(54) 发明名称

一种基于混杂约束满足的水下传感器网络节
点自定位方法

(57) 摘要

本发明公开了一种基于混杂约束满足的水下
传感器网络的节点自定位方法，属于水下无线传
感器网络定位技术领域，包括以下步骤：步骤一，初
始化定位系统，构建节点定位群；步骤二，提取和
整理影响定位性能的约束关系；步骤三，构建混
杂约束满足问题数学模型；步骤四，约束满足问
题求解及节点位置求精。本发明通过获取和整理
定位群内的信标节点位置坐标准确度约束、参考
节点信任度约束、参考信息交互可靠性约束、几何
空间约束等步骤的性约束关系，将多约束影响下
的定位求解问题转化为混杂约束满足问题，继
而得到一个能满足安全性、可靠性与定位精
度等不同性质要求的待定位节点位置可行解，并
最终求得节点坐标的最优估计，有效降低了异
性多约束条件对节点自定位过程的耦合影响，提高
了自定位过程的安全性、可靠性和位置坐标估计
g的准确性。
1. 一种基于混合约束满足的水下传感器网络节点自定位方法，其特征在于：通过以下步骤来实现：

步骤一、初始化定位系统，构建节点定位群；

系统初始化阶段，所有节点与相邻节点进行定位信息的交互，并在多跳阈值范围内进行转发；初始化完成后，待定位节点根据多跳阈值范围内的全部信标节点及构建通信链路的中间节点纳入定位群，并判断是否满足基本定位条件；若条件满足，则转步骤二；否则，等待下一阶段周期重新构建定位群；

步骤二、提取和整定影响定位性能的约束关系；

分布式提取节点定位群内的多种异质约束关系，并对每种约束的可容范围进行区间化整定，具体包括信标节点位置坐标误差约束、二级参考节点坐标误差约束、参考节点信任度约束、参考节点交互可靠性约束、几何空间约束；

步骤三、构建混杂约束满足问题数学模型；

面向节点自定位的混杂约束满足问题由一系列变量、变量相应的值域以及变量之间不同性质的约束关系组成，用四元组 \((A, V, D, C)\) 来表示，其中：

- \(A\) 是定位群中所有节点的集合，\(A = \{A_1, \ldots, A_n\}\)；
- \(V\) 是定位群中所有变量的集合，\(V = \{v_1, \ldots, v_n\}\)。

具体包括节点的坐标、节点间的测量距离、测距噪声、通信链路长度、信标节点的位置坐标误差等；每个节点有一个或多个变量，每个变量 \(v_j\) 属于一个节点 \(A_i\) 表示为 \(\text{belongs}(v_j, A_i)\)；

- \(D\) 是所有变量的值域的集合，\(D = \{D_1, \ldots, D_n\}\)，其中 \(D_i\) 是变量 \(v_i\) 的所有可能取值的有限域；
- \(C\) 是变量之间的约束关系的集合，\(C = \{C_1, \ldots, C_m\}\)，其中每个约束包含一个 \(V\) 的子集 \(v_i, \ldots, v_j\) 和一个约束关系 \(R \in D_1 \times \cdots \times D_n\)；当 \(A_i\) 知道约束关系 \(C_k\) 时表示为 \(\text{known}(C_k, A_i)\)；

变量间的约束关系分布在信标节点间或传感器节点间，分布在节点间的约束称为局部约束（如信标节点位置坐标的准确度约束等），节点间的约束称为全局约束（如参考节点信任度约束、参考节点交互可靠性约束、几何空间约束等），局部约束可通过节点计算来处理，全局约束不仅需要节点的计算，还需要通过节点间的交互来完成；

步骤四、约束满足问题求解及定位点求精；

在信标节点满足位置坐标准确度约束、参考节点满足信任度约束、参考信息交互满足可靠性约束的情况下，对待定位节点位置坐标进行赋值，如果能满足由参考节点位置坐标及测量距离所构建的可行集几何空间约束，则可视为找到了约束满足问题的一个解；求解面向节点自定位的混杂约束满足问题的具体步骤为：采用异步回溯法寻找一个变量赋值，使得：\(\forall A_i \forall v_j\) 存在关系 \(\text{belongs}(v_j, A_i)\)，且当变量 \(v_j\) 的赋值是 \(d_j \in D_j\) 时，\(\forall C_k \forall A_i \text{known}(C_k, A_i)\) 都有 \(C_k\) 被满足；

