(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle
Bureau international

(43) Date de la publication internationale 9 novembre 2006 (09.11.2006)

(10) Numéro de publication internationale WO 2006/117374 A2

(51) Classification internationale des brevets : G06T 7/00 (2006.01)

(21) Numéro de la demande internationale :
PCT/EP2006/061983

(22) Date de dépôt international : 2 mai 2006 (02.05.2006)

(25) Langue de dépôt : français

(26) Langue de publication : français

(30) Données relatives à la priorité :
0504516 3 mai 2005 (03.05.2005) FR

(72) Inventeur ; et

(54) Titre : METHOD FOR THREE-DIMENSIONALLY RECONSTRUCTING AN ARTICULATED MEMBER OR A SET OF ARTICULATED MEMBERS

(54) Titre : PROCÉDÉ DE RECONSTRUCTION TRIDIMENSIONNELLE D’UN MEMBRE OU D’UN ENSEMBLE DE MEMBRES ARTICULÉS

(57) Abstract: The invention relates to a method for the three-dimensionally reconstructing (96) of an articulated member in a predetermined environment, comprising an acquisition step (90) for acquiring at least one two-dimensional monocular image (91) of said member, and a determining step (92) for determining a set of N articulation points (93) of the member in the at least one image (91) in order to determine at least one two-dimensional position (931) of each of the articulation points (93) in the image (91). The inventive method also comprises: a calculating step (94) for calculating at least one three-dimensional position (941) of the member from the at least one two-dimensional position (931) of each of the articulation points (93) in the image (91); an estimating step (95) for estimating the three-dimensional position (941) of said articulation points of the member in the environment from the at least one calculated three-dimensional position (94) in order to produce a number of possible solutions for the three-dimensional reconstruction of the member in the environment.

[Suite sur la page suivante]
En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(57) Abrégé : L'invention concerne un procédé de reconstruction (96) tridimensionnelle d'un membre articulé dans un environnement prédéterminé, comportant une étape d'acquisition (90) d'au moins une image (91) monoculaire à deux dimensions dudit membre et une étape (92) de détermination d'un ensemble de N points (93) d'articulation dudit membre dans ladite au moins une image (91) de façon à déterminer au moins une position (931) à deux dimensions de chacun desdits points (93) d'articulation dans ladite image (91). Selon l'invention, un tel procédé comprend en outre : une étape (94) de calcul d'au moins une position (941) en trois dimensions dudit membre à partir de ladite au moins une position (931) à deux dimensions de chacun desdits points (93) d'articulation dans ladite image (91); une étape (95) d'estimation de la position (941) en trois dimensions desdits points d'articulation dudit membre dans ledit environnement, à partir de ladite au moins une position en trois dimensions calculées (94); de façon à produire une pluralité de solutions possibles de reconstruction en trois dimensions dudit membre dans ledit environnement.
Procédé de reconstruction tridimensionnelle d’un membre ou d’un ensemble de membres articulés

1. Domaine de l’invention

Le domaine de l’invention est celui du traitement d’images et de la vision par ordinateur.

Plus précisément, l’invention concerne l’estimation de la position des membres d’un corps humain en trois dimensions à partir d’une image et l’estimation des incertitudes associées, pour l’analyse et l’interprétation, par exemple pour l’analyse de gestes à partir d’images vidéo, dans un contexte d’analyse et/ou d’interprétation des gestes de commande d’un utilisateur, ou bien encore, de l’animation réaliste d’un avatar par reproduction de gestes humains usuels. Les applications sont multiples. Elles incluent notamment et de façon non limitative l’analyse de gestes, les interfaces homme-machine, les interfaces humanisées, l’animation d’avatars, l’indexage d’images (archivage et classification), le suivi de personnes dans les images, l’estimation du mouvement, la réalité virtuelle, la surveillance, le codage et la compression basée sur le modèle du corps…

En effet, dans un tel contexte, la multiplication des interactions homme-machine et la variété des contextes d’utilisation montrent quotidiennement la nécessité de pouvoir utiliser des interfaces plus naturelles, qui dépassent l’ergonomie basique du clavier ou du stylet. C’est pourquoi les interfaces « humanisées » - celles qui sont plus intuitives et faciles d’utilisation – sont un domaine de recherche important.

Dans ce domaine, l’intégration du geste naturel (geste de commande ne nécessitant pas le port d’un équipement particulier) et des avatars dans les interfaces graphiques et vidéo constituent des domaines clés. Pour qu’un système interprète correctement les gestes de commande d’un utilisateur, ou qu’il anime de manière réaliste un avatar en reproduisant des gestes humains usuels, l’analyse de gestes à partir d’images vidéo s’avère donc nécessaire.

2. État de la technique
La capture du mouvement, la reconnaissance de la pose du corps humain et l'analyse de gestes constituent un problème difficile, car il s'agit d'analyser la position et/ou les mouvements de membres articulés.

Naturellement, ce(s) sujet(s) n'a (ont) pas manqué d'attirer l'attention des chercheurs. De nombreuses publications ont été faites sur le sujet.

De nombreux types de caractéristiques ont également été utilisés (frot optique, contours, texture, etc…).

La reconnaissance de la pose et du mouvement humain à partir de l'image n'est pas aisée, car il s'agit d'analyser des mouvements articulés. Le corps humain est un ensemble de membres (plus ou moins rigides) reliés entre eux par des articulations à plusieurs degrés de liberté, et le nombre de degrés de liberté qui déterminent cette position est élevé (entre trente et quarante). L'espace généré est de très grande dimension et son exploration peut s'avérer complexe, surtout si l'on recherche une solution globale et non locale.

D'autre part, on n'observe en général la pose d'une personne que d'un nombre strictement limité de caméras, souvent deux (de points de vue relativement proches) ou même une seule (type webcam par exemple). Le passage d'un personnage de la 3D à l'image (ou à quelques images) 2D implique une perte d'information. Il en résulte des situations hautement ambiguës lorsque l'on désire interpréter une pose 3D à partir d'une (ou quelques) image(s) 2D.

De plus, les membres ne sont pas strictement rigides, et leur forme varie avec le mouvement, le jeu des muscles sous la peau, et le mouvement des vêtements. Les vêtements eux-mêmes ont des textures, couleurs et formes fortement variables. Pour ces raisons, la forme apparente des membres dans la (ou les) image(s) n'est pas une très bonne source d'information sur la pose tridimensionnelle exacte du corps humain et les valeurs associées des variables articulaires. La longueur apparente des membres dans les images et les positions respectives des différentes articulations dans la (les) images sont en fait les mesures les plus informatives. C'est pourquoi, dans son article «
Reconstruction of articulated objects from point correspondences in a single image », publié dans la revue Computer Vision and Image Understanding, vol. 80, no 3, p 349-363, 2000, C. J. Taylor a proposé une méthode d'estimation originale de la position du corps humain à partir d'une image et de points articulaires étiquetés, et non plus à partir de l'observation des membres, comme dans les techniques de l'art antérieures précitées.

Cependant, la technique proposée par Taylor ne tient pas compte du fait que la mesure de la position des articulations du corps humain dans les images capturées est le plus souvent fortement imprécise, Taylor faisant l'hypothèse souvent erronée que les mesures obtenues à partir des captures d'images sont précises et sans biais.

Or, la réalité montre que des erreurs sur les mesures effectuées à partir des images capturées existent, lesquelles s'avèrent même le plus souvent importantes.

Aussi, un inconvénient majeur de la technique de Taylor provient du manque de fiabilité et de performance induit par l'absence de la prise en considération des imprécisions, incertitudes et des erreurs potentielles survenant fréquemment dans la chaîne de traitement des images en vue de la reconstruction tridimensionnelle du ou des membres considérés. Or celles-ci viennent perturber sensiblement l'estimation de la position et du mouvement articulaire.

Ce brevet propose une méthode de calcul de la configuration tridimensionnelle d'un corps articulé différente de celle de Taylor et montre de plus comment estimer les incertitudes associées aux estimées de position obtenues. Notre méthode permet de quantifier les erreurs commises pendant la reconstruction et de jauger de la qualité de la reconstruction. À notre connaissance, personne n'a précédemment effectué cette estimation de l'incertitude de la position estimée d'un corps articulé. Cette estimation est vitale pour une utilisation correcte des estimées de position obtenues, notamment pour l'estimation du mouvement du corps humain au cours de
temps, ou pour tout autre post-traitement dans la chaîne de traitement d'images, et dans toutes les applications précitées où la position du corps est utilisée à différentes fins (surveillance, animation d'avatars, compression, interfaces, etc...).

3. **Objectifs de l'invention**

L'invention a notamment pour objectif de pallier ces divers inconvénients de l'état de la technique.

Plus précisément, un objectif de l'invention est de fournir une technique de reconstruction 3D d'un membre articulé en vue de différentes applications, notamment l'analyse de gestes, qui mette en œuvre un calcul efficace et fiable de la position 3D du corps humain à partir des positions articulaires données manuellement ou obtenues par une analyse automatique ou semi-automatique d'une image 2D préalablement capturée.

