(54) Title: ENCODER, DECODER, SYSTEM AND METHOD EMPLOYING A RESIDUAL CONCEPT FOR PARAMETRIC AUDIO OBJECT CODING

(57) Abstract: A decoder is provided. The decoder comprises a parametric decoding unit (110) for generating a plurality of first estimated audio object signals by upmixing three or more downmix signals, wherein the three or more downmix signals encode a plurality of original audio object signals, wherein the parametric decoding unit (110) is configured to upmix the three or more downmix signals depending on parametric side information indicating information on the plurality of original audio object signals. Moreover, the decoder comprises a residual processing unit (120) for generating a plurality of second estimated audio object signals by modifying one or more of the first estimated audio object signals, wherein the residual processing unit (120) is configured to modify said one or more of the first estimated audio object signals depending on one or more residual signals.
Encoder, Decoder, System and Method employing a
Residual Concept for Parametric Audio Object Coding

Description

The present invention relates to audio signal encoding, decoding and processing, and, in particular, to an encoder, a decoder and a method, which employ residual concepts for parametric audio object coding.

Recently, parametric techniques for the bitrate-efficient transmission/storage of audio scenes comprising multiple audio objects have been proposed in the field of audio coding (see, e.g., [BCC], [JSC], [SAOC], [SAOC1] and [SAOC2]) and informed source separation (see, e.g., [ISS1], [ISS2], [ISS3], [ISS4], [ISS5] and [ISS6]). These techniques aim at reconstructing a desired output audio scene or a desired audio source object on the basis of additional side information describing the transmitted and/or stored audio scene and/or the audio source objects in the audio scene.

Fig. 5 depicts a SAOC (SAOC = Spatial Audio Object Coding) system overview illustrating the principle of such parametric systems using the example of MPEG SAOC (MPEG = Moving Picture Experts Group) (see, e.g., [SAOC], [SAOC1] and [SAOC2]).

The general processing is carried out in a time/frequency selective way and can be described as follows:

The SAOC encoder 510, in particular, a side information estimator 530 of the SAOC encoder 510, extracts the side information describing the characteristics of the maximum 32 input audio object signals s1...s32 (in its simplest form the relations of the object powers of the audio object signals). A mixer 520 of the SAOC encoder 510 downmixes the audio object signals s1...s32 to obtain a mono or 2-channel signal mixture (i.e., one or two downmix signals) using the downmix gain factors d1,1 ... d32,2.

The downmix signal(s) and side information are transmitted or stored. To this end, the downmix audio signal(s) may be encoded using an audio encoder 540. The audio encoder 540 may be a well-known perceptual audio encoder, for example, an MPEG-1 Layer II or III (aka .mp3) audio encoder, an MPEG Advanced Audio Coding (AAC) audio encoder, etc.
On a receiver side, a corresponding audio decoder 550, e.g., a perceptual audio decoder, such as an MPEG-1 Layer II or III (aka .mp3) audio decoder, an MPEG Advanced Audio Coding (AAC) audio decoder, etc. decodes the encoded downmix audio signal(s).

An SAOC decoder 560 conceptually attempts to restore the original (audio) object signals ("object separation") from the one or two downmix signals using the transmitted and/or stored side information, e.g., by employing a virtual object separator 570. These approximated (audio) object signals $s_{i,t}\ldots s_{3,t}$ are then mixed by a renderer 580 of the SAOC decoder 560 into a target scene represented by a maximum of 6 audio output channels $y_{i,t}\ldots y_{6,t}$ using a rendering matrix (described by the coefficients $r_{1,1} \ldots r_{3,6}$). The output can be a single-channel, a 2-channel stereo or a 5.1 multi-channel target scene (e.g., one, two or six audio output signals).

Due to the underlying limitations of the parametric estimation of the audio objects at the decoding side; in most cases, the desired target output scene cannot be perfectly generated. At extreme operating points (for example, solo playback of one audio object), often, the processing can no longer achieve an adequate subjective sound. To this end, the SAOC scheme has been extended by introducing Enhanced Audio Objects (EAOs) (see, e.g., [Dfx], see, e.g., moreover, [SAOC]). Audio objects that are encoded as EAOs exhibit an increased separation capability from the other (regular) non-Enhanced Audio Objects (non-EAOs) encoded in the same downmix signal at the expense of an increased side information rate. The EAO concept considers for each EAO the prediction error (residual signal) of the parametric model.

Fig. 6 depicts residual estimation at the encoder side, schematically illustrating the computation of the residual signals for each EAO. In the SAOC encoder, residual signals (up to 4 EAOs) are estimated using the extracted Parametric Side Information (PSI) and the original source signals, waveform coded and included into the SAOC bitstream as non-parametric Residual Side Information (RSI). In more detail, a PSI SAOC Decoder for EAOs 610 generates estimated audio object signals $s_{i,t,EAO}$ from a downmix X. An RSI Generation Unit 620 then generates up to four residual signals $s_{i,t,RSI\{1,2,\ldots,4\}}$ based on the generated estimated audio object signals $s_{i,t,EAO}$.

Fig. 7 depicts a basic structure of the SAOC decoder with EAO support, illustrating a conceptual overview of the EAO processing scheme integrated into the SAOC decoding/transcoding chain (transcoding = data conversion from one encoding to another encoding).
Downmix signal oriented parameters, namely, Channel Prediction Coefficients (CPCs) are derived from the Parametric Side Info (PSI) by a CPC Estimation unit 710.

The CPCs together with the downmix signal are fed into a Two-to-N-box (TTN-box) 720. The TTN-box 720 conceptually tries to estimate the EAOs \(s_{\text{est, EAO}} \) from the transmitted downmix signal \(X \) and to provide an estimated non-EAO downmix \(X_{\text{est, nonEAO}} \) consisting of only non-EAOs.

The transmitted/stored (and decoded) residual signals \(s_{\text{res, RSI}} \) are used by a RSI processing unit 730 to enhance the estimates of the EAOs \(s_{\text{est, EAO}} \) and the corresponding downmix of only non-EAO objects \(X_{\text{est, nonEAO}} \).

According to the state of the art, in the next step, the RSI processing unit 730 feeds the non-EAO downmix signal \(X_{\text{est, nonEAO}} \) into a SAOC downmix processor (a PSI decoding unit) 740 to estimate the non-EAO objects \(s_{\text{est, nonEAO}} \). The PSI decoding unit 740 passes the estimated non-EAO audio objects \(s_{\text{est, nonEAO}} \) to the rendering unit 750. Moreover, the RSI processing unit directly feeds the enhanced EAOs \(\hat{s}_{\text{est, EAO}} \) into the rendering unit 750. The rendering unit 750 then generates mono or stereo output signals based on the estimated non-EAO audio objects \(s_{\text{est, nonEAO}} \) and based on the enhanced EAOs \(\hat{s}_{\text{est, EAO}} \).

The state of the art system has the following drawbacks:

Before the residual signals are applied to calculate EAOs in the SAOC decoder, downmix-oriented CPCs have to be computed from the transmitted/stored parametric side information.

All downmix signals have to be processed within the SAOC residual concept regardless of their usefulness for the EAO processing.

The SAOC residual concept can only be used with single- or two-channel signal mixtures due to the limitations of the TTN-box. The EAO residual concept cannot be used in combination with multi-channel mixtures (e.g., 5.1 multi-channel mixtures).

Furthermore, due to the corresponding computational complexity of their estimation, the SAOC EAO processing sets limitations on the number of EAOs (i.e., up to 4).
Because of these limitations, the SAOC EAO residual handling concept cannot be applied to multi-channel (e.g., 5.1) downmix signals or used for more than 4 EAOs.

It would therefore be highly appreciated, if improved concepts for audio signal encoding, audio signal decoding and audio signal processing would be provided.

An object of the present invention is to provide improved concepts for audio signal encoding, audio signal decoding and audio signal processing. The object of the present invention is solved by a decoder according to claim 1, by a residual signal generator according to claim 11, by an encoder according to claim 19, by a system according to claim 21, by an encoded signal according to claim 22, by a method according to claim 23, by a method according to claim 24 and by a computer program according to claim 25.

A decoder is provided. The decoder comprises a parametric decoding unit for generating a plurality of first estimated audio object signals by upmixing three or more downmix signals, wherein the three or more downmix signals encode a plurality of original audio object signals, wherein the parametric decoding unit is configured to upmix the three or more downmix signals depending on parametric side information indicating information on the plurality of original audio object signals. Moreover, the decoder comprises a residual processing unit for generating a plurality of second estimated audio object signals by modifying one or more of the first estimated audio object signals, wherein the residual processing unit is configured to modify said one or more of the first estimated audio object signals depending on one or more residual signals.

Embodiment present an object oriented residual concept which improves the perceived quality of the EAOs. Unlike the state of the art system, the presented concept is neither restricted to the number of downmix signals nor to the number of EAOs. Two methods for deriving object related residual signals are presented. A cascaded concept with which the energy of the residual signal is iteratively reduced with increasing number of EAOs at the cost of higher computational complexity, and a second concept with less computational complexity in which all residuals are estimated simultaneously.

Furthermore, embodiments provide an improved concept of applying object oriented residual signals at the decoder side, and concepts with reduced complexity designed for application scenarios in which only the EAOs are manipulated at the decoder side, or the modification of the non-EAOs is restricted to a gain scaling.
According to an embodiment, the residual processing unit may be configured to modify the said one or more of the first estimated audio object signals depending on at least three residual signals. The decoder is adapted to generate at least three audio output channels based on the plurality of second estimated audio object signals.

According to an embodiment, the decoder further may comprise a downmix modification unit. The residual processing unit may determine one or more audio object signals of the plurality of second estimated audio object signals. The downmix modification unit may be adapted to remove the determined one or more second estimated audio object signals from the three or more downmix signals to obtain three or more modified downmix signals. The parametric decoding unit may be configured to determine one or more audio object signals of the first estimated audio object signals based on the three or more modified downmix signals.

In a particular embodiment, the downmix modification unit may, for example, be adapted to apply the formula \(\tilde{X}_{m \in SAO} = X - DZ_{m}^* S_{m} \).

Moreover, the decoder may be adapted to conduct two or more iteration steps. For each iteration step, the parametric decoding unit may be adapted to determine exactly one audio object signal of the plurality of first estimated audio object signals. Moreover, for said iteration step, the residual processing unit may be adapted to determine exactly one audio object signal of the plurality of second estimated audio object signals by modifying said audio object signal of the plurality of first estimated audio object signals. Furthermore, for said iteration step, the downmix modification unit may be adapted to remove said audio object signal of the plurality of second estimated audio object signals from the three or more downmix signals to modify the three or more downmix signals. In the next iteration step following said iteration step, the parametric decoding unit may be adapted to determine exactly one audio object signal of the plurality of first estimated audio object signals based on the three or more downmix signals which have been modified.

