

(12)

Patentschrift

(21) Aktenzeichen: 103 26 168.0(22) Anmeldetag: 10.06.2003(43) Offenlegungstag: 13.01.2005

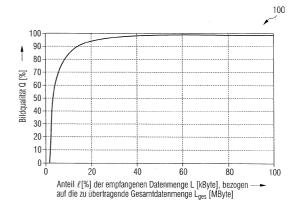
(45) Veröffentlichungstag

der Patenterteilung: 28.01.2010

(51) Int CI.8: **G06T 9/00** (2006.01)

Innerhalb von drei Monaten nach Veröffentlichung der Patenterteilung kann nach § 59 Patentgesetz gegen das Patent Einspruch erhoben werden. Der Einspruch ist schriftlich zu erklären und zu begründen. Innerhalb der Einspruchsfrist ist eine Einspruchsgebühr in Höhe von 200 Euro zu entrichten(§ 6 Patentkostengesetz in Verbindung mit der Anlage zu § 2 Abs. 1 Patentkostengesetz).

(73) Patentinhaber: Siemens AG, 80333 München, DE	(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:
(72) Erfinder: Martin, Uwe-Erik, 15345 Prötzel, DE	US 58 80 856 A US 57 24 070 A


(54) Bezeichnung: Verfahren und Funktionseinheit zur Optimierung der Darstellung progressiv kodierter Bilddaten

(57) Hauptanspruch: Verfahren zur schrittweisen Verarbeitung progressiv kodierter Bilddaten, die mit variabler Übertragungsrate (R_i) übertragen werden, durch Dekodierung und sukzessive Erhöhung der Bildauflösung (R_B) mit Zunahme der Datenmenge (L) der in einen Empfangsdatenspeicher (402) geladenen Bilddaten,

dadurch gekennzeichnet, dass

nur Dekodierschritte (D_i), die zu einem Zeitpunkt (t_i) möglicher Dekodierzeitpunkte mit konstanten zeitlichen Abständen (Δt_w) eine Wartezeit ($\Delta t_{v,i}$) seit dem letzten Dekodierschritt (D_{i-1}), berechnet aus der benötigten Rechenzeit ($\Delta t_{D,i-1}$) des vorausgegangenen Dekodierschritts, nicht erfüllen oder die nicht zu einer wahrnehmbaren Verbesserung der Auflösung (R_B) eines teilweise rekonstruierten Bildes unter Einbeziehung von statistischen Bildqualitätsparametern ($\Delta \overline{Q}_{v,i}$) empfangener Teilbilddaten führen, unterdrückt werden,

während Dekodierschritte (D_i), die zu einem Zeitpunkt (t_i) der möglichen Dekodierzeitpunkte mit konstanten zeitlichen Abständen (Δt_w) eine Wartezeit ($\Delta t_{v,i}$) seit dem letzten Dekodierschritt (D_{i-1}), berechnet aus der benötigten Rechenzeit ($\Delta t_{D,i-1}$) des vorrausgegangenen Dekodierschritts, erfüllen und die zu einer wahrnehmbaren Verbesserung der Auflösung (R_B) eines teilweise rekonstruierten Bildes unter Einbeziehung von statistischen...

Beschreibung

[0001] Die zugrunde liegende Erfindung bezieht sich auf ein Verfahren und eine Funktionseinheit zur schrittweisen Verarbeitung (Dekodierung, Archivierung) und ggf. grafischen Darstellung progressiv kodierter Bilddaten, mit deren Hilfe die Zeitspannen, in denen Netzteilnehmern beim Herunterladen der Bilddaten von einem zentralen Netzserver zu ihren lokalen Client-Rechnern schrittweise bereits übertragene und dekodierte Teildatenmengen bspw. als Voransichtsbilder mit sukzessiv verfeinerter Bildauflösung zur Verfügung gestellt werden, verkürzt und hinsichtlich einer Minimierung der Systemauslastung optimiert werden.

[0002] Im Folgenden soll kurz auf das Pririzip der im Rahmen des Progressive JPEG-Standards verwendeten progressiven Bildkodierung eingegangen werden. Da die der Erfindung zugrunde liegende Lösung jedoch unabhängig von dem konkreten Bildkodierstandard ist und lediglich ein progressives Verfahren vorausgesetzt wird, können neben dem hier beschriebenen Progressive JPEG-Standard auch andere Standards, z. B. JPEG 2000 oder Interlaced GIF, verwendet werden.

[0003] Das als "Progressive JPEG" bekannt gewordene Dateiformat ist eine Erweiterung des Grafikdateiformats JPEG, mit der ein fotorealistisches Bild oder eine Grafik in einem Webbrowser schrittweise aufgebaut und gespeichert wird. Hierbei werden zeitgleich während des Herunterladens der zu übertragenden Datenmenge

$$L_{ges} = \frac{1}{1.024} \frac{\text{MByte}}{\text{kByte}} \cdot \sum_{i=1}^{N} \Delta L_{i} \quad [\text{MByte}] \quad (1)$$

einer Bilddatei von einem zentralen Netzserver zu dem lokalen Client-Rechner eines Netzteilnehmers bereits heruntergeladene Teildatenmengen ΔL_i [kByte] in mehreren Dekodierungsschritten D_i dekodiert, so dass immer detaillierte Voransichtsbilder V_i der zu rekonstruierenden Grafik angezeigt werden können, bis die gesamte Bilddatei vom Netzserver heruntergeladen wurde. Die Auflösung der Grafik wird während des Ladevorgangs sukzessive immer feiner und das Bild folglich immer schärfer, bis die durch die Quantisierung des Originalbildes vorgegebene Auflösung R_B erreicht ist. Der Vorteil dieses Verfahrens besteht darin, dass der Betrachter einer Website mit eingebundenen Grafikelementen schon zu Beginn des Ladevorgangs einen ersten visuellen Eindruck von der zu übertragenden Bilddatei bekommt und nicht warten muss, bis das komplette Bild übertragen worden ist. Das Ziel ist dabei,