对求得的节点坐标进行精度评估，如能达到预设精度阈值，则定位结束；如未达到，则以通讯半径的千分之一为步长继续赋值，直到满足精度要求。

2. 根据权利要求 1 所述一种基于混合约束满足的水下传感器网络节点自定位方法，其特征在于：

所述步骤一中的节点间定位信息交互包含了信标节点信息发布、普通节点信息转发以及节点进行直接测距等过程；多跳阈值通常情况不小于 5；基本定位条件是指三维部署情况下信标节点总数不少于 4、二维部署情况下不少于 3。
3. 根据权利要求1所述一种基于混杂约束满足的水下传感器网络节点自定位方法，其特征在于：

所述步骤二中的信标节点及二级参考节点坐标准确度约束是指节点坐标偏差实际坐标的程度；参考节点信任度约束是指节点在非安全定位环境中的可信程度；参考信息交互可靠性约束是指节点间进行信息交互的通讯链路的可靠程度；几何空间约束是指测量噪声影响下参考节点位置坐标与测量距离所构成的可能包含待定位节点的几何空间；根据实际应用需求，约束关系的种类可进一步扩展，本发明方法仍能适用。
说明 书

一种基于混杂约束满足的水下传感器网络节点自定位方法

技术领域
[0001] 本发明涉及水下无线传感器网络定位技术领域，尤其是用于海洋环境中异性多约束条件耦合作用影响下的水下传感器网络节点自定位，具体为一种基于混杂约束满足的水下传感器网络节点自定位方法。

背景技术
[0002] 水下无线传感器网络（Underwater Wireless Sensor Networks）是海洋信息感知、采集及应用领域的一场革命，在国家安全及国民经济等多方面的现实需求毋庸置疑，在维护海洋权益斗争日益艰巨，争夺海洋空间日趋激烈今天，水下传感器网络的规模化、实用化快速发展，对于维护我国海洋权益、发展海洋经济、建设海洋强国具有重要的现实意义。但目前水下传感器网络在系统安全性、稳定性、感知信息的有效性等方面，还有不少关键理论问题需要解决。

[0003] 大规模随机部署于海洋环境中执行信息感知、采集、处理和传输等任务（如海战场态势感知、海洋环境监测，下水目标定位跟踪等）是水下传感器网络的典型应用。作为关键支撑技术，节点自定位是水下传感器网络应用的前提，因为被感知的信息需要有节点的位置信息相伴随。节点位置信息的准确性、可靠性和可用性会直接影响感知信息的有效性。在自定位过程中，节点自定位的准确程度是依赖相应的参考信息，如参考节点的坐标、定位节点到参考节点的距离等。理想情况下，通过假设定位环境安全，信标节点位置和估计距离等参考信息准确。但在实际应用中，节点往往被随机部署在复杂海洋环境中，自定位过程不可能避免地会同时受到信标节点位置误差、未看出多源噪声干扰、潜在的恶意攻击、通信链路不稳等因素影响，外部环境、网络状况、节点状态甚至参考信息均呈现出较强的动态不确定性，导致节点自定位错误。定位精度或可信度达不到要求，甚至是无法完成自定位。因此在定位过程中不仅需要准确辨识各种非理想网路特征参数，选择链路质量相对更佳的多跳传输路径，还需要对参考节点进行信任评估，排除恶意节点或者剔除信标节点的野值信息，并找到含有节点位置坐标的几何约束空间。但大多数学者在研究过程中往往只针对其中一种或几种情况进行处理，而将其他方面均假定为理想状态，这种处理方式显然是不严谨的。鉴于现有理论与方法尚不能很好满足水下传感器网络节点自定位方面的实际需求，有必要结合实际情况，研究探索在复杂海洋环境中受多重因素耦合作用下的水下传感器网络节点自定位方法，寻找一套能够把这些不同性质的约束条件在定位过程中价值化的方法，以便将上述情况综合考虑进定位过程实现全局约束最优化。

[0004] 约束满足问题（Constraint Satisfaction Problems, CSPs）为我们提供了这样一个可能性。约束满足问题是由一系列变量、变量相应的值域以及变量之间的约束关系组成的。当约束关系的性质各不相同时，被称为混杂约束满足问题。每个约束关系都定义在变量集合的一个子集上，规定了子集中的变量可能的取值组合。目标是为这些变量找到一组或多组满足所有约束关系的赋值。约束满足问题的表达方式更加接近于问题的原始描述，约束满足问题中的变量可以直接对应于问题项，约束的表达也可以避免使用线性不等式
说明书

