大中型球磨机合金钢专用衬板及其生产工艺

本发明公开了大中型球磨机合金钢专用衬板，其化学成分（wt%）为：碳0.8％-1.0％，锰0.4％-0.9％，硅0.6％-1.0％，铬6％-8％，钼0.3％-0.55％，镍≥0.3％-0.5％，钒≥0.2％-0.3％，稀土元素≥0.1％-0.3％，硫≤0.04％，磷≤0.04％，其余为铁，和其它少量的不可避免的杂质，其生产工艺包括成型工艺、冶炼工艺和热处理工艺，大中型球磨机合金钢专用衬板使用寿命长，耐磨性高，成本低，易于拆装。
1. 大中型球磨机合金钢专用衬板，其特征在于：它的化学成分（wt%）为：碳 0.8%—1.0%，锰 0.4%—0.9%，硅 0.6%—1.0%，铬 0.3%—0.5%，镍 0.3%—0.5%，钒 0.2%—0.3%，钇基重稀土 0.1%—0.3%，硫 ≤ 0.04%，磷 ≤ 0.04%，其余为铁，和其它少量的不可避免的杂质。

2. 根据权利要求1所述的大中型球磨机合金钢专用衬板，其特征在于：热处理后衬板的金相组织为隐针马氏体 + 弥散分布的 M_{23}C_6 型碳化物 + 少量残余奥氏体。

3. 根据权利要求1所述的大中型球磨机合金钢专用衬板，其特征在于：衬板的机械性能为冲击韧性 ≥ 10J/cm²；

 洛氏硬度 ≥55。

4. 一种大中型球磨机合金钢专用衬板的生产工艺，其特征在于：包括成型工艺、冶炼工艺和热处理工艺；

 所述的成型工艺为 EPC 消失模铸造工艺；

 EPC 消失模铸造工艺为：

 (1)、铸钢车间型砂采用 20—40 目干石英砂，二氧化硅含量大于 98%，不得含有铁豆、微粉、杂质和水分等；

 (2)、采用一维振动台振动造型，在砂箱内填入一定数量的砂子，振动，刮平形成放置 EPS 模型的砂床，砂床厚度要视铸件大小而定；

 (3)、按工艺要求，把 EPS 模型放在砂箱内的砂床上，按铸造工艺要求进行模型组装，并将砂固定，模型放置的方位一定要符合工艺要求；

 (4)、模型固定好后，进行加砂，加砂必须均匀，模型内外应均匀提高砂柱高度，操作者必须注意防止填砂过程中引起模型变形；

 (5)、把砂箱放在振动台上进行振动紧实，使模型得以稳固；

 (6)、干砂造型经振动后，达到紧实效果，为维持紧实后的铸型，砂箱表面要用塑料薄膜密封，打开真空泵，形成负压，准备浇注；

 所述的冶炼工艺为：

 (1)、冶炼条件

采用 1 吨中频感应电炉进行冶炼，

采用酸性炉衬，双渣法，即熔渣后造新渣，进行终脱氧插铝法；

酸性炉衬材料用石英砂作耐火材料，用硼酸作粘结剂：

<table>
<thead>
<tr>
<th>材料名称</th>
<th>炉衬材料</th>
<th>炉颈材料</th>
</tr>
</thead>
<tbody>
<tr>
<td>石英砂粒度，毫米</td>
<td>5-6</td>
<td>0.5</td>
</tr>
<tr>
<td>配比%</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>1-1</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>50</td>
</tr>
</tbody>
</table>
硼酸可采用1.7%—2.0%比例，炉衬材料的配制方法是将石英砂与硼酸干混，不加湿润剂，打结坩埚时应尽量少加水；

通过研究和试验，大中型球磨机合金钢专用衬板的化学成分（wt%）为：碳0.8%—1.0%，锰0.4%—0.9%，硅0.6%—1.0%，铬6%—8%，钼0.3%—0.5%，镍0.3%—0.5%，钒0.2%—0.3%，钇基重稀土0.1%—0.3%，硫≤0.04%，磷≤0.04%，其余为铁，和其它少量的不可避免的杂质；