Un autre objectif de l'invention est de fournir une technique de reconstruction 3D permettant de tenir compte des erreurs commises sur l'estimation de la position 3D du corps à partir des positions articulaires capturées dans les images.

Un autre objectif de l'invention est de fournir une technique d'estimation des erreurs et incertitudes, et de quantification de la précision et de la qualité de la reconstruction 3D dues aux possibles imprécisions de mesure des positions articulaires 2D dans les images.

Un autre objectif de l'invention est de fournir une technique de reconstruction 3D, couplée à une technique d'estimation des erreurs et incertitudes associées, pour tout ensemble de membres articulés ou chaîne cinématique. En effet, la technique présentée ici, qui s'applique à deux membres et 3 articulations, peut s'appliquer à un corps articulé de N membres en l'appliquant à chaque sous-ensemble de deux membres consécutifs (partageant une articulation).

Un objectif supplémentaire de l'invention consiste à proposer une technique d'estimation des incertitudes et de la confiance liées à la
reconstruction 3D d’un membre d’un corps donné pour utilisation lors d’étapes subséquentes dans la chaîne de traitement d’images. En effet, la reconstruction 3D peut ensuite être utilisée pour différentes applications. Un exemple (non limitatif) est l’estimation du mouvement du bras. Dans toutes les applications, la prise en compte de la confiance estimée de la reconstruction 3D permet une utilisation plus correcte de la reconstruction 3D et donc augmente la fiabilité de la chaîne de traitement d’images tout entière. Quelque soit l’application (analyse de mouvement, reconnaissance de gestes, etc...), la prise en compte de la confiance améliore la performance du système.

Un objectif supplémentaire de l’invention consiste à proposer un technique de reconstruction 3D d’un membre d’un corps donné et d’évaluation des erreurs associées permettant d’estimer et de filtrer la position du corps au cours du temps, lorsqu’on estime la configuration 3D articulaire sur une séquence d’images.

Un objectif de l’invention concerne donc la possibilité d’offrir une meilleure analyse de gestes par l'image.

Un autre objectif de l’invention est de fournir une telle technique de reconstruction permettant de calculer quatre familles de solutions de reconstruction possible, et non plus simplement quatre solutions, ce qui accroît sensiblement la qualité et la robustesse de l’estimation de la position du membre dans l’image.

Un objectif supplémentaire de l’invention est de fournir une nouvelle technique de reconstruction plus fiable permettant en outre de pouvoir contrôler la qualité et la précision de la reconstruction 3D d’un membre articulé, et de mettre en œuvre des mécanismes de correction des erreurs.

Un autre objectif de l’invention est de fournir un tel procédé de reconstruction et d’estimation permettant un post-processing et une chaîne de traitement d’image plus correcte, pour une variété d'applications.

Un dernier objectif de l’invention est de fournir un tel procédé de reconstruction et d’estimation et de prise en compte des erreurs permettant un
filtrage temporel et une reconstruction de gestes plus correcte, favorisant son utilisation aussi bien pour l’analyse de gestes pour les interfaces gestuelles et/ou multimodales naturelles, que pour l’animation d’avatars et/ou l’indexation de séquences d’images.

4. Résumé de l’invention

Ces objectifs, ainsi que d’autres qui apparaîtront par la suite, sont atteints selon l’invention à l’aide d’un procédé de reconstruction (96) tridimensionnelle d’un membre articulé dans un environnement prédéterminé, comportant une étape d’acquisition (90) d’au moins une image (91) monoculaire à deux dimensions du membre et une étape (92) de détermination d’un ensemble de N points (93) d’articulation du membre dans l’une au moins des images (91) de façon à déterminer au moins une position (931) à deux dimensions de chacun des points (93) d’articulation dans l’image (91).

Un tel procédé selon l’invention comprend avantageusement :

- une étape (94) de calcul d’au moins une position (941) en trois dimensions du membre à partir de l’une au moins des positions (931) à deux dimensions de chacun des points (93) d’articulation dans l’image (91);

- une étape (95) d’estimation de la position (941) en trois dimensions des points d’articulation du membre dans l’environnement, à partir de l’une au moins des positions en trois dimensions calculées (94) ;

de façon à produire une pluralité de solutions possibles de reconstruction en trois dimensions du membre dans l’environnement considéré.

Préférentiellement, l’étape d’estimation comprend au moins les sous-étapes suivantes de :

- calcul (97, 98) des erreurs de mesure sur les positions (931) à deux dimensions d’au moins un des points (93) d’articulation, de façon à identifier pour chacune des positions à deux dimensions une zone d’erreurs (97) ;
calcul (910, 911) des erreurs commises à l’étape (95) d’estimation de la position (941) en trois dimensions du membre dans l’environnement, à partir des erreurs (913) de mesure sur les positions à deux dimensions dont la covariance est propagée (912).

De façon avantageuse, pour au moins une position (931) à deux dimensions de chacun des points (93) d’articulation dans l’image (91), on définit une zone (913) elliptique d’erreurs autour des points (93) d’articulation, de façon à caractériser la précision des positions à deux dimensions et/ou à générer un échantillon (97) de (N-1) positions d’articulation possibles à deux dimensions dans la zone d’erreurs (913).

De façon préférentielle, le procédé selon l’invention comprend en outre et de façon avantageuse, une étape (914) d’estimation de la longueur L du membre à partir de l’une au moins des positions (931) à deux dimensions de chacun des points (93) d’articulation.

Préférentiellement, lorsque le membre comprend deux parties correspondant respectivement à un bras et à un avant-bras définis par trois points d’articulation, la longueur L du bras et de l’avant-bras vérifie les contraintes suivantes :

\[L \geq l \geq \frac{D}{2}, \quad L \geq d(w, e), \quad L \geq d(e, s) \]

\[\gamma \geq 0 \text{ and } \gamma' = -b - \sqrt{\gamma} \geq 0. \]

où :
- \(\gamma = b^2 - c \) est un discriminant qui intervient dans les calculs,
- avec \(b \) et \(c \) des variables intermédiaires définies par :
 \[b = Y_E^2 + Z^2_E - L^2 + \frac{1}{4}D^2 \]
 \[c = Y_E^2D^2 \]
- \(l \) est la moitié de la distance entre le poignet et l’épaule du bras ;
- \(D \) est la distance projetée entre le poignet et l’épaule du bras ;
- \(L \) est la longueur des membres ;
- \(d(w, e) \) est la longueur apparente du premier membre ;
- \(d(e, s) \) est la longueur apparente du second membre.
Avantageusement, autour de chacune desdites positions (931) à deux dimensions d’un point (93) d’articulation, la zone d’erreurs (913) est définie par une ellipse de covariance à deux dimensions (98).

Préférentiellement, l’étape (94) de calcul d’au moins une position (941) en trois dimensions du membre à partir de l’une au moins des positions à deux dimensions de chacun des points d’articulation, comprend une étape (915) de changement de système de coordonnées images pour chacun des (N-1) positions d’articulation possibles à deux dimensions de l’échantillon.

De façon également avantageuse, l’étape (96) de reconstruction du membre en trois dimensions comprend les sous-étapes de projection (916) inverse des positions (931) à deux dimensions des points (93) d’articulation et d’extrusion multiple de la profondeur du membre à partir du résultat de l’étape (914) d’estimation de la longueur du membre et de l’étape (915) de changement de coordonnées images, de façon à produire (94) au moins (4*N) solutions possibles d’images reconstruites en trois dimensions du membre dans l’environnement.

Une telle approche permet de produire au moins quatre solutions possibles de reconstructions en trois dimensions du membre à l’intérieur de l’environnement en trois dimensions, et au moins quatre matrices de covariance caractérisant les erreurs commises durant le processus de mesure et de reconstruction.

De cette manière, et contrairement à l’art antérieur, on peut évaluer la précision et la confiance dans les solutions calculées. Et on peut ainsi les utiliser de manière judicieuse dans des étapes ultérieures de la chaîne de traitement d’images. Un exemple (non limitatif) d’étape ultérieure est l’estimation de la trajectoire et du mouvement du bras dans le temps. Préférentiellement, l’étape (94) d’estimation de la position en trois dimensions comprend une étape de calcul (95) de la position moyenne optimale du membre à l’intérieur de l’environnement, à partir de l’une au moins des (4*N) solutions possibles d’images reconstruites.
De façon préférentielle, l’étape d’estimation de la position en trois dimensions comprend en outre une sous-étape de calcul (912) de propagation de covariance de chacune des ellipses (98) de covariance à deux dimensions tenant compte du changement (915) de système de coordonnées d’images, de la projection inverse (916) et de l’extrusion de profondeur des points d’articulation, de façon à produire au moins une ellipse (910) de covariance en trois dimensions autour de la position en trois dimensions des articulations du membre dans l’environnement.

Avantageusement, le procédé selon l’invention comprend une étape (917) de définition d’une zone ellipsoïdale d’erreur autour de la position centrale en trois dimensions du membre.

Préférentiellement, l’étape (917) de définition d’une zone ellipsoïdale d’erreur est une étape de modélisation des erreurs produites à l’étape (95) d’estimation de la position (941) en trois dimensions des points d’articulation du membre dans l’environnement, par des matrices de covariance analytique.