In an embodiment, each of the one or more residual signals may indicate a difference between one of the plurality of original audio object signals and one of the one or more first estimated audio object signals.

According to an embodiment, wherein the residual processing unit may be adapted to generate the plurality of second estimated audio object signals by modifying five or more of the first estimated audio object signals, wherein the residual processing unit may be
configured to modify said five or more of the first estimated audio object signals depending on five or more residual signals.

In another embodiment, the decoder may be configured to generate seven or more audio output channels based on the plurality of second estimated audio object signals.

According to a further embodiment, the decoder may be adapted to not determine Channel Prediction Coefficients to determine the plurality of second estimated audio object signals. Embodiments provide concepts so that the calculation of the Channel Prediction Coefficients that have so far been necessary for decoding in state-of-the-art SAOC, is no longer necessary for decoding.

In a further embodiment, the decoder may be an SAOC decoder.

Moreover, a residual signal generator is provided. The residual signal generator comprises a parametric decoding unit for generating a plurality of estimated audio object signals by upmixing three or more downmix signals, wherein the three or more downmix signals encode a plurality of original audio object signals, wherein the parametric decoding unit is configured to upmix the three or more downmix signals depending on parametric side information indicating information on the plurality of original audio object signals. Moreover, the residual signal generator comprises a residual estimation unit for generating a plurality of residual signals based on the plurality of original audio object signals and based on the plurality of estimated audio object signals, such that each of the plurality of residual signals is a difference signal indicating a difference between one of the plurality of original audio object signals and one of the plurality of estimated audio object signals.

In an embodiment, the residual estimation unit may be adapted to generate at least five residual signals based on at least five original audio object signals of the plurality of original audio object signals and based on at least five estimated audio object signals of the plurality of estimated audio object signals.

In an embodiment, the residual signal generator may further comprise a downmix modification unit being adapted to modify the three or more downmix signals to obtain three or more modified downmix signals. The parametric decoding unit may be configured to determine one or more audio object signals of the first estimated audio object signals based on the three or more modified downmix signals.
In an embodiment, the downmix modification unit may, for example, be configured to modify the three or more original downmix signals to obtain the three or more modified downmix signals, by removing one or more of the plurality of original audio object signals from the three or more original downmix signals.

In another embodiment, the downmix modification unit may, for example, be configured to modify the three or more original downmix signals to obtain the three or more modified downmix signals by generating one or more modified audio object signals based on one or more of the estimated audio object signals and based on one or more of the residual signals, and by removing the one or more modified audio object signals from the three or more original downmix signals. E.g. each of the one or more modified audio object signals may be generated by the downmix modification unit by modifying one of the estimated audio object signals, wherein the downmix modification unit may be adapted to modify said estimated audio object signal depending on one of the one or more residual signals.

In both of the embodiments described above, the downmix modification unit may, for example, be adapted to apply the formula \(\hat{X} = X - DZ_{eoa}^* S_{emo} \), wherein \(X \) is the downmix to be modified, wherein \(D \) indicates downmixing information, wherein \(S_{emo} \) comprises the original audio object signals to be removed or the modified audio object signals, wherein \(Z_{eoa}^* \) indicates the locations of the signals to be removed, and wherein \(\hat{X} \) is the modified downmix signal. E.g., a location (position) of an audio object signal corresponds to the location (position) of its audio object in the list of all objects.

According to an embodiment, the residual signal generator may be adapted to conduct two or more iteration steps. For each iteration step, the parametric decoding unit may be adapted to determine exactly one audio object signal of the plurality of estimated audio object signals. Moreover, for said iteration step, the residual estimation unit may be adapted to determine exactly one residual signal of the plurality of residual signals by modifying said audio object signal of the plurality of estimated audio object signals.

Furthermore, for said iteration step, the downmix modification unit may be adapted to modify the three or more downmix signals. In the next iteration step following said iteration step, the parametric decoding unit may be adapted to determine exactly one audio object signal of the plurality of estimated audio object signals based on the three or more downmix signals which have been modified.

In an embodiment, an encoder for encoding a plurality of original audio object signals by generating three or more downmix signals, by generating parametric side information and
by generating a plurality of residual signals is provided. The encoder comprises a downmix generator for providing the three or more downmix signals indicating a downmix of the plurality of original audio object signals. Moreover, the encoder comprises a parametric side information estimator for generating the parametric side information indicating information on the plurality of original audio object signals, to obtain the parametric side information. Furthermore, the encoder comprises a residual signal generator according to one of the above-described embodiments. The parametric decoding unit of the residual signal generator is adapted to generate a plurality of estimated audio object signals by upmixing the three or more downmix signals provided by the downmix generator, wherein the downmix signals encode the plurality of original audio object signals. The parametric decoding unit is configured to upmix the three or more downmix signals depending on the parametric side information generated by the parametric side information estimator. The residual estimation unit of the residual signal generator is adapted to generate the plurality of residual signals based on the plurality of original audio object signals and based on the plurality of estimated audio object signals, such that each of the plurality of residual signals indicates a difference between one of the plurality of original audio object signals and one of the plurality of estimated audio object signals.

In an embodiment, the encoder may be an SAOC encoder.

Moreover, a system is provided. The system comprises an encoder according to one of the above-described embodiments for encoding a plurality of original audio object signals by generating three or more downmix signals, by generating parametric side information and by generating a plurality of residual signals. Furthermore, the system comprises a decoder according to one of the above-described embodiments, wherein the decoder is configured to generate a plurality of audio output channels based on the three or more downmix signals being generated by the encoder, based on the parametric side information being generated by the encoder and based on the plurality of residual signals being generated by the encoder.

Furthermore, an encoded audio signal is provided. The encoded audio signal comprises three or more downmix signals, parametric side information and a plurality of residual signals. The three or more downmix signals are a downmix of a plurality of original audio object signals. The parametric side information comprises parameters indicating side information on the plurality of original audio object signals. Each of the plurality of residual signals is a difference signal indicating a difference between one of the plurality of original audio signals and one of a plurality of estimated audio object signals.
Moreover, a method is provided. The method comprises:

- Generating a plurality of first estimated audio object signals by upmixing three or more downmix signals, wherein the three or more downmix signals encode a plurality of original audio object signals, wherein generating the plurality of first estimated audio object signals comprises upmixing the three or more downmix signals depending on parametric side information indicating information on the plurality of original audio object signals. And:

- Generating a plurality of second estimated audio object signals by modifying one or more of the first estimated audio object signals, wherein generating a plurality of second estimated audio object signals comprises modifying said one or more of the first estimated audio object signals depending on one or more residual signals.

Furthermore, another method is provided. Said method comprises:

- Generating a plurality of estimated audio object signals by upmixing three or more downmix signals, wherein the three or more downmix signals encode a plurality of original audio object signals, wherein generating the plurality of estimated audio object signals comprises upmixing the three or more downmix signals depending on parametric side information indicating information on the plurality of original audio object signals. And:

- Generating a plurality of residual signals based on the plurality of original audio object signals and based on the plurality of estimated audio object signals, such that each of the plurality of residual signals is a difference signal indicating a difference between one of the plurality of original audio object signals and one of the plurality of estimated audio object signals.

Moreover, a computer program for implementing one of the above-described methods when being executed on a computer or signal processor is provided.

In the following, embodiments of the present invention are described in more detail with reference to the figures, in which:

Fig. 1a illustrates a decoder according to an embodiment,
Fig. 1b illustrates a decoder according to another embodiment, wherein the decoder further comprises a renderer,

Fig. 2a illustrates a residual signal generator according to an embodiment,

Fig. 2b illustrates an encoder according to an embodiment,

Fig. 3 illustrates a system according to an embodiment,

Fig. 4 illustrates an encoded audio signal according to an embodiment,

Fig. 5 depicts a SAOC system overview illustrating the principle of such parametric systems using the example of MPEG SAOC,

Fig. 6 depicts residual estimation at the encoder side, schematically illustrating the computation of the residual signals for each EAO,

Fig. 7 depicts a basic structure of the SAOC decoder with EAO support, illustrating a conceptual overview of the EAO processing scheme integrated into the SAOC decoding/transcoding chain,

Fig. 8 depicts a conceptual overview of the presented parametric and residual based audio object coding scheme according to an embodiment,

Fig. 9 depicts a concept for jointly estimating the residual) signal for each EAO signal at the encoder side according to an embodiment,

Fig. 10 illustrates a concept of joint residual decoding at the decoder side according to an embodiment,

Fig. 11 illustrates a residual signal generator according to an embodiment, wherein the residual signal generator further comprises a downmix modification unit,

Fig. 12 illustrates a decoder according to an embodiment, wherein the decoder further comprises a downmix modification unit,
Fig. 13 illustrates a concept of computing the residual components in a cascaded way at an encoder side according to an embodiment,

Fig. 14 illustrates the cascaded "RSI Decoding" unit employed in combination with the cascaded residual computation at the decoder side according to an embodiment,

Fig. 15 illustrates a residual signal generator according to an embodiment employing the cascaded concept, and

Fig. 16 illustrates a decoder according to an embodiment, employing a cascaded concept.

Fig. 2a illustrates a residual signal generator 200 according to an embodiment.

The residual signal generator 200 comprises a parametric decoding unit 230 for generating a plurality of estimated audio object signals (Estimated Audio Object Signal #1, ... Estimated Audio Object Signal #M) by upmixing three or more downmix signals (Downmix Signal #1, Downmix Signal #2, Downmix Signal #3, ..., Downmix Signal #N). The three or more downmix signals (Downmix Signal #1, Downmix Signal #2, Downmix Signal #3, ..., Downmix Signal #N) encode a plurality of original audio object signals (Original Audio Object Signal #1, ..., Original Audio Object Signal #M). The parametric decoding unit 230 is configured to upmix the three or more downmix signals (Downmix Signal #1, Downmix Signal #2, Downmix Signal #3, ..., Downmix Signal #N) depending on parametric side information indicating information on the plurality of original audio object signals (Original Audio Object Signal #1, ..., Original Audio Object Signal #M).

