

Aug. 8, 1933.

T. G. DUSOPOLOS

1,921,663

SHOE HEEL

Filed April 19, 1932

Fig. 4

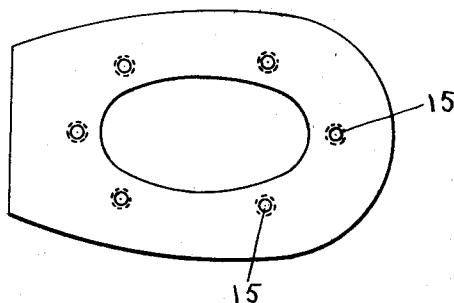


Fig. 5

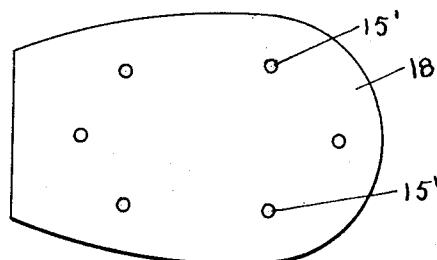


Fig. 1

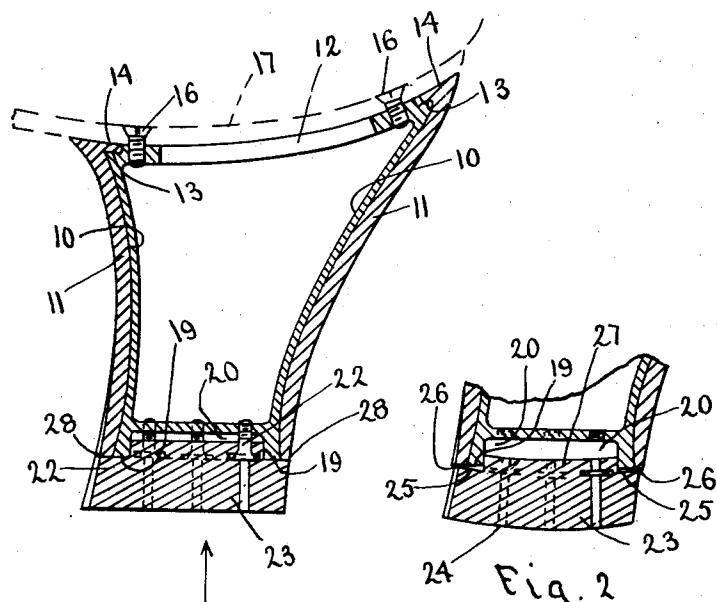
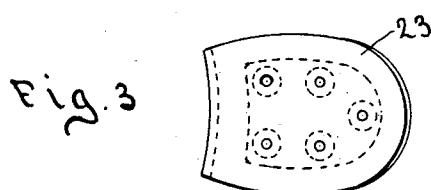



Fig. 2

INVENTOR
Theologue G. Dusopolos

by *Fred W. Arde*
atty

UNITED STATES PATENT OFFICE

1,921,663

SHOE HEEL

Theologue G. Dusopolos, Boston, Mass.

Application April 19, 1932. Serial No. 606,204

3 Claims. (Cl. 36—41)

My invention relates to shoe heels, and particularly to heels in which a rubber top lift is used with a hollow metal body portion.

One object of my invention is to provide a heel 5 of this character in which the surface of the body presents a polished surface resistant to ordinary tendency to mar or scratch.

A second object is to provide a heel of this character in which the rubber top lift may be 10 placed without skilled help, and may be secured to the heel body to present a tight joint and unbroken contour of the assembled body and top lift.

A further object is to provide a heel of resilient 15 character approximating the advantages of a spring heel, without incident complications and disadvantages.

My invention consists in providing a heel body having an outer shell of relatively hard polished 20 material such as ebonite, bakelite or the like, molded on an inner core of metal, and in the form and character of the top lift.

Other objects and advantages of my invention 25 will appear in the accompanying specification and claims and the drawing forming a part thereof.

In the specification and claims and the drawing, I have described and illustrated a preferred embodiment of my invention, but do not confine myself to the particular form of the elements, as modifications may be made within the 30 scope of the appended claims.

In the drawing,

Fig. 1 is a sectional elevation of an assembled 35 heel embodying my invention.

Fig. 2 is a fragment showing the top lift as initially applied to the heel body.