（3）、炉料的装入方法：

坩埚底部装入一些块度小、紧实的炉料，按其要求相间加入，渣料占炉料的1.5%，加入锰铁，最后再加入剩余的部分废钢，熔清后，打样进行全分析，待分析结果报出后，调整成分，扒渣进行终脱氧，出炉温度控制在1520度—1540度时出钢；

（4）、浇注、清理：

浇注完的衬板经过保温，清除铸件上的金属，修磨后交检，并进行热处理，热处理工艺为：将衬板装进台车式箱式电炉里加热到300—350℃保温1—2小时，再加热到600—700℃保温2—3小时，再加热到930—990℃保温2—3小时，之后进行油淬或空淬，冷却至室温，然后进行回火：把衬板装进箱式电炉里加热到420—480℃保温4—6小时，空冷。
大中型球磨机合金钢专用衬板及其生产工艺

【0001】技术领域
本发明涉及一种适合大中型球磨机的大中型球磨机合金钢专用衬板及其生产工艺。

【0002】背景技术
滚筒式球磨机广泛应用于金属矿山、水泥、电力系统等行业。我国直径在五米左右以上的球磨机衬板，目前仍未用高锰钢制造。高锰钢作为球磨机衬板，其工况条件不能使其充分发挥加工硬化的性能，同时高锰钢塑变能力低，衬板在使用过程中表面产生塑性变形，使衬板之间发生咬合，甚至整体变形，将紧固螺栓拉断，造成维修拆除非常困难。而高铬铸铁衬板存在着成本高，容易碎裂等缺点。

【0003】发明内容
为克服现有技术不足和缺陷之处，本发明提供一种大中型球磨机合金钢专用衬板及其生产工艺，大中型球磨机合金钢专用衬板的使用寿命，耐磨性高，成本低，易于拆装。

【0004】为了实现上述技术问题所提供的技术方案是：
【0005】大中型球磨机合金钢专用衬板的化学成分（wt%）为：碳0.8%—1.0%，锰0.4%—0.9%，硅0.6%—1.0%，铬0.6%—1.0%，钼0.3%—0.55%，镍0.3%—0.5%，钒0.2%—0.3%，钇基重量小于0.1%—0.3%，硫≤0.04%，磷≤0.04%，其余为铁，和其它少量的不可避免的杂质。

【0006】大中型球磨机合金钢专用衬板的生产工艺：包括造型工艺、冶炼工艺和热处理工艺。

【0007】所述的造型工艺为EPC消失模铸造工艺；

【0008】EPC消失模铸造工艺为：

【0009】（1）、铸钢车间型砂采用20—40目干石英砂，二氧化硅含量大于98%，不得含有铁豆、铁粉、杂质和水分等；

【0010】（2）、采用一维振动台振动态型，在砂箱内填入一定数量的砂子，振动，刮平形成放置EPC模型的砂床，砂床厚度要视铸件大小而定；

【0011】（3）、按工艺要求，把EPC模型放在砂箱内的砂床上，按铸造工艺要求进行模型组装，并按砂型固定，模型放置的方位一定要符合工艺要求；

【0012】（4）、模型固定好后，进行加砂，加砂必须均匀，模型内外应均匀提高砂桩高度，操作者必须注意防止填砂过程中引起模型变形。

【0013】（5）、把砂箱放在振动台上进行振动紧实，使模型得以稳固。

【0014】（6）、干砂铸型经振动后，达到紧实效果，为维修紧实后的铸型，砂箱表面要用塑料薄膜密封，打开真空泵，形成负压，准备浇注。

【0015】（二）、冶炼工艺；

【0016】（1）、冶炼条件

【0017】采用1吨中频感应电炉进行冶炼，

【0018】采用酸性炉衬，双渣法，即熔渣后造新渣，进行脱氧脱硫法；

【0019】酸性炉衬材料用石英砂作耐火材料，用硼酸作粘结剂；

【0020】
硼酸可采用1.7%—2.0%比例，炉衬材料的配制方法是将石英砂与硼酸干混，不加滑润剂，打结坩埚时应尽量少加水。

（2）化学成分的设计；

大中型球磨机合金钢专用衬板成分设计原则是，结合我国资源，采用我国富有的稀土元素和市场易购的高碳铬铁和钼铁，本材料具有合金组元不多，合金元素总量不高，易于熔炼，钢的韧性好配合良好的特点。