– die bis zur grafischen Darstellung einer als Voransichtsbild V_j zur frühzeitigen Gewinnung eines visuellen Eindrucks bereits brauchbaren j-ten Version der heruntergeladenen Bilddatei verstreichende Wartezeit

$$T_{w}(j) := \sum_{i=1}^{j} \Delta t_{w,i} \quad [s] \quad (2a)$$

zu verkürzen, so dass dem Netzteilnehmer bereits zu einem frühen Zeitpunkt t_j des Ladevorgangs auswertbare, der bis dahin bereits übertragenen Datenmenge

$$L_{ist}(j) := \sum_{i=1}^{j} \Delta L_i = L_{ges} \cdot 1.024 \frac{\text{kByte}}{\text{MByte}} \cdot \sum_{i=1}^{j} \Delta \ell_i \quad [\text{kByte}] \quad (2b)$$

(mit $j \in \{1, 2, ..., N\}$)

entsprechende Bildinformation zur Verfügung gestellt werden kann, wobei

$$\Delta \ell_i := 100 \cdot \frac{1}{1.024} \frac{\text{MByte}}{\text{kByte}} \cdot \frac{\Delta L_i}{L_{ges}} \quad [\%]$$
 (2c)

die prozentuale Zunahme der empfangenen und im Dekodierungsschritt D_i dekodierten Teildatenmenge ΔL_i bezeichnet.

- den bei jedem Dekodierungsschritt D_i zu den Zeitpunkten t_i erzielten Fortschritt der Bildübertragung, welcher sich in einer Verbesserung ΔQ_i der Bildqualität Q zeigt, transparent darzustellen und
- den Ladevorgang interaktiv zu steuern, ggf. zu unterbrechen oder fortzusetzen.

[0004] Um dies zu erreichen, werden beim progressiven JPEG die Bilder wie im Baseline-JPEG-Verfahren in 8×8-Blöcke aufgespalten und mit Hilfe der Diskreten Kosinus-Transformation (DCT) transformiert. Nach der parametrisierbaren Quantisierung wird ein Block jedoch nicht sofort kodiert, sondern zunächst in einem Datenpuffer zwischengespeichert, bis alle im Bild enthaltenen Blöcke quantisiert sind. Der Pufferinhalt wird dann in mehreren Schritten kodiert. Es erfolgt also keine sequenzielle Kodierung der einzelnen Blöcke wie im Baseli-

ne-JPEG-Verfahren. Das Nachladen und Dekodieren von Teildatenmengen zur Darstellung grob aufgelöster Voransichtsbilder mit sukzessive verfeinerter Auflösung geht hierbei wesentlich schneller vonstatten als ein zeilenweiser Bildaufbau zur Rekonstruktion des fein aufgelösten Originalbildes.

[0005] Das technische Problem bei der Dekodierung liegt in diesem Zusammenhang in der optimalen Bestimmung der zeitlichen Abstände $\Delta t_{D,i}$ zweier unmittelbar aufeinanderfolgender Dekodierungsschritte D_{i-1} und D_{i} , die derart gewählt werden müssen, dass sowohl die mittlere Empfangsdatenrate R, die in den einzelnen Dekodierungsschritte D_{i} erzielten Verbesserungen ΔQ_{i} der Bildqualität Q als auch die verfügbare Leistungsfähigkeit und die relative Belastung (Auslastung)

$$\rho = 100 \cdot \frac{T_{o}}{T_{w}} = 100 \cdot \frac{\sum_{i=1}^{N} \Delta t_{o,i}}{\sum_{i=1}^{N} \Delta t_{w,i}}$$
 [%] (3a)

des verwendeten Dekodier- und Darstellungssystems berücksichtigt wird. Hierbei bezeichnet

$$T_{W} := \sum_{i=1}^{N} \Delta t_{W,i} = t_{N} - t_{0}$$
 [s] (3b)

die insgesamt benötigte Wartezeit vom Beginn des Ladevorgangs zum Zeitpunkt t_0 = 0 s bis zur Darstellung der Endversion V_N maximaler Auflösung R_B eines Bildes zum Zeitpunkt t_N und

$$T_{D} := \sum_{i=1}^{N} \Delta t_{D,i} \qquad [s] \qquad (3c)$$

die insgesamt benötigte Zeitspanne zur Dekodierung und grafischen Visualisierung dieser Endversion V_N , wobei

$$T_D \stackrel{!}{\leq} T_w$$
 (3d)

gelten muss; $\Delta t_{W,i}$ ist die Wartezeit zwischen den beiden Dekodierungsschritten D_{i-1} und D_i , $\Delta t_{D,i}$ die zur Dekodierung und grafischen Visualisierung der Teildatenmenge ΔL_i tatsächlich benötigte Rechenzeit und

$$\rho_i = 100 \cdot \frac{\Delta t_{D,i}}{\Delta t_{W,i}} \quad [\%]$$
 (3e)

die Auslastung des Dekodier- und Darstellungssystems im Zeitintervall $\Delta t_{W,i}$, welche nicht größer als 100% sein darf. Es muss also gelten:

$$\Delta t_{p,i} \stackrel{!}{\leq} \Delta t_{w,i} \quad \forall i.$$
 (3f)