Moreover, the residual signal generator 200 comprises a residual estimation unit 240 for generating a plurality of residual signals (Residual Signal #1, ..., Residual Signal #M) based on the plurality of original audio object signals (Original Audio Object Signal #1, ..., Original Audio Object Signal #M) and based on the plurality of estimated audio object signals (Estimated Audio Object Signal #1, ... Estimated Audio Object Signal #M), such that each of the plurality of residual signals (Residual Signal #1, ..., Residual Signal #M) is a difference signal indicating a difference between one of the plurality of original audio object signals (Original Audio Object Signal #1, ..., Original Audio Object Signal #M) and one of the plurality of estimated audio object signals (Estimated Audio Object Signal #1, ... Estimated Audio Object Signal #M).
The encoder according to the above-described embodiment overcomes the SAOC restrictions (see [SAOC]) of the state of the art.

Present SAOC systems conduct downmixing by employing one or more two-to-one-boxes or one or more three-to-to boxes. Inter alia, because of these underlying restrictions, present SAOC systems can downmix audio object signals to at most two downmix channels / two downmix signals.

Concepts for residual signal generators and for encoders are provided, which allow to overcome the restrictions of SAOC so that Audio Object Coding is now advantageous for transmission systems which employ more than two transmission channels.

In an embodiment, the residual estimation unit 240 is adapted to generate at least five residual signals based on at least five original audio object signals of the plurality of original audio object signals and based on at least five estimated audio object signals of the plurality of estimated audio object signals.

Fig. 2b illustrates an encoder according to an embodiment. The encoder of Fig. 2b comprises a residual signal generator 200.

Moreover, the encoder comprises a downmix generator 210 for providing the three or more downmix signals (Downmix Signal #1, Downmix Signal #2, Downmix Signal #3, ..., Downmix Signal #N) indicating a downmix of the plurality of original audio object signals (Original Audio Object Signal #1, ..., Original Audio Object Signal #M, further Original Audio Object Signal(s)).

Regarding the Original Audio Object Signal #1, ..., Original Audio Object Signal #M, the residual estimation unit 240 generates a residual signal (Residual Signal #1, ..., Residual Signal #M). Thus, Original Audio Object Signal #1, ..., Original Audio Object Signal #M refer to Enhanced Audio Objects (EAOs).

However, as can be seen in Fig. 2b, further original audio object signal(s) may optionally exist, which are downmixed, but for which no residual signals will be generated. These further original audio object signal(s) refer thus to Non-Enhanced Audio Objects (Non-EAOs).
The encoder of Fig. 2b further comprises a parametric side information estimator 220 for generating the parametric side information indicating information on the plurality of original audio object signals (Original Audio Object Signal #1, ..., Original Audio Object Signal #M, further Original Audio Object Signal(s)), to obtain the parametric side information. In the embodiment of Fig. 2b, the parametric side information estimator also takes original audio object signals (further Original Audio Object Signal(s)) referring to non-EAOs into account.

In an embodiment, the number of original audio object signals may be equal to the number of residual signals, e.g., when all original audio object signals refer to EAOs.

In other embodiments, however, the number of residual signals may differ from the number of original audio object signals and/or may differ from the number of estimated audio object signals, e.g., when original audio objects signals refer to Non-EAOs.

In some embodiments, the encoder is a SAOC encoder.

Fig. 1a illustrates a decoder according to an embodiment.

The decoder comprises a parametric decoding unit 110 for generating a plurality of first estimated audio object signals (1st Estimated Audio Object Signal #1, ..., 1st Estimated Audio Object Signal #M) by upmixing three or more downmix signals (Downmix Signal #1, Downmix Signal #2, Downmix Signal #3, ..., Downmix Signal #N), wherein the three or more downmix signals (Downmix Signal #1, Downmix Signal #2, Downmix Signal #3, ..., Downmix Signal #N) encode a plurality of original audio object signals, wherein the parametric decoding unit 110 is configured to upmix the three or more downmix signals (Downmix Signal #1, Downmix Signal #2, Downmix Signal #3, ..., Downmix Signal #N) depending on parametric side information indicating information on the plurality of original audio object signals.

Moreover, the decoder comprises a residual processing unit 120 for generating a plurality of second estimated audio object signals (2nd Estimated Audio Object Signal #1, ..., 2nd Estimated Audio Object Signal #M) by modifying one or more of the first estimated audio object signals (1st Estimated Audio Object Signal #1, ..., 1st Estimated Audio Object Signal #M), wherein the residual processing unit 120 is configured to modify said one or more of the first estimated audio object signals (1st Estimated Audio Object Signal #1, ..., 1st
Estimated Audio Object Signal #M) depending on one or more residual signals (Residual Signal #1, …, Residual Signal #M).

The decoder according to the above-described embodiment overcomes the SAOC restrictions (see [SAOC]) of the state of the art.

Furthermore, present SAOC systems conduct upmixing by employing one or more one-to-two-boxes (OTT boxes) or one or more two-to-three-boxes (TTT boxes). Inter alia, because of these restrictions, audio object signals encoded with more than two downmix signals/downmix channels cannot be upmixed by state-of-the-art SAOC decoders.

Concepts for decoders are provided, which allow to overcome the restrictions of SAOC so that Audio Object Coding is now advantageous for transmission systems which employ more than two transmission channels.

Fig. 1b illustrates a decoder according to another embodiment, wherein the decoder further comprises a rendering unit 130 for generating the plurality of audio output channels (Audio Output Channel #1, …, Audio Output Channel #R) from the second estimated audio object signals (2nd Estimated Audio Object Signal #1, … 2nd Estimated Audio Object Signal #M) depending on rendering information. For example, the rendering information may be a rendering matrix and/or the coefficients of a rendering matrix and the rendering unit 130 may be configured to apply the rendering matrix on the second estimated audio object signals (2nd Estimated Audio Object Signal #1, … 2nd Estimated Audio Object Signal #M) to obtain the plurality of audio output channels (Audio Output Channel #1, …, Audio Output Channel #R).

According to an embodiment, the residual processing unit 120 is configured to modify said one or more of the first estimated audio object signals depending on at least three residual signals. The decoder is adapted to generate the at least three audio output channels based on the plurality of second estimated audio object signals.

In another embodiment, each of the one or more residual signals indicates a difference between one of the plurality of original audio object signals and one of the one or more first estimated audio object signals.

According to an embodiment, the residual processing unit 120 is adapted to generate the plurality of second estimated audio object signals by modifying five or more of the first estimated audio object signals. The residual processing unit 120 is adapted to modify said
five or more of the first estimated audio object signals depending on five or more residual
signals.

In another embodiment, the decoder is configured to generate seven or more audio output
channels based on the plurality of second estimated audio object signals.

According to a further embodiment, the decoder is adapted to not determine Channel
Prediction Coefficients to determine the plurality of second estimated audio object signals.

In a further embodiment, the decoder is an SAOC decoder.

Fig. 3 illustrates a system according to an embodiment. The system comprises an encoder
310 according to one of the above-described embodiments for encoding a plurality of
original audio object signals (Original Audio Object Signal #1, …, Original Audio Object
Signal #M) by generating three or more downmix signals, by generating parametric side
information and by generating a plurality of residual signals. Furthermore, the system
comprises a decoder 320 according to one of the above-described embodiments, wherein
the decoder 320 is configured to generate a plurality of second estimated audio object
signals based on the three or more downmix signals being generated by the encoder 310,
based on the parametric side information being generated by the encoder 310 and based on
the plurality of residual signals being generated by the encoder 310.

Fig. 4 illustrates an encoded audio signal according to an embodiment. The encoded audio
signal comprises three or more downmix signals 410, parametric side information 420 and
a plurality of residual signals 430. The three or more downmix signals 410 are a downmix
of a plurality of original audio object signals. The parametric side information 420 comprises parameters indicating side information on the plurality of original audio object
signals. Each of the plurality of residual signals 430 is a difference signal indicating a
difference between one of the plurality of original audio signals and one of a plurality of
estimated audio object signals.

In the following, a concept overview according to an embodiment is provided.

Fig. 8 depicts a conceptual overview of the presented parametric and residual based audio
object coding scheme according to an embodiment, wherein the coding scheme exhibits
advanced downmix signal and advanced EAO support.
At the encoder side, a parametric side information estimator ("PSI Generation unit") 220 computes the PSI for estimating the object signals at the decoder exploiting source and downmix related characteristics. An RSI generation unit 245 computes for each object signal to be enhanced residual information by analyzing the differences between the estimated and original object signals. The RSI generation unit 245 may, for example, comprise a parametric decoding unit 230 and a residual estimation unit 240.

At the decoder side, a parametric decoding unit ("PSI Decoding" unit) 110 estimates the object signals from the downmix signals with the given PSI. In a second step, a residual processing unit ("RSI Decoding" unit) 120 uses the RSI to improve the quality of the estimated object signals to be enhanced. All object signals (enhanced and non-enhanced audio objects) may, for example, be passed to a rendering unit 130 to generate the target output scene.

It should be noted that it is not necessary to take all downmix signals into consideration. Downmix signals can be omitted from the computation if their contribution in estimating or/and estimating and enhancing the object signals can be neglected.

For the ease of comprehension, the processing steps in Fig. 8 and the following figures are visualized as separate processing units. In practice, they can be efficiently combined to reduce the computational complexity.

In the following, a joint residual encoding/decoding concept is provided.

Fig. 9 depicts a concept for jointly estimating the residual signal for each EAO signal at the encoder side according to an embodiment.

The parametric decoding unit ("PSI Decoding" unit) 230 yields an estimate of the audio object signals (estimated audio object signals $s_{est,Psi[I]}$) given the estimated PSI and the downmix signal(s) as input. The estimated audio object signals $s_{est,Psi[I]}$ are compared with the original unaltered source signals $s_{1,...,M}$ in the residual estimation unit ("RSI Estimation" unit) 240. The residual estimation unit 240 provides a residual/error signal term $s_{res,Rsi[I]}$ for each audio object to be enhanced.

Fig. 10 displays the "RSI Decoding" unit used in combination with the joint residual computation in the decoder. In particular, Fig. 10 illustrates a concept of joint residual decoding at the decoder side according to an embodiment.
The (first) estimated audio object signals $s_{est,PSI_{1}}\ldots s_{est,PSI_{M}}$ from the parametric decoding unit ("PSI Decoding" unit) 110 are fed together with the residual information ("residual side information") into the residual processing unit ("RSI Decoding") 120. The residual processing unit 120 computes from the residual (side) information and the estimated audio object signals $s_{est,PSI_{i}}(i=1,\ldots,M)$ the second estimated audio object signals $s_{est,RSI_{i}}(i=1,\ldots,M)$, e.g., the enhanced and non-enhanced audio object signals, and yields the second estimated audio object signals $s_{est,RSI_{i}}(i=1,\ldots,M)$, e.g., the enhanced and non-enhanced audio object signals, as output of the residual processing unit 120.

