

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2013-106961

(P2013-106961A)

(43) 公開日 平成25年6月6日(2013.6.6)

(51) Int.Cl.

A 61 F 5/02 (2006.01)

F 1

A 61 F 5/02

N

テーマコード(参考)

4 C 0 9 8

審査請求 未請求 請求項の数 8 O L 外国語出願 (全 35 頁)

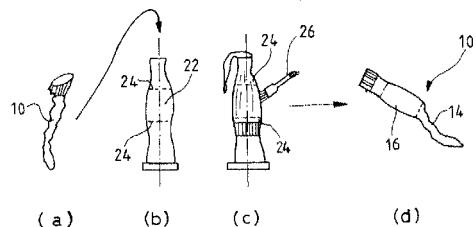
(21) 出願番号 特願2012-256226 (P2012-256226)
 (22) 出願日 平成24年11月22日 (2012.11.22)
 (31) 優先権主張番号 1160643
 (32) 優先日 平成23年11月22日 (2011.11.22)
 (33) 優先権主張国 フランス (FR)

(71) 出願人 500409976
 イノテラ トピック インターナショナル
 (ソシエテ アノニム)
 フランス 94110 アルケイユ, ア
 ヴェニュー アリストイド ブリアン
 22
 (74) 代理人 100094112
 弁理士 岡部 謙
 (74) 代理人 100101498
 弁理士 越智 隆夫
 (74) 代理人 100107401
 弁理士 高橋 誠一郎
 (74) 代理人 100120064
 弁理士 松井 幸夫

最終頁に続く

(54) 【発明の名称】脛脛の筋腱膜ポンプを強化する、圧迫／副木当て用の適合された装具

(57) 【要約】


【課題】

患者の形態に完全に適合するあつらえの副木装具であつて、従来の時間のかかる高価な「あつらえ」の技法を用いて作製することは必要としない副木装具を提供する。

【解決手段】

装具10が、脛脛のうちアキレス腱が脛脛筋肉とつながる地点の高さ位置と脛骨粗面の下に位置する高さ位置との間に含まれる領域を包む隣接する剛性の副木近位部分16と関連付けられる、足首から上方に延びる弹性圧迫遠位部分14を含む。この剛性の副木近位部分16は、装具を患者の脛脛の形態を表す型に被せ、装具の、副木近位部分の領域に、硬化可能な生体適合性樹脂をその場で塗布し、樹脂を、装具を型上に維持した状態で硬化させ、かつ装具をその完成した状態で取り外すことによって作製される、本質的に非弹性の変形可能な筒状部分である。

【選択図】図3

【特許請求の範囲】

【請求項 1】

ソックス、スタッキング又はタイツの形態である、医療用の下肢圧迫／副木当て用装具であって、該装具(10)は、

足首を覆い、脛が始まる手前、すなわちアキレス腱が脛筋肉とつながる地点まで延びるように構成されている弹性圧迫遠位部分(14)であって、

該遠位部分は、編み糸とよこ糸とを編むことによって作製され、該編み糸及び該よこ糸の寸法決め及び性質、並びに編物の構造は、該装具を下肢に履くと、所望の治疗的レベルの圧力で下肢の圧迫をもたらすのに適した弹性復元力を周方向に加えるように選択される、弹性圧迫遠位部分(14)と、

前記圧迫遠位部分に続くとともに該圧迫遠位部分に隣接して、アキレス腱が脛筋肉とつながる地点の高さ位置(B1)と脛骨粗面の下に位置する高さ位置(D)との間に含まれる脛の領域をその外周にわたって包む副木近位部分(16)であって、

該副木近位部分は、前記弹性圧迫遠位部分と連続的に編まれる变形可能な筒状部分である、副木近位部分(16)と、

を含み、

該装具は、前記副木近位部分が、

本質的に非弹性であり、且つ

硬化生体適合性樹脂を組み込んでいることを特徴とする装具。

【請求項 2】

前記生体適合性樹脂は、蒸発によって硬化可能な一液型アクリル樹脂である請求項1に記載の装具。

【請求項 3】

前記編み糸及び／又は前記よこ糸は、ポリアミド及び／又は綿で被覆されたスパンデックス糸である請求項1に記載の装具。

【請求項 4】

前記副木近位部分は、脛の最大外周の高さ位置で $15 \pm 2 \text{ mmHg/cm}$ (約 $20 \pm 2 \text{ MPa/cm}$)の高い剛性を有する部分である請求項1に記載の装具。

【請求項 5】

前記副木近位部分は、脛の最大外周の高さ位置で $5 \pm 2 \text{ mmHg/cm}$ (約 $7 \pm 2 \text{ MPa/cm}$)の中程度の剛性を有する部分である請求項1に記載の装具。

【請求項 6】

前記弹性圧迫遠位部分は、足首の最小外周の高さ位置で $10 \text{ mmHg} \sim 20 \text{ mmHg}$ ($13 \text{ hPa} \sim 27 \text{ hPa}$)の圧力を加えるように構成されている低圧迫部分である請求項1に記載の装具。

【請求項 7】

前記弹性圧迫遠位部分は、足首の最小外周の高さ位置で $20 \text{ mmHg} \sim 30 \text{ mmHg}$ ($27 \text{ hPa} \sim 40 \text{ hPa}$)の圧力を加えるように構成されている中程度の圧迫部分である請求項1に記載の装具。

【請求項 8】

医療用の下肢圧迫／副木当て用装具を患者の脚の寸法に合わせて仕立てる方法であって、

請求項1～7のいずれか1項に記載の装具(10)を、生体適合性樹脂を有しない、未加工の初期状態で得る工程と、

前記装具を、前記患者の脛の形態を表す型に被せる工程と、

前記装具の、前記副木近位部分の領域に、硬化可能な生体適合性樹脂をその場で塗布する工程と、

前記装具を前記型上に維持した状態で前記樹脂を硬化させる工程と、

前記装具をその完成した状態で取り外す工程であって、前記装具は、その完成した状態では、前記樹脂の硬化後に剛性にされるとともに前記患者の脛の対応する寸法を保つ、

副木近位部分（16）を有し、これによって該副木近位部分が脹脛の形状に完全に適合することが可能となる、取り外す工程と、
を含む方法。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、下肢の静脈不全の様々な臨床症状に適応のある弾性静脈圧迫（EVC）装具に関する。

【背景技術】

【0002】

以前から「弾性ストッキング（若しくはソックス）」又は「弾性タイツ」として知られている装具は、治療目的を有する医療装置ではない「持続ストッキング」（同様に「サポートストッキング」又は「疲労防止ストッキング」）及び「ファッショントッキング」とは対照的に、下肢の圧迫によって治療効果をもたらす医療用織物装置である。

【0003】

EVC装具は、通常は足首から始まって上方に遞減する輪郭により、程度の多少の差はあるが下肢を圧迫することによって治療効果をもたらすように設計されている。装具の種類に応じて、足首において測定される圧力は、10 mmHg ~ 36 mmHg超（すなわち13 hPa ~ 48 hPa）であるが、静脈学及び医療用圧迫の分野ではmmHg単位が圧力測定単位として一般的に用いられている）で様々なものとすることができます。ストッキングは、フランスでは、ASQUAL系の4つの織物クラス、すなわちクラスI（足首において13 hPa ~ 20 hPa 10 mmHg ~ 15 mmHg）、クラスII（20 hPa ~ 27 hPa 15 mmHg ~ 20 mmHg）、クラスIII（27 hPa ~ 48 hPa 20 mmHg ~ 36 mmHg）及びクラスIV（48 hPa超 36 mmHg超）に分類されている。これらの圧迫クラスは他の国では異なる場合がある。

【0004】

下肢の高圧迫のために、そのような装具は、概して被覆されたスパンデックス糸である弾性よこ糸が組み込まれた、程度の差はあれ密な織り方のニット編物から作製される。

【0005】

より詳細には、装具の密な織物が、下肢に配置されていることの効果により、その材料を構成する弾性繊維の復元力に起因する圧迫を加え、輪郭の周囲に対してそのような弾性復元力を加えることにより、ラプラスの法則に従うと、輪郭の所与の地点の曲率半径に反比例する局所的な圧力がその地点に生じる。

【0006】

この圧力は、フランスの規格NFG 30-102のB部の意味において定義及び計算されるような「織物圧力」である。本明細書において以下、「圧力」という用語は、脚の輪郭に沿った所与の高さにおいて局所的に加えられる圧力の意味を指すために用いられる。