发明内容

本发明的目的是提供一种基于混杂约束满足的水下传感器网络节点自定位方法，解决复杂海洋环境中异性的约束条件耦合作用影响下的水下传感器网络节点自定位问题；通过提取和整定定位群体的信标节点位置坐标精度约束、参考节点信任度约束、参考信息交互可靠度约束、几何空间约束等多种不同性质的约束条件，将多重因素影响下的定位求解问题转化为混杂约束满足问题，继而确定一个能同时满足安全性能、可靠性和定位精度等不同性质要求的待定点节点位置可寻性，并最终得到节点坐标的最优估计，从而降低异性的约束条件对节点自定位过程的耦合作用，提高自定位过程的安全性能、可靠性和位置坐标估计的准确性。

本发明提出一种基于混杂约束满足的水下传感器网络节点自定位方法，具体包括以下步骤：

步骤一、初始化定位系统，构建节点定位群；

步骤二、提取和整定影响定位性能的约束关系；

步骤三、构建混杂约束满足问题数学模型；

面向节点自定位的混杂约束满足问题由一系列变量、变量相应的值域以及变量之间多种不同性质的约束关系组成，用四元组 (A, V, D, C) 来表示，其中：

A 是定位群中所有节点的集合 A = {A_1, ⋯, A_n}；

V 是定位群中所有变量的集合 V = {v_1, ⋯, v_n}，具体包括节点的坐标、节点间的测量距离、测距噪声、多跳密度、跳数、信标节点的位置坐标误差等；

D 是所有变量的值域的集合 D = {D_1, ⋯, D_n}，其中 D_i 是变量 v_i 的所有可能取值的有限域；

C 是变量之间的约束关系的集合 C = {C_1, ⋯, C_p}，其中每个约束包含一个 V 的子集 v_i, ⋯, v_j 和一个约束关系 R E D_i X ⋯ X D_j；

每个节点有一个或多个变量，变量 v_j 属于节点 A_i 表示为 belongs(v_j, A_i)；当 A_i 知道约束关系 C_i 时表示为 known(C_i, A_i)；

变量间的约束关系分布在传感器节点内或传感器节点之间，分布在节点内的约束
称为局部约束（如信标节点位置坐标的准确度约束等），节点间的约束称为全局约束（如参考节点信任度约束、参考信息交互可靠性约束、几何空间约束等），局部约束可通过节点计算来处理，全局约束不仅需要节点的计算，还需要通过节点间的信息交互来完成；

步骤四、约束满足问题求解及节点位置求精；

步骤五、在信标节点位置坐标的准确度约束、参考节点满足信任度约束、参考信息交互可靠性约束及测量距离所构建的可行集情况下，对定位节点位置坐标进行赋值，如果能满足由参考节点位置坐标及测量距离所构建的可行集几何空间约束，则可视为找到了约束满足问题的一个解；

求解向节点求解的混杂约束求解问题的具体步骤为：采用异步回溯法寻找一个变量赋值，使得 $\forall A_i \forall v_j$ 存在关系 $\text{belongs}(v_j, A_i)$，且当变量 v_j 的赋值是 $d_j \in D_j$ 时，$\forall C_k, \forall A_i$, known (C_k, A_i) 都有 C_k 被满足；

对求得的节点坐标进行精度评估，如能达到预设精度阈值，则定位结束；如未达到，则以通讯半径的千分之一为步长继续赋值，直到满足精度要求。

本发明的优点在于：

（1）本发明所提方法能更加系统性地将参考节点可信度、多跳信息交互的可靠性以及参考节点的位置精度等信息用于定位过程，并把多种不同性质的参考信息约束条件真正价值化；

（2）本发明方法将多重因素影响下的定位求解问题转化为混杂约束满足问题，降低了多样性约束条件对节点自定位过程的耦合影响，提高了自定位过程的安全性、可靠性和位置坐标估计的准确性。

附图说明

图 1 为本发明提出的一种基于混杂约束满足的下水传感器网络节点自定位方法实施步骤流程图；

图 2 为本发明中下水传感器网络三维部署示意图；

图 3 为本发明提出的新方法与传统方法在不同网络连通度下的平均定位误差对比图。

具体实施方式

下面结合附图对本发明作进一步的详细说明。本发明是一种基于混杂约束满足的下水传感器网络节点自定位方法，实施步骤如图 1 所示，具体通过以下步骤来实现：

步骤一、初始化定位系统，构建节点定位群；

（1）系统初始化阶段，所有信标节点广播一组“定位包”，包含信标节点自身 ID、坐标、位置坐标的准确度、参考级别标示符等信息；所有节点广播一组“测距包”，通过信息交互获取自身通讯范围内所有邻居节点的 ID，相邻距离等信息；