Additionally, a re-estimation of the non-EAOs can be carried out (not illustrated in Fig. 10). The EAOs are removed from the signal mixture and the remaining non-EAOs are re-estimated from this mixture. This yields an improved estimation of these objects compared to the estimation from the signal mixture that comprises all objects signals. This re-estimation can be omitted, if the target is to manipulate only the enhanced object signals in the mixture.

Fig. 11 illustrates a residual signal generator according to an embodiment, wherein.

In Fig. 11, the residual signal generator 200 further comprises a downmix modification unit 250 being adapted to modify the three or more downmix signals to obtain three or more modified downmix signals.

The parametric decoding unit 230 is configured to determine one or more audio object signals of the first estimated audio object signals based on the three or more modified downmix signals.

Then, the residual estimation unit 240 may, e.g., determine one or more residual signals based on said one or more audio object signals of the first estimated audio object signals.

In an embodiment, the downmix modification unit 250 may, for example, be configured to modify the three or more original downmix signals to obtain the three or more modified downmix signals, by removing one or more of the plurality of original audio object signals from the three or more original downmix signals.

In another embodiment, the downmix modification unit 250 may, for example, be configured to modify the three or more original downmix signals to obtain the three or more modified downmix signals by generating one or more modified audio object signals based on one or more of the estimated audio object signals and based on one or more of the
residual signals, and by removing the one or more modified audio object signals from the three or more original downmix signals. E.g., each of the one or more modified audio object signals may be generated by the downmix modification unit by modifying one of the estimated audio object signals, wherein the downmix modification unit may be adapted to modify said estimated audio object signal depending on one of the one or more residual signals.

In both of the embodiments described above, the downmix modification unit may, for example, be adapted to apply the formula

$$\tilde{X} = X-DZ \cdot A_{oa}^\top,$$

wherein \(X\) is the downmix to be modified,

wherein \(D\) indicates the related downmixing information,

wherein \(S_{oa}\) comprises the original audio object signals to be removed or the modified audio object signals to be removed,

wherein \(Z_{oa}^\ast\) indicates the locations of the signals to be removed, and

wherein \(\tilde{X}\) is the modified downmix signal.

E.g., a location (position) of an audio object signal corresponds to the location (position) of its audio object in the list of all objects.

Fig. 12 illustrates a decoder according to an embodiment.

In the embodiment of Fig. 12, the decoder further comprises a downmix modification unit 140.

The residual processing unit 120 determines one or more audio object signals of the plurality of second estimated audio object signals.
The downmix modification unit 140 is adapted to remove the determined one or more second estimated audio object signals from the three or more downmix signals to obtain three or more modified downmix signals.

The parametric decoding unit 110 is configured to determine one or more audio object signals of the first estimated audio object signals based on the three or more modified downmix signals.

The residual processing unit 120 may then e.g., determine one or more further second estimated audio object signals based on the determined one or more audio object signals of the first estimated audio object signals.

In a particular embodiment, the downmix modification unit 130 may, for example, be adapted to apply the formula:

\[\tilde{X}_{\text{mod}EAO} = X - D Z_{EAO}^{\text{mod}} S_{\text{mod}} \]

To remove the one or more audio object signals of the plurality of second estimated audio object signals determined by the residual processing unit 120 from the three or more downmix signals to obtain three or more modified downmix signals, wherein

- \(X \) indicates the three or more downmix signals before being modified
- \(\tilde{X}_{\text{mod}EAO} \) indicates the three or more modified downmix signals
- \(D \) indicates a downmix matrix
- \(Z_{\text{ene}} \) indicates a mapping sub-matrix denoting the positions (locations) of EAOs

(For more details on particular variants of this embodiment, see the description below).

In the following, a cascaded residual encoding/decoding concept is presented.

Fig. 13 illustrates a concept of computing the residual components in a cascaded way at an encoder side according to an embodiment. Compared to the joint residual computation concept, the cascaded approach reduces in each iteration step the energy of the residual energy at the cost of higher computational complexity. In each step, one of the original
audio object signals (SM) (or, in an alternative embodiment, an estimated audio object
signal; see the dashed-line arrows 2461, 2462) of an enhanced audio object is removed
from the signal mixture (downmix) before the signal mixture (downmix) is passed to the
next processing unit 2452. In this way the number of object signals in the signal mixture
(downmix) decreases with each processing step. The estimation of the enhanced audio
object signal (the second estimated audio object signal) in the next step thereby improves,
thus successively reducing the energy of the residual signals.

(It should be noted, that in the alternative embodiment, where in each iteration step, an
estimated audio object signal is removed from the signal mixture, the downmix
modification subunits 2501, 2502 do not need to receive the original audio object signals
SM.

On the contrary, in the embodiment, where in each iteration step, an original audio object
signal is removed from the signal mixture, the downmix modification subunits 2501, 2502
do not need to receive the estimated audio object signals.)

In more detail, Fig. 13 illustrates a plurality of RSI generation subunits 2451, 2452. The
plurality of RSI generation subunits 2451, 2452 together form an RSI generation unit.

Each of the plurality of RSI generation subunits 2451, 2452 comprises a parametric
decoding subunit 2301. The plurality of parametric decoding subunits 2301 together form a
parametric decoding unit. The parametric decoding subunits 2301 generate the first
estimated audio object signals $s_{i,1,Rsi,M}$.

Each of the plurality of RSI generation subunits 2451, 2452 comprises a residual
estimation subunit 2401. The plurality of residual estimation subunits 2401 together form a
residual estimation unit. The residual estimation subunits 2401 generate the second
estimated audio object signals $s_{i,1,Rsi,M}$.

Moreover, Fig. 13 illustrates a plurality of downmix modification subunits 2501, 2502.
Each of the downmix modification subunits 2501, 2502 together form a downmix
modification unit,

Fig. 14 displays the cascaded "RSI Decoding" unit employed in combination with the
cascaded residual computation at the decoder side according to an embodiment.
In each step, one of the object signals to be enhanced is estimated by a parametric decoding subunit ("PS I Decoding") 1101 (to obtain one of the first estimated audio object signals $s_{\text{est},psi,M}$), and the one of the first estimated audio object signals $s_{\text{est},jS,i,M}$ is then processed together with the corresponding residual signal $s_{\text{res},Rsi,M}$ by a residual processing subunit ("RSI Processing") 1201, to yield the enhanced version of the object signal (one of the second estimated audio object signals) $s_{\text{est},Rsi,M}$. The enhanced object signal $s_{\text{est},Rsi,M}$ is cancelled from the downmix signal by a downmix modification subunit ("Downmix modification") 1401 before the modified downmix signals are fed into the next residual decoding subunit ("Residual Decoding") 1252.

Equal to the joint residual encoding/decoding concept, the non-EAOs can additionally be re-estimated.

In more detail, Fig. 14 illustrates a plurality of residual decoding subunits 1251, 1252. The plurality of residual decoding subunits 1251, 1252 together form a residual decoding unit.

Each of the plurality of residual decoding subunits 1251, 1252 comprises a parametric decoding subunit 1101. The plurality of parametric decoding subunits 1101 together form a parametric decoding unit. The parametric decoding subunits 1101 generate the first estimated audio object signals $s_{\text{est},psi,\{i,...,M\}}$.

Each of the plurality of residual decoding subunits 1251, 1252 comprises a residual processing subunit 1201. The plurality of residual processing subunits 1201 together form a residual processing unit. The residual processing subunits 1201 generate the second estimated audio object signals $s_{\text{est},rRsi,1:M} , s_{\text{est},rRsi,1:M-1}$.

Moreover, Fig. 14 illustrates a plurality of downmix modification subunits 1401, 1402. Each of the downmix modification subunits 1401, 1402 together form a downmix modification unit.

Fig. 15 illustrates a residual signal generator according to an embodiment employing the cascaded concept.

In Fig. 15, the residual signal generator comprises a downmix modification unit 250.

The residual signal generator 200 is adapted to conduct two or more iteration steps.
For each iteration step, the parametric decoding unit 230 is adapted to determine exactly one audio object signal of the plurality of estimated audio object signals.

Moreover, for said iteration step, the residual estimation unit 240 is adapted to determine exactly one residual signal of the plurality of residual signals by modifying said audio object signal of the plurality of estimated audio object signals.

Furthermore, for said iteration step, the downmix modification unit 250 is adapted to modify the three or more downmix signals.

In the next iteration step following said iteration step, the parametric decoding unit 230 is adapted to determine exactly one audio object signal of the plurality of estimated audio object signals based on the three or more downmix signals which have been modified.

Fig. 16 illustrates a decoder according to an embodiment, employing a cascaded concept.

In Fig. 16, the decoder again comprises a downmix modification unit 140.

The decoder of Fig. 16 is adapted to conduct two or more iteration steps:

For each iteration step, the parametric decoding unit 110 is adapted to determine exactly one audio object signal of the plurality of first estimated audio object signals.

Moreover, for said iteration step, the residual processing unit 120 is adapted to determine exactly one audio object signal of the plurality of second estimated audio object signals by modifying said audio object signal of the plurality of first estimated audio object signals.

Furthermore, for said iteration step, the downmix modification unit 140 is adapted to remove said audio object signal of the plurality of second estimated audio object signals from the three or more downmix signals to modify the three or more downmix signals.