铬是中铬合金钢基础合金组元素。铬是碳化物形成元素，在钢中形成复合碳化物（FeCr）、Cr3C2，对钢的性能有显著影响，特别是对钢的耐磨性。铬溶于奥氏体，可强化基体且不降低韧性。铬推迟过冷奥氏体转变，提高钢的淬透性。铬在回火时阻碍或减缓碳化物的析出和聚集，使碳化物保留在较大的分散度，提高钢的强度和硬度，并使钢获得最佳的耐磨性。钢中加入铬显著改善钢的抗氧化性，增加钢的抗腐蚀能力，有益于中大型球磨机条件下工作的易损件。经过试验本材料的铬含量选择在6%—8%。

镍在钢中能提高钢的强度而不显著降低钢的塑性，为了提高钢对一些酸类有良好的耐腐蚀性，为了进一步提高钢的淬透性。所以本材料的镍含量选择0.3%—0.5%。

钒在钢中与碳、氮、氧都有较强的亲合性，含量较高时，钢会在凝固过程中形成V2C3、氮化物和氧化物，从而细化晶粒，提高钢的抗蠕变能力。本材料中元素钒选择0.2%—0.3%。

马氏体或回火马氏体组织的耐热性，近似地取决于碳含量。在相同的硬度下，较高含碳量的钢具有较高的耐热性。研究发现耐热性与含碳量有线性关系。选用碳含量0.5%、0.6%、0.9%、1.0%研究其对钢的力学性能和耐热性的影响，碳元素含量在0.8%—1.0%。

提高淬透性的重要元素是钼，钢中加入适量的钼，不仅提高钢的淬透性，而且提高回火稳定性，细化晶粒，改善碳化物的形态和分布，进一步提高钢的强度和耐磨性。加入钼还可以消除或减弱钢的回火脆性。钢中钼、青铜同时加入还可强烈抑制过冷奥氏体向珠光体转变，使钢具有较高的韧性。钼属贵重元素，本材料加入量选择0.3%—0.55%。

稀土采用钇基重稀土。钇基重稀土元素的加入，对合金钢有净化、变质和促进合金化的作用。钇基重稀土在合金钢中起到固溶强化作用，提高合金钢的硬度，并且在细小弥散分布的合金碳化物的质点起到弥散强化作用。通过稀土钇对合金钢进行复合处理，能优化热处理工艺，使合金钢在工作中磨损明显降低。实践证明，与铬、镧等轻稀土相比，钇基重稀土更为明显地改善合金钢的基体组织及碳化物的形态，使铸件的硬度、冲击韧性都有较
大的提高。本材料加入量选择 0.1%~0.3%。

【0030】通过研究和试验，大中型球磨机合金钢专用衬板的化学成分（wt%）如下：

【0031】碳 0.8%~1.0%，锰 0.4%~0.9%，硅 0.6%~1.0%，铬 6%~8%，钼 0.3%~0.55%，镍
0.3%~0.5%，钒 0.2%~0.3%，钇基稀土 0.1%~0.3%，硫 ≤ 0.04%，磷 ≤ 0.04%，其余为铁，
和其它少量的不可避免的杂质。

【0032】（3）、炉料的装入方法：

【0033】坩埚底部装入一些块度小，紧实的炉料，按其要求相继加入，渣料占炉料的 1.5%。
加入锰铁，最后再加入剩余的部分废钢，熔清后，打样进行全分析，待分析结果报出后，调整
成分，扒渣进行终脱氧，出炉温度控制在 1520 度~1540 度时出钢。