De façon également avantageuse, on calcule dans le procédé selon l’invention au moins certaines des erreurs induites par :
- les mesures dans les images à deux dimensions ;
- le changement de système de coordonnées d’images ;
- la projection inverse et l’extrusion de la profondeur des points d’articulation ;
- la reconstruction de la position en trois dimensions du membre articulé.

De façon préférentielle, pour chacune des solutions possibles d’images reconstruites obtenues, on associe respectivement une valeur de probabilité, de façon à identifier la configuration optimale en trois dimensions la plus probable pour le membre reconstruit.

L’invention concerne également et de façon avantageuse, un produit programme d'ordinateur, caractérisé en ce qu'il comprend des instructions de code de programme pour l'exécution des étapes du procédé précité, lorsque le programme est exécuté dans et/ou par un processeur.
L'invention concerne aussi un dispositif de reconstruction (96) tridimensionnelle d'un membre articulé dans un environnement prédéterminé, comportant des moyens d'acquisition (90) d'au moins une image (91) monoculaire à deux dimensions du membre et des moyens (92) de détermination d'un ensemble de N points (93) d'articulation du membre dans l'une au moins des images (91), de façon à déterminer au moins une position (931) à deux dimensions de chacun des points (93) d'articulation dans l'image (91). Un tel dispositif comprend avantageusement :

- des moyens (94) de calcul d'au moins une position (941) en trois dimensions du membre à partir de l'une au moins des positions (931) à deux dimensions de chacun des points (93) d'articulation ;

- des moyens (95) d'estimation de la position (941) en trois dimensions du membre dans l'environnement, à partir de l'une au moins des positions en trois dimensions calculées (94) ;

de façon à produire une pluralité de solutions possibles de reconstruction en trois dimensions du membre dans l'environnement.

Selon un tel dispositif, les moyens (95) d'estimation comprennent préférentiellement :

- des moyens de calcul (97, 98) des erreurs de mesure sur les positions (931) à deux dimensions d'au moins un des points (93) d'articulation, de façon à identifier pour chacune des positions à deux dimensions une zone d'erreurs (97) ;

- des moyens de calcul (910, 911) des erreurs commises par les moyens (95) d'estimation de la position (941) en trois dimensions du membre dans l'environnement, à partir des erreurs (913) de mesure calculées (912) sur les positions à deux dimensions ;

- des moyens de propagation de la covariance associée aux erreurs de mesure sur les positions (931) à deux dimensions d'au moins un des points (93) d'articulation ;
– des moyens d'estimation des incertitudes liées à la reconstruction en trois dimensions.

5. Liste des figures

D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante d'un mode de réalisation préférentiel de l'invention, donné à titre d'exemple illustratif et non limitatif, faite en référence aux dessins annexés parmi lesquels :

– les figures 1 à 3 présentent trois exemples de configuration possible d'utilisation d'un système de capture de gestes ;

– la figure 4 illustre la géométrie d'un bras articulé en projection orthographique ;

– la figure 5 donne une représentation des positions d'articulation d'un bras dans une image et des autres paramètres concernant la projection de celui-ci dans une image ;

– la figure 6.a montre une image et les positions articulaires (données à la main) d'un bras dans cette image ;

– la figure 6.b montre les quatre positions 3D du bras illustrées sur les figures 6.c à 6.f, identiques quand elles sont observées du même point de vue que l'image de la figure 6.a ;

– les figures 6.c à 6.f présentent la famille des 4 configurations 3D possibles du bras correspondant aux observations de la figure 6.b issues de l'analyse de l'image de la figure 6.a.

– la figure 7 donne un exemple d'incertitudes et de matrices de covariances (représentées par des ellipses) associées à la mesure ou à l'estimation des positions articulaires 2D dans une image.

– la figure 8.a montre un exemple de variations autour des quatre positions 3D centrales reconstruites pour chaque articulation.

– les figures 8.b et 8.c montrent les ellipsoïdes d'incertitude associés aux quatre reconstructions 3D possibles des positions articulaires pour l'image.
de bras montrée en figure 6.a (les deux figures montrent deux angles de vue différents sur la même figure).

- la figure 8.d montre un zoom sur deux des ellipsoïdes des figures 8.b et 8.c.
- la figure 9 présente un organigramme des étapes du procédé selon l’invention ;
- les figures 10 et 11 donnent un exemple de la reconstruction 3D et de l’estimation des erreurs, sur un exemple concernant un bras articulé.

6. **Description d’un mode de réalisation privilégié de l’invention appliquée sur un bras articulé**

La présente invention concerne donc un procédé de reconstruction tridimensionnelle d’un membre articulé – par exemple un bras ou une jambe d’un humain – et d’estimation de l’incertitude associée, à partir de positions articulaires à deux dimensions (2D) capturées dans une ou plusieurs images monoculaire, pour différentes applications, notamment (mais pas uniquement) pour l’analyse de geste et/ou l’animation d’avatars virtuels en trois dimensions (3D).

De façon préliminaire, nous décrivons tout d’abord les conditions dans lesquelles l’estimation de la configuration 3D d’un membre articulé et la prise en compte des incertitudes associées doivent être réalisées.

Tout d’abord, il est important de préciser que les conditions de prise d’images du membre articulé (un bras par exemple) sont quelconques.

Les figures 1 à 3 présentes des exemples possibles de situations de prise d’images, mais les applications possibles ne sont nullement limitées aux exemples illustrés.

Comme illustré sur la figure 1, dans une première configuration possible d’utilisation d’un système de capture de gestes, l’utilisateur 10 est assis en face d’une table de travail ou d’une table de visioconférence 11. D’autres personnes peuvent éventuellement être présentes. Une camera 13 observe le ou les utilisateurs (ou plus exactement est pointée vers l’endroit où se trouve le sujet).
Sur la figure 2, et dans une deuxième configuration possible d’utilisation d’un système de capture de gestes, l’utilisateur 20 est debout devant une caméra 21.

Sur la figure 3 et dans une troisième configuration possible d’utilisation d’un système de capture de gestes, l’utilisateur 30 est assis en face d’un ordinateur 31 équipé d’une caméra 32, du type webcam, par exemple.

Ensuite, les hypothèses suivantes sont réalisées :

- les positions des projections 2D des articulations (épaule, coude, poignet) dans le plan image sont connues (à une incertitude près). Les incertitudes associées peuvent aussi être calculées (ou une bonne approximation peut être obtenue);

- les bras et avant-bras du membre articulé observé sont de longueurs égales. Cette longueur (non nécessairement connue) sera notée \(L \); la méthode est généralisable si les bras et avant-bras (ou plus généralement les sous membres) composant le membre observé, sont de longueurs différentes, par exemple \(L_1 \) et \(L_2 \), et que l’on connaît le rapport \(\frac{L_1}{L_2} \) de leurs deux longueurs.

- la caméra peut être représentée par un modèle orthographique en première approximation. Les calculs présentés sont alors facilement généralisables à un modèle orthographique de caméra avec facteur d’échelle additionnel. Les résultats peuvent aussi être appliqués en première approximation à une caméra perspective si la personne n’est pas trop proche de la caméra et si les effets de perspective ne sont pas très forts (par exemple dans une situation dans laquelle la personne a une position proche du plan fronto-parallèle à la caméra).
On précisera ici que la méthode s’applique à n’importe quel membre articulé (2 membres, 3 articulations), qu’il soit humain, robotique, ou autre, et quelques soient les nombres de degrés de liberté à chaque articulation. La méthode est aussi applicable sur un corps de plus de deux membres en prenant les membres deux à deux (pour les membres partageant une articulation).

De plus, la caméra utilisée pour l’acquisition des images n’a pas besoin d’être calibrée préalablement.

6.1 Estimation de la position 3D d’un bras articulé

Cette section présente la méthode permettant d’estimer la position 3D d’un bras articulé à partir des positions des trois articulations 41, 42 et 43 du bras dans une image. La géométrie du problème est illustrée par figure 4 qui présente la géométrie du bras en projection orthographique. Sur cette figure, W est le poignet 41, S est l’épaule 42, et E le coude 43. La caméra est orthographique, de direction de projection X et de plan image OYZ.

Soient \((u_s, v_s)\) les coordonnées de l’épaule 42 (« shoulder ») dans le plan image, \((u_e, v_e)\) coordonnées du coude 43 (« elbow ») dans l’image et \((u_w, v_w)\) les coordonnées du poignet 41 (« wrist ») mesurées dans le plan image. La configuration générale observée dans l’image est illustrée par la figure 5.

Soit \(D = d(w, s) = \|ws\| = \sqrt{(u_s - u_w)^2 + (v_s - v_w)^2}\) la distance entre le poignet 41 et l’épaule 43 dans l’image.

La première étape pour reconstruire le bras en trois dimensions (3D) est d’effectuer un changement de système sur les coordonnées articulaires dans les images. En effet, seule la configuration relative des points articulaires dans les images est importante pour l’estimation de la configuration 3D du bras.