In the next iteration step following said iteration step, the parametric decoding unit 110 is adapted to determine exactly one audio object signal of the plurality of first estimated audio object signals based on the three or more downmix signals which have been modified.
In the following, a mathematical derivation on the example of the joint residual encoding/decoding concept is described:

The following notation is used in the following:

Dimensions:

- \(N_{\text{Objects}} \) - number of audio object signals
- \(N_{\text{DownCn}} \) - number of downmix signals
- \(N_{\text{UpmixCh}} \) - number of upmix channels
- \(N_{\text{ProcD}} \) - number of processed data
- \(N_{\text{EAO}} \) - number of EAOs

Terms:

- \(Z^* \) - the star-operator (*) denotes the conjugate transpose of the given matrix
- \(S \) - original audio object signal provided to encoder (size \(N_{\text{Objects}} \times N_{\text{Samples}} \))
- \(D \) - downmix matrix (size \(N_{\text{DownCn}} \times N_{\text{Objects}} \))
- \(R \) - rendering matrix (size \(N_{\text{UpmixCh}} \times N_{\text{Objects}} \))
- \(X \) - downmix audio signal \(X = DS \) (size \(N_{\text{DownCn}} \times N_{\text{Samples}} \))
- \(Y \) - ideal audio output signal \(Y = RS \) (size \(N_{\text{UpmixCh}} \times N_{\text{Samples}} \))
- \(S_{\text{ref}} \) - parametrically reconstructed object signal approximating \(S_{\text{ref}} \) defined as \(S_{\text{ref}} = GX \) (size \(N_{\text{Objects}} \times N_{\text{Samples}} \))
- \(\hat{S}_{\text{ref}} \) - decoder output comprising all non-EAO (parametrically estimated) and EAO (parametrically plus residual) signal estimates size \(N_{\text{Objects}} \times N_{\text{Samples}} \)
\[\hat{Y}_{e_{sl}} \] - upmix audio output signal approximating \(Y_{e_{sl}} \) defined as \(\hat{Y}_{e_{sl}} = R_{e_{sl}}\hat{S}_{e_{sl}} \)

(size \(N_{\text{e}_{sl}} \times N_{\text{Simp}_{e_{sl}}} \))

\[Z_{\text{noEA0}} ; Z_{\text{EO}} \] - mapping sub-matrix denoting the locations of non-EAOs and EAOs in the list of all objects. Note \(Z_{\text{noEA0}}\hat{Z}_{\text{EO}} = [0] \) (size \((N_{\text{object}} - N_{\text{EA0}}) \times N_{\text{EO}} \times N_{\text{dirCh}} \)).

The non-EAO \(Z_{\text{noEA0}} \) and corresponding \(Z_{\text{EO}} \) mapping matrices are defined as

\[
Z_{\text{noEA0}} (i, j) = \begin{cases} 1, & \text{if object } j \text{ is the } i^{\text{th}} \text{ non-EAO,} \\ 0, & \text{otherwise,} \end{cases}
\]

\[
Z_{\text{EO}} (i, j) = \begin{cases} 1, & \text{if object } j \text{ is the } i^{\text{th}} \text{ EAO,} \\ 0, & \text{otherwise.} \end{cases}
\]

For example, for \(N_{\text{object}} = 5 \) and the objects number 2 and 4 are EAOs, these matrices are

\[
Z_{\text{noEA0}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad Z_{\text{EO}} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.
\]

\[D_{\text{EO}} \] - downmix sub-matrix corresponding to EAOs, defined as \(D_{\text{EO}} = D_{\text{EO}} = 1 \) \(Z_{\text{EO}} \hat{Z}_{\text{EO}} \)

(size \(N_{\text{dirCh}} \times (N_{\text{object}} - N_{\text{EA0}}) \)).

\[D_{\text{EO}} \] - downmix sub-matrix corresponding to EAOs, defined as \(O_{\text{EO}} = D_{\text{EO}} \hat{Z}_{\text{EO}} \hat{Z}_{\text{EO}} \)

(size \(N_{\text{dirCh}} \times N_{\text{EO}} \)).

\[G \] - parametric source estimation matrix

(size \(N_{\text{dirCh}} \times N_{\text{EO}} \)).

\[E \] - object covariance matrix

(size \(N_{\text{dirCh}} \times N_{\text{EO}} \)).

\[E_{\text{noEA0}} \] - covariance sub-matrix corresponding to non-EAOs, defined as \(E_{\text{noEA0}} = Z_{\text{noEA0}} E_{\text{EO}} Z_{\text{EO}} \)

(size \((N_{\text{object}} - N_{\text{EA0}}) \times (N_{\text{object}} - N_{\text{EO}}) \)).

\[S_{\text{EO}} \] - EAO signal comprising the reconstructions of the EAOs (size \(N_{\text{EO}} \times N_{\text{Samples}} \)).

\[S_{\text{noEA0}} \] - non-EAO signal comprising the reconstructions of the non-EAOs

(size \(N_{\text{object}} - N_{\text{EO}} \times N_{\text{Samples}} \)).
S_{∞} - residual signals for EAOs (size $N_{F^0} \times N_{\text{Sample}}$)

X_{nonEao} - modified downmix signal comprising only non-EAO signals; computed as the difference between SAOC downmix and downmix of reconstructed EAOs (size $N_{\text{NumCh}} \times N_{\text{Sample}}$)

All introduced matrices are (in general) time and frequency variant.

Now, a general method with non-EAO signal re-estimation at the decoder side is considered:

The general method can be described as a two-step approach with first extracting all EAO signals from the corresponding downmix signal, and then reconstructing all non-EAO signals considering the EAOs. The object signals are recovered from the downmix signal (X) using the PS1 (E, D) and incorporated residual signal (S_{res}).

It is considered that the final rendered output signal \hat{Y}_{eao} is given as:

$$\hat{Y}_{eao} = R\hat{S}_{eao}$$

The decoder output object signal \hat{S}_{eao} can be represented as following sum:

$$\hat{S}_{eao} = T_{eao}^*S_{eao} + Z_{\text{nonEao}}^*S_{\text{nonEao}}$$

The EAO signal s_{eao} is computed from the downmix X with the help of the parametric EAO reconstruction matrix G_{eao} and the corresponding EAO residuals s_{res} as follows:

$$s_{eao} = G_{eao}X + S_{\text{res}}$$

The non-EAO signal s_{nonEao} is computed from the modified downmix $\tilde{X}_{\text{nonEao}}$ with the help of parametric non-EAO reconstruction matrix $\tilde{G}_{\text{nonEao}}$ as follows:

$$s_{\text{nonEao}} = \tilde{G}_{\text{nonEao}}\tilde{X}_{\text{nonEao}}$$

The modified downmix $\tilde{X}_{\text{nonEao}}$ signal is determined as the difference between the downmix X and the corresponding downmix of the reconstructed EAOs as follows, thus cancelling the EAOs from the downmix signal X:
Here the parametric object reconstruction matrices for EAOs G_M and non-EAOs $\tilde{G}_{\text{nonEAO}}$ are determined using the PSI (E, D) as follows:

$$G_{eao} = Z_{eao} ED' J, \quad J * (D E D')^{-1},$$

$$\tilde{G}_{\text{nonEAO}} = E_{\text{nonEAO}} D_{\text{nonEAO}}' J_{\text{nonEAO}}, \quad J_{\text{nonEAO}} \approx \left(D_{\text{nonEAO}} E_{\text{nonEAO}} D_{\text{nonEAO}}' \right)^{-1}.$$

In the following, a simplified method "A" without non-EAO signal re-estimation at the Decoder side is described:

If only EAOs in the signal mixture are manipulated, the target scene can be interpreted as a linear combination of the downmix signals and the EAO signals. The additional re-estimation of the non-EAO signals can therefore be omitted. The general method with non-EAO signal re-estimation can be simplified to a single-step procedure:

$$\hat{s}_{ae} = S_{ae} + X_{diff}.$$

The signal $X_{diff} = f(S_e, D)$ comprises the transmitted residual signals of the EAOs and residual compensation terms so that the following definition holds:

$$DS_{est} = X.$$

This condition is sufficient to render any acoustic scene, which is restricted to manipulate the EAOs only.

With $D\hat{S}_{est} = D(S_{est} + X_{diff}) = X$ and $DS_{est} = X$, the following constraint for the term X_{diff} has to be fulfilled:

$$DX_{diff} = 0.$$

The term X_{diff} consists of components which are determined by the encoder (and transmitted or stored) S_{est} and components X_{nonEAO} to be determined using this equation.
Using the definitions of the downmix matrix \(D = D_{\text{eao}}Z_{\text{eao}} + D_{\text{nonEao}}Z_{\text{nonEao}} \) and the compensation term \((x_{eao} = Z_{\text{eao}}^*s_{eao} + Z_{\text{nonEao}}^*x_{\text{nonEao}}) \) one can derive the following equation:

\[
5 \quad D_{\text{eao}}X_{\text{dif}} = D_{\text{eao}}Z_{\text{eao}}^*S_{\text{dif}} + D_{\text{eao}Eao}Z_{\text{nonEao}}^*X_{\text{nonEao}} + D_{\text{eao}Eao}Z_{\text{nonEao}}^*X_{\text{nonEao}} + D_{\text{eao}Eao}Z_{\text{nonEao}}^*Z_{\text{nonEao}}S_{\text{res}} = 0.
\]

With \(Z_{\text{eao}}Z_{\text{eao}}^* = I \), \(Z_{\text{nonEao}Eao}Z_{\text{nonEao}}^* = I \) and \(Z_{\text{nonEao}Eao}Z_{\text{nonEao}}^* = [0] \), \(Z_{\text{nonEao}Eao}Z_{\text{nonEao}}^* = [0] \), the equation can be simplified to:

\[
10 \quad D_{\text{eao}Eao}S_{\text{res}} + D_{\text{nonEao}Eao}X_{\text{nonEao}} = 0.
\]

Solving the linear equation for \(x_{\text{nonEao}} \) gives:

\[
X_{\text{nonEao}} = -(D_{\text{eao}Eao}D_{\text{nonEao}Eao})^{-1}D_{\text{eao}Eao}D_{\text{eao}Eao}S_{\text{res}}.
\]

After solving this system of linear equations the desired target scene can be calculated as the following sum of parametric prediction term and residual enhancement term as:

\[
\tilde{\hat{Y}} = \hat{R}\hat{S}_{\text{est}}, \quad \hat{S}_{\text{est}} = S_{\text{eao}} + X_{\text{dif}}, \quad X_{\text{dif}} = Z_{\text{eao}}^*S_{\text{res}} - Z_{\text{nonEao}}^* (D_{\text{nonEao}Eao}D_{\text{eao}Eao})^{-1}D_{\text{eao}Eao}D_{\text{eao}Eao}S_{\text{res}}.
\]

In the following, a simplified method "B" without non-EAO signal re-estimation at the decoder side is provided:

Consider the compensation term \(X_{\text{dif}} \) as above \((s_{eao} = s_{\text{eao}} + X_{\text{dif}}) \) for the parametric signal prediction \(s_{eao} \) and represent it as the following function \(x_{\text{dif}} = H_{\text{eao}}Z_{\text{eao}}^*S \) of the residual signals \(s_{\text{res}} \) leading into:

\[
s_{\text{est}} = s_{\text{est}} + H_{\text{eao}}Z_{\text{eao}}^*S_{\text{res}}.
\]

An alternative formulation is comprising the three following parts including appropriate linear combination of downmix signals \((H_{\text{eao}}X) \), enhanced objects \((H_{\text{eao}}Z_{\text{eao}}^*Z_{\text{eao}}S_{\text{enh}}) \), and non-enhanced objects \((H_{\text{eao}}S_{\text{est}}) \) such that it follows:

\[
\tilde{\hat{S}}_{\text{est}} = H_{\text{eao}Eao}X + H_{\text{eao}Eao}Z_{\text{eao}}^*Z_{\text{eao}}S_{\text{enh}} + H_{\text{eao}}S_{\text{est}}.
\]
The matrices are of the sizes $H_{\text{emb}}: \frac{3}{4} \times \mathcal{N}_{\text{ResCh}}$, $H_{\text{ext}}: \mathcal{N}_{\text{Objects}} \times \mathcal{N}_{\text{Objects}}$, $S_{\text{emb}}: \mathcal{N}_{\text{Objects}} \times \mathcal{N}_{\text{Samples}}$, and $H_{\text{est}}: \mathcal{N}_{\text{Objects}} \times \mathcal{N}_{\text{Objects}}$.