【0034】（4）、浇注、清理：

【0035】浇注完的衬板经过保温，清除铸件上的余砂，修磨后交检，并进行热处理，热处理
工艺为：将衬板装进台车式箱式电炉里加热到 300~350°C 保温 1~2 小时，再加热到 600~
700°C 保温 2~3 小时，再加热到 930~990°C 保温 2~3 小时，之后进行浇注或空冷。冷却至
室温，然后进行回火，把衬板装进箱式电炉里加热到 420~480°C 保温 4~6 小时，空冷；

【0036】热处理后衬板的金相组织：

【0037】暗针马氏体 + 弥散分布的 M_{23}C_6 型碳化物 + 少量残余奥氏体。

【0038】衬板的机械性能：冲击韧性 ≥ 10J/cm² 洛氏硬度 HRC 55。

【0039】本发明的有益效果是：国内外研究表明，钢在硬的马氏体基体上分布着硬质点的，
8(Cr)M,6 型的碳化物的显微组织具有最卓越的耐磨性。我们研制的大型中型球磨机合金钢
专用衬板经淬火、回火热处理，可达到这种类型的组织和耐磨性的要求。

【0040】具体实施方式 一种大中型球磨机合金钢专用衬板的生产流程为：

【0041】一、原材料及设备：

【0042】熔炼设备：1 吨连续感应电炉

【0043】热处理设备：156KW 台车式箱式电炉，55KW 井式低温回火炉

【0044】造壳及浇注设备：预发机，蒸包，振动台，真空泵

【0045】原材料：合金材料（铬铁、锰铁、钼铁、铝）、废铜、辅助材料、聚苯乙烯珠粒。

【0046】二、工艺过程及工艺参数：

【0047】（一）、铸造工艺：

【0048】采用 EPC 消失模铸造工艺。

【0049】（1）、铸前车间型砂采用 20~40 目干石英砂，二氧化硅含量大于 98%，不得含有铁
豆、微粉、杂质和水分等；

【0050】（2）、采用一维振动台振动造型，在砂箱内填入一定数量的砂子，振动，刮平形成放
置 EPS 模型的砂床，砂床厚度要视铸件大小而定；

【0051】（3）、按工艺要求，把 EPS 模型放在砂箱内的砂床上，按铸造工艺要求进行模型组
装，并培砂固定，模型放置的方位一定要符合工艺要求；

【0052】（4）、模型固定好后，进行加砂，加砂必须均匀，模型内外均均匀提高模型高度，操
作者必须注意防止填砂过程中引起模型变形。

【0053】（5）、把砂箱放在振动台上进行振动紧实，使模型得以稳固。

【0054】（6）、干砂型经振动后，达到紧实效果，为维持紧实后的铸型，砂箱表面要用塑料
薄膜密封，打开真空泵，形成负压，准备浇注。

(1) 冶炼条件
采用1吨中频感应电炉，型号为6G8—10，630KW，进行冶炼；
采用酸性耐火材料，双渣法，即熔清后造新渣，进行脱硫氧并加铝。

酸性耐火材料用石英粉作耐火材料，用硼酸作粘结剂；

<table>
<thead>
<tr>
<th>材料名称</th>
<th>炉衬材料</th>
<th>炉衬材料</th>
</tr>
</thead>
<tbody>
<tr>
<td>石英砂粒度，毫米</td>
<td>5—6</td>
<td>25</td>
</tr>
<tr>
<td>配比%</td>
<td>2—3</td>
<td>20</td>
</tr>
</tbody>
</table>

硼酸可采用1.7%—2.0%比例，炉衬材料的配制方法是将石英砂与硼酸干混，不加湿润剂，打结坩埚时应尽量少加水。

(2) 化学成分设计
耐磨合金钢衬板的合金成分设计原则是，结合耐温性，采用我国富有的稀土元素和市场易购的高碳铬铁和钼铁，本材料具有合金组元不多，合金元素总含量不高，易于冶炼，钢的强韧性配合良好的特点。