Changement de système de coordonnées images :

On se donne un nouveau repère de coordonnées image dont le premier axe est aligné avec la ligne épaule poignet. On effectue ensuite le changement de repère des coordonnées du bras dans les images.

Soit \(\phi = \frac{(u_s + u_e)}{2}\) le centreïde 51 de D et s, par exemple : \(\begin{pmatrix} u_o \\ v_o \end{pmatrix} = \begin{pmatrix} \frac{(u_w + u_s)}{2} \\ \frac{(v_w + v_s)}{2} \end{pmatrix}\)
Soit \(\overrightarrow{t}_{\text{WS}} = \frac{\overrightarrow{US}}{\|\overrightarrow{US}\|} \) le vecteur normalisé tangent à \(\overrightarrow{US} \) dans le plan image et soit \(\overrightarrow{n}_{\text{WS}} \) le vecteur normalisé perpendiculaire à \(\overrightarrow{t}_{\text{WS}} \) dans le plan image (e.g. \(\overrightarrow{t}_{\text{WS}} \cdot \overrightarrow{n}_{\text{WS}} = 0 \)). Les coordonnées des deux vecteurs sont données par :

\[
\overrightarrow{t}_{\text{WS}} = \frac{\overrightarrow{US}}{\|\overrightarrow{US}\|} = \frac{\overrightarrow{US}}{D} = \left(\frac{u_2 - u_1}{D}, \frac{v_2 - v_1}{D} \right)
\]

\[
\overrightarrow{n}_{\text{WS}} = \left(\frac{v_2 - v_1}{D}, \frac{u_2 - u_1}{D} \right)
\]

Les coordonnées \((Y_E, Z_E) \) du coude dans le repère \((o, \overrightarrow{t}_{\text{WS}}, \overrightarrow{n}_{\text{WS}}) \) sont données par :

\[
Y_E = \frac{\tau_x u_2}{D} - \frac{u_2 u_{w_x}}{D} + \frac{v_2}{2D} - \frac{v_2 v_{w_y}}{2D} + \frac{v_2}{2D} - \frac{v_2^2}{2D} - \frac{v_2^2}{2D}
\]

\[
Z_E = \frac{\tau_y u_2}{D} - \frac{u_2 u_{w_x}}{D} + \frac{u_2 v_{w_y}}{2D} + \frac{v_2}{2D} - \frac{u_2 v_{w_x}}{2D} - \frac{u_2 v_{w_y}}{2D} + \frac{v_2}{2D} + \frac{v_2 v_{w_y}}{2D}
\]

Après changement de coordonnées, on obtient les coordonnées du coude dans le nouveau repère.

Projection inverse et extrusion de la profondeur :

On suppose que l’on connaît la longueur \(L \) du bras ou l’on estime une valeur plausible de \(L \) grâce aux contraintes listées en section 6.2. A partir des coordonnées articulaires 2D (calculées dans le nouveau repère), et de la longueur \(L \), on peut estimer les quatre profondeurs relatives possibles du poignet et de l’épaule comme suit.

Soient \(b \) et \(c \) les quantités suivantes :

\[
b = Y_E^2 + Z_E^2 - L^2 + \frac{1}{4} D^2
\]

\[
c = Y_E^2 D^2
\]

Soit \(\gamma \) le discriminant : \(\gamma = b^2 - c \)

Soit \(X_{\text{WS}} \) la profondeur 44 relative de l’épaule 42 par rapport au centroïde 45 épaule-poignet. Il existe 4 valeurs possibles \(X_{i,\text{WS}}, i = 1..4 \) compatibles avec les observations faites dans l’image. Les 4 solutions sont :

\[
X_{1,\text{WS}} = +\sqrt{2(-b + \sqrt{\gamma})}
\]

\[
X_{2,\text{WS}} = +\sqrt{2(-b - \sqrt{\gamma})}
\]

\[
X_{3,\text{WS}} = -\sqrt{2(-b + \sqrt{\gamma})}
\]

\[
X_{4,\text{WS}} = -\sqrt{2(-b - \sqrt{\gamma})}
\]
Ceci donne les configurations possibles du bras en 3D, ou plus précisément les positions relatives possibles des articulations en 3D.

5

Reconstruction de la position 3D du bras (avec 4 flips possibles) :

On se ramène au système de coordonnées quelconque du début et à des coordonnées absolues (et non relatives) comme suit. Soit \(X_0 \) la profondeur (arbitraire) du centreïde épaule poignet. D’après ce qui précède, les quatre positions 3D possibles du bras compatibles avec les observations sont données par :

\[
W_i = \begin{pmatrix} X_{W_i} \\ Y_{W_i} \\ Z_{W_i} \end{pmatrix} = \begin{pmatrix} X_0 - \frac{X_{WS}}{2} \\ u_w \\ v_w \end{pmatrix}
\]

\[
S_i = \begin{pmatrix} X_{S_i} \\ Y_{S_i} \\ Z_{S_i} \end{pmatrix} = \begin{pmatrix} X_0 + \frac{X_{WS}}{2} \\ u_s \\ v_s \end{pmatrix} \quad \text{pour} \quad i = 1..4
\]

\[
E_i = \begin{pmatrix} X_{E_i} \\ Y_{E_i} \\ Z_{E_i} \end{pmatrix} = \begin{pmatrix} \frac{DY_{WS}}{1 + Y_{WS}} \\ u_e \\ v_e \end{pmatrix}
\]

où \(W_i \) est la position 3D du poignet (« wrist »), \(E_i \) position 3D du coude (« elbow »), et \(S_i \) les coordonnées 3D de l’épaule (« shoulder »).

Les équations ci-dessus donnent les quatre solutions à la reconstruction d’un bras articulé à partir de positions articulaires dans une image, étant donné une longueur supposée \(L \) de chaque membre. Notons qu’il est quelquefois possible d’obtenir des dégénérescences, et donc de n’avoir que deux solutions au problème.

Ces quatre solutions sont illustrées au travers les exemples des figures 6.c à 6.f. Si \(L \) n’est pas connue, il y a quatre familles de solutions au problème, catégorisées par la seule variable \(L \).

Plus précisément, dans l’exemple de la figure 6, quatre solutions 6.c, 6.d, 6.e et 6.f, à la reconstruction d’un bras articulé 60 (figure 6.b) à partir de positions articulaires (61, 62, 63 – figures 6.a et 6.b) dans une image 6.a existent, étant donné une longueur supposée \(L \) de chaque membre. La figure 6.a présente une image et les positions 61, 62, 63 articulaires (données à la
main) d'un bras dans cette image. Les figures 6.c à 6.f montrent les 4 configurations 3D possibles du bras 60 correspondant aux observations dans l'image de la figure 6.a. La figure 6.b présente l'aspect de ces 4 positions 3D (identique pour les 4) quand elles sont observées du même point de vue que l'image 6.a.

6.2 Prise en compte des contraintes sur la longueur L des membres

Si la longueur L des membres n'est pas connue, l'observation des positions articulaires dans une image donnent des contraintes sur L, et permet donc de faire des hypothèses sur la valeur possible de L. Les contraintes sur L sont dues à deux causes. Premièrement, la résolution des équations ci-dessus donnant la position 3D du bras implique la résolution d'équations du second degré. Pour que ces équations aient une solution, il faut que leurs discriminants soient positifs ou nuls. Deuxièmement, il y a des contraintes géométriques sur L, dues au processus de projection. Ces deux types de contraintes peuvent s'écrire comme suit:

\[L \geq l \geq \frac{D}{2}, \quad L \geq d(w, e), \quad L \geq d(e, s) \]

\[\gamma \geq 0 \text{ and } \gamma' = -b - \sqrt{\gamma} \geq 0. \]

Un choix possible de L est donc le L minimum qui vérifie les contraintes ci-dessus.

6.3 Gestion des incertitudes et/ou des erreurs et/ou de la qualité de la reconstruction

La reconstruction d'un bras articulé à partir de positions articulaires dans une image qui, dans le présent exemple, mais de façon non limitative pour l'invention, une multiplicité de quatre et un paramétrage par la longueur de membre L comme discuté dans la précédente section, se fait avec un niveau d'incertitude, induite par l'incertitude associée aux mesures réalisées sur les images.

L'approche d'estimation des incertitudes associées à la reconstruction est maintenant présentée ci-dessous. Selon le Déposant, une telle méthode de
calcul est nouvelle et inventive et ne semble pas trouver d'antériorité parmi les techniques de l'art antérieur.

L'estimation des incertitudes permet de modéliser les erreurs intervenant dans la reconstruction 3D. Elle montre comment les erreurs de mesure dans les images influencent la reconstruction 3D. Elles permettent de mettre en œuvre des mécanismes de correction des erreurs, par exemple en utilisant un filtrage temporel.

