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RAID CONTROLLER DISK WRITE MASK

Technical Field

[0001]  This invention pertains to digital data storage and, more specifically, is directed
to improved performance in RAID disk storage array systems.

Background of the Invention

[0002] Ina RAID disk storage array, data is written in “stripes” across the drives of the
disk array so that subsequent accesses of the data will be able to take advantage of the
combined transfer rate of the drives of the array for “large” accesses. Since the smallest
addressable unit of storage for a disk drive typically is the sector, a stripe will consist of at
least one sector per drive. For RAID-3 and RAID-5 configurations, a redundancy pattern
is computed across the stripe and stored along with the data to enable error checking and
correction, even in the event of a drive failure.

[0003]  To illustrate, Figure 1A is a conceptual diagram of a disk storage array, in
which five drives are shown (Drive 0 - Drive 4), although the number of drives is not
critical. Each individual square in the figure represents one block of data - in the generic
sense of any predetermined unit of storage. The drives labeled 0 - 3 are data drives.

Drive 4 is the parity or redundancy drive in this configuration, generally known as RAID-
3. Data is “striped” over the data drives. This means that for any selected stripe width,
consecutive data blocks of that size, for example one sector, are stored in sequence across
consecutive data drives. This sequence is indicated by the arabic numbers in each storage
block.

[0004] The bit-by-bit exclusive-OR function of the four data blocks ( for example, 0-3)
that make up each stripe is stored in the corresponding block of the parity drive. This
exclusive-OR notation in Figure 1 is “X[A:B]” indicating the exclusive-OR of the blocks of

user data beginning with A and ending with B. Thus, for example, the XOR function for
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blocks 4-7 is shown in Drive 4 as “X[4:7]”. Using this RAID-3 configuration, the contents
of a block of data on any failed drive can be reconstructed by computing the exclusive-OR
of the remaining blocks of its stripe including the parity block. “On the fly” reconstruction
of data is taught in commonly-assigned U.S. Patent No. 6,237,052 -- hereby incorporated
by reference. U.S. Patent No. 6,237,052, however, does not address the problem of
updates to data that affect less than one stripe.

[0005] Figure 1B is similar to figure 1A except that the parity data is distributed over
all of the drives of the array, thereby creating a RAID-5 configuration. The RAID-5
organization typically is used for systems in which the parity writes to a single drive would
create a performance bottleneck. The RAID-5 configuration allows all of the drives of the
array to participate concurrently in the parity write problem, thereby easing the bottleneck.
[0006] U.S. Patent No. 5,805,788 describes RAID-5 parity generation and data
reconstruction in greater detail. In particular, it discloses a “brute force” method
comprising reading the data from a local buffer, computing the parity, and then writing the
result back to the buffer. That methodology has limited application, however, because
buffer bandwidth tends to be the bottleneck in systems that have a fast host bus and a large
array of drives.

[0007]  U.S. Patent No. 6,233,648 is entitled “Disk Storage System And Data Update
Method Used Therefor.” This patent discloses a disk write method in which updates,
which are not necessarily blocks of contigﬁous data, are accumulated until there is a
convenient amount (e.g., a stripe), and then the accumulated data is written as a block to a
new area on the array. While this technique makes writes very efficient, read operations
require a special table to find the data.

[0008] In any disk storage array, when only a portion of a stripe of data is updated by
the host system (a “partial-stripe update”), the balance of the stripe must be accessed from
the drives (essentially a read operation), so that a new redundancy pattern can be correctly
computed on the entire updated stripe. In prior art, a buffer is allocated (typically in RAM)
in which to assemble the new stripe. Updated data is written from the host into the buffer.
In the buffer, sectors corresponding to the data updated by the host are valid, while the
contents of the remaining sectors of the stripe are temporarily undefined.

[0009]  The disk array controller further allocates a second buffer (also typically in

RAM), into which it reads the current contents of the entire stripe from the drives. The
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controller then copies all of the sectors which had not been updated by the host, from the
second buffer (disk image stripe buffer) to the first buffer (the new stripe buffer), where
they are merged with the updated data from the host to complete the updated stripe. At this
point, the first stripe buffer will contain all valid data, with new sectors from the host and
current (old) sectors from the drives. An updated redundancy can now be computed.
[0010]  Ideally, a stripe buffer in the controller would be written once by the host and
read once in order to write to the disk array. For the partial-stripe update scenario just
described, however, in addition to the normal read and write of the buffer, an additional
operation is required to access the current contents of the stripe, and additional reads and
writes are required to copy those sectors which were not updated by the host, as described
above. These problems increase the frequency of disk access and negatively impact disk
array performance. What is needed is more efficient methods and apparatus for processing
partial-stripe updates to data stored in a disk storage array such as a RAID system.