（2）待定位节点 N，统计自身邻居节点中的信标节点数 m_a，若 m_a 达到坐标估算的最低数量，即 $m_a > 4$，则待定位节点将所有邻居信标节点纳入定位群；若一跳范围内的 $m_a < 4$，则依次搜寻 2 跳至多跳阈值 ζ 范围内的信标节点，直至 $m_a \geq 4$ 时，将所有信标节点及参与信息转发的普通中间节点纳入定位群；否则，将该节点标定为不满足定位条件节点，并等待下一定位周期以重新构建节点定位群；所述多跳阈值 ζ 通常情况不大于 5；
(3) 对于未满足定位置条件节点，随着定位过程的进行，如果其多跳阀值 ς 范围内的普通节点获取了位置坐标且精度高于前设精度阀值 λ，则将此已定位节点标定为二级参考节点。并统计二级参考节点数 n_s；如 $n_s > m$，则将 ς 跳数范围内的所有信标节点、二级参考节点及通讯链路上的普通节点纳入定位置。

步骤二：提取和整定定位置时影响定位置性能的约束关系；

[0036] 分布式提取定位置时的多种约束关系，并对各种约束的可容范围进行区间化整定，具体包括信标节点位置坐标精度约束、二级参考节点位置坐标精度约束、参考节点信任度约束、参考信息交互可靠性约束、空间约束等，具体可通过如下步骤来实现：

[0037] （1）信标节点位置坐标精度约束

[0038] 为了反映信标节点位置坐标误差对测距的影响程度，定义 η 为信标节点坐标的准确程度，通过如下公式求得：

$$
\eta = 1 - \frac{1}{R} \sum_{i=1}^{R} \left(\frac{1}{n_s} \sum_{k=1}^{n_s} d_{ik}^{\text{err}} \right)^2
$$

（1）

[0040] 其中，R 为节点的通讯半径；以不同时刻信标节点位置间的距离为原始样本进行小样本重抽样，B 为重抽样次数，通常情况下取 200，d_{ik}^{err} 为第 b 次重抽样样本。所得 η 越大，说明信标节点的偏差坐标与实际坐标之间越相近，由信标节点位置误差带来的影响就越小。一般 η 在 0.95 以上时可认为偏差坐标可信，因此整定信标节点位置坐标的准确度约束的可容范围为 [0.95, 1]。

[0041] （2）二级参考节点准确度约束

[0042] 假定待定位节点 N_i 的估计坐标为 $X_i = [x_i, y_i, z_i]^T$，参与其定位过程的 k 个信标节点坐标为 $X_k = [x_k, y_k, z_k]^T$。节点 N_i 坐标估计的可信度 η_i 的计算公式为：

$$
\eta_i = 1 - \frac{\delta}{\sum_{i=1}^{k} \sqrt{\left(x_i - x_k \right)^2 + \left(y_i - y_k \right)^2 + \left(z_i - z_k \right)^2}}
$$

（2）

$$
\delta = \sqrt{\sum_{i=1}^{k} \left(x_i - x_k \right)^2 + \left(y_i - y_k \right)^2 + \left(z_i - z_k \right)^2} - d_{ik}^{\text{err}}
$$

（3）

[0045] 其中 d_{ik}^{err} 为节点 N_i 和节点 N_k 间的测量值。

[0046] 设定坐标估计可信度阈值 λ 为 0.95，如果 $\eta_i > \lambda$，即说明待定位节点 N_i 的估计坐标满足系统对于坐标估计精度的要求，N_i 在完成定位后可将自己升级为二级参考节点。

[0047] 考虑到随着定位过程的进行，部分待定位节点在进行坐标估计时可能会有二级参考节点参与，此时信任度的计算需要将二级参考节点的信任度综合考虑在内，因此当待定位节点 N_i 判断定位置时有二级参考节点参与定位时，可信度计算按如下公式进行：

$$
\eta_i^\text{m} = \frac{1}{k} \sum_{k=1}^{k} \eta_k \times \left(1 - \sqrt{\sum_{i=1}^{k} \frac{\delta}{\left(x_i - x_k \right)^2 + \left(y_i - y_k \right)^2 + \left(z_i - z_k \right)^2}} \right)
$$