La figure 7 présente un exemple d'incertitudes et de matrices de covariances (représentées par des ellipses) associées à la mesure ou à l'estimation des positions articulaires 2D d'un membre 70 articulé dans une image. Le membre est défini par trois articulations 71, 72, 73 correspondant respectivement au poignet 71, au coude 72 et à l'épaule 73, délimitant respectivement le bras et l'avant-bras. Le segment 74 définissant l'avant-bras joint le poignet 71 au coude 72 et le segment 75 définissant le bras joint le coude 72 à l'épaule 73. Ces incertitudes existent que le système extrait ces positions automatiquement, semi-automatiquement, ou que l'utilisateur les donne manuellement. L'utilisateur, tout comme le système d'analyse d'images peuvent effectivement commettre des erreurs. Les incertitudes 2D articulaires sont modélisées comme anisotropiques, non corrélées en u et v, et peuvent être différentes pour chaque articulation. Elles sont représentées sous la forme d'ellipses 76 à 78, autour de chacun des points d'articulation 71, 72 et 73.

En outre, comme illustré sur la figure 8.a les variations autour des quatre positions 3D centrales 80 à 83 sont reconstruites pour chaque articulation. Les figures 8.b et 8.c montrent les ellipsoïdes 84 à 87 d'incertitude (à 2 sigma, c'est-à-dire pour un niveau de confiance de 95%) associées aux quatre reconstructions 3D possibles 80 à 83 des positions articulaires pour l'image de bras montrée en figure 6.a (les deux figures montrent deux angles de vue différents sur la même figure).
La figure 8.d présente un zoom sur deux des ellipsoïdes 88, 89 des figures 8.b et 8.c. Ces ellipsoïdes correspondent aux incertitudes associées à deux des reconstructions 3D possibles d'une des articulations 3D.

Erreurs de mesure dans les images

On commence par modéliser les erreurs de mesure qui peuvent se produire sur les positions à deux dimensions des articulations dans les images. Ces erreurs sont modélisées par des matrices de covariance.

Soient
\[
\begin{pmatrix}
\sigma_{u,s}^2 & 0 \\
0 & \sigma_{v,s}^2
\end{pmatrix},
\begin{pmatrix}
\sigma_{u,e}^2 & 0 \\
0 & \sigma_{v,e}^2
\end{pmatrix}
\]
et
\[
\begin{pmatrix}
\sigma_{u,w}^2 & 0 \\
0 & \sigma_{v,w}^2
\end{pmatrix}
\]
deux matrices de covariance associées aux mesures 2D dans le plan image. On suppose que les matrices de covariance sont diagonales, c'est-à-dire, par exemple, qu'il n'y a pas de corrélation entre les coordonnées \(u \) et \(v \) des articulations dans les images. On suppose aussi que des estimations raisonnables de \(\sigma_{u,s}^2, \sigma_{v,s}^2, \sigma_{u,e}^2, \sigma_{v,e}^2, \sigma_{u,w}^2, \sigma_{v,w}^2 \) sont disponibles.

Ces valeurs peuvent être données par l'utilisateur, à partir d'ordres de grandeur connus. Elles peuvent aussi être estimées par expérimentation, apprentissage et/ou évaluation de la chaîne de traitement d'images qui permet de mesurer les positions articulaires dans les images.

Erreurs induites par le changement de système de coordonnées images

Lorsqu'on estime la position 3D du bras à partir des mesures dans le plan image, on commence par se placer dans un repère de coordonnées locales au bras (voir plus haut). On calcule la distance \(D \) entre le poignet et l'épaule dans l'image, et les coordonnées \(Y_E \) et \(Z_E \) du coude dans le repère local défini par le poignet et l'épaule. Les erreurs de mesure sur les coordonnées images des articulations causent des erreurs sur l'estimation de \(D \), \(Y_E \) et \(Z_E \). Ces dernières peuvent être estimées par propagation de covariance et approximation au premier degré. On obtient les équations suivantes:

Soient les quantités :

\[R_{Y_E} = -\frac{u_{y,s}}{D^2} + \frac{u_{y,e}}{2D^2} - \frac{u_{y,w}}{2D^2} + \frac{u_{y,s}u_{v,e}}{D^4} + \frac{u_{y,e}u_{v,w}}{D^4} - \frac{u_{y,s}u_{v,w}}{2D^4} + \frac{u_{v,s}u_{v,e}}{2D^4} \]
\[R_{z_E} = \left[-\frac{\nu_{wD}}{D^2} + \frac{\nu_{wD}}{D^2} - \frac{\nu_{wD}}{2D^2} + \frac{\nu_{wD}}{2D^2} - \frac{\nu_{wD}}{D^2} + \frac{\nu_{wD}}{2D^2} - \frac{\nu_{wD}}{2D^2} \right] \]

Les incertitudes associées à \(D \) peuvent être estimées à partir des incertitudes sur les mesures dans les images comme suit:

\[
\sigma_{D}^{2} = \frac{(u_{s} - u_{w})^2}{D^2} \sigma_{u_{s}}^2 + \frac{(u_{s} - u_{w})^2}{D^2} \sigma_{u_{w}}^2 + \frac{(v_{s} - v_{w})^2}{D^2} \sigma_{v_{s}}^2 + \frac{(v_{s} - v_{w})^2}{D^2} \sigma_{v_{w}}^2
\]

\[
\sigma_{u_{s}D} = \frac{(u_{s} - u_{w})}{D} \sigma_{u_{s}}
\]

\[
\sigma_{u_{w}D} = \frac{(u_{s} - u_{w})}{D} \sigma_{u_{w}}
\]

\[
\sigma_{v_{s}D} = \frac{(v_{s} - v_{w})}{D} \sigma_{v_{s}}
\]

\[
\sigma_{v_{w}D} = \frac{(v_{s} - v_{w})}{D} \sigma_{v_{w}}
\]

\[
\sigma_{Y_{E}}^{2} = \left[\frac{2}{D} - \frac{\nu_{wD}}{D^2}\right] \sigma_{u_{s}}^2 + \left[\frac{2}{D} - \frac{\nu_{wD}}{D^2}\right] \sigma_{u_{w}}^2 + \left[\frac{2}{D} - \frac{\nu_{wD}}{D^2}\right] \sigma_{v_{s}}^2 + \left[\frac{2}{D} - \frac{\nu_{wD}}{D^2}\right] \sigma_{v_{w}}^2
\]

\[
\sigma_{Y_{E}D} = \frac{2}{D} \sigma_{u_{s}}^2 + \frac{2}{D} \sigma_{u_{w}}^2 + \frac{2}{D} \sigma_{v_{s}}^2 + \frac{2}{D} \sigma_{v_{w}}^2
\]

\[
\sigma_{Y_{E}E} = \frac{2}{D} \sigma_{u_{s}}^2 + \frac{2}{D} \sigma_{u_{w}}^2 + \frac{2}{D} \sigma_{v_{s}}^2 + \frac{2}{D} \sigma_{v_{w}}^2
\]

\[
\sigma_{Y_{E}D_{u}} = \left[\frac{\nu_{wD}}{D} - \frac{\nu_{wD}}{D^2}\right] \sigma_{u_{s}}^2 + R_{Y_{E}} \sigma_{D_{u}}^2
\]

\[
\sigma_{Y_{E}D_{v}} = \left[\frac{\nu_{wD}}{D} - \frac{\nu_{wD}}{D^2}\right] \sigma_{u_{w}}^2 + R_{Y_{E}} \sigma_{D_{v}}^2
\]

\[
\sigma_{Y_{E}D_{w}} = \left[\frac{\nu_{wD}}{D} - \frac{\nu_{wD}}{D^2}\right] \sigma_{v_{s}}^2 + R_{Y_{E}} \sigma_{D_{w}}^2
\]

\[
\sigma_{Y_{E}D_{s}} = \left[\frac{\nu_{wD}}{D} - \frac{\nu_{wD}}{D^2}\right] \sigma_{v_{w}}^2 + R_{Y_{E}} \sigma_{D_{s}}^2
\]

\[
\sigma_{Y_{E}D_{u}} = \left[\frac{\nu_{wD}}{D} - \frac{\nu_{wD}}{D^2}\right] \sigma_{u_{s}}^2 + R_{Y_{E}} \sigma_{D_{u}}^2
\]

\[
\sigma_{Y_{E}D_{v}} = \left[\frac{\nu_{wD}}{D} - \frac{\nu_{wD}}{D^2}\right] \sigma_{u_{w}}^2 + R_{Y_{E}} \sigma_{D_{v}}^2
\]