Konventionelle Verfahren nach dem Stand der Technik bestimmen üblicherweise die Zeitdauern $\Delta t_{D,i}$ zwischen den Zeitpunkten t_{i-1} und t_i aufeinanderfolgender Dekodierungsschritte D_{i-1} und D_i entweder abhängig von der bisher empfangenen Datenmenge $L_{ist}(j)$ (Variante 1), führen die Dekodierungsschritte in regelmäßigen Zeitabständen Δt_D durch (Variante 2) oder verwenden eine Kombination beider Verfahren (Variante 3). Wie im Folgenden erläutert wird, stoßen diese Methoden jedoch an technologisch bedingte Grenzen.

[0006] Bei der Ausführung von Variante 1 startet eine zur Bestimmung der zeitlichen Abstände

$$\Delta t_{D,i} \equiv \Delta t_{W,i} := t_i - t_{i-1} \neq \text{const. [s]}$$

 $(f \ddot{u} r i \in \{1, 2, ..., N\})$

aufeinanderfolgender Dekodierungsprozesse D_{i-1} und D_i ausgeführte Prozedur den i-ten Dekodierungs- (D_i) und Darstellungsschritt (V_i) , wenn eine festgelegte, jedoch variable Datenmenge ΔL_i progressiv kodierter Bilddaten dem Dekodier- und Darstellungssystem zur Verfügung steht. So wird beispielsweise der erste Dekodierungsschritt D_1 durchgeführt, nachdem der erste Block B_1 progressiv kodierter Bilddaten vom Dekodiersystem empfangen wurde. Die Teildatenmenge ΔL_1 des ersten Blockes B_1 ist dabei ein wählbarer Systemparameter. Weitere Dekodierungsschritte D_2 bis D_N werden durchgeführt, nachdem weitere Blöcke B_2 bis B_N , deren Grö-

ßen ΔL_2 bis ΔL_N jeweils in Abhängigkeit von den Größen ΔL_1 bis ΔL_{N-1} der bisher empfangenen Blöcke B_1 bis B_{N-1} und ihren Systemparametern geeignet festgelegt werden, vom Dekodiersystem empfangen wurden. Eine derartige Bestimmung der Dekodierungsabstände Δt_{D_1} berücksichtigt die mittlere Übertragungsrate

$$R = 8 \frac{\text{Bit}}{\text{Byte}} \cdot \frac{L_{ges}}{T_W} = 8 \frac{\text{Bit}}{\text{Byte}} \cdot \frac{1}{1.024} \frac{\text{MByte}}{\text{kByte}} \cdot \frac{1}{T_W} \cdot \sum_{i=1}^{N} \Delta L_i \quad [\text{MBit/s}] \quad (5)$$

der während der Zeit T_w empfangenen Gesamtdatenmenge L_{ges} nur mittelbar über die Systemparameter ΔL_i . So führt ein langsamer Empfang der Daten zu langen Wartezeiten $\Delta t_{W,i}$ zwischen den Dekodierungsschritten D_{i-1} und D_i , während ein schneller Empfang der Daten zu sehr kurzen Wartezeiten $\Delta t_{W,i}$ führt. Im letzteren Fall können die Dekodierungsprozesse aufgrund der begrenzten Leistungsfähigkeit des Dekodiersystems unter Umständen nicht mehr zeitgerecht durchgeführt werden. Um dies zu vermeiden, bildet in vielen Systemen der Momentanwert

$$R_i = 8 \frac{\text{Bit}}{\text{Byte}} \cdot \frac{1}{1.024} \frac{\text{MByte}}{\text{kByte}} \cdot \frac{\Delta L_i}{\Delta t_{D,i}} \quad [\text{MBit/s}] \quad (6)$$

 $(für i \in \{1, 2, ..., N\})$

der Datenrate R empfangener Bilddaten einen Systemparameter, der entweder regelmäßig gemessen wird oder als Schätzung dem Dekodiersystem bekannt ist.

[0007] Werden wie bei Variante 2 die Darstellungsschritte V_i in regelmäßigen, konstanten Zeitabständen Δt_D durchgeführt, wird die gesamte, bis zum Zeitpunkt t_j der Darstellung vom Dekodier- und Darstellungssystem empfangene Bilddatenmenge

$$L_{ist}'(j) := j \cdot \Delta L = 1.024 \frac{\text{kByte}}{\text{MByte}} \cdot j \cdot L_{ges} \cdot \Delta \ell \quad [\text{kByte}]$$
 (7a)

(mit $j \in \{1, 2, ..., N\}$), wobei

$$\Delta \ell := 100 \cdot \frac{1}{1.024} \frac{\text{MByte}}{\text{kByte}} \cdot \frac{\Delta L}{L_{cas}} \quad [\%] \quad (7b)$$

mit

$$\Delta L_1 = \Delta L_2 = \dots \Delta L_i = \dots = \Delta L_N =: \Delta L \text{ [kByte]}$$
(7c)

die prozentuale Zunahme der empfangenen und in den einzelnen Dekodierungsschritt D_i jeweils dekodierten konstanten Teildatenmenge ΔL bezeichnet, dekodiert und grafisch visualisiert. Die Zeitabstände

$$\Delta t_{D,i} := t_i - t_{i-1} = \text{const. [s]}$$
 (8a)