Summary of the Invention

[0011] In view of the foregoing background, an object of the present invention is to -
reduce the processing overhead occasioned in a disk array controller by partial-stripe
updates.

[0012]  Another object is to reduce or eliminate the RAM to RAM buffer memory
accesses necessary to assemble an updated stripe of data.

[0013] A further object of the invention is to manage a stripe data cache so as to reduce .
the frequency of disk accesses in general, and those necessitated by partial-stripe updates in
particular.

[0014] In accordance with one aspect of the present invention, buffer to buffer
(typically RAM to RAM) transfers can be eliminated as follows. A local processor keeps
track of which of the sectors of a given stripe have been updated by the host system. One
method for maintaining this information is to create a linear bit vector (or “write mask”)
with one bit representing each sector in the stripe. When a stripe buffer is allocated for a
disk write operation, the bits of the vector are cleared. For each sector that is updated by
the host, the corresponding bit of the vector is set. Once the host has completed its updates
to the current stripe, 1’s in the vector will indicate the updated sectors while 0’s in the
vector indicate locations of the stripe buffer that are currently undefined. The current

contents of these undefined sectors must be read from the disk and placed into the buffer so
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that the updated stripe (and a redundancy computed on the entire stripe) can be written to
the disk array.

[0015]  Simply reading the current stripe from the disk array to the stripe buffer would
“fill in” the undefined sectors, but would also overwrite the updated ones, destroying the
host data. The present invention accomplishes the partial stripe update taking advantage of
both the full stripe read and write optimizations, while eliminating the second buffer and
any copying of data segments between buffers. When the host has finished updating
selected data, the disk array stripe read hardware is configured to read the current state of
the affected stripe into the same buffer.

[0016] In one embodiment, a segment counter is cleared and the write mask is enabled.
As the segments of the stripe are transferred from the drive array to the buffer, they are
counted by the segment counter. If the write mask bit selected by the state of the segment
counter is set, the buffer memory is write inhibited. When the mask bit selected by the
segment count is not set, the data from the drive array is written into the buffer. In this
way, the complete, updated stripe is formed in a single buffer, with at most one disk read
access.

[0017]  Additional aspects and advantages of this invention will be apparent from the
following detailed description of preferred embodiments thereof, which proceeds with
reference to the accompanying drawings.

Brief Description of the Drawings

[0018] . Fig. 1A is a conceptual illustration of a RAID-3 storage disk array.

[0019]  Fig. 1B is a conceptual illustration of a RAID-5 storage disk array.

[0020]  Fig. 2 is a simplified data flow diagram illustrating a known disk read operation.
[0021]  Fig. 3 is a simplified data flow diagram illustrating a known disk write
operation.

[0022]  Fig. 4 is a simplified data flow diagram illustrating operation of a single stripe
buffer and a write mask in accordance with the present invention for updating a partial
stripe of stored data.

[0023]  Fig. 5 is a simplified data flow diagram illustrating writing the updated stripe
buffer contents of figure 4 to a disk drive array.

[0024]  Fig. 6 is a simplified schematic diagram of a buffer memory and associated

write logic circuitry.
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[0025]  Fig. 7 is a simplified block diagram of a RAID system that incorporates aspects
of the present invention.

[0026]  Figs. 8A-8C are flow diagrams illustrating various operations in accordance with
one embodiment of the present invention.

Detailed Description of Preferred Embodiments

[0027] A conventional RAID system implementing striping and parity will usually
buffer data transfers between the drive array and the host system that it supports.
Increasing this local memory allows the RAID system to cache blocks of data thereby
enhancing performance. For the read direction, the RAID system may read an entire stripe
into the buffer even though the host system requested only a portion of the blocks within
that stripe. This is illustrated in Figure 2: The host system (not shown) makes a read
request. In response, the controller reads a whole stripe of data from the disk array, see
“step 17, into the stripe buffer 10 implemented in local RAM. The data stripe in this
illustration consists of a series of four blocks, 0-3, which may be disk sectors. In “step 27
the requested data, namely sectors 0 and 1, is transferred to the host system (generally via a
host interface). In the event that the host later “reads” data corresponding to sectors 2
and/or 3 of the same stripe, it can be delivered immediately from the buffer 10 without
another disk access. To the extent that disk accesses are frequently sequential, there is a
high probability that the host will request blocks of data close to the ones previously
accessed.