Les incertitudes associées \(Y_{E} \) peuvent être calculées de manière similaire et sont égales à :
Similairement, les incertitudes associées à Z_E sont égales à :

$$
\sigma^2_{Z_E} = \left[\frac{\psi_{\omega}}{2D} + \frac{\psi_{\ell}}{D} - \frac{\psi_{\omega}}{2D} \right] \sigma^2_{\mu_x} + \left[\frac{\psi_{\omega}}{2D} - \frac{\psi_{\ell}}{D} \right] \sigma^2_{\mu_y} + \left[\frac{\psi_{\omega}}{2D} - \frac{\psi_{\ell}}{D} + \frac{\psi_{\omega}}{2D} \right] \sigma^2_{u_\omega} + \left[\frac{\psi_{\omega}}{2D} + \frac{\psi_{\ell}}{D} \right] \sigma^2_{u_\ell} + \left[\frac{\psi_{\omega}}{2D} - \frac{\psi_{\ell}}{D} \right] \sigma^2_{u_\beta} + \left[\frac{\psi_{\omega}}{2D} - \frac{\psi_{\ell}}{D} \right] \sigma^2_{u_\phi}
$$

$$
\sigma_{Z_E,\mu_x} = 0
$$

$$
\sigma_{Z_E,\mu_y} = \left[\frac{\psi_{\omega}}{2D} - \frac{\psi_{\ell}}{D} \right] \sigma^2_{u_\omega}
$$

$$
\sigma_{Z_E,u_\ell} = \left[\frac{\psi_{\omega}}{2D} + \frac{\psi_{\ell}}{D} \right] \sigma^2_{u_\omega} + R_{Z_E} \sigma_{u_\ell}
$$

$$
\sigma_{Z_E,u_\beta} = \left[\frac{\psi_{\omega}}{2D} - \frac{\psi_{\ell}}{D} \right] \sigma^2_{u_\ell} + R_{Z_E} \sigma_{u_\beta}
$$

$$
\sigma_{Z_E,u_\phi} = \left[\frac{\psi_{\omega}}{2D} - \frac{\psi_{\ell}}{D} \right] \sigma^2_{u_\beta}
$$

$$
\sigma_{Z_E,v_x} = \left[\frac{\psi_{\omega}}{2D} + \frac{\psi_{\ell}}{D} \right] \sigma^2_{v_x} + R_{Z_E} \sigma_{v_x}
$$

$$
\sigma_{Z_E,v_y} = \left[\frac{\psi_{\omega}}{2D} - \frac{\psi_{\ell}}{D} \right] \sigma^2_{v_y} + R_{Z_E} \sigma_{v_y}
$$

$$
\sigma_{Z_E,v_\beta} = \left[\frac{\psi_{\omega}}{2D} - \frac{\psi_{\ell}}{D} \right] \sigma^2_{v_\beta} + R_{Z_E} \sigma_{v_\beta}
$$

$$
\sigma_{Z_E,v_\phi} = \left[\frac{\psi_{\omega}}{2D} - \frac{\psi_{\ell}}{D} \right] \sigma^2_{v_\phi} + R_{Z_E} \sigma_{v_\phi}
$$

On a donc calculé la confiance et les corrélation entre les grandeurs estimées dans l'image, telle que la distance entre le poignet et l'épaule.

Erreurs induites par la projection inverse et extrusion de la profondeur :

À partir des grandeurs estimées précédemment, on peut estimer les profondeurs possibles entre le poignet et l'épaule. Il y a quatre hypothèses possibles, comme vu précédemment.

Les profondeurs possibles estimées sont bien sûr influencées par les erreurs d'évaluation des mesures et grandeurs du plan image.

Les matrices de covariance associées aux profondeurs possibles peuvent être estimées par propagation de covariance.

La propagation de covariance se fait par étapes, en propageant les incertitudes à toutes les variables intermédiaires calculées durant la projection inverse et l'extrusion de profondeur. On cumule ensuite l'influence de toutes les
erreurs sur les variables intermédiaires pour obtenir l'estimation de l'erreur sur la profondeur. Ce procédé se fait suivant les étapes suivantes.

Les incertitudes associées à la grandeur intermédiaire \(h \) sont tout d'abord évaluées, à partir des erreurs sur les mesures et grandeur estimées dans les images:

\[
\sigma_h^2 = 4Y_E^2 \sigma_Y^2 + 4Z_E^2 \sigma_Z^2 + 4L^2 \sigma_L^2 + \frac{1}{4} D^2 \sigma_D^2 + 4Y_E Z_E \sigma_Y \sigma_Z + D Y_E \sigma_Y D + Z_E D \sigma_Z D
\]

\[
\sigma_{bY} = 2Y_E \sigma_Y^2 + 2Z_E \sigma_Y Z_E + \frac{1}{2} D \sigma_D Y_E
\]

\[
\sigma_{bZ} = 2Y_E \sigma_Y Z_E + 2Z_E \sigma_D Z_E + \frac{1}{2} D \sigma_D Z_E
\]

\[
\sigma_{bY} = 2Y_E \sigma_Y Z_E + 2Z_E \sigma_Y Z_E + \frac{1}{2} D \sigma_D Y_E
\]

\[
\sigma_{bZ} = 2Y_E \sigma_Y Z_E + 2Z_E \sigma_D Z_E + \frac{1}{2} D \sigma_D Z_E
\]

\[
\sigma_{bY} = 2Y_E \sigma_Y Z_E + 2Z_E \sigma_Y Z_E + \frac{1}{2} D \sigma_D Y_E
\]

\[
\sigma_{bZ} = 2Y_E \sigma_Y Z_E + 2Z_E \sigma_D Z_E + \frac{1}{2} D \sigma_D Z_E
\]

\[
\sigma_{bY} = 2Y_E \sigma_Y Z_E + 2Z_E \sigma_Y Z_E + \frac{1}{2} D \sigma_D Y_E
\]

\[
\sigma_{bZ} = 2Y_E \sigma_Y Z_E + 2Z_E \sigma_D Z_E + \frac{1}{2} D \sigma_D Z_E
\]

De même, les confiances associées à \(c \) sont évaluées par:

\[
\sigma_c^2 = 4Y_E^2 D^2 \sigma_Y^2 + 4D^2 Y_E^2 \sigma_D^2 + 4Y_E^2 D^2 \sigma_Y D
\]

\[
\sigma_{cY} = 4Y_E^2 D^2 \sigma_Y^2 + 4D^2 Y_E^2 \sigma_D^2 + 4Y_E^2 D^2 \sigma_Y D
\]

\[
\sigma_{cZ} = 4Y_E^2 D^2 \sigma_Y Z_E + 4D^2 Y_E^2 \sigma_D Z_E + 4Y_E^2 D^2 \sigma_Y D Z_E + Y_E D(D^2 + 4Y_E^2) \sigma_D Y_E + Z_E D \sigma_Z D
\]

\[
\sigma_{cY} = 2Y_E D^2 \sigma_Y Z_E + 2D Y_E^2 \sigma_D
\]

\[
\sigma_{cZ} = 2Y_E D^2 \sigma_Y Z_E + 2D Y_E^2 \sigma_D
\]

\[
\sigma_{cY} = 2Y_E D^2 \sigma_Y Z_E + 2D Y_E^2 \sigma_D
\]

\[
\sigma_{cZ} = 2Y_E D^2 \sigma_Y Z_E + 2D Y_E^2 \sigma_D
\]

\[
\sigma_{cY} = 2Y_E D^2 \sigma_Y Z_E + 2D Y_E^2 \sigma_D
\]
Par propagation des covariances de b et c, on obtient les incertitudes associées au \(\gamma \) scénariste :

\[
\sigma_\gamma^2 = 4b^2\sigma_b^2 - 4b\sigma_{bc} + \sigma_c^2
\]

\[
\sigma_{b\gamma} = 2b\sigma_b^2 - \sigma_{bc}
\]

\[
\sigma_{Y\gamma} = 2b[\frac{\mu_b}{\sigma_b^2} - \frac{\mu_c}{\sigma_c^2}]\sigma_{b\nu_a} + 2b[-\frac{\mu_b}{\sigma_b^2} - \frac{\mu_c}{\sigma_c^2}]\sigma_{b\nu_d}
\]

\[
+ 2b[\frac{\mu_b}{\sigma_b^2} - \frac{\mu_c}{\sigma_c^2}]\sigma_{b\nu_w} + 2b[\frac{\mu_b}{\sigma_b^2} - \frac{\mu_c}{\sigma_c^2}]\sigma_{b\nu_s} + 2b[-\frac{\mu_b}{\sigma_b^2} - \frac{\mu_c}{\sigma_c^2}]\sigma_{b\nu_a} + 2b[\frac{\mu_b}{\sigma_b^2} - \frac{\mu_c}{\sigma_c^2}]\sigma_{b\nu_w}
\]

\[
- [\frac{\mu_b}{\sigma_b^2} - \frac{\mu_c}{\sigma_c^2}]\sigma_{c\nu_a} - [\frac{\mu_b}{\sigma_b^2} - \frac{\mu_c}{\sigma_c^2}]\sigma_{c\nu_s}
\]

\[
- R_{Y\gamma}\sigma_{c\gamma}D
\]

\[
- [\frac{\mu_b}{\sigma_b^2} + \frac{\mu_c}{\sigma_c^2}]\sigma_{c\nu_w} - [\frac{\mu_b}{\sigma_b^2} + \frac{\mu_c}{\sigma_c^2}]\sigma_{c\nu_s} - [\frac{\mu_b}{\sigma_b^2} + \frac{\mu_c}{\sigma_c^2}]\sigma_{c\nu_a} + [\frac{\mu_b}{\sigma_b^2} - \frac{\mu_c}{\sigma_c^2}]\sigma_{c\nu_w}
\]

\[
\sigma_{D\gamma} = 2b\sigma_{b\gamma} - \sigma_{c\gamma}
\]

\[
\sigma_{\nu_a\gamma} = 2b\sigma_{b\nu_a} - \sigma_{c\nu_a}
\]

\[
\sigma_{\nu_s\gamma} = 2b\sigma_{b\nu_s} - \sigma_{c\nu_s}
\]

\[
\sigma_{\nu_w\gamma} = 2b\sigma_{b\nu_w} - \sigma_{c\nu_w}
\]

\[
\sigma_{\nu_s\gamma} = 2b\sigma_{b\nu_s} - \sigma_{c\nu_s}
\]

\[
\sigma_{\nu_w\gamma} = 2b\sigma_{b\nu_w} - \sigma_{c\nu_w}
\]

\[
\sigma_{\nu_a\gamma} = 2b\sigma_{b\nu_a} - \sigma_{c\nu_a}
\]

