to understand the principle or theory underlying the
Invention

"X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-~
Im%{lﬂs, ﬁuch combination being obvious to a person skilled
n the art.

"&" document member of the same patent family

Date of the actual completion of the international search

5 June 2009

Date of malfing of the intermational search report

25/06/2009

Name and mailing address of the ISA/ ’
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

- Daskalakis, T

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2009/000693

C(Continuation), DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of docurnent, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A DOLLE M ET AL: ™A COST-EFFECTIVE RISC/DSP
MICROPROCESSOR FOR EMBEDDED SYSTEMS"

IEEE MICRO, IEEE SERVICE CENTER, LOS
ALAMITOS, CA, US,

vol. 15, no. b,

1 October 1995 (1995-10-01), pages 32-40,
XP000527880

ISSN: 0272-1732

the whoie document

A P. M. KOGGE: "The Architecture of
Pipelined Computers"

1981, MCGRAW-HILL , N. YORK , XP002530945
Chapter 3: "Timing, Control, and
Performance"

A WO 97/38372 A (VIDEOLOGIC LTD [GBD)

16 October 1997 (1997-10-16)

cited in the application

1-18

8,16

Fomn PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent tamily me'mbers

International application No

PCT/GB2009/000693
Patent document Publication Patent family Puhblication
cited in search report date member(s) date
WO 2006094196 A 08-09-2006 CN 101160562 A 09-04-2008
EP 1853996 A2 14-11-2007
KR 20070108332 A 13-11-2007
Us 2006200651 Al 07-09-2006
WO 9738372 A 16-10-1997 DE 69709078 -D1 24-01-2002
DE 69709078 T2 31-10-2002
EP 0891588 Al 20-01-1999
ES 2171919 T3 16-09-2002
GB 2311882 A 08-10~1997
JP 3559046 B2 25-08-2004
dP 2000509528 T 25-07-2000
us 5968167 A 19-10-1999

Form PCT/ISA/210 (patart family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - wo-search-report
	Page 24 - wo-search-report
	Page 25 - wo-search-report