【0007】

編物及び糸、並びに編目の列の寸法決めは、下肢に沿った、太腿の上部までの、例えば足首の高さ、脹脛の始点、脹脛上、膝窩等の異なる高さ（そのような高さはB、C、…、Gと慣例に従って記される）において所定の圧力を印加するように選択される。これらの様々な圧力は、ドイツの体系RAL-GZ 387に従う「Hohenstein」型の脚モデルに対応するフランスの規格NFG 30-102のB部、付録Bの脚モデルのような度量衡テンプレート（metrological templates：測定テンプレート）を参照して各クラスに関して定義されているか、又は欧州暫定規格XP ENV 12718:2001において定義されているようなものである。

【0008】

圧力曲線の遞減性という上述の特徴は、足首において最大圧力を加え、次いで足首から脹脛又は太腿にかけて遞減する圧力を加えることにある。この特徴は、起立状況において

、静脈圧が足首から脛、次いで太腿にかけて遞減するという事実に基づいている。したがって、静脈直径を比例的に低減させるとともに鬱血防止効果を誘発するために、対応する、したがって遞減する逆圧を印加することは理にかなっている。

【0009】

歩行中のような動的な状況では、状況は生理学的に異なり、脛は、下肢静脈の血行力学の重要な要素である。

【0010】

「筋ポンプ」又は「脛筋腱膜ポンプ (calf musculo-aponeurotic pump)」(C M A P) の効果の重要性が特に静脈血流の戻りに関して記載されており、この場合、脛筋肉の収縮及び弛緩の生理的な循環が、静脈弁の開閉作用を介して、下肢の静脈網の血液排出及び血液供給をもたらし、この結果、足首の静脈圧が下がる。C M A P の効率は対象者の年齢とともに次第に低下し、これには、慢性静脈不全を自然に悪化させる残留する静脈の過剰圧力が伴う。

10

【0011】

したがって、慢性静脈不全はこの筋ポンプ作用の不良によって特徴付けられ、よって潰瘍のような栄養障害性の病気の発生において大きな一因となる。

【0012】

本発明の出発点は、C M A P 効率を高めることを可能にするか、又は更には、起立状況から生じる静脈圧の分析に基づくため、今までに提案されてきたであろう装具よりもこの役割によりよく適している、遞減する圧迫装具のおかげで、その手段に取って代わることを可能にする手段の調査である。

20

【0013】

しかし、特に、特許文献 1 (Laboratoires Innothera) に記載されているツールのような、圧迫をモデル化及びシミュレーションする最近のツールを用いての、静脈の生理学に関する研究は、C M A P を働かせることが可能であれば、E V C 装具の有効性が、むしろ C M A P の効率を改善することにあることを示している。

【0014】

特許文献 2 (Rodier) は、足及び足首の非常に弾性のある編物領域、次いで、脛の下部から膝窩までの僅かしか弾性のない編物領域、及び続いて膝から太腿の上部までの再び非常に弾性のある編物領域に関連する、様々な編物を含む複数区域ストッキングによって「選択的な圧迫 / 副木当て」を提供することにある手法を記載している。この基本的な着想は、より圧迫効果を有する区域（足、足首及び太腿）を、副木当て効果がより高い区域（脛）のいずれかの側に設けることにある。装具のこの後者の区域は、静止時には、足首を囲む区域よりも効果をもたらさない。しかし、装具のこの後者の区域は、脛筋肉の収縮時にはより大きな圧迫を加え、C M A P の力を増大するとともに C M A P の血液排出作用を強化する。

30

【0015】

これに関して、「圧迫」及び「副木当て」という用語は、普段の言葉の中では混同される場合があるが、明らかに異なる 2 つの効果を定義することを明記しなければならない。

40

「圧迫」は、弾性装具によって、静止時にも労作時にも、この装具の弾性纖維の幾分強い復元力の結果として肢節にもたらされる効果である。これらの力はほとんど一定して下肢に作用し、静止時には、圧迫は呼び圧力値で存在し、労作時には、この圧迫効果は筋肉塊の収縮によって僅かに増大する。

逆に、「副木当て」は、「低伸縮包帯」とも称される弾性のない（ただし変形可能な）、例えば非弾性包帯であると考えられる構造部の作用によって、（労作時 / 静止時に）異なるように肢節に作用する装具によってもたらされる効果である。このタイプの包帯は、静止時には低い圧力を加えるか又は更には圧力を加えず、他方で、筋肉収縮中には非弾性構造部と当接する脛の体積が局所的に増えることに逆らい、したがって圧力が大きく増大する。したがって、副木当ては効果的であり、労作時には能動的に機能するが静止時にはほとんど能動的に機能しない。

50

【0016】

この主題に関する科学文献では、装具は、下肢の、アキレス腱が脛筋肉とつながる場所に位置する地点の外周の1センチメートルの増大当たり少なくとも10mmHg(13hPa)の増大を生じる場合に、副木当て、すなわち「剛性」の装具であるとみなすことが通例である。「剛性」という用語は、本明細書では、欧州暫定規格XP ENV 12718:2001の定義、すなわち「1センチメートル当たりのヘクトパスカル及び/又は1センチメートル当たりの水銀柱ミリメートルで表される、脚の外周の1センチメートルの増大当たりの圧迫の増大」の意味において理解される。

【0017】

これらの2つの異なる観念を示すために、本明細書では以下、2つのそれぞれの用語「圧迫(又は「圧迫の」)」及び副木当て(又は「副木」)が用いられる。 10

【0018】

これらの定義に関して、上述の特許文献2の、装具の高さにわたって程度の差はあるが弾性である糸及び編目のみを実装するという提案は、脛に於いて非常に部分的な副木当て効果しかもたらさない。

【0019】

全てが弾性的であるが異なる弾性を有する区域からなる他の装具が、特許文献3(Couzan)又は特許文献4(Stolk)によって提案されている。これらの2つの文献は、脛の領域において、それぞれ脛の全周にわたって均一に、又は脛の後方領域においてのみ低い剛性の(より弾性である)区域を有するストッキング又はソックスを作製することを教示している。したがって、非弾性構造を全く有しない記載の装具は、上記で説明した意味における、脛の体積が局所的に増大する場合に非弾性構造に対して脛が当接するという効果を有する「副木当て」効果を提供しない。 20

【0020】

同じことが、特許文献5において開示されている製品にも当てはまり、この製品は、「疲労防止」ソックス又はストッキングの選択された位置に加えられるとともに、着用者が感じる圧迫の感覚を高めることを意図する不連続的な要素を提供しており、したがって副木当ての目的又は機能は全く有しない。その上、これらの要素はいずれも脛の外周にわたって延びておらず、したがって、これらの要素はいずれも、労作時に脛の体積が増大することに対して非弾性的な障害物を形成することができないため、副木当てをもたらすことができない。 30

【0021】

加えて、技術的な観点から、これらの従来技術の「複数区域」構造部は全て、ストッキング又はソックスの異なる区域に対応する非常に不均一な生地の間に非常に急激な遷移がある、必要とされる可変弾性輪郭を得るよう編機を設定するときに存在する難しさを考えると、実際に作製するのが難しいことが分かっている。

【0022】

他方で、とりわけ、「準副木装具」と称することができる装具は、所与の患者に合わせて特に適合されるわけではない。具体的には、施術者は単に、足首及び脛の周囲を測定した後で寸法表から装具を選択する。実際には、このことは、患者毎に非常に大きく変わる可能性があり、かつ単に脛の最大外周を測定することでは適切に表すことができない脛の実際の形態を考慮に入れない、妥協した解決策につながる。 40

【0023】

この欠点は、(上記で定義した意味における)実際の副木当て効果を生むことを想定されている製品の枠組み内で特にひどくなるが、その理由は、CMA P効果の強化が、関係する肢節に対する、その全範囲にわたる非弾性構造部の正確な適合度に依存するためであり、非弾性構造部は、静止時に下肢と密接していない場合、筋肉の体積が少量又は中程度の量増大することに関する効果をほとんど生まず、逆に、その寸法が小さすぎる場合、非弾性構造部は、静止時であっても下肢に応力を加え、これは、装具の着用を患者にとって特に不快なものにする可能性のある圧迫感に加えて、血液循環に対して悪影響を伴う。 50