[0028]  Figure 3 illustrates a disk write operation. Here, the host system passes data to
the RAID system for storage on the drive array. In this simplified illustration, referring to
“step 1,” a sequence of four blocks of data (4-7) are transferred into the buffer 12 from the
host, which happens to correspond to a complete stripe. In this case, the RAID system has
all of the data needed to compute the data block for the parity drive. The parity block is
computed (not shown) and the entire stripe is written to the drive array - “step 2.”

[0029]  Figure 4 illustrates conceptually one aspect of the present invention in which
filling a stripe buffer 14 is managed in response to the content of a write mask 16. As
before, the stripe buffer preferably is implemented in RAM local to the disk controller.
The stripe buffer 14 in this case is allocated four memory segments or blocks, reference
numbers 20, 22, 24, 26. In “step 1,” a sequence of two blocks of updated data from the

host (that happen to correspond to the first half of a stripe) are transferred into buffer
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memory blocks 20,22. These two blocks will eventually be stored on drives 0 and 1 while
the data stored on drives 2 and 3 for the same stripe will remain unchanged. The
complication for any partial stripe write is that the parity drive must end up with the
exclusive-OR function of all of the blocks in the stripe, i.e., all of the new (updated) blocks
and all of the blocks that are not currently being changed. For the RAID system to
compute this information, it must first access the array to obtain the blocks that are not
being changed. Thus, the current write operation (from the host perspective) requires a
disk read access along the way. Later we discuss how to minimize the frequency of disk
read accesses resulting from partial stripe updates. Presently, we explain how to assemble
the newly updated, complete stripe in a single buffer.

[0030] This update can be accomplished in a variety of ways. The RAID controller
might first compute the exclusive-OR of the new blocks and store the new blocks on the
appropriate drives of the array (drive O and drive 1 in this case). It could then read the
unchanged blocks, and compute the exclusive-OR of the data from these blocks with the
previous result from the new blocks. The result of this computation would then be stored
on the parity drive.

[0031]  Assuming that the RAID controller has highly optimized hardware for reading
and writing full stripes, however, other approaches are more attractive. One approach
would be to simply fill in the undefined blocks of the buffer (24,26) by reading just the
unchanged blocks of the stripe from the drive array and storing them in the appropriate
positions of the buffer. This would allow the RAID systein to take advantage of the
hardware used to write full stripes, but would require several array accesses to read
individual blocks.

[0032]  An alternative approach, as mentioned in the background section above, is to use
the full stripe read capability to read the entire stripe from the array into a second buffer.
The RAID system could then complete an image of the new stripe by one of two methods.
It could either copy the new segments from their buffer, replacing the appropriate segments
of the stripe read from the array with updated data, or it could copy only those segments of
the stripe read from the drive array that are not being replaced with updated data to the
undefined segments of the stripe buffer concatenated with the new segment data; In either

case, the image of the new stripe has been created and can then be written to the array
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using the full stripe write hardware. These techniques require a second buffer and
additional copying steps, however, that degrade the storage system performance.

[0033]  The present invention accomplishes the partial stripe update while taking
advantage of both the full stripe read and write optimizations, while eliminating the second
buffer and any copying of data segments between buffers. An important aspect of the
invention is a write protection mask, or simply “write mask” preferably implemented in the
buffer hardware and/or software.

[0034] In the course of collecting the write data from the host in a buffer, the RAID
system hardware or firmware keeps track which segments of the stripe have valid data from
the host and which are undefined. The simplest way to record this data is to maintain a
“bit map” of the stripe in which consecutive bits are used to indicate that the corresponding
segment of the stripe has been updated. When the write data buffer is allocated, the write
mask for the buffer is initially cleared. As each segment is received, the bit corresponding
to that segment is set. In this application, we use “segment” broadly -- it could be any
chunk of data from an entire disk sector down to a byte.