Fig. 3 is a plan looking in the direction of the arrow, Fig. 1.

Fig. 4 is a plan of the heel from above.

Fig. 5 is a face view of a template which I propose to use with the heels to enable drilling the heel seat of the shoe to facilitate positioning and attaching the heel body.

Referring to the drawing, the hollow heel body or core 10, is incased by a wall of ebonite, bakelite or the like, molded to the metal core to form an integral member. The heel seat 12 is recessed at 13 about the contour and the wall is overlapped as at 14 to present a uniform surface to seat on the shoe. The metal body is provided with tapped holes 15, which may be engaged by countersunk head screws passing through the sole of the shoe from the inside as at 17. The 55 position of these holes is determined by means

of a template 18, the holes 15' therethrough, corresponding with the tapped holes in the body element. By this means, the heel may be positioned by means of the template, the holes drilled through the shoe sole, and the heel body attached by means of the screws 16, a smooth surface being retained on the inside of the shoe. The opposite end of the heel body is formed with a ledge 19 surrounding a socket 20, and the major wall of the socket is provided with tapped hole 60 which may be engaged by other screws 22, which pass through the top lift 23.

This element is molded from the usual material used for rubber heels, but is formed to present a convex wearing surface 24, and a corresponding beveled shelf 25, surrounding a projecting plug 27, the shelf being adapted to engage the ledge of the heel body, when initially applied, linearly near the outline of the ledge as at 26. The plug 27 is formed to substantially fit the socket in the heel body peripherally, but is of less projection than the depth of the socket. 70

When the top lift is drawn by the screws 22 against the ledge 19, the projecting plug serves 75

not only to reinforce the top lift where unsupported by the ledge 19, and thus provide a more resilient heel tread, but it also permits the fastening screws 22 to be sunk deeper in the lift, increasing the possible wear of the top lift before replacing, and retaining the screws and heads in unmarred condition and usable when the lift is replaced. As the screws are tightened, they draw 80

the top lift to exert a yielding tension on the outline as it is drawn against the ledge of the heel body, and thus a tight joint is maintained between the lift and the heel body as at 28, while preserving a highly resilient heel tread. In Fig. 2, the top lift is shown in its molded form as initially applied to the heel body before attaching, and Fig. 1 shows the lift as attached in wearing position. 85

It will be evident that the top lift may be replaced with facility and without the aid of a skilled workman, and similarly the whole heel may be replaced if desired, in both cases using the original screws. 90

Having thus described my invention, I claim:—

1. In a shoe heel, the combination of a body element one end of which is attachable to a shoe and having a socket formed in its opposite end surrounded by a ledge having a plane surface; means for attaching the body to the shoe; a top lift of resilient material molded with a convex wearing surface, and an opposite shelf surface adapted to engage initially with the socketed end 105

of the heel body, outside the socket and linearly near the outline of the ledge, said top lift being provided with a projection adapted to engage peripherally with the socket and of less height than the depth of the socket; and means for attaching the lift to the body element to present a substantially plane wearing surface and to engage the opposite shelf surface with the entire surface of the ledge on the heel body.

10 2. In a shoe heel, the combination of body element one end of which is adapted to be secured detachably to a shoe; the opposite end of the element being formed with a socket surrounded by a ledge having a plane surface; a top lift of resilient material, molded with a convex wearing surface and an opposite surface formed with a projection adapted to engage peripherally with the socket and of less height than the depth thereof, and a surrounding shelf adapted to engage initially with the ledge surface of the body element, linearly near the outline thereof; and

15

20

means for detachably securing the lift to the body element to present a substantially plane wearing surface, and to engage the entire shelf surface with the ledge surface of the heel body.

3. In a shoe heel having a body element one end of which is attachable to a shoe, and formed on its opposite end with a socket surrounded by a ledge having a plane surface, a top lift of resilient material, molded with a convex wearing surface and an opposite surface formed with a projection adapted to engage peripherally with the socket in the body element, and of less height than the depth thereof, and having a surrounding shelf adapted to engage initially with the ledge surface of the body element, linearly near the outline thereof, and adapted to be secured to the body element to engage the entire shelf of the top lift with the ledge of the heel body, to present a substantially plane wearing surface.

THEOLOGUE G. DUSOPOLOS.

25

100

30

105

35

110

40

115

45

120

50

125

55

130

60

135

65

140

70

145

75

150