【0024】

したがって、各患者の肢節の正確な形態に適合する非弾性構造部（より低い弾性を有する構造部ではない）を介して脹脛に対して実際の副木当て効果を与える装具を作製することができる望ましいと思われる。

【0025】

しかし、その非弾性構造部は、例えば、外傷を負った手足の固定化のために副木を形成することを意図する、すなわちその副木当てが、本発明の副木当てと同じ性質のものではない、変形不可能な整形外科用副木装具である、特許文献6によって開示されている製品とは異なり、変形可能でなければならず、患者が自由自在に着脱しやすく、かつ所定の位置にくると装具によって包まれる下肢の動きを妨げない、ストッキング又はソックス等のアイテムによって実現可能でなければならない。

10

【0026】

患者に特に適合するあつらえの剛性副木製品を有することが望ましい場合、第1の解決策は、きつすぎ（脹脛を締め付ける）でも緩すぎ（何の効果もたらさない）でもなく適切に調整することが難しいことがよく知られている多層包帯を用いることにより、そのため、非常に「作業者依存的」な結果となる。本明細書において上記で説明したように、剛性の副木製品の調整は、はるかにより許容性のある圧迫弾性構造部とは異なり、非常に重要なものである。

【0027】

その上、包帯は、良好な調整のために、定期的に毎回同じ手入れによってやり直す必要がある。

20

【0028】

特許文献7（Mollard他）は、圧迫要素及び副木要素の重ね合わせを加えて有する、そのような技法を開示している。副木要素は、ロールとしてまとめられた、例えばポリエチレンの穿孔極薄フィルムの細長片である。このフィルムは、下肢を包むように下肢の回りで広げられ、次いで、副木ストッキングが圧迫効果を与えるようにこの包帯上に配置される。しかし、包帯を配置するのに必要な特定の技術に加えて、包帯は、一旦配置されると、その工程全体をやり直す以外に、調整し直すことができない。最後に、この製品は使い捨てであり、例えば検査を行うとき又は着衣を変えるときの装具の一時的な取り外しを可能としない。

30

【0029】

これらの理由から、患者は概して、より扱いやすくより見た目のよい、着脱容易な編物装具の形態の別の解決策を使用することを好む。

【0030】

その場合、問題は、患者の特定の形態に完全に適合するあつらえの剛性製品を作製することである。この技法は、幾つかの高さにおける測定によって脹脛を可能な限りより完全に測定することにある。この場合、装具は、横編機で編まれ、その全長に沿って作られる継目を通じて形作られるため、追加の作製工程を必要とする。そのような完全にあつらえの仕立て技法は、実施に時間がかかり、複雑であり、それゆえ高価であり、かつ剛性の副木製品がそれらの明らかな治療上の利点にもかかわらず広く普及することを可能としないことが理解されるであろう。

40

【先行技術文献】

【特許文献】

【0031】

【特許文献1】国際公開第2006/087442号パンフレット

【特許文献2】仏国特許発明第2824471号明細書

【特許文献3】欧州特許第0934043号明細書

【特許文献4】欧州特許出願公開第1240880号明細書

【特許文献5】国際公開第2006/134875号パンフレット

【特許文献6】欧州特許出願公開第1656916号明細書

50

【特許文献7】仏国特許発明第2912644号明細書

【特許文献8】欧州特許出願公開第2452658号明細書

【発明の概要】

【発明が解決しようとする課題】

【0032】

したがって、本発明の課題は、「あつらえ」の最終製品の形態であることが可能であり、したがって患者の形態に完全に適合するが、そうであっても、従来の時間のかかる高価な「あつらえ」の技法を用いて作製することは必要としない副木装具（剛性製品）を作製することが可能であることである。

【0033】

特に、本発明は、i) 丸編機（継目を縫うために追加の作製工程を必要とする横編機ではない）において実施することができ、ii) 標準的な製品を、したがって妥当なコストで大量に作製される可能性を伴って作製することが分かるであろう。

【0034】

また、このことは、

脹脛の適切な副木当てによるCMA Pの有利な効果を強化し、

作製が技術的に容易であり、かつ

関係する患者の母集団において直面する非常に多様な脚の形態に容易に適合することができる、新たなEVC装具構造体を用いてなされる。

【0035】

また、本発明により、脹脛の回りに本質的に剛性の要素、すなわち弾性変形可能ではない要素を配置することによって、脹脛に幾分強い圧迫はもはや加えないが、実際の副木当てを加える、下肢用のEVC装具を得ることが可能になることが分かるであろう。加えて、脹脛におけるこの高い剛性（副木当て効果）は、足首における低い剛性（圧迫効果）と関連付けられる。

【0036】

実際、脹脛における高い剛性は、下肢における静脈還流の主な駆動要素である、CMA Pを最適化する手段と考えられる。しかし、脹脛における高い剛性は、製品の着脱が容易であること、及び、特に寝たきりであるか又は動けない患者にとってはすぐに耐え難いものとなりかねない高すぎる圧迫を特に回避するために十分に許容性のあるものであることを確実にするように、足首における低い剛性（したがって高い変形性）と関連付けられる必要がある。

【0037】

その問題に対する解決策が、本出願人による特許文献8（2012年5月16日、したがって本願の優先日以降に公開）に記載されている。この解決策は、作製中に、装具の、脹脛の領域のよこ糸に、熱成形可能な糸を組み込むことにある。装具はこの場合、モデルに被せ、熱成形可能な糸の機械的特性の変化の影響下でこの領域において伸張不可能になるように、したがって副木を形成するように、局所的に加熱される。

【0038】

しかし、この解決策は、熱成形可能な糸を装具の作製中に組み込むことができるよう、編み工程の変更を必要とする。

【0039】

本発明は、この欠点を被らない、編み工程を変更することなく従来の構造の装具に基づいて実現することができる、この解決策に対する代替案を提供することを目指す。

【0040】

本質的に、本発明の基本的な着想は、従来の技法によって圧迫装具を作製することにあるが、適切な生体適合性樹脂を塗布するとともに乾燥させることによって作製される副木部分を製品に取り入れることを伴い、この樹脂が塗布された領域における織物の硬化を得ることを可能にする。

【0041】

10

20

30

40

50

この作業が、装具を患者の脚に、又は好ましくは、この作業によって生じる患者の不快感を回避するためにこの脚の形態を表す型に被せた状態で行われれば、また、樹脂の塗布が脹脛領域に適正に位置すれば、患者の脹脛の形状に完全に適合する圧迫／副木製品が最終的に得られる。

【0042】

したがって、このようにして得られる製品は、その副木部分により、脹脛に対して効率的な副木当てを加えることが可能となり、その製品の形状は患者に応じて個別化され、この領域は患者の脹脛において或る意味「適所で成形」される。脹脛領域にあるこの副木部分は、脚の残りの部分にわたる、特に足首領域における従来の圧迫部分と関連付けられる。

10

【0043】

より詳細には、本発明は、上述した特許文献2と同じ目的を有するEVC装具、すなわち、特にCMA Pに作用することを意図するソックス、ストッキング、又はタイツの形態の医療用圧迫装具を提案する。

【0044】

そのような装具は、それ自体が既知のやり方で、(i)足首を覆い、脹脛が始まる手前、すなわちアキレス腱が脹脛筋肉とつながる地点(そのような地点は全体的にB1で示される)まで延びるように構成されている弾性圧迫遠位部分と、(ii)圧迫遠位部分に続くとともに圧迫遠位部分に隣接して、脹脛のうちアキレス腱が脹脛筋肉とつながる地点の高さ位置と脛骨粗面の下に位置する高さ位置との間に含まれる領域を、その外周にわたって包む副木近位部分とを含む。

20

【0045】

遠位部分は、編み糸とよこ糸とを編むことによって作製され、編み糸及びよこ糸の寸法決め及び性質、並びに編物の構造は、装具を下肢に履くと、所望の治療的レベルの圧力で下肢の圧迫をもたらすのに適した弾性復元力を周方向に加えるように選択される。副木近位部分は、弾性圧迫遠位部分と連続的に編まれる変形可能な筒状部分である。

【0046】

本発明の特徴として、副木近位部分は、本質的に弾性ではなく、硬化生体適合性樹脂、例えば蒸発によって硬化可能な一液型アクリル樹脂を組み込んでいる。

30

【0047】

編み糸は特に、ポリアミド及び/又は綿で被覆されたスパンデックス糸であるものとすることができる、よこ糸はポリアミド及び/又は綿で被覆されたスパンデックス糸であるものとすることができる。