En propageant et cumulant toutes les incertitudes des variables intermédiaires, on estime les erreurs associées aux profondeurs relatives entre l'épaule et le poignet:

\[
\sigma_{X}^2 = \frac{1}{(X)^2} \sigma_b^2 + \frac{\sigma_{XY}^2}{(X)^2} - \frac{\sigma_{XY}^2}{\sqrt{\gamma}}
\]

\[
\sigma_{X}^2 = \frac{1}{(X)^2} \sigma_b^2 + \frac{\sigma_{XY}^2}{(X)^2} + \frac{\sigma_{XY}^2}{\sqrt{\gamma}}
\]

\[
\sigma_{X}^2 = \frac{1}{(X)^2} \sigma_b^2 + \frac{\sigma_{XY}^2}{(X)^2} + \frac{\sigma_{XY}^2}{\sqrt{\gamma}}
\]

\[
\sigma_{X}^2 = \frac{1}{(X)^2} \sigma_b^2 + \frac{\sigma_{XY}^2}{(X)^2} + \frac{\sigma_{XY}^2}{\sqrt{\gamma}}
\]
\[\sigma_{Y_{i}X_{j}} = -\frac{1}{X_{i}^2} \sigma_{bY_{i}} + \frac{1}{2\sqrt{X_{i}}} \sigma_{\gamma Y_{i}} \]
\[\sigma_{Y_{i}X_{j}} = -\frac{1}{X_{j}^2} \sigma_{bY_{i}} - \frac{1}{2\sqrt{X_{j}}} \sigma_{\gamma Y_{i}} \]
\[\sigma_{Y_{i}X_{j}} = +\frac{1}{X_{i}^2} \sigma_{bY_{i}} - \frac{1}{2\sqrt{X_{i}}} \sigma_{\gamma Y_{i}} \]
\[\sigma_{Y_{i}X_{j}} = +\frac{1}{X_{j}^2} \sigma_{bY_{i}} + \frac{1}{2\sqrt{X_{j}}} \sigma_{\gamma Y_{i}} \]
\[\sigma_{DX_{i}} = \pm \frac{1}{X_{i}^2} \sigma_{bD} \pm \frac{1}{2\sqrt{X_{i}}} \sigma_{\gamma D} \]
\[\sigma_{u_{i}X_{j}} = \pm \frac{1}{X_{i}^2} \sigma_{b_{u}X_{j}} \pm \frac{1}{2\sqrt{X_{i}}} \sigma_{\gamma_{u}X_{j}} \]
\[\sigma_{v_{i}X_{j}} = \pm \frac{1}{X_{i}^2} \sigma_{b_{v}X_{j}} \pm \frac{1}{2\sqrt{X_{i}}} \sigma_{\gamma_{v}X_{j}} \]
\[\sigma_{u_{i}X_{j}} = \pm \frac{1}{X_{i}^2} \sigma_{b_{u}X_{j}} \pm \frac{1}{2\sqrt{X_{i}}} \sigma_{\gamma_{u}X_{j}} \]
\[\sigma_{v_{i}X_{j}} = \pm \frac{1}{X_{i}^2} \sigma_{b_{v}X_{j}} \pm \frac{1}{2\sqrt{X_{i}}} \sigma_{\gamma_{v}X_{j}} \]
\[\sigma_{u_{i}X_{j}} = \pm \frac{1}{X_{i}^2} \sigma_{b_{u}X_{j}} \pm \frac{1}{2\sqrt{X_{i}}} \sigma_{\gamma_{u}X_{j}} \]
\[\sigma_{v_{i}X_{j}} = \pm \frac{1}{X_{i}^2} \sigma_{b_{v}X_{j}} \pm \frac{1}{2\sqrt{X_{i}}} \sigma_{\gamma_{v}X_{j}} \]

Erreurs obtenues sur la reconstruction de la position 3D du bras (avec 4 flips possibles) :

On passe ensuite des profondeurs relatives aux profondeurs absolues. Et on fait la propagation de covariance associée. On obtient les incertitudes associées aux quatre reconstructions 3D possibles du bras:

\[\sigma_{X_{E}}^2 = \left(\frac{Y_{E}}{X_{E}} \right)^2 \sigma_{Y_{E}}^2 + \left(\frac{D_{X}}{X_{E}} \right)^2 \sigma_{D_{X}}^2 + \left(\frac{D_{Y}}{X_{E}} \right)^2 \sigma_{D_{Y}}^2 + \left(\frac{D_{Z}}{X_{E}} \right)^2 \sigma_{D_{Z}}^2 \]
\[\sigma_{E_{i}}^2 = \sigma_{u_{i}}^2 \]
\[\sigma_{Z_{E_{i}}} = \frac{1}{4} \sigma_{Y_{i}}^2 \]
\[\sigma_{Z_{E_{i}}} = \sigma_{v_{i}}^2 \]
\[\sigma_{Z_{E_{i}}} = \sigma_{u_{i}}^2 \]
\[\sigma_{Z_{E_{i}}} = \sigma_{v_{i}}^2 \]
\[\sigma_{Z_{E_{i}}} = \frac{1}{4} \sigma_{Y_{i}}^2 \]
\[\sigma_{Z_{E_{i}}} = \sigma_{u_{i}}^2 \]
\[\sigma_{Z_{E_{i}}} = \sigma_{v_{i}}^2 \]
\[
\sigma_{X_i Y_i} = \frac{1}{2} \sigma_{u_i X_i} \quad \sigma_{X_i Z_i} = \frac{1}{2} \sigma_{v_i X_i} \quad \sigma_{Y_i Z_i} = 0
\]
\[
\sigma_{X_i Y_i} = \frac{D}{X_i} \sigma_{u_i Y_i} = \frac{D}{X_i} \sigma_{v_i Y_i} \quad \sigma_{X_i Z_i} = \frac{D}{X_i} \sigma_{u_i Z_i} = \frac{D}{X_i} \sigma_{v_i Z_i} \quad \sigma_{Y_i Z_i} = 0
\]
\[
\sigma_{X_i Y_i} = -\frac{1}{2} \sigma_{u_i X_i} \quad \sigma_{X_i Z_i} = -\frac{1}{2} \sigma_{v_i X_i} \quad \sigma_{Y_i Z_i} = 0
\]

Ces différentes incertitudes définissent des ellipsoïdes autour des positions 3D centrales reconstruite pour chaque articulation du membre (par exemple, un bras dans le cas du présent exemple).

Elles définissent aussi en conséquence les variétés (« manifold » en anglais) des configurations 3D possibles du bras et leurs probabilités associées.

En échantillonnant N positions possibles des articulations 3D suivant les ellipsoïdes d'incertitude, on obtient ainsi une famille de 4N configurations plausibles du bras 3D, étant données les erreurs de mesure dans les images.

Les incertitudes permettent donc avantageusement d'estimer la qualité de la reconstruction 3D, et donc de pouvoir l'améliorer par une étape additionnelle de post-traitement ou « post-processing » en anglais. En particulier, elles permettent de mettre en œuvre des mécanismes de correction des erreurs en utilisant par exemple le filtrage temporel.

Les valeurs numériques d'incertitude calculées sur plusieurs exemples montrent que les erreurs 3D ne sont pas négligeables et donc qu'il est important de les prendre en compte. D'où l'utilité de modéliser les erreurs, ce qui est l'objet de cette invention.
REVENDICATIONS

1. Procédé de reconstruction (96) tridimensionnelle d’un membre articulé dans un environnement prédéterminé, comportant une étape d’acquisition (90) d’au moins une image (91) monoculaire à deux dimensions dudit membre et une étape (92) de détermination d’un ensemble de N points (93) d’articulation dudit membre dans ladite au moins une image (91) de façon à déterminer au moins une position (931) à deux dimensions de chacun desdits points (93) d’articulation dans ladite image (91), caractérisée en ce qu’il comprend en outre :

- une étape (94) de calcul d’au moins une position (941) en trois dimensions dudit membre à partir de ladite au moins une position (931) à deux dimensions de chacun desdits points (93) d’articulation dans ladite image (91) ;

- une étape (95) d’estimation de la position (941) en trois dimensions desdits points d’articulation dudit membre dans ledit environnement, à partir de ladite au moins une position en trois dimensions calculées (94), ladite étape (95) d’estimation comportant les sous-étapes suivantes de :

 o calcul (97, 98) des erreurs de mesure sur lesdites positions (931) à deux dimensions d’au moins un desdits points (93) d’articulation, de façon à identifier pour chacune desdites positions à deux dimensions une zone d’erreurs (97) ;

 o calcul (910, 911) des erreurs commises à ladite étape (95) d’estimation de la position (941) en trois dimensions dudit membre dans ledit environnement, à partir desdites erreurs (913) de mesure sur lesdites positions à deux dimensions dont la covarance est propagée (912) ;

de façon à produire une pluralité de solutions possibles de reconstruction en trois dimensions dudit membre dans ledit environnement.
2. Procédé de reconstruction selon la revendication 1, caractérisé en ce que pour au moins une position (931) à deux dimensions de chacun desdits points (93) d’articulation dans ladite image (91), on définit une zone (913) elliptique d’erreurs autour desdits points (93) d’articulation, de façon à caractériser la précision des positions à deux dimensions et/ou à générer un échantillon (97) de (N-1) positions d’articulation possibles à deux dimensions dans ladite zone d’erreurs (913).