 $(für i \in \{1, 2, ..., N\})$

zwischen zwei unmittelbar aufeinanderfolgenden Dekodierungsschritten D_{i-1} und D_i, wobei

$$\Delta t_{D,1} = \Delta t_{D,2} = ... \Delta t_{D,i} = ... = \Delta t_{D,N} =: \Delta t_{D} [s]$$
 (8b)

und
$$\Delta t_{D,i} \leq \Delta t_{W,i}$$
 (8c)

gilt, bilden einen Systemparameter des Dekodiersystems und berücksichtigen ggf. auch die Leistungsfähigkeit des Dekodiersystems. Bei einer derartigen Vorgehensweise wird die Datenrate

$$R_{i} = 8 \frac{\text{Bit}}{\text{Byte}} \cdot \frac{1}{1.024} \frac{\text{MByte}}{\text{kByte}} \cdot \frac{\Delta L_{i}}{\Delta t_{w,i}}$$

$$= 8 \frac{\text{Bit}}{\text{Byte}} \cdot \frac{1}{1.024} \frac{\text{MByte}}{\text{kByte}} \cdot \frac{\Delta L}{\Delta t_{w}} \cdot \frac{N}{N} = 8 \frac{\text{Bit}}{\text{Byte}} \cdot \frac{L_{ges}}{T_{w}} = R \quad [\text{MBit/s}] \quad (9)$$

$$(\text{miti} \in \{1, 2, ..., N\})$$

der Empfangsdaten implizit berücksichtigt. Bei einer geringen Datenrate R_i einer empfangenen Teildatenmenge ΔL_i ist die visuelle Verbesserung des dargestellten Bildes zwischen zwei Dekodierungsschritten D_{i-1} und D_i gering, während eine hohe Datenrate R_i der empfangenen Teildatenmenge ΔL_i zu einer raschen Verbesserung ΔQ_i der Bildqualität Q führt. Eine Überlastung infolge der begrenzten Leistungsfähigkeit des Dekodiersystems ist hierbei ausgeschlossen. Nachteilig ist jedoch, dass unabhängig von den Datenraten R_i der empfangenen Teildatenmengen ΔL_i die Auslastung ρ des Dekodiersystems zeitlich konstant bleibt.

[0008] Eine Kombination beider Vorgehensweisen gemäß Variante 3 führt zu einer zeitlich veränderbaren Auslastung ρ_i des Dekodiersystems. Die Auslastung ρ_i ist hierbei abhängig von der im Zeitintervall $\Delta t_{w,i}$ empfangenen Teildatenmenge ΔL_i .

[0009] Allen drei Varianten gemeinsam ist jedoch, dass statistische und visuelle Eigenschaften eines übertragenen Bildes nicht berücksichtigt werden. So kann es vorkommen, dass aufeinanderfolgende Darstellungsschritte V_{i-1} und V_i zu keiner wahrnehmbaren Verbesserung der Bildauflösung $R_{\mathrm{B},i}$ beim Betrachter führen.

[0010] Fig. 1 zeigt einen typischen Verlauf der Bildqualität Q in Abhängigkeit vom prozentualen Anteil

$$\ell := 100 \cdot \frac{1}{1.024} \frac{\text{MByte}}{\text{kByte}} \cdot \frac{L}{L_{qes}} \quad [\%] \tag{10}$$

der empfangenen Datenmenge L [kByte] progressiv kodierter, im JPEG 2000-Format komprimierter Bilder, bezogen auf die insgesamt zu übertragende Datenmenge L_{ges} . Als statistisches Qualitätsmaß

$$Q_i := 100 \cdot \left(1 - \frac{e_i}{e_0}\right) \quad [\%] \tag{11a}$$

 $f\ddot{u}r\ die\ aktuelle\ Bildauflösung\ R_{B,i}\ ist\ hierbei\ der\ mittlere\ quadratische\ Fehler\ (engl.:\ "Mean\ Square\ Error",\ MSE)$

$$e_{i} := \frac{1}{\mu_{\text{max}} \cdot \nu_{\text{max}}} \cdot \sum_{\mu=1}^{\mu_{\text{max}}} \sum_{\nu=1}^{\nu_{\text{max}}} \left(V_{N,\mu\nu} - V_{1,\mu\nu} \right)^{2}$$
 (11b)

(für $i \in \{1, 2, ..., N\}$)

zwischen der Endversion V_N eines zu rekonstruierenden Bildes, deren Bildqualität Q_N idealerweise der Bildqualität

$$Q_{\text{orig}} := 100\% \tag{11c}$$

des übertragenen Originalbildes Vorig entspricht, und der jeweils betrachteten Version eines niedriger aufgelöster Voransichtsbildes V_i zugrunde gelegt und auf einen Qualitätsbereich, der von 0% bis 100% reicht, normiert worden. Dabei bezeichnet $V_{N,\mu\nu}$ den Pixelwert des zu übertragenden Originalbildes $V_{V,\mu\nu}$ für das Pixel $V_{V,\mu\nu}$ den Pixelwert des i-ten Voransichtsbildes für das Pixel $V_{V,\mu\nu}$ und