【0048】

近位部分は、脹脛の最大外周の高さ位置で $15 \pm 2 \text{ mmHg/cm}$ (約 $20 \pm 2 \text{ hPa/cm}$)の高い剛性、又は $5 \pm 2 \text{ mmHg/cm}$ (約 $7 \pm 2 \text{ hPa/cm}$)の中程度の剛性を有する部分であるものとすることができる。

【0049】

弾性圧迫遠位部分は、足首の最小外周の高さ位置において、 $10 \text{ mmHg} \sim 20 \text{ mmHg}$ ($13 \text{ hPa} \sim 27 \text{ hPa}$)の圧力を加えるように構成されている低圧迫部分であるものとすることができる、又は $20 \text{ mmHg} \sim 30 \text{ mmHg}$ ($27 \text{ hPa} \sim 40 \text{ hPa}$)の圧力を加えるように構成されている中程度の圧迫部分であるものとすることができる。

40

【0050】

本発明はまた、医療用の下肢圧迫／副木当て用装具を患者の脚の寸法に合わせて仕立てる特定の方法を提供する。

【0051】

本方法は、上述のような装具を、生体適合性樹脂を有しない、未加工の初期状態で得る工程と、装具を、患者の脹脛の形態を表す型に被せる工程と、装具の、副木近位部分の領域に、硬化可能な生体適合性樹脂をその場で塗布する工程と、装具を型上に維持した状態で樹脂を硬化させる工程と、装具をその完成した状態で取り外す工程とを含む。装具はそ

50

の場合、樹脂の硬化後に剛性にされるとともに患者の脹脛の対応する寸法を保つ、副木近位部分を有し、これによってこの副木近位部分が脹脛の形状に完全に適合することが可能となる。

【0052】

ここで、同じ参照符号が図全体を通して同一であるか又は機能的に同様である要素を指す添付の図面を参照して本発明の例示的な実施形態を説明する。

【図面の簡単な説明】

【0053】

【図1】自由状態にある本発明による装具の全体図である。

【図2】装具が下肢に印加する圧力が測定される種々の標準化された高さに印が付けられている、下肢に履かれた同じ装具の立面図である。

【図3】装具を患者の脚の寸法に合わせて仕立てることを意図する、本発明による実施態様の方法の連続的な工程を示す図である。

【発明を実施するための形態】

【0054】

図1及び図2では、参照符号10は、従来の方法を用いて丸編機で作製された編物装具である本発明の装具を全体的に示す。この筒状の装具10は、足及び脚の一部を包む部分12と、足首を包む遠位部分14と、脹脛を包む近位部分16とを含む。この全体は、装具が「膝までの」ソックス（又は「脹脛までのソックス」）である場合には、膝の下に位置する高さ位置まで延びる。後者の場合、装具は「リブ編みタイプ」の編成終端部分18で終端する。

【0055】

このソックス形状の構成は限定的ではなく、本発明は、圧迫太腿部分20まで延びる「太腿までの」ストッキングとして実施することもできる。本発明の装具は、タイツとして作製することもでき、かつ/又は足部分12がなくてもよい（「足のない」タイプのストッキング又はタイツ）。

【0056】

上述の装具の種々の隣接部分は丸編機で連続的に編まれ、すなわち、この装具が別個のパーツを組み付けるいかなる作製工程も必要としないが、当然ながら、つま先が存在する場合には足部分12のつま先を縫う作業は別である。

【0057】

図2は、標準的な表記を用いる、導入部で明記した形態学的な体系（「Hohenstein」型のモデル脚）によって定義される下肢の種々の高さ：

B：足首、その最小外周の地点、

B1：アキレス腱が脹脛筋肉とつながる地点、

C：脹脛、その最大外周の地点、

D：脛骨粗面の真下（すなわち膝の真下）、

E：膝蓋骨の中心、及び膝裏の上方（すなわち膝窩の高さ位置）

F：太腿の中間、並びに

G：太腿の上部、

を示す。

【0058】

脹脛は、高さ位置B1とDとの間に含まれる肢節であり、足首は、高さ位置B1の下に位置する肢節である。

【0059】

（足首の最小外周の）高さBにおいて加えられる圧力は、選択された標準化クラス（I、II、III又はIV）に関して規定された圧力である。

【0060】

圧力値は、例えば、上述の規格NFG 30-102のB部による動力計を用いて、その規格によって規定されるHohenstein型のモデル脚のような基準の型に装具

10

20

30

40

50

を履かせた後で読み取ることができる。

【0061】

弾性圧迫遠位部分14によって足首のその最小外周の地点（高さ位置B）に加えられる圧力は、効果的な治療圧力でなければならない。患者の必要性に応じて以下の値：

足首の比較的軽い圧迫には、10mmHg～20mmHg（13hPa～27hPa）

、足首の中程度の圧迫には、20mmHg～30mmHg（27hPa～40hPa）、を保つことができる。

【0062】

これらの治療圧力をもたらす弾性圧迫遠位部分14は、弾性のよこ糸、すなわち概して被覆されたスパンデックス糸を組み込んだ幾分密な織り方の編物から、例えば：

よこ糸として、ポリアミド及び／又は綿で被覆された、スパンデックス、又はスパンデックスとエラストジエン（ゴム糸）（合成ゴムラテックス）との混合物等の糸、及び

編み糸（縫い糸）として、好ましくは（単位長さ当たりの重量が）よこ糸よりも軽い寸法の、同様にポリアミド及び／又は綿で被覆されたスパンデックス糸、を用いることによって作製される。

【0063】

本発明の特徴として、近位部分16は、筒状形状の副木部分（すなわち装具の最終的な状態で本質的に非弾性部分）であり、

垂直方向に：脛の範囲にわたって、すなわち高さ位置B1（アキレス腱と脛筋肉とつながる地点）と高さ位置D（膝下）との間、又は少なくともこの領域の大部分にわたって含まれる領域にわたって（足首（高さ位置Bの回りに延びる領域）は近位部分16によって覆われるこの領域に決して属しないことが観察されるはずである）、かつ

外周方向に：脛の全周にわたって、延びる。

【0064】

この非弾性部分は、本明細書において以下で説明されるやり方であつらえられる、すなわち、患者の脛の形状及び寸法に正確に適合する外側構成を有する。その結果、装具を下肢に履くと、この部分が所望の副木効果を加え、すなわち、静止時には本質的に副木当ての力を加えないが、労作時には所望の程度の有効性で副木効果を与える剛性によって下肢に対抗する。

【0065】

この副木近位部分16の剛性 R_c に関して、（上述の欧洲暫定規格XP ENV 12 718:2001に従って）以下の値：

強い副木当てには、

$$R_c = 15 \pm 2 \text{ mmHg/cm} \text{ (約 } 20 \pm 2 \text{ hPa/cm)}$$

中程度の副木当てには、

$$R_c = 5 \text{ mmHg/cm} \text{ (約 } 7 \text{ hPa/cm)}$$

に保つことができる。

【0066】

R_c のこれらの値は、高さC、すなわち脛の最大外周の地点で測定される。

【0067】

一方で足首において圧迫遠位部分14の弾性に、また他方で脛において副木近位部分16の剛性に別個に作用することにより、幾つかの圧迫／副木当て効果、例えば：

足首における低圧迫／脛における強い副木、

足首における中程度の圧迫／脛における強い副木、

足首における低圧迫／脛における中程度の副木、又は

足首における中程度の圧迫／脛における中程度の副木、

を組み合わせることが可能である。

【0068】

10

20

30

40

50

非常に有利には、遠位部分 14 及び近位部分 16 はともに、編機でひと続きに連続的に編まれ、これによって付加的なパーツを組み付けるいかなる作製工程も回避される。近位部分 16 はしたがって、弾性圧迫遠位部分 14 と同じタイプの糸、すなわち、

よこ糸としては、ポリアミド及び／又は綿で被覆されたスパンデックス糸、及び
編み糸としては、ポリアミド及び／又は綿で被覆された、より小さい寸法のスパンデックス糸

で編むことができる。

【0069】

製品は、通常の技法に従ってサントーニ社製の編機のような従来の丸編機で編むことができる。

10

【0070】

本発明の特徴として、非弾性副木近位部分 16 は樹脂を加えることによって得られる。

【0071】

この作業は図 3 に示されるようになされる。

【0072】

まさに従来の方法で編まれた装具 10 は最初、標準的な製品、すなわち寸法に合わせて仕立てられていない製品の形態であり（工程 a）、従来の EVC 装具として、また更には、寸法表で選択される適した標準寸法の任意の布製品として準備されるに過ぎない。