铬是中铬合金钢基体合金组元。铬是碳化物形成元素，在钢中形成复合碳化物（FeCr），Cr(Cr)_{n}，对钢的性能有显著影响，特别是对钢的耐磨性。铬含量过低，可强化钢中铝和碳化物的析出和聚集，使碳化物保持较大的分散度，提高钢的强度和硬度。并使钢获得最佳的耐磨性。钢中加入铬显著改善钢的抗氧化作用，增加钢的抗腐蚀能力，有益于大中型球磨机条件下工作的易损件。经过试验本材料的铬含量选择在6%—8%。

镍在钢中能提高钢的强度而不显著降低钢的塑性，为了提高钢对一些酸类有良好的耐腐蚀能力，为了进一步提高钢的淬透性。所以本材料的镍含量选择0.3%—0.5%。

钒在钢中与碳、氮、氧有较强的亲合力，含适量钒的钢，会在凝固过程中形成V_{5}C_{3}、氮化物和氧化物，从而细化晶粒，提高钢的抗蠕变能力。本材料中元素钒选择0.2%—0.3%。

马氏体或回火马氏体组织的耐磨性，近似地取决于碳含量。在相同的硬度下，较高含碳量的钢具有较高的耐磨性。研究发现耐磨性与含碳量有线性关系。选用碳含量0.5%、0.6%、0.9%、1.0%研究其对钢的力学性能和耐磨性的影响，碳元素选择在0.8%—1.0%。

提高淬透性的首选元素是钼，钢中加入适量的钼，不仅提高钢的淬透性，而且提高回火稳定性，细化晶粒，改善碳化物的形态和分布，从而进一步提高钢的强度和耐磨性。加
入铌还可以消除或减弱钢的回火脆性。钢中铬、铌同时加入还可强烈抑制过冷奥氏体向珠光体转变，使钢具有高的韧性。铌属贵重金属，本材料加入量选择0.3%—0.55%。

[0069] 稀土采用铌基重稀土。铌基重稀土元素的加入，对合金钢有净化、变质和促进合金化的作用。铌基重稀土在合金钢中起到固溶强化作用，提高合金钢的硬度，并且在细小弥散分布的合金碳化物的质点起到弥散强化作用。通过稀土铌对合金钢进行复合处理，能优化热处理工艺，使合金钢在工作中磨耗明显降低。实践证明，与铁、铌等轻稀土相比，铌基重稀土更为明显地改善合金钢的基体组织及碳化物的形态，使铸件的硬度、冲击韧性都有较大的提高。本材料加入量选择0.1%—0.3%。

[0070] 通过研究和试验，大中型球磨机合金钢专用衬板的化学成分(wt%)如下：

[0071] 碳0.8%—1.0%，锰0.4%—0.9%，硅0.6%—1.0%，铬6%—8%，钼0.3%—0.55%，镍0.3%—0.5%，钒0.2%—0.3%，铌基重稀土0.1%—0.3%，硫≤0.04%，磷≤0.04%其余为铁，和其它少量的不可避免的杂质。

[0072] (3)、炉料的装入方法：

[0073] 坩埚底部装入一些块度小，紧实的炉料，按其要求相继加入，料渣占炉料的1.5%，加入锰铁，最后再加入剩余的部分废钢，熔清后，打样进行全分析。待分析结果报出后，调整成分，扒渣进行终脱氧，出炉温度控制在1520度—1540度时出钢。

[0074] (4)、浇注、清理：

[0075] 浇注完的衬板经过保温，清除铸件上的余砂，修磨后交检，并进行热处理，热处理工艺为：将衬板装进台车式箱式电炉里加热到300—350℃保温1—2小时，再加热到600—700℃保温2—3小时，再加热到930—990℃保温2—3小时，之后进行油淬或空淬。冷却至室温。然后进行回火：把衬板装进箱式电炉里加热到420—480℃保温4—6小时，空冷；

[0076] (5)、热处理后衬板的金相组织：

[0077] 隐针马氏体+弥散分布的M₅C₃型碳化物+少量残余奥氏体。

[0078] 衬板的机械性能：冲击韧性：≥10J/cm²洛氏硬度：＞55°。