[0035]  When the host has finished updating segments, the disk array stripe read
hardware is conﬁgufed to read the current state of that stripe into the same buffer as
follows. A segment counter is cleared and the write mask 16 is enabled. As the segments
of the stripe are transferred from the drive array to the buffer, they are counted by the
segment counter. If the write mask bit selected by the state of the segment counter is set,
the buffer memory is write inhibited. Consequently, the corresponding segment is not
stored in the buffer. When the mask bit selected by the segment counter is not set, the data
from the drive array is written into the buffer. In the example of figure 4, the writing of
segments 20 and 22 from the drive array will be masked, protecting the new segments from
the host. The writing of segments 24 and 26 will not be masked, allowing this data to fill
in the undefined segments of the buffer 14. At the completion of the full stripe read with
masked buffer write operations, the buffer 14 will be holding the completed image of the
new stripe which may be written back to the drive array using the full stripe write
capability as shown in Figure 5 (“Step 17).

[0036] Referring again to Figure 4, the write mask 16 is shown having four bit
positions, labeled for reference 30,32,34 and 36. Each bit position corresponds to one

segment or block of the stripe buffer - 20,22,24 and 26 respectively. Various
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implementations and stripe sizes are described later. Figure 4 is merely intended to
illustrate the write mask concept. In “step 1,” host data is transferred into data blocks
20,22 of the stripe buffer 14. As each block of data is transferred, the corresponding bit
position of the write mask 16 is set - in this case bits 30,32. In “step 2,” the drive array is
accessed to read the entire stripe of interest, but only éata blocks 24,26 are actually stored
into the buffer 14. During tﬁe transfer, write mask bits 30,32 are used to inhibit the buffer
memory write enable as the corresponding data blocks are coming from the drive array
interface. A presently preferred embodiment of this feature is described below with
reference to Figure 6.

[0037]  To complete the partial stripe update, referring now to Figure 5, the entire stripe
is transferred from the buffer 14 to the drive array. As indicated in the drawing, blocks
20,22 have “new” data (from the host) while blocks 24,26 have “old” data from the disk
image before the update. This was accomplished with a single buffer.

[0038]  Figure 6 is a simplified schematic diagram of a buffer memory and associated
write logic circuitry in accordance with one embodiment of the invention. Here, a RAM
memory 40 is used to realize one or more stripe buffers, allocated by a local processor (not
shown). The RAM 40 may have multiple ports, and includes a data port coupled to a drive
array data bus 42. The RAM control logic 44 includes a Direct Memory Access (DMA)
controller, comprising a DMA address counter 46 and length counter 48. The address
counter 46 provides addresses to the RAM 40 via address bus 50 for DMA operations. In a
presently preferred embodiment, the write mask logic is implemented within the RAM
control légic. The write mask logic includes the write mask register 52 and a multiplexer
54; in this illustration a 4-to-1 multiplexer.

[0039] In operation, the local processor would initialize the DMA channel for a data
transfer by loading a starting byte address into the address counter 46, the byte length of
the buffer in the length counter 48, and a four-bit value (in this illustration) into the mask
register 52. Following the transfer of each 64-bit word from the drive array via bus 42 into
RAM 40 at the address pointed to by the address counter, the address counter is
incremented by eight bytes so that it points to the starting address of the next word in the
buffer. The Length counter is decremented by eight bytes. When the Length counter

reaches zero, the process is halted. The particular word sizes, bus size, mask register size,
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etc. may vary for different applications and drive interfaces without departing from the
scope of the present invention.

[0040] The illustrative implementation shown in Figure 6 assumes that all of the data
buffers in the RAM are 2K bytes long and are aligned on modulo 2K address boundaries.
To use the write mask logic for the transfer shown in Figure 4, the mask register 52 is
loaded with the binary value 1100b indicating that sectors 0 and 1 (20,22 in Figure 4) are to
be written while sectors 2 and 3 (labeled 24,26) are to be masked. At the start of the
transfer, bits 9 and 10 of the address counter 46 are zero because the counter has been
loaded with an address that is a 2K boundary. These signals are labeled A9, A10 in Figure
6 (a subset of address bus 50). These signals A9, A10 are input to the address inputs of the
multiplexer 54 as shown. The multiplexer 54 will select bit O of the mask register 52 which
is zero, and assert this value at the active-low write enable (“WE”) input 58 of the RAM
40. Throughout the transfer of the first sector, the RAM will be write enabled. At the end
of the first sector, the address counter will count to a value in which address bit A9 is
asserted.‘ This will cause the multiplexer to select bit 1 from the write mask (also value 0)
and assert this value at the write enable input 58 of the RAM, enabling writes for the
duration of the second sector.