【0073】

この装具を次いで、患者の、脹脛の領域の形態に対応する型 22 に被せる（工程 b）。この領域は、装具を履くと透明性によって見える印 24 等の印によって特に区切ることができる。

20

【0074】

それに続く工程（工程 c）は、例えばブラシ 26 を用いた塗布、制御された吹き付け又は浸漬によって、生体適合性樹脂を脹脛の領域に、すなわち印 24 間に加えることにある。

30

【0075】

その目的で用いることができる樹脂の例は、例えば、REAL Composites社によって販売されている一液型アクリル樹脂である Plastidurex という樹脂であり、この樹脂は例えば、紙及び布の剛性化、ランプのかさの形成等の装飾の分野において用いられる。

【0076】

用いることができる別の樹脂は SILDOSC RTV AD 35 という樹脂であり、この樹脂は、同様にREAL Composites社によって販売されている二液型シリコーン樹脂であり、例えば物体の成形の分野において用いられる。

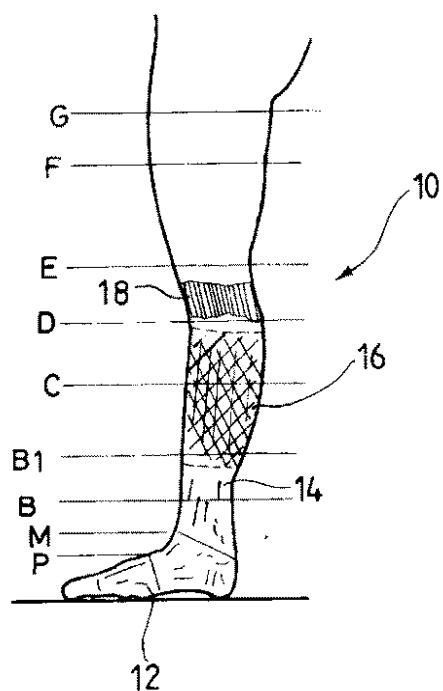
【0077】

この樹脂は、編物が飽和するまで塗布され、蒸発によって乾燥される。

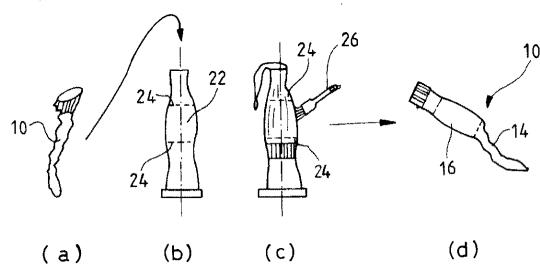
【0078】

例示的な実施態様では、蒸発による硬化後に、本明細書において上記で定義したような脹脛の領域におけるソックスの全周にわたる塗布には、樹脂の初期重量に対して 12 g の樹脂がソックスに加えられたことが観察されている。得られた最終的な剛性は約 15 mm Hg / cm (20 MPa / cm) であった。

40


【0079】

次いで、装具を型から取り外すことができる（工程 d）。装具はこの場合、剛性になっているとともに患者の脹脛の曲線及び寸法に完全に適合する形状を呈する副木近位部分 16 と、弾性圧迫遠位部分 14 とを有する「寸法に合わせて仕立てられた」その明確な形状を有し、この結果、脹脛（副木近位部分 16）における高い剛性と足首（弾性圧迫遠位部分 14）における低い剛性とを関連付ける、下肢の治療的レベルの圧迫を提供する製品が得られる。


【図1】

【図2】

【図3】

フロントページの続き

(74)代理人 100154162

弁理士 内田 浩輔

(72)発明者 フランソワ クロス

フランス 94200 イブリー スール セーヌ, ル モハメッド プナスー 5

(72)発明者 グレゴリー ティネイ

フランス 92600 アスニエール スール セーヌ, ル ジャン デュスード 17

F ターム(参考) 4C098 AA02 BB11 BC03 BC17

【外国語明細書】

(Title of the Invention)

**Adapted compression/splint orthosis for reinforcement of
the calf musculo-aponeurotic pump**

Background of the invention

The invention relates to the elastic venous compression (EVC) orthoses, indicated in the various clinical manifestations of venous insufficiency of the lower limbs.

Such orthoses, formerly known as "elasticated stockings (or socks)" or "elasticated tights", are textile medical devices that produce a therapeutic effect by compression of the lower limbs, in contrast to the "sustain stockings" (also "support stockings" or "anti-fatigue stockings") and to the "fashion stockings", which are not medical devices with a therapeutic purpose.

EVC orthoses are designed to produce a therapeutic effect by compression of the lower limb over a greater or lesser extent, usually with an upwardly degressive profile starting from the ankle. Depending on the type of orthosis, the pressure measured at the ankle may vary from 10 to more than 36 mmHg (i.e. from 13 to 48 hPa, the unit mmHg being however commonly used as a pressure measurement unit in the field of phlebology and medical compression). In France, stockings are divided into four textile classes according to the ASQUAL system, namely Class I (13 to 20 hPa \approx 10 to 15 mmHg at the ankle), class II (20 to 27 hPa \approx 15 to 20 mmHg), class III (27 to 48 hPa \approx 20 to 36 mmHg), and class IV ($>$ 48 hPa \approx $>$ 36 mmHg). These compression classes may be different in other countries.

For a high compression of the lower limbs, such orthoses are made from a knit fabric of more or less tight texture with incorporation of an elastic weft yarn,

generally a covered spandex yarn.

More precisely, under the effect of being placed on the limb, the tight textile of the orthosis exerts a compression resulting from the return force of the elastic fibers that make up the material, and the application of such elastic return forces on the perimeter of the outline generates at a given point, according to the Laplace law, a local pressure that is inversely proportional to the radius of curvature of the outline at that point.

This pressure is the "textile pressure" as defined and calculated within the meaning of the French standard NF G 30-102, part B. The term "pressure" will be used hereinafter to refer to the mean of the pressures locally exerted at a given altitude along an outline of the leg.

The knit and the yarns, as well as the dimensioning of the rows of stitches, are selected so that predetermined pressures are applied at different altitudes along the lower limb, e.g. at the height of the ankle, at the start of the calf, at the calf, at the popliteal fossa, etc., all the way up to the top of the thigh, such altitudes being conventionally denoted B, C, ..., G. These various pressures are defined for each class with reference to metrological templates such as the model leg of the French standard NF G 30-102 part B, Appendix B, corresponding to the "Hohenstein" model leg according to the German system RAL-GZ 387, or as defined in the European Pre-Standard XP ENV 12718:2001.

The above-mentioned characteristic of pressure profile degressivity consists in exerting a maximum pressure at the ankle, then a degressive pressure from the ankle to the calf or to the thigh. It is based on the fact that, in an orthostatic situation, the intravenous pressure is degressive from the ankle to the calf, then up to the thigh. It is therefore logical to apply a corresponding, and hence degressive, counter-pressure, to proportionally

reduce the venous diameters and to induce an anti-stasis effect.

In a dynamic situation, such as during walking, the situation is physiologically different, the calf being the key element of the lower limb venous hemodynamics.

The importance of the effect of the "muscle pump" or "calf musculo-aponeurotic pump" (CMAP) has notably been described in terms of return venous blood flow, where the physiological cycles of contraction and relaxation of the calf muscles give rise, via the opening and closing actions of the venous valves, to emptying and filling of the lower limb venous network, which results in a lowering of the venous pressure at the ankle. The CMAP efficiency decreases progressively with the age of the subjects, which is accompanied by a residual venous hyperpressure that naturally aggravates chronic venous insufficiencies.

Chronic venous insufficiency is therefore characterized by a failure of this muscle pump effect, which hence plays a major role in the genesis of the trophic troubles such as ulcers.

The starting point of the invention is the search for a means making it possible to improve the CMAP efficiency, or even to take over from it, thanks to a compressive orthosis that is better suited to this role than the orthoses that may have been proposed up to now and that are degressive, because they are based on the analysis of the venous pressures resulting from orthostatic situations.