Assuming $D_{\text{est}} = X$ and the definition of $S_{\text{est}} = S_{\text{est}} + Z_{\text{est}}$, this can be written as:

$$\hat{S}_{\text{est}} = (H_{\text{dmos}} D + H_{\text{emb}} Z_{\text{emb}}^* Z_{\text{est}} + H_{\text{val}}) S_{\text{est}} + H_{\text{emb}} Z_{\text{emb}}^* S_{\text{res}}.$$

Comparing this, and the earlier definition of the reconstructed signals $\hat{S}_{\text{est}} = S_{\text{est}} + H_{\text{ext}} Z_{\text{est}}^* S_{\text{res}}$, it follows that:

$$H_{\text{dmos}} D + H_{\text{emb}} Z_{\text{emb}}^* Z_{\text{est}} + H_{\text{ext}} = \mathbf{I}.$$

One can derive the term H_{ext} as:

$$H_{\text{ext}} = \mathbf{I} - H_{\text{est}} D_{\text{est}}.$$

The error in the final reconstruction will be minimized, when the contribution of the non-enhanced signals is minimized. Thus, targeting for $H_{\text{est}} Q_{\mathbf{0}}$ allows to solve the term H_{ext} from a system of linear equations:

$$H_{\text{ext}} = D_{\text{ext}} (D_{\text{ext}} D_{\text{ext}}^*)^{-1},$$

where extended downmix matrix O_{ext} and upmix matrix H_{ext} are defined as concatenated matrices:

$$D_{\text{ext}} = \begin{bmatrix} D \\ Z_{\text{ext}}^* Z_{\text{ext}} \end{bmatrix} \quad \text{and} \quad H_{\text{ext}} = \begin{bmatrix} H_{\text{dmos}} & H_{\text{emb}} \end{bmatrix}, \quad \text{and thus} \quad H_{\text{emb}} = H_{\text{ext}} \begin{bmatrix} 0_{\mathcal{N}_{\text{ResCh}} \times \mathcal{N}_{\text{Objs}}^*} \\ 1_{\mathcal{N}_{\text{Objs}} \times \mathcal{N}_{\text{Objs}}^*} \end{bmatrix} \begin{bmatrix} Z_{\text{ext}}^* S_{\text{res}} \end{bmatrix}. $$

After solving this system of linear equations the desired correction term X_{diff} can be obtained as:

$$X_{\text{diff}} = D_{\text{ext}}^* (D_{\text{ext}} D_{\text{ext}}^*)^{-1} \begin{bmatrix} 0_{\mathcal{N}_{\text{ResCh}} \times \mathcal{N}_{\text{Objs}}^*} \\ 1_{\mathcal{N}_{\text{Objs}} \times \mathcal{N}_{\text{Objs}}^*} \end{bmatrix} Z_{\text{ext}}^* S_{\text{res}}.$$

Leading into the final outputs of $\hat{Y}_{\text{est}} = R \hat{S}_{\text{est}}$, $\hat{S}_{\text{est}} = S_{\text{est}} + X_{\text{diff}}$.

This provides the desired correction term, allowing for optimal reconstruction of the enhanced signals.
In the following, a simplified method "C" is considered:

If only the EAOs are manipulated in an arbitrary manner, any target scene can be generated by a linear combination of the downmix signals and the EAOs. Note that instead of the downmix, the downmix with the EAOs cancelled can also be used. The target scene can be perfectly generated if the residual processing perfectly restores the EAOs. Rendering of any target scene can be done using finding the two component rendering matrices \mathbf{R}_p and \mathbf{R}_{eao} for the downmix and the EAO reconstructions. The matrices have the sizes $\mathbf{R}_p : N_{p,\text{out}} \times N_{\text{downmix}}$ and $\mathbf{R}_{eao} : N_{\text{eao}} \times N_{\text{eao}}$. The target rendering matrix \mathbf{R} can be represented as a product of the combined rendering matrices and the downmix matrix as

$$\mathbf{R} = [\mathbf{R}_d \quad \mathbf{R}_{\text{eao}}] \begin{bmatrix} \mathbf{D} \\ \mathbf{Z}_{\text{eao}} \end{bmatrix} = \mathbf{R}_{\text{ext}} \mathbf{D}_{\text{ext}}$$

From this, \mathbf{R}_{ext} can be solved with

$$\mathbf{R}_{\text{ext}} = \mathbf{R} \mathbf{D}_{\text{ext}} \left(\mathbf{D}_{\text{ext}} \mathbf{D}_{\text{ext}}^* \right)^{-1}$$

and the sub-matrices \mathbf{R}_p and \mathbf{R}_{eao} can be extracted from the solution with

$$\mathbf{R}_p = \mathbf{R}_{\text{ext}} \begin{bmatrix} 1_{N_{\text{downmix}} \times N_{\text{downmix}}} \\ 0_{N_{\text{downmix}} \times N_{\text{eao}}} \end{bmatrix} \quad \mathbf{R}_{\text{eao}} = \mathbf{R}_{\text{ext}} \begin{bmatrix} 0_{N_{\text{eao}} \times (N_{\text{downmix}} + N_{\text{eao}})} \\ 1_{N_{\text{eao}} \times N_{\text{eao}}} \end{bmatrix}$$

The target scene can now be computed as:

$$\hat{\mathbf{Y}}_{\text{ext}} = \mathbf{R}_p \mathbf{X} + \mathbf{R}_{\text{eao}} \mathbf{S}_{\text{eao}}$$

where \mathbf{S}_{eao} comprises the full reconstructions of the EAOs and is defined (as earlier)

$$\mathbf{S}_{\text{eao}} = \mathbf{G}_{\text{eao}} \mathbf{X} + \mathbf{S}_{\text{ref}}$$

A similar equation can be formulated for rendering the target using the downmix with the EAOs cancelled from the mix by subtracting $\mathbf{D}_{\text{eao}} \mathbf{S}_{\text{eao}}$ from the downmix.
In the following, another mathematical derivation and further details on the joint residual encoding/decoding concept are described, and an unification between the general method and the simplification "A" is provided.

From now on in the description, the following notation applies. If for some elements, the following notation is inconsistent with the notation provided above, from now on in the description, only the following notation applies for these elements.

Definitions:

- \(S \) is the object signals of size \(N_{\text{Object}} \times N_{\text{Samples}} \)
- \(E = SS^* \) is the object covariance matrix of size \(N_{\theta \otimes \psi} \times N_{\text{Object}} \)
- \(D \) is the downmixing matrix of size \(N_{\text{DownCh}} \times N_{\text{Object}} \)
- \(X = DS \) is the downmix signal of size \(N_{\text{DownCh}} \times N_{\text{Samples}} \)
- \(G = ED^*J \) is the up-mixing matrix of size \(N_{\text{Object}} \times N_{\text{MixCh}} \)
- \(M_{\text{ren}} \) is the rendering matrix of size \(N_{\text{UpmixCh}} \times N_{\text{Object}} \)
- \(X_{\text{res}} \) is the residual signals of size \(N_{EAO} \times N_{\text{Samples}} \)
- \(R_{\text{EAO}} \) is a matrix of size \(N_{EAO} \times N_{\theta \otimes \psi} \) denoting the positions (locations) of EAOs defined as
 \[
 R_{\text{EAO}}(i,j) = \begin{cases}
 1, & \text{if object } j \text{ is the } i \text{th EAO} \\
 0, & \text{otherwise}
 \end{cases}
 \]
- \(R_{\text{nonEAO}} \) is a matrix of size \((N_{\text{Object}} - N_{\theta \otimes \psi}) \times N_{\text{Object}} \) denoting the positions (locations) of non-EAOs defined as
 \[
 R_{\text{nonEAO}}(i,j) = \begin{cases}
 1, & \text{if object } j \text{ is the } i \text{th non-EAO} \\
 0, & \text{otherwise}
 \end{cases}
 \]
The sub-matrices of some of the above corresponding to non-EAOs can be specified with the help of the selection matrices \(R_{\text{non-EAO}} \) as:

\[
E_{\text{non-EAO}} = R_{\text{non-EAO}} E R_{\text{non-EAO}}^* \]

\[
D_{\text{non-EAO}} = DR_{\text{non-EAO}}^* \]

\[
G_{\text{non-EAO}} = E_{\text{non-EAO}} D_{\text{non-EAO}}^* R_{\text{non-EAO}} = E_{\text{non-EAO}} D_{\text{non-EAO}}^* \left(D_{\text{non-EAO}} E_{\text{non-EAO}} D_{\text{non-EAO}}^* \right)^{-1} = R_{\text{non-EAO}} E R_{\text{non-EAO}}^* D^* \left(D R_{\text{non-EAO}}^* R_{\text{non-EAO}} E R_{\text{non-EAO}}^* R_{\text{non-EAO}} D^* \right)^{-1} \]

In the following, another detailed mathematical description on the general method (with non-EAO signal re-estimation at the decoder) is provided:

The object signals are recovered from the downmix using the side information and incorporated residual signals. The output from the decoder \(\hat{x} \) is produced as follows:

\[
\hat{x} = M_{\text{rec}} R_{\text{non-EAO}}^* x_{\text{EAO}} + M_{\text{rec}} R_{\text{non-EAO}}^* x_{\text{non-EAO}} \]

The EAO term \(X_{\text{EAO}} \) of size \(N_{EAO} \) with the EAOs is computed as follows:

\[
x_{\text{EAO}} = R_{\text{EAO}}^* D^* J^* x_{\text{EAO}}^* \]

where the residual signal term \(x_{\text{RES}} \) of size \(N_{EAO} \) comprises the residual signals for EAOs.