$$e_0 \equiv e_{max} := \frac{1}{\mu_{max} \cdot v_{max}} \cdot \sum_{\mu=1}^{\mu_{max}} \sum_{\nu=1}^{v_{max}} V_{N,\mu\nu}^2$$
 (11d)

den maximal möglichen Fehler. Ein Qualitätsmaß von 100% gibt dabei die beste, verfügbare Qualität an, die erreicht wird, wenn die gesamte Bilddatenmenge L_{ges} vollständig und erfolgreich übertragen wurde. In diesem Fall (i = N) ist der mittlere quadratische Fehler e_i idealerweise gleich Null:

$$e_{N} = 0. ag{11e}$$

[0011] Eine Bildqualität von 0% liegt dann vor, wenn noch keine Bilddaten übertragen wurden. In diesem Fall (i = 0) erreicht der mittlere quadratische Fehler e_i seinen Maximalwert e_{max} . In Fig. 2 ist ein weiteres Diagramm zur Darstellung eines typischen Verlaufs der statistischen Bildqualität Q in Abhängigkeit vom prozentualen Anteil I der empfangenen Datenmenge L progressiv kodierter, im JPEG 2000-Format komprimierter Bilddaten, bezogen auf die zu übertragende Gesamtdatenmenge L_{ges} (in MByte), abgebildet. Dabei sind zusätzlich zu dem kontinuierlichen Funktionsverlauf Q(I) die Zeitpunkte t_i der Dekodierungsprozeduren D_i mit den dazugehörigen prozentualen Datenmengenanteilen ΔI_i und Bildqualitätswerten ΔQ_i für eine statistisch gleichmäßige Qualitätsverbesserung

$$\Delta Q_i := h(\Delta I_i) = Q_i - Q_{i-1} \tag{12}$$

(für $i \in \{1, 2, ..., N\}$)

von 10,00% pro Dekodierungsschritt i angegeben, wobei durch die beiden Beziehungen

$$Q_i := Q(I_i) \tag{12a}$$

und

$$Q_{i,1} := Q(I_{i,1}) \tag{12b}$$

die Bildqualitäten der Voransichtsbilder V_i bzw. V_{i-1} gegeben sind. Es zeigt sich, dass bei einem geringen Anteil Δl_i der Qualitätsanstieg ΔQ_i hoch ist, d.h. die Datenmenge ΔL_i , die zwischen zwei Verbesserungsschritten D_{i-1} und D_i empfangen werden muss, ist zunächst verhältnismäßig gering und nimmt mit Zunahme der zu den Zeitpunkten t_i vorliegenden Datenmenge L_{ist} (j) zu.

[0012] Wie <u>Fig. 2</u> zu entnehmen ist, führt eine große Anzahl N von Dekodierungsschritten D_i bei einer anteilsmäßig geringen Menge ΔI_i empfangener Daten im Rahmen der oben beschriebenen datenmengenbezogenen Bestimmung der Dekodierungsschritte D_i gemäß Variante 1 zu einer Überlastung des Dekodiersystems.

[0013] In der Praxis ergeben sich die in <u>Fig. 1</u> und <u>Fig. 2</u> skizzierten Verläufe der Bildqualität Q aus statistisch gemittelten und normierten Werten eines beliebigen Qualitätsmaßes. Das oben angegebene Verhältnis zwischen der Bildqualität Q und dem mittleren quadratischen Fehler e ist dabei rein illustrativ zu verstehen. Tatsächlich sind die normierten Bildqualitätsverläufe Q(I) in einem Datenspeicher abgelegt und werden unabhängig von der Übertragung ermittelt.

[0014] Dokument US 5,724,070 offenbart ein Computersystem, welches progressiv kodierte Bilddaten schrittweise dekodiert und mit jeweils erhöhter Auflösung darstellt.

AUFGABE DER VORLIEGENDEN ERFINDUNG

[0015] Ausgehend von dem oben genannten Stand der Technik, widmet sich die vorliegende Erfindung der Aufgabe, ein Verfahren und eine Funktionseinheit bereitzustellen, mit deren Hilfe eine verbesserte Bestimmung von Dekodierzeitpunkten von progressiv kodierten Bilddaten ermöglicht wird.

[0016] Diese Aufgabe wird erfindungsgemäß durch die Merkmale der unabhängigen Patentansprüche gelöst.

[0017] Der zentrale Gedanke der Erfindung wird in vorteilhafter Weise in den abhängigen Patentansprüchen weitergebildet.

ZUSAMMENFASSENDE DARSTELLUNG DER VORLIEGENDEN ERFINDUNG

[0018] Im Rahmen der erfindungsgemäßen Lösung ist – entsprechend der im vorangehenden Abschnitt definierten Aufgabe – ein Verfahren und eine Funktionseinheit zur schrittweisen Verarbeitung und ggf. Darstellung progressiv kodierter Bilddaten vorgesehen. Dabei können die zeitlichen Abstände $\Delta t_{W,i}$ zwischen den Zeitpunkten t_{i-1} und t_i aufeinanderfolgender Dekodierungsschritte D_{i-1} und D_i , in denen den Netzteilnehmern die zur Darstellung von Voransichtsbildern V_i mit sukzessiv verfeinerter Bildauflösung R_B benötigten dekodierten Teildatenmengen ΔL_i zur Verfügung gestellt werden, verkürzt und hinsichtlich einer Minimierung der Gesamtauslastung ρ des Dekodiersystems optimiert werden. Zu diesem Zweck werden erfindungsgemäß die Empfangsdatenraten R_i zur Übertragung der einzelnen Teildatenmengen ΔL_i , die durch die einzelnen Dekodierungsschritte D_i erzielten Verbesserungen ΔQ_i der Bildqualität Q und die momentane Auslastung ρ_i der zur Dekodierung verwendeten Systemkomponente bei der Bestimmung der Dekodierungszeitpunkte t_i berücksichtigt. Anstelle einer Messung der Empfangsdatenraten R_i bzw. der erzielten Bildqualitätsverbesserungen ΔQ_i während der Datenübertragung erfolgt dabei lediglich eine Messung der Ausführungszeiten für die einzelnen Dekodierungsschritte D_i , um eine Überlastung des Systems zu vermeiden.