However, the study of venous physiology, in particular using the recent compression modeling and simulating tools such as those described in the WO 2006/087442 A1 (Laboratoires Innothera), shows that the effectiveness of an EVC orthosis rather lies in the CMPA efficiency improvement, providing that it is possible to make it oper-

ate.

The FR 2 824 471 B1 (Rodier) describes an approach consisting in providing an "elective compression/splinting" by means of a differentiated-knit multizone stocking, associating a very elastic knit region at the foot and the ankle, followed by a not very elastic knit region from the bottom of the calf up to the popliteal fossa, and continued by again a very elastic knit region from the knee up to the top of the thigh. The basic idea consists in providing zones with a rather compressive effect (foot, ankle and thigh) on either side of a zone with a rather splinting effect (calf). This latter zone of the orthosis will produce less effect at rest than those that surround it. But, during contractions of the calf muscle, it will exert an increased compression, increasing the power and reinforcing the emptying effect of the CMAP.

In this respect, it should be specified that the terms "compression" and "splinting" define clearly different effects, even though they are sometimes confused in the common language:

- "compression" is the effect produced by an elastic orthosis, both at rest and on effort, on a limb segment, as a result of the more or less strong return forces of the elastic fibers of this orthosis. These forces act in an almost constant manner on the limb: at rest, the compression is present at the nominal pressure value, and on effort, the effect of this compression is slightly increased by the contraction of the muscle masses;

- conversely, "splinting" is the effect produced by an orthosis that acts in a differentiated manner (effort/rest) on a limb segment, under the action of a structure considered as being inelastic (but deformable), for example a non-elastic bandage, also referred to as "short-stretch bandage". At rest, this type of bandage exerts a low pressure, or even no pressure; on the other hand,

during muscle contraction, it goes against the local volume increases of the calf, which comes into abutment with the non-elastic structure, the pressure being therefore strongly increased. The splinting is thus effective and active on effort, and almost inactive at rest.

It is customary in the scientific literature on this subject to consider that an orthosis is a splint, or "rigid", orthosis when it produces an increase of at least 10 mmHg (13 hPa) per centimeter of increase of the limb circumference at the point located where the Achilles tendon joins the calf muscles. The term "rigidity" is understood herein within the meaning of the definition of the European Pre-Standard XP ENV 12718:2001, i.e. "*the increase of compression per centimeter of increase of leg circumference, expressed in hectopascals per centimeter and/or in millimeters of mercury per centimeter*".

It is in order to denote these two different notions that the two respective terms "compression" (or "compressive") and "splinting" (or "splint") will be used herein-after.

With regard to these definitions, the proposal of the above-mentioned FR 2 824 471 B1, which implements only yarns and stitches that are more or less elastic over the height of the orthosis, produces only a very partial splinting effect at the calf.

Other orthoses consisted of zones, all of which are elastic but with a differentiated elasticity are proposed by the EP 0 934 043 B1 (Couzan) or EP 1 240 880 A2 (Stolk). These two documents teach the making of a stocking or a sock with a less rigid (more elastic) zone in the region of the calf, respectively uniformly over the whole circumference of the calf, or only in the posterior region thereof. The orthoses described, which are devoid of any inelastic structure, thus provide no "splinting" effect, within the above-explained meaning, with an effect

of abutment of the calf against a non-elastic structure, in case of local volume increase of the latter.

The same is true for the product disclosed in the WO 2006/134875 A1, which provides discrete elements added at selected locations of an "anti-fatigue" sock or stocking, and intended to increase the sensation of compression felt by the wearer, hence without any splinting purpose or function. Moreover, none of these elements extends over the circumference of the calf, and therefore none of them can generate a splinting, since they cannot create an inelastic obstacle to the volume increase of the calf on effort.

In addition, from the technological point of view, in practice, it proves to be difficult to make all of those prior art "multizone" structures, taking into account the difficulty that exists in setting the knitting machine to obtain the required variable elasticity profiles, with very abrupt transitions between very heterogeneous textures that correspond to the different zones of the stocking or the sock.

On the other hand, and above all, those orthoses that may be referred to as "semi-splint orthoses" are not specifically fitted to a given patient. In concrete terms, the practitioner just selects an orthosis from a grid of sizes after having measured the perimeter of the ankle and of the calf. In practice, this leads to a compromise solution that does not take into account the real morphology of the calf, which may vary widely from one patient to another and which cannot be suitably described by merely measuring the maximum perimeter of the calf.

This drawback is particularly increased within the framework of products that are supposed to produce a real splinting effect (within the above-defined meaning), since the reinforcement of the CMAP effect depends on a precise fitting of the non-elastic structure to the concerned limb

segment, over the whole extent thereof: if the non-elastic structure is not in close contact with the limb at rest, it will produce only very little effect for a small or moderate volume increase of the muscle; on the contrary, if its size is too small, it will exert stress on the limb even at rest, with harmful effects on blood circulation, in addition to an oppressive sensation that could make the orthosis particularly uncomfortable to wear for the patient.

It thus appears desirable that orthoses can be made, which provide a real splinting effect on the calf via a non-elastic structure (and not a structure with a lesser elasticity), fitted to the exact morphology of the limb segment of each patient.

The non-elastic structure must however be deformable, unlike for example the product disclosed by the EP 1 656 916 A1, which is a non-deformable orthopedic splint orthosis, intended to form a splint for immobilizing a traumatized limb: the splinting is not of same nature than that of the present invention, which must be implementable by an item, such as a stocking or a sock, liable to be put on and removed at will by the patient, and which, once in position, do not hinder the movements of the limb enveloped by the orthosis.

If it is desired to have a made-to-measure, rigid splint product, specifically fitted to the patient, a first solution consists in using multilayer bandages, with the well-known difficulty in properly adjusting the bandage, neither too tight (it would squeeze the calf) nor too loose (it would produce no effect), hence a highly "operator-dependent" result. As explained hereinabove, the adjustment of rigid splint product is highly critical, unlike a compressive elastic structure that is much more tolerant.

Moreover, the bandage needs to be regularly redone,

each time with the same care for a good adjustment.

The FR 2 912 644 (Mollard et al.) discloses such a technique with, in addition, superimposition of a compressive element and a splint element. The splint element is a strip of perforated ultra-thin film, for example of polyethylene, packed as a roll. This film is unrolled around the limb in such a way to envelop the latter, then a splint stocking is placed on the bandage so as to provide the compressive effect. But, in addition to the particular skill required for placing the bandage, once the latter has been placed, no possibility exists to readjust it, except redoing the whole process. Finally, this product is single use and does not permit a temporary removal of the orthosis, for example for the time to make an examination or to change a dressing.

For those reasons, patients generally prefer using another solution, in the form of knitted orthoses to be slipped on, which are handier and more aesthetically pleasant.

The matter is then to make a made-to-measure, rigid product, perfectly fitted to the particular morphology of the patient. The technique consists in measuring the calf in the more complete way possible, with measurements at several heights. The orthosis is then knitted on a flat knitting machine, and shaped through a seam made all along its length, which requires an additional step of making. It will be understood that such a technique of full made-to-measure tailoring is lengthy to implement, complicated and thus expensive, and does not allow the rigid splint products to become widespread, despite their manifest therapeutic advantages.

The problem of the invention is thus to be capable of making a splint orthosis (a rigid product) able to be in the form of a final product that is "made-to-measure", hence perfectly fitted to the patient's morphology, but

that do not even so require to be made using conventional, lengthy and expensive "made-to-measure" techniques.

In particular, it will be seen that the invention can be implemented i) on a circular knitting machine (and not a flat knitting machine, which would require an additional step of making for sewing the seam) ii) making a standard product, hence with a possibility to be made at a reasonable cost and in large quantities.

And this with a new EVC orthosis structure:

- that reinforces the beneficial effects of the CMAP by an appropriate splinting of the calf;
- that is technologically easy to make; and
- that can be easily fitted to the very different leg morphologies encountered in the population of the concerned patients.

It will also be seen that the invention makes it possible to obtain an EVC orthosis for the lower limb that applies on the calf no longer a more or less strengthen compression, but a real splinting, by placing around the calf an essentially rigid, i.e. non-elasticity deformable, element. In addition, with this high rigidity at the calf (splinting effect) will be associated a low rigidity at the ankle (compression effect).