The non-EAO term \(X_{\text{non-EAO}} \) of size \(N_{\text{EAO}} - N_{\text{EAO}} \) comprising the non-EAOs is computed as:

\[
X_{\text{non-EAO}} = E_{\text{non-EAO}} D_{\text{non-EAO}}^* J_{\text{non-EAO}} \tilde{x}_{\text{non-EAO}} \quad J_{\text{non-EAO}} \approx \left(D_{\text{non-EAO}}^* E_{\text{non-EAO}} D_{\text{non-EAO}}^* \right)^{-1} \]

where the modified downmix signal \(\tilde{x}_{\text{non-DM}} \) comprising only non-EAO signals is computed as the difference between SAOC downmix and downmix of the reconstructed EAOs:

\[
\tilde{x}_{\text{non-DM}} = x - D R_{\text{EAO}}^* X_{\text{EAO}} \]

The covariance sub-matrix \(E_{\text{non-EAO}} \) of size \((N_{\text{Object}} - N_{EAO}) \times (N_{\text{Object}} - N_{EAO})\) corresponding to non-EAOs is computed as
The downmix sub-matrix $D_{\text{non-EO}}$ of size $N_{\text{downmix}} \times (N_{\text{objects}} \cdot N_{\text{EO}})$ corresponding to non-EAOs is computed as
\[D_{\text{non-EO}} = DR_{\text{non-EO}}^T .\]

In the following, another detailed mathematical description on the simplified method "A" (without non-EAO signal re-estimation at the decoder) is provided:

The object signals are recovered from the downmix using the side information and incorporated residual signals. The final output from the decoder X is produced as follows
\[X = M_{\text{nn}} \cdot (ED')X + X_{\text{dif}} .\]

The term X_{dif} of size $N_{\text{EO}} \times N_{\text{EO}}$ incorporates N_{EO} residual signals X_{EO} for EAOs and the predicted term X_{non-EO} for non-EAOs as follows
\[X_{\text{dif}} = R_{\text{EO}}^T X_{\text{res}} + R_{\text{non-EO}}^T X_{\text{non-EO}} .\]

The predicted term $X_{\text{non-EO}}$ is estimated as follows
\[X_{\text{non-EO}} = \left(D_{\text{non-EO}}^T D_{\text{non-EO}} \right)^{-1} D_{\text{non-EO}}^T D_{\text{EO}} X_{\text{EO}} .\]

The downmix sub-matrix D_{EO} corresponding to EAOs and $D_{\text{non-EO}}$ corresponding to regular objects are defined as
\[D_{\text{EO}} = D_{\text{EO}}^T + R_{\text{EO}} D_{\text{EO}} .\]

In the following, a special case of rendering matrix M is considered:

Consider the following special case of the downmix-similar rendering matrix M_{EO} of the size $N_{\text{EO}} \times N_{\text{EO}}$ with arbitrary modification of the EAOs and only a uniform scaling (compared to the downmix) of the non-EAOs
Now, a detailed mathematical description of the general method is provided:

\[
\begin{align*}
M_D &= MR_{\text{ino}} R_{\text{ino}} + \text{fDLR}_{\text{ino}} \text{R}_{\text{ino}} \\
\end{align*}
\]

It can be seen that the two results are identical when the assumption of the rendering matrix holds.

Now, a detailed mathematical description of the simplified method "A" is provided:

\[
\begin{align*}
\hat{X} &= M_J (GX + X_{\text{res}}) \\
&= M_J (GX + R_{\text{ino}}' X_{\text{res}} + R_{\text{ino}}' \text{D}_{\text{ino}}' X_{\text{ino}}) \\
&= M_J (GX + R_{\text{ino}}' X_{\text{res}} - R_{\text{ino}}' \text{D}_{\text{ino}}' (D_{\text{ino}}' \text{D}_{\text{ino}})^{-1} D_{\text{ino}}' X_{\text{ino}}) \\
&= M_J (GX + R_{\text{ino}}' X_{\text{res}} - R_{\text{ino}}' \text{D}_{\text{ino}}' (D_{\text{ino}}' \text{D}_{\text{ino}})^{-1} D_{\text{ino}}' X_{\text{ino}}) \\
&= M_J (R_{\text{ino}}' X_{\text{ino}} + R_{\text{ino}}' \text{D}_{\text{ino}}' (D_{\text{ino}}' \text{D}_{\text{ino}})^{-1} D_{\text{ino}}' X_{\text{ino}}) \\
&= MR_{\text{ino}}' X_{\text{ino}} + \alpha D_{\text{ino}}' R_{\text{ino}}' \text{D}_{\text{ino}}' (D_{\text{ino}}' \text{D}_{\text{ino}})^{-1} D_{\text{ino}}' X_{\text{ino}} \\
&= MR_{\text{ino}}' X_{\text{ino}} + \alpha (X - DR_{\text{ino}}' G X - \alpha D_{\text{ino}}' D_{\text{ino}}' G X) \\
&= MR_{\text{ino}}' X_{\text{ino}} + \alpha (X - DR_{\text{ino}}' G X) \\
&= MR_{\text{ino}}' X_{\text{ino}} + \alpha (X - DR_{\text{ino}}' G X) \\
\end{align*}
\]

Now a special case of rendering matrix 2 is considered:
Including an additional constraint on the structure of the rendering matrix M_β of the size $N_{\text{DownMix}} \times N_{\text{Objects}}$, the non-EAOs are modified only by a common scaling factor α compared to the downmix, and also all the EAOs are modified only by a common scaling factor β compared to the downmix.

$$M_\beta = bDR'_\text{can}R_\text{can} + \alpha DR'_\text{median}R_\text{median} = D(bR'_\text{can}R_\text{can} + \alpha R'_\text{median}R_\text{median}).$$

Continuing from the earlier results, the output of the system will be

$$\tilde{X} = bDR'_w X_\text{can} + \alpha (X - DR'_\text{can}X_\text{can})$$

$$= aX + (b - \alpha)DR'_\text{can}X_\text{can}$$

$$= aX + (b - \alpha)DR'_\text{can}(R'_\text{can}ED'JX + X_\text{can})$$

Although some aspects have been described in the context of an apparatus, it is clear that these aspects also represent a description of the corresponding method, where a block or device corresponds to a method step or a feature of a method step. Analogously, aspects described in the context of a method step also represent a description of a corresponding block or item or feature of a corresponding apparatus.

The inventive decomposed signal can be stored on a digital storage medium or can be transmitted on a transmission medium such as a wireless transmission medium or a wired transmission medium such as the Internet.

Depending on certain implementation requirements, embodiments of the invention can be implemented in hardware or in software. The implementation can be performed using a digital storage medium, for example a floppy disk, a DVD, a CD, a ROM, a PROM, an EPROM, an EEPROM or a FLASH memory, having electronically readable control signals stored thereon, which cooperate (or are capable of cooperating) with a programmable computer system such that the respective method is performed.

Some embodiments according to the invention comprise a non-transitory data carrier having electronically readable control signals, which are capable of cooperating with a programmable computer system, such that one of the methods described herein is performed.
Generally, embodiments of the present invention can be implemented as a computer program product with a program code, the program code being operative for performing one of the methods when the computer program product runs on a computer. The program code may for example be stored on a machine readable carrier.

Other embodiments comprise the computer program for performing one of the methods described herein, stored on a machine readable carrier.

In other words, an embodiment of the inventive method is, therefore, a computer program having a program code for performing one of the methods described herein, when the computer program runs on a computer.

A further embodiment of the inventive methods is, therefore, a data carrier (or a digital storage medium, or a computer-readable medium) comprising, recorded thereon, the computer program for performing one of the methods described herein.

A further embodiment of the inventive method is, therefore, a data stream or a sequence of signals representing the computer program for performing one of the methods described herein. The data stream or the sequence of signals may for example be configured to be transferred via a data communication connection, for example via the Internet.

A further embodiment comprises a processing means, for example a computer, or a programmable logic device, configured to or adapted to perform one of the methods described herein.

A further embodiment comprises a computer having installed thereon the computer program for performing one of the methods described herein.

In some embodiments, a programmable logic device (for example a field programmable gate array) may be used to perform some or all of the functionalities of the methods described herein. In some embodiments, a field programmable gate array may cooperate with a microprocessor in order to perform one of the methods described herein. Generally, the methods are preferably performed by any hardware apparatus.

The above described embodiments are merely illustrative for the principles of the present invention. It is understood that modifications and variations of the arrangements and the details described herein will be apparent to others skilled in the art. It is the intent, therefore, to be limited only by the scope of the impending patent claims and not by the
specific details presented by way of description and explanation of the embodiments herein.
References

Claims

1. A decoder, comprising:

 a parametric decoding unit (110) for generating a plurality of first estimated audio object signals by upmixing three or more downmix signals, wherein the three or more downmix signals encode a plurality of original audio object signals, wherein the parametric decoding unit (110) is configured to upmix the three or more downmix signals depending on parametric side information indicating information on the plurality of original audio object signals, and

 a residual processing unit (120) for generating a plurality of second estimated audio object signals by modifying one or more of the first estimated audio object signals, wherein the residual processing unit (120) is configured to modify said one or more of the first estimated audio object signals depending on one or more residual signals.

2. A decoder according to claim 1,

 wherein the residual processing unit (120) is configured to modify said one or more of the first estimated audio object signals depending on at least three residual signals, and

 wherein the decoder is adapted to generate at least three audio output channels based on the plurality of second estimated audio object signals.

3. A decoder according to one of the preceding claims,

 wherein the decoder further comprises a downmix modification unit (140) being adapted to remove one or more audio object signals of the plurality of second estimated audio object signals determined by the residual processing unit (120) from the three or more downmix signals to obtain three or more modified downmix signals, and

 wherein the parametric decoding unit (110) is configured to determine one or more audio object signals of the first estimated audio object signals based on the three or more modified downmix signals.
4. A decoder according to claim 3,

wherein the downmix modification unit (140) is adapted to apply the formula:

\[\tilde{X}_{\text{downmix}} = X - DZ_{\text{est}}^\text{S_{EAO}}, \]

wherein

- \(X \) indicates the three or more downmix signals before being modified,
- \(\tilde{X}_{\text{downmix}} \) indicates the three or more modified downmix signals,
- \(D \) indicates downmixing information,
- \(S_{\text{EAO}} \) comprises said one or more audio object signals of the plurality of second estimated audio object signals, and
- \(Z_{\text{est}}^\text{S_{EAO}} \) indicates the locations of said one or more audio object signals of the plurality of second estimated audio object signals.