[0041] At the end of the second sector, the address counter counts to a value in which
bits A10 and A9 are 1 and 0, respectively, thereby selecting the third bit of the mask
register which is a one. Asserting this value at the active-low WE input of the RAM 40
will inhibit writes during the transfer of the third sector. Note that the address counter and
length counter continue to count, but the data from the drive array will be ignored, thereby
protecting the current contents of the buffer for that sector, namely the updated data
transferred from the host system (through another RAM port not shown). At the end of the
third sector, the address counter counts to a value in which bits A10 and A9 are both one.
This causes the multiplexer to select the fourth bit of the mask register which is also a one.
Asserting this value at the write enable of the RAM will inhibit writes during the transfer of
the fourth sector. At the end of the fourth sector, the length counter will count to zero
ending the transfer.

[0042] = The foregoing descriptions of the invention so far have referred to the striping of
blocks or segments without reference to a particular size. In practice, possible block

lengths range from a single bit to several sectors. For RAID systems built from standard
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SCSI controller chips that are not capable of addressing less than a single sector, a stripe of
one or more sectors wide is used. The write mask described above may be used, but higher
performance might be achieved with selective reads (less than a whole stripe). In the
context of a synchronous redundant data transfer technology, such as described in U.S.
Patent. No. 6,237,052 B1, where the stripe may be only sixteen bits or one word in width,
partial stripe updates affect every drive. With the synchronous access of multiple drives,
the write mask is a most attractive approach.

[0043] Figure 7 is a simplified hardware block diagram of a RAID controller and
attached ATA drives in accordance with one application of the present invention. In this
arrangement, a PCI bus 60 may be part of a host system. A host interface 62 provides an
interface for data transfer between the PCI bus 60 and a RAM buffer memory 64. At the
right side of the figure, a series of five ATA disk drives -- Drive O to Drive 4 -- are
attached to a drive interface 70. In a presently preferred embodiment, the RAM buffer
memory 64 is multi-ported, and both the host interface 62 and the drive interface 70
implement DMA engines. The drive interface 70 would include the DMA and write mask
logic described above with reference to Figure 6. In a current commercial embodiment of
the invention, a disk array controller as generally illustrated in Figure 7, including the host
interface, drive interface, local processor, and firmware are implemented on monolithic
semiconductor integrated circuit. Figure 10 is a block diagram of such a RAID controller
chip showing somewhat more detail.

[0044] In general, a RAID disk array controller system according to the present
invention comprises a host interface for transferring data to and from a host bus and a drive
interface for transferring data to and from an array of disk drives. Data is stored in the
array as a series of data segments defining a stripe. The system further includes a random
access buffer memory having at least a first port coupled to the host interface and a second
port coupled to the drive interface. The drive interface includes buffer memory write logic
that implements DMA for writing data from the disk array to the buffer memory; and the
write logic implements a write mask that inhibits writing into the buffer memory for zero or
more selected segments of the data moving from the drive array into the buffer memory
during a DMA write operation.

CACHING

10
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[0045]  The local processor running on the controller can be programmed, preferably
using firmware, to cache stripes of data in a RAM buffer memory. Figure 7, for example,
illustrates a RAM buffer memory 64 that can realize a caching strategy allocating a
plurality of individual stripe buffers, e.g., stripe buffer 66. A portion of the RAM holds
tables used to maintain the cache, called a cache control table (not shown). Each entry in
the cache control table includes the target address of the stripe on the disk array, the
location of the stripe in the RAM, and a write mask.

[0046]  Figure 8A is a flow-chart of a host read operation where a stripe cache strategy
is implemented. When the host system requests data from the disk array, the local
processor first checks the cache control table for the target stripe 80. If it is found,
transferring data directly from the cache 82 without having to access the disk array satisfies
the host request. If not, an available stripe buffer and table entry are allocated 84 to the
requested stripe, the disk array is accessed 86 storing the data (full stripe) in the assigned
stripe buffer, and the then the stripe or portions thereof requested by the host are
transferred.