（4）

[0049] 其中 η_k 为定位节点内参与定位的 k 个二级参考节点的定位精度。可信度计算一方
面考虑了参考节点的坐标估计可信程度，另一方面还充分考虑了距离估计误差，这符合节点定位精度同时受参考节点和距离测量两方面因素影响的实际情况。二级参考节点的确定约束的可容范围整定为 [0, 0.95, 1]。

（3）参考节点信任度约束

对参考节点进行基于一致性的信任评估，以整定其信任度约束可容范围。假定每个待定位节点都能够检测到其被一个具有信任属性的节点并且存储其信任值。初始化阶段设定所有候选节点的信任值为 0。假设待定位节点 M 的通讯范围内有 n 个信标节点且其中有 m 个恶意信标节点，则有（n - m）个正常信标节点。d_{ij}′（包含测距误差在内）表示信标 N_i 和信标 N_j 之间的距离。这两个信标的欧式距离 d_{ij}′ = \| X_i - X_j \|_2，X_i 为信标 N_i 的坐标，X_j 为信标 N_j 的坐标。若信标 N_i 和信标 N_j 互为对方的通讯范围内，则 d_{ij} 和 d_{ij}′ 应满足 |d_{ij} - d_{ij}′| < \varepsilon_{max}；若信标 N_i 不在信标 N_j 的通讯范围内，则 d_{ij}′ 应满足 0 < d_{ij}′ < 2R。除非恶意信标节点之间的距离可以满足检测公式，否则这些恶意节点所在范组的信任值仍然为 0。但是恶意信标节点对单节点很难实现距离的一致性，因此该机制在恶意信标节点数占总信标节点数的 1/3 个数情况下仍能有效的检测出恶意信标节点。由于共有 (n - m) 个正常信标节点，每个正常信标节点可获得的信任值不超过 n - m - 1，因此设定阈值 τ = n - m - 1。当信标节点的信任值小于设定阈值时，则该节点被判定为正常信标节点，反之，该节点被判定为恶意信标节点。由此，整定参考节点的信任度约束的可容范围为 [τ, n+m]。

（4）参考信息交互可靠性约束

通过链路稳定因子 LLF 和链路代价因子 LCF 这两个评估因子对参考信息交互可靠性进行评价，LLF_{ij;i}。用来表示描述一个离散时间槽 S 内，节点 N_i 与节点 N_j 之间链路连通的可能性，其取值范围为 0 到 1 之间，LCF_{ij;i}。用来描述一个离散时间槽 S 内，节点 N_i 将消息路由转发至节点 N_j 所需的通信代价，其取值范围在 0 到 C_{max} 之间；两个链路质量评估因子的计算公式为：

\[LLF_{i,j;k} = \frac{\int_{t_{i,j;}^{k+1}}^{t_{i,j;}^{k}} LLF_{i,j;i} dt}{\lambda} \] (5)

\[LCF_{i,j;k} = \frac{\int_{t_{i,j;}^{k+1}}^{t_{i,j;}^{k}} LCF_{i,j;i} dt}{\lambda} \] (6)

（5）几何空间约束

假设群内有 k 个参考节点，参考节点 N_i 的坐标 X_i = [x_i, y_i, z_i] 与 N_i 的测量距离 d_i′ 以及测距噪声的误差 ε_{ia} 可构成一个包含待定位节点 N_a 坐标 X_a 的集合 S_{ia} (x)：

\[S_{ia} (x) = \{d_i′ - \varepsilon_{ia} \leq \| X_i - X_a \|_2 \leq d_i′ + \varepsilon_{ia}\} \] (7)

集合 S_{ia} (x) 的几何形状为一环形空间，中心是参考节点 N_i 的坐标，内径 r_{ia} 为 d_i′ - \varepsilon_{ia}，外径 R_{ia} 为 d_i′ + \varepsilon_{ia}。考虑到群内参考节点与待定位节点之间可能为多跳通讯关系，S_{ia} (x) 的下界也就是内径 r_{ia} 可设为通信半径 R_i。相应的：

\[S_{ia} (x) = \{R \leq \| X_i - X_a \|_2 \leq d_i′ + \varepsilon_{ia}\} \] (8)

综合考虑多跳测距情况，待定位节点与定位群的所有参考节点构成的几何空间约
束为：
\[
S_a(x) = \bigcap_{i=1}^I \left\{ x \in \mathbb{R}^3 : \min \left\{ d_{ia} - \varepsilon_{ia}, \frac{c}{d_{ia}} \right\} \leq \| X_i - X_a \|_2 \leq d_{ia} + \varepsilon_{ia} \right\}
\]