5. A decoder according to claim 3 or 4,

wherein, the decoder is adapted to conduct two or more iteration steps,

wherein, for each iteration step, the parametric decoding unit (110) is adapted to determine exactly one audio object signal of the plurality of first estimated audio object signals,

wherein for said iteration step, the residual processing unit (120) is adapted to determine exactly one audio object signal of the plurality of second estimated audio object signals by modifying said audio object signal of the plurality of first estimated audio object signals,
wherein, for said iteration step, the downmix modification unit (140) is adapted to
remove said audio object signal of the plurality of second estimated audio object
signals from the three or more downmix signals to modify the three or more
downmix signals, and

wherein, for the next iteration step following said iteration step, the parametric
decoding unit (110) is adapted to determine exactly one audio object signal of the
plurality of first estimated audio object signals based on the three or more downmix
signals which have been modified.

A decoder according to one of the preceding claims, wherein each of the one or
more residual signals indicates a difference between one of the plurality of original
audio object signals and one of the one or more first estimated audio object signals.

A decoder according to claim 1 or 2,

wherein the residual processing unit (120) is adapted to generate the plurality of
second estimated audio object signals by modifying five or more of the first
estimated audio object signals,

wherein the residual processing unit (120) is configured to modify said five or more
of the first estimated audio object signals depending on five or more residual
signals.

A decoder according to claim 1 or 2, wherein the decoder is configured to generate
seven or more audio output channels based on the plurality of second estimated
audio object signals.

A decoder according to one of the preceding claims, wherein the decoder is adapted
to not determine Channel Prediction Coefficients to determine the plurality of
second estimated audio object signals.

A decoder according to one of the preceding claims, wherein the decoder is an
SAOC decoder.

A residual signal generator (200), comprising:
a parametric decoding unit (230) for generating a plurality of estimated audio object signals by upmixing three or more downmix signals, wherein the three or more downmix signals encode a plurality of original audio object signals, wherein the parametric decoding unit (230) is configured to upmix the three or more downmix signals depending on parametric side information indicating information on the plurality of original audio object signals, and

a residual estimation unit (240) for generating a plurality of residual signals based on the plurality of original audio object signals and based on the plurality of estimated audio object signals, such that each of the plurality of residual signals is a difference signal indicating a difference between one of the plurality of original audio object signals and one of the plurality of estimated audio object signals.

12. An residual signal generator (200) according to claim 11,

wherein the residual signal generator (200) further comprises a downmix modification unit (250) being adapted to modify the three or more downmix signals to obtain three or more modified downmix signals, and

wherein the parametric decoding unit (230) is configured to determine one or more audio object signals of the first estimated audio object signals based on the three or more modified downmix signals.

13. An residual signal generator (200) according to claim 12, wherein the downmix modification unit (250) is configured to modify the three or more original downmix signals to obtain the three or more modified downmix signals, by removing one or more of the plurality of original audio object signals from the three or more original downmix signals.

14. A residual signal generator according to claim 13,

wherein the downmix modification unit (250) is adapted to apply the formula:

\[
\tilde{\mathbf{X}}_{\text{nonEO}} = \mathbf{X} - \mathbf{DZ}^{\ast}\mathbf{S}_{\text{ens}}.
\]

to remove the one or more of the plurality of original audio object signals from the three or more downmix signals to obtain three or more modified downmix signals,
wherein

\(X \) indicates the three or more downmix signals before being modified

\(\tilde{X}_{\text{nonEAO}} \) indicates the three or more modified downmix signals

\(D \) indicates downmixing information

\(S_{\text{eno}} \) comprises said one or more of the plurality of original audio object signals, and

\(Z_{\text{eno}}^* \) indicates the locations of said one or more of the plurality of original audio object signals.

15. An residual signal generator (200) according to claim 12, wherein the downmix modification unit (250) is configured to modify the three or more original downmix signals to obtain the three or more modified downmix signals by generating one or more modified audio object signals based on one or more of the estimated audio object signals and based on one or more of the residual signals, and by removing the one or more modified audio object signals from the three or more original downmix signals.

16. A residual signal generator according to claim 15,

wherein the downmix modification unit (250) is adapted to apply the formula:

\[
\tilde{X}_{\text{nonEAO}} = X - DZ_{\text{eno}}^* S_{\text{eno}}^*
\]

30 to remove the one or more modified audio object signals from the three or more downmix signals to obtain three or more modified downmix signals,

wherein

\(X \) indicates the three or more downmix signals before being modified

\(\tilde{X}_{\text{nonEAO}} \) indicates the three or more modified downmix signals
D indicates downmixing information

S_{mod} comprises said one or more modified audio object signals, and

$Z_{{\text{mod}}}$ indicates the locations of said one or more modified audio object signals.

17. A residual signal generator (200) according to one of claims 12 to 16,

wherein, the residual signal generator (200) is adapted to conduct two or more iteration steps,

wherein, for each iteration step, the parametric decoding unit (230) is adapted to determine exactly one audio object signal of the plurality of estimated audio object signals,

wherein for said iteration step, the residual estimation unit (240) is adapted to determine exactly one residual signal of the plurality of residual signals by modifying said audio object signal of the plurality of estimated audio object signals,

wherein, for said iteration step, the downmix modification unit (250) is adapted to modify the three or more downmix signals, and

wherein, for the next iteration step following said iteration step, the parametric decoding unit (230) is adapted to determine exactly one audio object signal of the plurality of estimated audio object signals based on the three or more downmix signals which have been modified.

18. A residual signal generator (200) according to one of claims 11 to 17, wherein the residual estimation unit (240) is adapted to generate at least five residual signals based on at least five original audio object signals of the plurality of original audio object signals and based on at least five estimated audio object signals of the plurality of estimated audio object signals.

19. An encoder for encoding a plurality of original audio object signals by generating three or more downmix signals, by generating parametric side information and by generating a plurality of residual signals, wherein the encoder comprises:
a downmix generator (210) for providing the three or more downmix signals indicating a downmix of the plurality of original audio object signals,

5 a parametric side information estimator (220) for generating the parametric side information indicating information on the plurality of original audio object signals, to obtain the parametric side information, and

a residual signal generator (200) according to one of claims 11 to 18,

10 wherein the parametric decoding unit (230) of the residual signal generator (200) is adapted to generate a plurality of estimated audio object signals by upmixing the three or more downmix signals provided by the downmix generator (210), wherein the downmix signals encode the plurality of original audio object signals, wherein the parametric decoding unit (230) is configured to upmix the three or more downmix signals depending on the parametric side information generated by the parametric side information estimator (220), and

20 wherein the residual estimation unit (240) of the residual signal generator (200) is adapted to generate the plurality of residual signals based on the plurality of original audio object signals and based on the plurality of estimated audio object signals, such that each of the plurality of residual signals indicates a difference between one of the plurality of original audio object signals and one of the plurality of estimated audio object signals.

20. An encoder according to claim 19, wherein the encoder is an SAOC encoder.

21. A system, comprising:

30 an encoder (310) according to claim 19 or 20 for encoding a plurality of original audio object signals by generating three or more downmix signals, by generating parametric side information and by generating a plurality of residual signals, and

a decoder (320) according to one of claims 1 to 10, wherein the decoder (320) is configured to generate a plurality of second estimated audio object signals based on the three or more downmix signals being generated by the encoder (310), based on the parametric side information being generated by the encoder (310) and based on the plurality of residual signals being generated by the encoder (310).
22. An encoded audio signal, comprising three or more downmix signals (410), parametric side information (420) and a plurality of residual signals (430),

wherein the three or more downmix signals (410) are a downmix of a plurality of original audio object signals,

wherein the parametric side information (420) comprises parameters indicating side information on the plurality of original audio object signals,

wherein each of the plurality of residual signals (430) is a difference signal indicating a difference between one of the plurality of original audio signals and one of a plurality of estimated audio object signals.

23. A method, comprising:

generating a plurality of first estimated audio object signals by upmixing three or more downmix signals, wherein the three or more downmix signals encode a plurality of original audio object signals, wherein generating the plurality of first estimated audio object signals comprises upmixing the three or more downmix signals depending on parametric side information indicating information on the plurality of original audio object signals, and

generating a plurality of second estimated audio object signals by modifying one or more of the first estimated audio object signals, wherein generating a plurality of second estimated audio object signals comprises modifying said one or more of the first estimated audio object signals depending on one or more residual signals.

24. A method, comprising:

generating a plurality of estimated audio object signals by upmixing three or more downmix signals, wherein the three or more downmix signals encode a plurality of original audio object signals, wherein generating the plurality of estimated audio object signals comprises upmixing the three or more downmix signals depending on parametric side information indicating information on the plurality of original audio object signals, and
generating a plurality of residual signals based on the plurality of original audio object signals and based on the plurality of estimated audio object signals, such that each of the plurality of residual signals is a difference signal indicating a difference between one of the plurality of original audio object signals and one of the plurality of estimated audio object signals.

25. A computer program for implementing the method of claim 23 or 24 when being executed on a computer or signal processor.
FIG 2B
FIG 4

downmix signals | parametric side information | residual signals
FIG 6
downmix signals
parametric side information
parametric decoding unit
1st estimated audio object signal(s)
residual signals
residual estimation unit
2nd estimated audio object signals
modified downmix signals
downmix modification unit
FIG 12
A. CLASSIFICATION OF SUBJECT MATTER

INV. G10L19/008

According to International Patent Classification (IPC) or to both national classification and IPC

ADD.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G10L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cornel I a Falch et al: "SPATIAL AUDIO OBJECT CODING WITH ENHANCED AUDIO OBJECT SEPARATION", PROCEEDINGS OF THE 13TH INT. CONFERENCE ON DIGITAL AUDIO EFFECTS, GRAZ, AUSTRIA, SEPTEMBER 6-10, 2010, 6 September 2010 (2010-09-06), pages 1-7, XP055066834, GRAZ, AUSTRIA Retri eved from the Internet: URL: http://www. iis.fraunhofer.de/content/d am/iis/de/dokumente/amm/conference/Fal ch_D AFxIO_P35.pdf [retrieved on 2013-06-14] abstract page 4, left-hand column, paragraph 2 - page 5, left-hand column, paragraph 3 figure 6 ----- /- -</td>
<td>1-25</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" later document which may throw doubts on priority claim(s) one or more of which is cited in the international examination report
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

18 June 2013

Date of mailing of the international search report

25/06/2013

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Grei ser, Norbert

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>