[0047] Figure 8B is a flow-chart of a host write operation where a stripe cache strategy
is implemented. When the host writes data to the disk array, the cache control table is
again searched for the target stripe 88. If the stripe is not already in the cache, an available
stripe buffer and table entry are allocated 90 for the stripe and data is accepted from the
host 92 and transferred into the allocated buffer. For each sector of the stripe received
from the host, the corresponding bit of the update mask in the stripe’s cache control table
entry is set 94. The update mask was cleared when the buffer was allocated, so the update
mask will maintain a record of sectors within the stripe that must eventually be written to
the disk array. Unless the entire stripe has been updated, the disk write may be postponed
allowing the host ample opportunity to write additional sectors of the buffer and possibly
avoiding the disk read required by a partial stripe write. If the host has written the entire
stripe, i.e., all of the update bits have been set, this stripe may be written to disk array.
[0048]  Referring now to Figure 8C, a buffer flush procedure is illustrated. Ina
presently preferred embodiment, the cache control table is a doubly linked and multiply
threaded list. Each time it is searched, the list is re-linked to bring the most recently used
entry to the front. If the end of the list is encountered, and the target stripe is not found,

then the last entry points to the least recently used buffer. That is the buffer of interest. If
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it has not been updated, query 96, the corresponding stripe buffer can be de-allocated, step
106.

[0049]  If some but not all of the update bits have been set, test 98, the corresponding
stripe of data is read 100 from the disk array into the stripe buffer, but first, the update
mask is loaded 102 into the mask register, thereby protecting the sectors written by the host
and only allowing the balance of the stripe to be filled in from the disk array. Following
this masked read, the entire (updated) stripe is in the buffer and can be written 104 to the
disk array as described above. The stripe buffer and its table entry may either be de-
allocated 106 or the update bits may simply be cleared leaving the stripe in the cache.
[0050] It will be obvious to those having skill in the art that many changes may be made
to the details of the above-described embodiments of this invention without departing from
the underlying principles thereof. The scope of the present invention should, therefore, be

determined only by the following claims.
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Claims

1. A method for effecting a partial-stripe update in a RAID system using only a single
stripe buffer where the disk storage array is coupled to a host bus via a disk array
controller, the method comprising the steps of:

writing at least one segment of updated data from the host bus into the stripe buffer;

determining which segments of the stripe buffer contain updated data from the host
bus;

reading from the disk storage array a full stripe of stored data associated with the
updated data;

overwriting the stripe buffer with the stored data read from the disk storage array
but only in the segments of the stripe buffer that do not contain updated data from the host
bus; and

writing the stripe buffer contents to the disk storage array, thereby obviating the
need for additional read and write operations to store the updated data into the disk storage
array.
2. A method according to claim 1 wherein the step of determining which ségments of
the stripe buffer contain updated data comprises:

initializing a linear bit vector comprising a series of bits, each bit corresponding to a
segment of the stripe buffer, and all of said bits being initialized to a first state; and

responsive to said writing at least one segment of updated data from the host bus
into the stripe buffer, changing the state of the corresponding bits in the linear bit vector.
3. A method according to claim 1 and further comprising calculating redundant data
based on the contents of the stripe buffer; and wherein the redundant data is calculated on-

the-fly during transfer of data from the stripe buffer to the disk storage array.

4. A method according to claim 1 wherein the stripe buffer is realized in a cache
memory.
5. A method according to claim 1 wherein the stripe buffer is realized in RAM.

6. A method according to claim 5 wherein the stripe buffer is realized in SDRAM.
7. A method according to claim 1 wherein the recited method is managed by a local

processor coupled to the host bus, to the stripe buffer and to the drives.
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8. A method according to claim 7 wherein the local processor is coupled to the host
bus via a host interface circuit.
9. A method according to claim 7 wherein the local processor is coupled to the drives
via a drive interface circuit.
10. A method according to claim 9 wherein drive interface circuit comprises a plurality
of ATA drive interfaces.
11. A method according to claim 1 wherein the stripe buffer is allocated a size equal to
the size of a stripe of data as stored in the disk storage array.
12. A method according to claim 1 wherein the stripe buffer is allocated a size equal to
an integer number of sectors, where the sector size is that of the disk drives in the disk
storage array.
13. A method according to claim 1 wherein the stripe buffer is allocated a width equal
to one or more data words.
14. A method according to claim 1 wherein the stripe buffer is allocated a width equal
to one or more data words and a length equal to the data port size of each of the drives
multiplied by the number of disk drives in the disk storage array.
15. A method of updating data stored in a disk storage array coupled to a host bus using
only a single buffer, the method comprising the steps of:

initializing a buffer memory for temporary data storage;

initializing a write mask for storing indicia of updated blocks of a current stripe of
data;

writing a block of updated data from the host bus into the buffer memory;

storing in the write mask an indication of which block of updated data was written
from the host bus into the buffer memory;

repeating said writing and storing steps at least zero times;

reading the current stripe of data from the disk storage array;

writing to the buffer memory only such blocks of the current stripe that are not
indicated in the write mask as having been updated by the said writing updated data from
the host bus to the buffer memory, thereby forming a complete, updated stripe of data in
the buffer memory; and then

writing the complete, updated stripe of data of the buffer memory into the disk

storage array.
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16. A method of updating data stored in a disk storage array according to claim 15 and
further comprising initializing at least a second buffer memory without deleting the updated
stripe of data stored in the first buffer memory, thereby forming a data cache to enable
subsequent access to the updated data without requiring a disk storage array access.
17. A method of updating data stored in a disk storage array according to claim 16 and
further comprising forming a cache control table for managing a plurality of buffer
memories, each maintaining one stripe of updated data so as to enable subsequent access to
the updated data without requiring a disk storage array access.
18. A method of updating data stored in a disk storage array according to claim 17
wherein the cache control table implements the write mask for each stripe buffer.
19. A RAID disk array controller system comprising:

a host interface for transferring data to and from a host bus;

a drive interface for transferring data to and from an array of disk drives; said data
being stored in the array as a series of data segments defining a stripe;

a buffer memory coupled to the host interface and coupled to the drive interface for
buffering data;

wherein the drive interface includes buffer memory write logic that implements a
DMA write operation for writing data from the disk array to the buffer memory; and

wherein the write logic implements a write mask for inhibiting storage of data into
the buffer memory for zero or more selected segments of data transferred from the drive
array into the buffer memory during said DMA buffer memory write operation.
20. A RAID disk array controller system according to claim 19 wherein the buffer
memory has at least a first port coupled to the host interface, a second port coupled to the
drive interface and a third port.
21. A RAID disk array controller system according to claim 20 further comprising a
local processor coupled to the third port, and wherein the local processor is arranged to
initialize the said DMA write operation, including initializing the write mask so as to inhibit
writing the selected segments of data into the buffer memory during the corresponding
DMA write operation.
22. A RAID disk array controller system according to claim 19 wherein the disk drive
-interface buffer memory write logic implements a DMA address counter, a length counter,

and the write mask.
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23. A RAID disk array controller system according to claim 22 wherein at least one of
the DMA address counter, the length counter, and the write mask is implemented as a
hardware register.
24. A RAID disk array controller system according to claim 22 wherein the write mask
comprises a series of logical bit positions, each write mask bit position corresponding to
one of the data segments defining the stripe, and the binary logic state of each bit position
indicating whether or not the corresponding segment of data is to be written into the buffer
memory during the DMA transfer from the disk array to the buffer memory.
25. A RAID disk array controller system according to claim 19 wherein the write mask
is implemented as a hardware register.
26. A RAID disk array controller system accofding to claim 19 wherein the buffer
memory is allocated in a random access memory.
27. A RAID disk array controller system according to claim 19 wherein:

the write logic includes a DMA address counter coupled to the buffer memory for
addressing the buffer memory;

the write mask includes a plurality of bits positions each corresponding to a
respective one of the data segments defining the stripe;

the write logic further includes a multiplexer having a plurality of data inputs each
coupled to a respective one of the write mask bit positions and having a data output coupled
to write enable logic of the buffer memory; and

the multiplexer further includes a least one control input coupled to the DMA
address register so that the multiplexer data output asserts the write enable logic of the
buffer memory to overwrite in the buffer memory only the segments of data indicated by
the write mask.
28. A RAID disk array controller system according to claim 27 wherein the write mask
comprises eight bits.
29. A RAID disk array controller system comprising:

a PCI host interface for transferring data to and from a PCI bus;