[0019] Die Wartezeiten $\Delta t_{v,i}$ zwischen den Zeitpunkten t_{i-1} und t_i unmittelbar aufeinanderfolgender Dekodierungsschritte D_{i-1} und D_i werden dabei erfindungsgemäß unter Einbeziehung von statistischen Bildqualitätsparametern

$$\Delta \overline{Q}_{V_i} := E \{ \Delta Q_i \} \tag{13}$$

empfangener Teilbilddaten so berechnet, dass diejenigen Dekodierungsschritte D_i , welche nicht zu einer wahrnehmbaren Verbesserung $\Delta \overline{Q}_{v,i}$ der den Grad der Auflösung $R_{B,i}$ anzeigenden Bildqualität Q eines zu rekonstruierenden Bildes führen, unterdrückt werden. Als Schwellwerte für die Wahrnehmbarkeit einer Verfeinerung der Bildauflösung R_B dienen dabei gemittelte Werte, die aus statistischen Untersuchungen im Rahmen psychooptischer Messreihen an einer Vielzahl von Testpersonen gewonnen wurden. Die Berücksichtigung statistischer Qualitätsparameter $\Delta \overline{Q}_{v,i}$ übertragener Bilder führt dabei im Vergleich zu der vorstehend beschriebenen Variante 3 zu einer weiteren Reduktion der momentanen Auslastung ρ_i des Dekodiersystems.

KURZBESCHREIBUNG DER ZEICHNUNGEN

[0020] Weitere Eigenschaften, Merkmale, Vorteile und Anwendungsmöglichkeiten der zugrunde liegenden Erfindung ergeben sich aus den untergeordneten abhängigen Patentansprüchen sowie aus der folgenden Beschreibung eines Ausführungsbeispiels der Erfindung, welches in <u>Fig. 3</u> und <u>Fig. 4</u> dargestellt ist. Im Einzelnen zeigen

[0021] Fig. 1 ein erstes Diagramm zur Darstellung eines typischen Verlaufs der den Grad der Auflösung $R_{\rm B,i}$ anzeigenden Bildqualität Q in Abhängigkeit vom prozentualen Anteil I der empfangenen Datenmenge L progressiv kodierter, im JPEG 2000-Format komprimierter Bilddaten, bezogen auf die Gesamtdatenmenge $L_{\rm ges}$,

[0022] Fig. 2 ein zweites Diagramm zur Darstellung eines typischen Verlaufs der Bildqualität Q in Abhängigkeit vom prozentualen Anteil I der empfangenen Datenmenge L progressiv kodierter, im JPEG 2000-Format komprimierter Bilddaten, bezogen auf die zu übertragende Gesamtdatenmenge $L_{\rm ges}$, wobei zusätzlich zu dem kontinuierlichen Funktionsverlauf Q(I) die Zeitpunkte t_i der Dekodierungsprozeduren D_i mit den dazugehörigen prozentualen Datenmengenanteilen ΔI_i und Bildqualitätswerten ΔQ_i für eine statistisch gleichmäßige Qualitätsverbesserung ΔQ_i von 10,00% pro Dekodierungsschritt i angegeben sind,

[0023] Fig. 3 ein Diagramm gemäß Fig. 2, bei dem zur Reduktion der Anzahl N von Dekodierungsschritten durch Berücksichtigung statistischer Qualitätsparameter $\Delta \overline{Q}_{V,i}$ empfangener Bilddaten einzelne Dekodierungszeitpunkte t_i unterdrückt werden,

[0024] Fig. 4 ein Blockschaltbild einer Funktionseinheit zur Durchführung eines Verfahrens zur Dekodierung progressiv kodierter Bilddaten unter Berücksichtigung statistischer Qualitätsparameter $\Delta \overline{Q}_{V,i}$ empfangener Bilddaten gemäß dem Ausführungsbeispiel der vorliegenden Erfindung und

[0025] Fig. 5 ein Flussdiagramm zur Veranschaulichung eines Beispiels für ein Verfahren, welches nicht von der vorligenden Erfindung umfasst wird, bei dem die Wartezeiten $\Delta t_{V,i}$ zwischen den Zeitpunkten t_{i-1} und t_i aufeinanderfolgender Dekodierungsschritte D_{i-1} und D_i unter Einbeziehung von Bildqualitätsparametern $\Delta \overline{Q}_{V,i}$ empfangener Teilbilddaten so berechnet werden, dass Dekodierungsschritte D_i , die nicht zu einer wahrnehmbaren Bildverbesserung führen, unterdrückt werden.

DETAILLIERTE BESCHREIBUNG DER ERFINDUNG

[0026] Im Folgenden soll die Idee der erfindungsgemäßen Lösung anhand des in <u>Fig. 3</u> bis <u>Fig. 4</u> abgebildeten Ausführungsbeispiels näher erläutert werden.