Indeed, a high rigidity at the calf is considered as a means for optimizing the CMAP, which is the main motor of the venous return in the lower limbs. But the high rigidity at the calf has to be associated with a low rigidity (and hence a high deformability) at the ankle to ensure that the product will be easy to put on, to take off, and will be well tolerated - in particular to avoid a too high compression, which would rapidly become intolerable, in particular for a patient who is confined in bed or inactive.

A solution to that problem is described by the applicant in the EP 2 452 658 A1 (published on May 16, 2012,

hence after the priority date of the present application). This solution consists in incorporating, during the making, a thermoformable yarn to the weft of the orthosis, in the region of the calf. The orthosis is then placed on a model and locally heated so as to become inextensible, and hence to form a splint, in this region, under the effect of changes of the thermoformable yarn mechanical characteristics.

However, this solution requires a modification of the knitting process so that the thermoformable yarn can be incorporated during the making of the orthosis.

The present invention aims to offer an alternative to this solution, which does not suffer from this drawback and which can be implemented based on an orthosis of conventional structure, without modification of the knitting process.

Essentially, the basic idea of the invention consists in making a compressive orthosis by means of conventional techniques, but with integrating into the product a splint portion made by applying and drying a suitable biocompatible resin, making it possible to obtain a hardening of the textile in the region where this resin has been applied.

If this operation is made with the orthosis placed on the patient's leg - or, preferably, on a template representative of the morphology of this leg, to avoid the patient the annoyance caused by the operation - and if the application of resin is properly located in the calf region, a compressive/splint product perfectly fitted to the shape of the patient's calf will finally be obtained.

Therefore, the product thus obtained makes it possible to apply an efficient splinting to the calf, thanks to the splint portion, whose shape will be personalized as a function of the patient, this region being in a way "molded in place" on the patient's calf. This splint por-

tion in the calf region will be associated with a conventional compressive portion over the remainder of the leg, especially in the ankle region.

More precisely, the invention proposes an EVC orthosis having the same purpose as the above-mentioned FR 2 824 471 B1, i.e. a medical compression orthosis in the form of a sock, a stocking or a pair of tights intended to act specifically on the CMAP.

Such an orthosis comprises, in a manner known in itself, (i) an elastic compressive distal portion, adapted to cover the ankle, extending to before the beginning of the calf, at the point where the Achilles tendon joins the calf muscles, such point being generally denoted B1, and (ii) a splint proximal portion, continuing the compressive distal portion and adjacent thereto, and enveloping, over the circumference thereof, a region of the calf comprised between the level of the point where the Achilles tendon joins the calf muscles and the level located below the tibial tuberosity.

The distal portion is made by knitting a knit yarn and a weft yarn, the dimensioning and the nature of the knit and weft yarns as well as the knit structure being selected in such a way to exert in the circumference direction, once the orthosis has been placed on the limb, an elastic return force likely to produce a compression of the limb at a desired therapeutic level of pressure. The splint proximal portion is a deformable tubular portion that is knitted in continuation of the elastic compressive distal portion.

Characteristically of the invention, the splint proximal portion is essentially non-elastic, and incorporates a hardened biocompatible resin, for example an evaporation-hardenable single-component acrylic resin.

The knit yarn may in particular be a polyamide and/or cotton covered spandex yarn, and the weft yarn a polyam-

ide and/or cotton covered spandex yarn.

The proximal portion may be a portion with, at the level of the calf maximum circumference, a high rigidity, of 15 ± 2 mmHg/cm ($\approx 20 \pm 2$ hPa/cm), or a moderate rigidity, of 5 ± 2 mmHg/cm ($\approx 7 \pm 2$ hPa/cm).

The elastic compressive distal portion may be a low compression portion adapted to exert a pressure of 10 to 20 mmHg (13 to 27 hPa), or a moderate compression portion adapted to exert a pressure of 20 to 30 mmHg (27 to 40 hPa) at the level of the ankle minimum circumference.

The invention also provides a specific method for tailoring an orthosis for medical compression/splinting of the lower limb to the measure of a patient's leg.

This method comprises the steps of: obtaining an orthosis as described above, in a rough initial state, with no biocompatible resin; placing the orthosis onto a template representative of the morphology of the patient's calf; applying *in situ* on the orthosis, in the region of the splint proximal portion, a hardenable biocompatible resin; hardening the resin with the orthosis maintained on the template; and removing the orthosis in its finished state. The orthosis has then a splint proximal portion made rigid following the hardening of the resin and keeping the corresponding dimensions of the patient's calf, which allows this splint proximal portion to perfectly fit the shape of the calf.

Brief description of the drawings

An exemplary embodiment of the invention will now be described, with reference to the appended drawings, in which the same reference numbers designate identical or functionally similar elements throughout the figures.

Figure 1 is an overall view of an orthosis according to the invention, in its free state.

Figure 2 is an elevation view of the same orthosis, slipped on a limb, wherein the various standard altitudes to which are measured the pressures applied by the orthosis on the limb are indicated.

Figure 3 illustrates the successive steps of the method of implementation according to the invention, intended to tailor the orthosis to the measure of the patient's leg.

Detailed description of the invention

In Figures 1 and 2, the reference 10 generally denotes the orthosis of the invention, which is a knitted orthosis made using conventional methods on a circular knitting machine. This tubular-shaped orthosis 10 comprises a portion 12 that envelops the foot and a portion of the leg, with a distal portion 14 enveloping the ankle and a proximal portion 16 enveloping the calf. The whole extends up to a level located below the knee, when the orthosis is a "knee-length" sock (or "calf-length sock"). In the latter case, the orthosis is terminated by a "ribbed type" knitted terminal portion 18.

This sock-shaped configuration is not limitative, and the invention may also be implemented as a "thigh-length" stocking, extended by a compressive thigh portion 20. The orthosis of the invention may also be made as a pair of tights, and/or be devoid of a foot portion 12 ("footless" type stocking or pair of tights).

The various adjoining portions of the above-described orthosis are knitted continuously on the circular knitting machine, i.e. making this orthosis does not require any step of making for assembling distinct parts, except naturally the operations for sewing the tip at the foot part 12, if a tip is present.

Figure 2 shows the various altitudes of the lower limb as defined by the morphological system specified in

the introduction (the "Hohenstein" model leg), using the standard notation:

B: ankle, at the point of its minimum circumference;

B1: point where the Achilles tendon joins the calf muscles;

C: calf, at the point of its maximum circumference;

D: just below the tibial tuberosity (i.e. just below the knee);

E: at the center of the kneecap and above the back of the knee (i.e. at the level of the popliteal fossa);

F: at the middle of the thigh; and

G: at the top of the thigh.

The calf is the limb segment comprised between the levels B1 and D, and the ankle is the limb segment located below the level B1.

The pressure exerted at the altitude B (at the minimum perimeter of the ankle) is the pressure prescribed for the selected standard class (I, II, III, or IV).

The pressure values may be read, for example, using a dynamometer according to the above-mentioned standard NF G 30-102 part B, after the orthosis has been slipped on a reference template such as the Hohenstein model leg prescribed by that standard.

The pressure exerted on the ankle at the point of its minimum circumference (level B) by the elastic compressive distal portion 14 must be an effective therapeutic pressure. The following values may be retained, depending on the patient's needs:

- 10 to 20 mmHg (13 to 27 hPa) for a relatively low compression of the ankle;

- 20 to 30 mmHg (27 to 40 hPa) for a moderate compression of the ankle.

The elastic compressive distal portion 14 that produces these therapeutic pressures is made from a knit fabric of more or less tight texture with incorporation of an

elastic weft yarn, generally a covered spandex yarn, e.g. using:

- as the weft yarn, a yarn such as spandex or a mixture of spandex and elasto-diene (synthetic rubber latex), covered with polyamide and/or cotton; and

- as the knit yarn (stitch yarn), also a polyamide and/or cotton covered spandex yarn, having preferably a lower size (weight per unit length) than the weft yarn.

Characteristically of the invention, the proximal portion 16 is a splint portion (i.e. a portion that is essentially non-elastic in the final state of the orthosis), of tubular shape, extending:

- in the vertical direction: over the extent of the calf, i.e. over the region comprised between the level B1 (junction between the Achilles tendon and the calf muscles) and the level D (below the knee), or at least over the major part of this region; it should be observed that the ankle (region extending around the level B) never belongs to this region covered by the proximal portion 16; and

- in the circumference direction: over the whole circumference of the calf.