3. Procédé de reconstruction selon l’une quelconque des revendications 1 et 2, caractérisé en ce qu’il comprend en outre une étape (914) d’estimation de la longueur L dudit membre à partir de ladite au moins une position (931) à deux dimensions de chacun desdits points (93) d’articulation.

4. Procédé de reconstruction selon la revendication 3, caractérisé en ce que lorsque ledit membre comprend deux parties correspondant respectivement à un bras et à un avant-bras définis par trois points d’articulation, ladite longueur L dudit bras vérifie les contraintes suivantes :

\[L \geq l \geq \frac{D}{2}, \quad L \geq d(w, e), \quad L \geq d(e, s) \]

\[\gamma \geq 0 \text{ and } \gamma' = -b \cdots \sqrt{\gamma} \geq 0, \]

où :

- \(\gamma = b^2 - c \) est un discriminant qui intervient dans les calculs,
- avec \(b \) et \(c \) des variables intermédiaires définies par :
 \[b = Y^{22} + Z^{22} - L^2 + \frac{1}{4} D^2 \]
 \[c = Y^{22} D^2 \]
- \(l \) est la moitié de la distance entre le poignet et l’épaule du bras ;
- \(D \) est la distance projetée entre le poignet et l’épaule du bras \(\zeta \)
- \(L \) est la longueur des membres ;
- \(d(w,e) \) est la longueur apparente du premier membre \(\zeta \)
- \(d(e,s) \) est la longueur apparente du second membre.

5. Procédé de reconstruction selon l’une quelconque des revendications 1 à 4, caractérisé en ce que autour de chacune desdites positions (931) à deux
dimensions d’un point (93) d’articulation, ladite zone d’erreurs (913) est définie par une ellipse de covariance à deux dimensions (98).

6. Procédé de reconstruction selon l’une quelconque des revendications 1 à 5, caractérisé en ce que ladite étape (94) de calcul d’au moins une position (941) en trois dimensions dudit membre à partir de ladite au moins une position à deux dimensions de chacun desdits points d’articulation, comprend une étape (915) de changement de système de coordonnées images pour chacun desdites (N-1) positions d’articulation possibles à deux dimensions dudit échantillon.

7. Procédé de reconstruction selon la revendication 6, caractérisé en ce que ladite étape (96) de reconstruction dudit membre en trois dimensions comprend les sous-étapes de projection (916) inverse desdites positions (931) à deux dimensions desdits points (93) d’articulation et d’extrusion multiple de la profondeur dudit membre à partir du résultat de ladite étape (914) d’estimation de la longueur dudit membre et de ladite étape (915) de changement de coordonnées images, de façon à produire (94) au moins (4*N) solutions possibles d’images reconstruites en trois dimensions dudit membre dans ledit environnement.

8. Procédé de reconstruction selon la revendication 7, caractérisé en ce que ladite étape (94) d’estimation de la position en trois dimensions comprend une étape de calcul (95) de la position moyenne optimale dudit membre à l’intérieur dudit environnement, à partir desdites au moins (4*N) solutions possibles d’images reconstruites.

9. Procédé de reconstruction selon l’une quelconque des revendications 5 à 8, caractérisé en ce que ladite étape d’estimation de la position en trois dimensions comprend en outre une sous-étape de calcul (912) de propagation de covariance de chacune desdites ellipses (98) de covariance à deux dimensions tenant compte dudit changement (915) de système de coordonnées d’images, de ladite projection inverse (916) et de ladite extrusion de profondeur desdits points d’articulation, de façon à produire au moins une
ellipse (910) de covariance en trois dimensions autour de la position en trois dimensions desdites articulations dudit membre dans ledit environnement.

10. Procédé de reconstruction selon l’une quelconque des revendications 1 à 9, caractérisé en ce qu’il comprend une étape (917) de définition d’une zone ellipsoïdale d’erreur autour de ladite position centrale en trois dimensions dudit membre.

11. Procédé de reconstruction selon la revendication 10, caractérisé en ce que ladite étape (917) de définition d’une zone ellipsoïdale d’erreur est une étape de modélisation des erreurs produites à ladite étape (95) d’estimation de la position (941) en trois dimensions desdits points d’articulation dudit membre dans ledit environnement, par des matrices de covariance analytique.

12. Procédé de reconstruction selon l’une quelconque des revendications 7 à 11, caractérisé en ce qu’on calcule au moins des erreurs induites par :

- les mesures dans lesdites images à deux dimensions ;
- le changement de système de coordonnées d’images ;
- la projection inverse et l’extrusion de la profondeur desdits points d’articulation ;
- la reconstruction de la position en trois dimensions dudit membre articulé.

13. Procédé de reconstruction selon l’une quelconque des revendications 1 à 12, caractérisé en ce que pour chacune desdites solutions possibles d’images reconstruites obtenues, on associe respectivement une valeur de probabilité, de façon à identifier la configuration en trois dimensions optimale la plus probable pour ledit membre reconstruit.

14. Produit programme d’ordinateur, caractérisé en ce qu’il comprend des instructions de code de programme pour l’exécution des étapes du procédé selon l’une quelconque des revendications 1 à 13, lorsque ledit programme est exécuté dans et/ou par un processeur.

15. Dispositif de reconstruction (96) tridimensionnelle d’un membre articulé dans un environnement prédéterminé, comportant des moyens
d’acquisition (90) d’au moins une image (91) monoculaire à deux dimensions
dudit membre et des moyens (92) de détermination d’un ensemble de N points
(93) d’articulation dudit membre dans ladite au moins une image (91) de façon
à déterminer au moins une position (931) à deux dimensions de chacun desdits
points (93) d’articulation dans ladite image (91), caractérisée en ce qu’il
comprend en outre :
– des moyens (94) de calcul d’au moins une position (941) en trois
dimensions dudit membre à partir de ladite au moins une position (931)
à deux dimensions de chacun desdits points (93) d’articulation ;
– des moyens (95) d’estimation de la position (941) en trois dimensions
dudit membre dans ledit environnement, à partir de ladite au moins une
position en trois dimensions calculées (94) ;
de façon à produire une pluralité de solutions possibles de reconstruction en
trois dimensions dudit membre dans ledit environnement ;
et en ce que lesdits moyens (95) d’estimation comprennent :
– des moyens de calcul (97, 98) des erreurs de mesure sur lesdites
positions (931) à deux dimensions d’au moins un desdits points (93)
d’articulation, de façon à identifier pour chacune desdites positions à
deux dimensions une zone d’erreurs (97) ;
– des moyens de calcul (910, 911) des erreurs commises par lesdits
moyens (95) d’estimation de la position (941) en trois dimensions dudit
membre dans ledit environnement, à partir desdites erreurs (913) de
mesure calculées (912) sur lesdites positions à deux dimensions ;
– des moyens de propagation de la covariance associée auxdites erreurs
de mesure sur lesdites positions (931) à deux dimensions d’au moins un
desdits points (93) d’articulation ;
– des moyens d’estimation des incertitudes liées à la reconstruction en
trois dimensions.
Fig. 8
Caméra observant une personne, un robot ou une structure articulée

Image d'une structure articulée

Cliquez les positions des points articulaires dans les images ou Extraction des positions des points articulaires par des techniques de traitement d'image

Positions de points 2D articulaires dans l'image

Zone elliptique d'erreurs autour des points

Echantillonnage de N-1 positions articulaires 2D possibles dans la zone d'erreurs

Ellipse 2D de covariance

Estimation de la longueur des membres

Changement de système de coordonnées images

Projection inverse et extrusion quadruple de la profondeur

Ellipses 3D de covariance de la position du bras dans l'espace 3D

4N positions du bras dans l'espace 3D

Position centrale du bras dans l'espace 3D

Zone ellipsoidale d'erreur autour de la position 3D centrale du bras dans l'espace

Applications : animation d'avatars, ou reconnaissance de gestes de commande d'interface, ou indexation, ou suivi, PRENANT EN COMPTE LES ERREURS ET INCERTITUDES DU PROCESSUS DE RECONSTRUCTION

Fig. 9