[0063] 步骤三，构建混杂约束满足问题数学模型；
[0064] 面向对象的混杂约束满足问题由一系列变量、变量相应的值域以及变量之间多种不同性质的约束关系组成，用四元组 \((A, V, D, C)\) 来表示，其中：
[0065] \(A\) 是传感网定位群中所有节点的集合 \(A = \{A_1, \ldots, A_n\}\)；
[0066] \(V\) 是变量的集合 \(V = \{v_1, \ldots, v_n\}\)，包括节点的坐标、节点间的测量距离、测距噪声、多跳密度、跳数、信标节点的位置偏差等；
[0067] 每个传感器节点有或多个变量，每个变量 \(v_j\) 属于一个 \(A_i\) 表示为 \(\text{belongs}(v_j, A_i)\)；
[0068] \(D\) 是所有变量的值域的集合，\(D = \{D_1, \ldots, D_n\}\)，\(D_i\) 是变量 \(v_i\) 的所有可能取值的有限域；
[0069] \(C\) 是变量之间的约束关系的集合 \(C = \{C_1, \ldots, C_n\}\)，其中每个约束包含一个 \(V\) 的子集 \(v_i, \ldots, v_j\) 和一个约束关系 \(R \in D_i \times \cdots \times D_j\)；
[0070] 变量间的约束关系分布于传感器节点内或传感器节点之间，当 \(A_i\) 知道约束关系 \(C_k\)；
[0071] 分布在节点内的约束为局部约束（如信标节点位置坐标的准确度约束），节点间的约束为全局约束（如可行集几何空间约束等），局部约束可通过节点计算来处理，全局约束不仅需要节点的计算，还需要通过节点间的信息交互来完成；
[0072] 步骤四，约束满足问题求解及节点位置求精；
[0073] 在信标节点满足位置坐标准确度约束、参考节点满足信任度约束、参考信息交互满足可靠性约束的情况下，对待定定位节点位置坐标的进行赋值，如果能满足由参考节点位置坐标及测量距离所构建的可行集几何空间约束，则可视作找到了约束满足问题的一个解；
[0074] 求解面向节点自定位的混杂约束满足问题的具体步骤为：采用变步回溯法寻找一个变量赋值，使得：\(\forall A_i \forall v_j\) 存在关系 \(\text{belongs}(v_j, A_i)\)，且当变量 \(v_j\) 的赋值是 \(d_i \in D_j\) 时，
[0075] 对求得的节点坐标进行精度评估，如能达到预设精度阈值，则定位结束；如未达到，则以通讯半径的千分之一为步长继续赋值，直到满足精度要求。
[0076] 实施例
[0077] 如图 2 所示，在 3000m×3000m×300m 的三维空间区域内随机部署 100 个传感器节点，其中各传感器节点比例为 10%，用五角星表示，传感器节点 ID 为 1～10；待定位节点用实心圆点表示，其 ID 为 11～100。节点间的虚线代表两个节点可以进行直接通讯、节点的通讯半径可调、虚线的长度表示两个节点间的欧氏距离。定位时采取信标节点位置坐标准确度约束时，信标节点重复测距的最大允许次数 \(n\) 为 5，重抽样次数 \(B\) 为 200。测量噪声服从瑞利分布的非高斯噪声，其标准差为实际距离的 2%。在上述网络环境下，通过调整通信半径将网络连通度从 4 依次递增到 13，并分别使用本发明所提出的新方法和传统多跳定位算法进行节点自定位，得到不同网络连通度下传感网的平均定位误差变化情况如图 3 所示。
方法的平均定位误差。随着网络连通度的增加，平均定位误差先变大然后迅速变小，两种算法的变化趋势基本相同，但传统算法的定位误差要高于本发明提出的定位方法。出现先变大后变小的情况是因在网络连通度为4的时候只有少数节点可以定位，随着连通度增加，部分多跳节点参与到定位中来，可以完成定位的节点数增多，但由于此时的多跳估算误差较大，导致平均定位误差有小幅度上扬。随着网络连通度增大，多跳距离估算误差变小，平均定位误差会逐渐下降。本发明的平均定位误差比传统算法低大约50%以上，这说明对定位过程中的多重影响因素的抑制能力要比传统方法效果好。
图 1

图 2
图 3