[0027] Ein Verfahren, welches nicht von der vorligenden Erfindung umfasst wird, zur schrittweisen Dekodierung, Archivierung und grafischen Darstellung progressiv kodierter Bilddaten wird durch das Flussdiagramm 500, welches in Fig. 5 abgebildet ist, veranschaulicht. Nach der Initialisierung (S0) einer Zählervariable i für die Dekodierungsschritte D_i mit dem Wert Eins (i := 1) erfolgt eine Bestimmung (S1) des prozentualen Anteils $\Delta l_{1,min}$ der zur Erreichung einer vorgebbaren Mindestqualität $Q_{1,min}$ zu Beginn des Ladevorgangs (S2) zu empfangenden ersten Mindestteildatenmenge $\Delta L_{1,min}$ progressiv kodierter Bilddaten, bezogen auf die zu ladende Gesamtdatenmenge L_{ges} , worauf diese Bilddaten geladen werden (S2). Anschließend wird die Wartezeit $\Delta t_{W,1}$ zum Laden der ersten Mindestteildatenmenge $\Delta L_{1,min}$ durch Messung der Zeitspanne $\Delta t_{D,1}$ zwischen dem Startzeitpunkt des Ladevorgangs ($t_0 = 0$ s) und dem Zeitpunkt t_1 des ersten Dekodierungsschrittes D_1 ermittelt (S3). Solange die zu übertragende Gesamtdatenmenge L_{ges} noch nicht vollständig empfangen wurde, werden dann in einer Schleife die folgenden Schritte ausgeführt:

- Inkrementierung (S4) der Zählervariable i für die einzelnen Dekodierungsschritte D₁ um Eins (i := i + 1),
- Bestimmung (S5) des prozentualen Anteils ∆l_{i,min} der zur Erreichung einer nächsthöheren vorgebbaren

Mindestqualität $Q_{i,min}$ zu empfangenden Mindestteildatenmenge $\Delta L_{i,min}$ progressiv kodierter Bilddaten, bezogen auf die zu ladende Gesamtdatenmenge L_{ges} ,

– Laden (S6) weiterer Bilddaten, bis diese Mindestteildatenmenge $\Delta L_{i,min}$ empfangen wurde und eine vorgebbare Referenzzeitdauer

$$\Delta t_{V,i} := f(\Delta t_{D,i-1}), \tag{14}$$

die sich als Funktion der für den vorausgegangenen Dekodierungsschritt D_{i-1} ermittelten Rechenzeit $\Delta t_{D,i-1}$ ergibt, abgelaufen ist, und

– Ermittlung (S7) der Wartezeit $\Delta t_{W,i}$ zum Laden der i-ten Mindestteildatenmenge $\Delta L_{i,min}$ durch Messung der innerhalb der Zeitspanne $\Delta t_{W,i}$ zwischen dem Zeitpunkt t_{i-1} des unmittelbar zurückliegenden Dekodierungsschrittes D_{i-1} und dem Zeitpunkt t_i des aktuellen Dekodierungsschrittes D_i benötigten Rechenzeitdauer $\Delta t_{D,i}$ zur Dekodierung dieser Teildatenmenge $\Delta L_{i,min}$.

[0028] Fig. 3 zeigt einen typischen Verlauf der Bildqualität Q in Abhängigkeit vom prozentualen Anteil I der empfangenen Datenmenge L progressiv kodierter, im JPEG 2000-Format komprimierter Bilddaten, bezogen auf die zu übertragende Gesamtdatenmenge $L_{\rm ges}$, wobei gemäß Variante 2 die einzelnen Dekodierungsschritte D_i in regelmäßigen, konstanten Zeitabständen $\Delta t_{\rm W}$ durchgeführt werden. Die Wartezeiten $\Delta t_{\rm V,i}$ zwischen den Zeitpunkten $t_{\rm i-1}$ und $t_{\rm i}$ unmittelbar aufeinanderfolgender Dekodierungsschritte $D_{\rm i-1}$ und $D_{\rm i}$ werden dabei unter Einbeziehung von statistischen Bildqualitätsparametern empfangener Teilbilddaten so berechnet (S30, S7), dass diejenigen Dekodierungsschritte $D_{\rm i}$, die zu keiner wesentlichen Bildverbesserung beitragen, unterdrückt werden.

[0029] Die einzelnen Dekodierungsschritte D_i erfolgen erfindungsgemäß in regelmäßigen Zeitintervallen Δt_W gleicher Dauer, die sich aus der Leistungsfähigkeit und der aktuellen Auslastung ρ_i der zur Dekodierung verwendeten Systemkomponente **404** ergibt, aber nur dann, wenn der prozentuale Anteil Δl_i der in den einzelnen Dekodierungschritten D_i erfolgten Zunahme $\Delta L_{i,min}$ der Datenmenge L, bezogen auf die zu ladende Gesamtdatenmenge L_{ges} , ausreichend ist, um eine vorgebbare Mindestqualität $\Delta Q_{i,min}$ zu gewährleisten.