This non-elastic portion is made to measure, in the manner explained hereinafter, i.e. it has an external configuration that is accurately fitted to the shape and dimensions of the patient's calf. As a result, once the orthosis slipped on the limb, this portion exerts the wanted splint effect, i.e., at rest, it exerts essentially no splinting force but, on effort, it opposes to the limb a rigidity providing the splint effect at the desired degree of effectiveness.

As regards the rigidity R_c of this splint proximal portion 16, the following values may be retained (according to the above-mentioned European Pre-Standard XP ENV 12718:2001):

- for a strong splinting:

$$R_c = 15 \pm 2 \text{ mmHg/cm} (\approx 20 \pm 2 \text{ hPa/cm})$$

- for a moderate splinting:

$$R_c = 5 \text{ mmHg/cm} (\approx 7 \text{ hPa/cm}).$$

These values for R_c are measured at the altitude C, i.e. at the point of maximum circumference of the calf.

By acting separately, on the one hand, on the elasticity of the compressive distal portion 14 at the ankle, and on the other hand, on the rigidity of the splint proximal portion 16 at the calf, it is possible to combine several compression/splinting effects, for example:

- low compression at the ankle / high splint at the calf;

- moderate compression at the ankle / high splint at the calf;

- low compression at the ankle / moderate splint at the calf; or

- moderate compression at the ankle / moderate splint at the calf.

Very advantageously, the distal portion 14 and the proximal portion 16 are both knitted continuously during a single sequence on the knitting machine, which avoids any step of making for assembling added parts. The proximal portion 16 may thus be knitted with the same types of yarns than the elastic compressive distal portion 14, i.e.:

- as the weft yarn, a polyamide and/or cotton covered spandex yarn; and

- as the knit yarn, a polyamide and/or cotton covered spandex yarn of lower size.

The product may be knitted according to usual techniques, on a conventional circular knitting machine, such as a Santoni knitting machine.

Characteristically of the invention, the non-elastic splint proximal portion 16 is obtained by adding a resin.

This operation is made as illustrated in Figure 3.

The orthosis 10 that has just been knitted in the conventional manner is initially in the form of a standard product, i.e. a product that is not tailored to measure (step a); it is only provided, as for the conventional EVC orthoses, and even for any cloth article, suitable standard sizes, to be selected in a size grid.

This orthosis is then placed (step b) on a template 22 corresponding to the patient's morphology in the calf region. This region may in particular be delimited by marks such as the marks 24, visible by transparency once the orthosis is slipped on.

The following step (step c) consists in adding in the calf region, i.e. between the marks 24, a biocompatible resin, for example by application with a brush 26, by controlled spraying or by dipping.

An example of resin that can be used for that purpose is, for example, the resin *Plastidurex*, which is a single-component acrylic resin sold by REAL Composites, and which is used, for example, in the field of decoration for the rigidification of papers and fabrics, the creation of lampshades, etc.

Another resin that can be used is the resin SILDOC RTV AD 35, which is a two-component silicone resin, also sold by REAL Composites, and which is used, for example, in the field of body molding.

This resin is applied until saturation of the textile, and is left to dry, by evaporation.

In an exemplary implementation, it has been observed that, after hardening by evaporation, 12 g of resin were added to the sock with respect to the initial weight of the latter, for an application in the calf region as defined hereinabove, over the whole circumference of the sock. The final rigidity obtained was about 15 mmHg/cm (20 mPa/cm).

The orthosis may then be removed from the template (step d). It will then have its definitive shape, "tailored to measure", with a splint proximal portion 16 that has become rigid and that has taken a shape that perfectly fits the curve and the dimensions of the patient's calf, and an elastic compressive distal part 14, which results in a product associating a high rigidity at the calf (splint proximal portion 16) and a low rigidity at the ankle (elastic compressive distal portion 14), providing a therapeutic-level compression of the lower limb.

Claims

1. An orthosis for medical compression / splinting of the lower limb, in the form of a sock, a stocking or a pair of tights,

such orthosis (10) comprising:

- an elastic compressive distal portion (14), adapted to cover the ankle, extending to before the beginning of the calf, at the point where the Achilles tendon joins the calf muscles,

said distal portion being made by knitting a knit yarn and a weft yarn, the dimensioning and the nature of the knit and weft yarns as well as the knit structure being selected in such a way to exert in the circumference direction, once the orthosis has been placed on the limb, an elastic return force likely to produce a compression of the limb at a desired therapeutic level of pressure; and

- a splint proximal portion (16), continuing the compressive distal portion and adjacent thereto, and enveloping, over the circumference thereof, a region of the calf comprised between the level (B1) of the point where the Achilles tendon joins the calf muscles and the level (D) located below the tibial tuberosity;

said splint proximal portion being a deformable tubular portion knitted in continuation with the elastic compressive distal portion,

said orthosis being characterized in that the splint proximal portion:

- is essentially non-elastic, and
- incorporates a hardened biocompatible resin.

2. The orthosis of claim 1, wherein the biocompatible resin is an evaporation-hardenable single-component acrylic resin.

3. The orthosis of claim 1, wherein the knit yarn

and/or the weft yarn is a polyamide and/or cotton covered spandex yarn.

4. The orthosis of claim 1, wherein the splint proximal portion is a portion having, at the level of the calf maximum circumference, a high rigidity, of 15 ± 2 mmHg/cm ($\approx 20 \pm 2$ mPa/cm).

5. The orthosis of claim 1, wherein the splint proximal portion is a portion having, at the level of the calf maximum circumference, a moderate rigidity, of 5 ± 2 mmHg/cm ($\approx 7 \pm 2$ mPa/cm).

6. The orthosis of claim 1, wherein the elastic compressive distal portion is a low compression portion adapted to exert a pressure of 10 to 20 mmHg (13 to 27 hPa) at the level of the ankle minimum circumference.

7. The orthosis of claim 1, wherein the elastic compressive distal portion is a moderate compression portion adapted to exert a pressure of 20 to 30 mmHg (27 to 40 hPa) at the level of the ankle minimum circumference.

8. A method for tailoring an orthosis for medical compression/splinting of the lower limb to the measure of a patient's leg, said method comprising the steps of:

- obtaining an orthosis (10) according to one of claims 1 to 7, in a rough initial state, with no biocompatible resin;

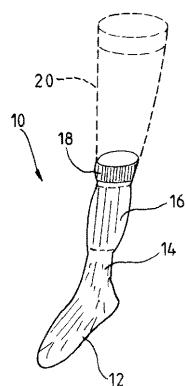
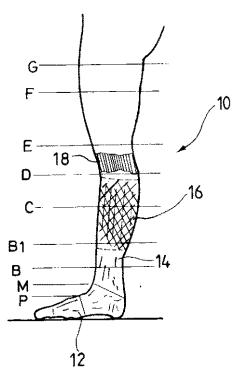
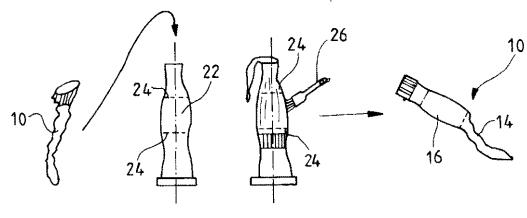
- placing the orthosis onto a template representative of the morphology of the patient's calf;

- applying *in situ* on the orthosis, in the region of the splint proximal portion, a hardenable biocompatible resin;

- hardening the resin with the orthosis maintained on the template; and

- removing the orthosis in its finished state,

the orthosis in its finished state having a splint proximal portion (16) made rigid following the hardening of the resin and keeping the corresponding dimensions of




the patient's calf, which allows this splint proximal portion to perfectly fit the shape of the calf.

ABSTRACT

The orthosis (10) comprises an elastic compressive distal portion (14), extending upwards from the ankle, associated with an adjacent rigid splint proximal portion (16), enveloping the region of the calf comprised between the level of the point where the Achilles tendon joins the calf muscles and the level located below the tibial tuberosity. This rigid splint proximal portion (16) is an essentially non-elastic, deformable tubular portion, made by: placing the orthosis onto a template representative of the morphology of the patient's calf; applying *in situ* on the orthosis, in the region of the splint proximal portion, a hardenable biocompatible resin; hardening the resin with the orthosis maintained on the template; and removing the orthosis in its finished state.

[Representative Drawing]

- Figure 3 -

FIG. 1FIG. 2FIG. 3