an ATA drive interface for transferring data to and from an array of N ATA disk

drives, where N is an integer equal"to at least two;
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the ATA drive interface being configured to store data across the N drives in a
stripe consisting of M sectors per drive, for a total stripe size of M*N sectors, where M is
an integer equal to at least one;

a random access buffer memory having at least a first port coupled to the PCI bus
interface and a second port coupled to the ATA drive interface;

the ATA drive interface further including buffer memory write logic that
implements DMA for writing a stripe of data from the disk array to the buffer memory; and

the buffer memory write logic implementing a write mask that inhibits writing into
the buffer memory for zero or more selected sectors of the data moving from the drive
array into the buffer memory during a DMA write operation, to prevent overwriting sectors
of the stripe stored in the buffer memory by the PCI bus interface, while allowing the
remainder of the stripe to be filled with the corresponding data previously stored in the
array, thereby obviating a second buffer memory in which to assemble an updated stripe of
data.

30. A method of improving performance in a RAID disk array controller coupled
between a host system and a disk array comprising the steps of:
~ caching at least one stripe of data stored in the array by retaining the stripe of data
in a stripe buffer; .
maintaining a cache control table in the disk array controller, the cache control table
comprising an entry for each stripe buffer;

receiving a disk read request from the host system corresponding to a target stripe
of data;

responsive to the disk read request, checking the cache control table for the target
stripe;

if the target stripe is listed in the cache control table, transferring the requested data
directly from the corresponding stripe buffer to the host system without accessing the disk
array;

if the target stripe is not currently listed in the cache control table -

allocating a memory space defining a stripe buffer to the target stripe;

creating an entry in the cache control table associated with the allocated stripe
buffer;

accessing the disk array to read the target stripe of data;
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storing the target stripe of data in the allocated stripe buffer; and then

transferring the target stripe of data from the allocated stripe buffer to the host
interface.
31. A method of improving performance in a RAID disk array controller according to
claim 30 wherein the cache control table includes, for each entry, a target address of the
corresponding stripe on the disk array, a location of the corresponding stripe in buffer
memory, and an update mask, and the method further comprising:

receiving a disk write request from the host system corresponding to a target stripe
of data;

responsive to the disk write request, checking the cache control table for the target
stripe;

if the target stripe is not currently listed in the cache control table -

allocating a memory space defining a stripe buffer to the target stripe; and

creating an entry in the cache control table associated with the allocated stripe
buffer;

accepting write data from the host system;

transferring the accepted write data into the allocated stripe buffer; and

for each sector of the target stripe received from the host system, setting a
corresponding bit of the update mask in the corresponding entry in the cache control table,
thereby forming a record of which sectors within the target stripe must eventually be
written to the disk array;

testing whether all of the bits of the update mask in the corresponding entry in the
cache control table have been set, indicating that the entire stripe is to be updated by the
disk write request;

if the entire stripe is to be updated by the disk write request, transferring the write
data from the allocated stripe buffer to the disk array; and

if all of the bits of the update mask in the corresponding entry in the cache control
table have not been set, deferring the disk write access operation, thereby allowing
additional opportunity for the host system to write additional sectors of the allocated buffer
so that a partial stripe write might be avoided.
32. A method of improving performance in a RAID disk array controller according to

claim 30 and further comprising:
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if at least one but not all of the bits of the update mask in the corresponding entry in
the cache control table have been set, completing a partial stripe write operation to store the
write data received from the host system in the disk array, said partial stripe write operation
including —

accessing the disk array to read the target stripe;

storing in the allocated stripe buffer only such sectors of the disk array read data as
the update mask indicates do not correspond to the write data already accepted from the
host system, thereby completing formation of updated stripe data in the stripe buffer;

and then writing the updated stripe of data from the stripe buffer to the disk array.
33. A method of improving performance in a RAID disk array controller according to
claim 21 and wherein said writing the updated stripe of data from the stripe buffer to the
disk array includes formation of a redundancy pattern and storage of the redundancy pattern
with the stripe of data.
34. A method of improving performance in a RAID disk array controller according to
claim 33 and wherein the redundancy pattern is interleaved among the data in accordance
with a RAID 5 protocol.
35. A method of improving performance in a RAID disk array controller according to
claim 33 and wherein the redundancy pattern is stored on a redundant drive in accordance

with a RAID 3 protocol.
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