[0030] Die zur Durchführung der einzelnen Dekodierungsschritte D_i benötigten Parameter umfassen dabei die Sollwerte $\Delta \overline{Q}_{V,i}$ der prozentualen Bildqualitätsverbesserungen $\Delta Q_{V,i}$ je Dekodierungsschritt D_i sowie die dazugehörigen Sollwert-Anteile

$$\Delta \bar{l}_{V_i} := g(\Delta \overline{Q}_{V_i}) \tag{15}$$

der zu empfangenden Teildatenmengen ΔL_i , bezogen auf die zu übertragende Gesamtdatenmenge L_{ges} , und sind in einer frei konfigurierbaren Datenbank **408a** gespeichert.

[0031] Zur Bestimmung der Dekodierungszeitpunkte t_i werden erfindungsgemäß die Datenraten R_i beim Empfang der einzelnen Teildatenmengen ΔL_i , die durch die einzelnen Dekodierungsschritte D_i erzielten Verbesserungen ΔQ_i der Bildqualität Q und die momentane Auslastung ρ_i der zur Dekodierung verwendeten Systemkomponente **404** gemessen und ausgewertet.

[0032] Als Sollwerte $\Delta \overline{Q}_{V,i}$ der prozentualen Bildqualitätsverbesserungen $\Delta Q_{V,i}$ je Dekodierungsschritt D_i werden erfindungsgemäß statistisch gemittelte Werte der in den einzelnen Dekodierungsschritten D_i zu erwartenden Bildqualitätsverbesserungen ΔQ_i verwendet. Entsprechend sind die Sollwert-Anteile $\Delta I_{V,i}$ der zu empfangenden Teildatenmengen ΔL_i je Dekodierungsschritt D_i , jeweils bezogen auf die zu übertragende Gesamtdatenmenge L_{ges} , statistisch gemittelte Werte der in den einzelnen Dekodierungsschritten D_i zu erwartenden prozentualen Zunahmen ΔI_i der Teildatenmengen ΔL_i , jeweils bezogen auf die zu übertragende Gesamtdatenmenge L_{ges} .

[0033] Durch die Anwendung des erfindungsgemäßen Verfahrens ergibt sich eine Reihe von Vorteilen:

- Durch die Unterdrückung von Dekodierungsschritten D_i , die zu nicht wahrnehmbaren Bildverbesserungen ΔQ_i führen, wird eine zum gegenwärtigen Stand der Technik verringerte Belastung ρ des Dekodiersystems **404** erreicht.
- Durch die Verwendung regelmäßiger, konstanter Dekodierungsintervalle $\Delta t_{w,i}$ und die Einbeziehung von Bildqualitätsparametern $\Delta \overline{Q}_{V,i}$ empfangener Teilbilddaten zur Berechnung der Wartezeiten $\Delta t_{v,i}$ zwischen den Zeitpunkten t_{i-1} und t_i unmittelbar aufeinanderfolgender Dekodierungsschritte D_{i-1} und D_i wird eine vorgebbare maximale Belastung ρ_{max} des Dekodiersystems **404** nicht überschritten.
- Außerdem sind die während der einzelnen Dekodierungsschritte D_i durchzuführenden Rechenoperatio-

nen unabhängig von den Empfangsdatenraten R_i , woraus folgt, dass diese Größen dem Dekodiersystem **404** nicht bekannt sein müssen.

[0034] Das Ausführungsbeispiel der vorliegenden Erfindung bezieht sich auf die in Fig. 4 abgebildete Funktionseinheit 400, welche zur Dekodierung, Archivierung und grafischen Darstellung progressiv kodierter Bilddaten durch sukzessive Erhöhung der Bildauflösung $R_{\rm B}$ mit Zunahme der Datenmenge L der in einen Empfangsdatenspeicher 402 geladenen und über eine Anzeigevorrichtung 404a visualisierten Bilddaten dient. Dabei weist der Empfangsdatenspeicher 402 eine Füllstandsanzeige 402a auf, welche den akkumulierten prozentualen Istwert-Anteil $I_{\rm ist}$ der bereits in den Empfangsdatenspeicher 402 geladenen Datenmenge $L_{\rm ist}$, bezogen auf die zu übertragende Gesamtdatenmenge $L_{\rm ges}$, berechnet und angibt. Die Funktionseinheit 400 ist gekennzeichnet durch ein Dekodiersystem 404, das die im Empfangsdatenspeicher 402 gespeicherten Bilddaten in Abhängigkeit von statistischen Qualitätsparametern $\Delta \overline{Q}_{V,i}$ empfangener Bilddaten in N Dekodierungsschritten D_i dekodiert.

[0035] Dabei verfügt die Funktionseinheit 400 erfindungsgemäß über einen Datenspeicher 408, der Sollwerte $\Delta \overline{Q}_{V,i}$ der prozentualen Verbesserungen ΔQ_i der Bildqualität Q je Dekodierungsschritt D_i sowie die dazugehörigen Sollwert-Anteile $\Delta \overline{I}_{V,i}$ der zu empfangenden Teildatenmengen ΔL_i , jeweils bezogen auf die Gesamtdatenmenge L_{ges} , enthält und einen ersten Schwellwertschalter 410, dessen Ausgangssignal A_i angibt, ob eine zwischen den Zeitpunkten t_{i-1} und t_i des vorangegangenen und des aktuellen Dekodierungsschrittes D_{i-1} und D_i geladene Teildatenmenge ΔL_i zu ladender Bilddaten, bezogen auf die zu ladende Gesamtdatenmenge L_{ges} , zum Erreichen eines vorgebbaren Schwellwerts $\Delta \overline{Q}_{V,i}$ für die Verbesserung ΔQ_i der Bildqualität Q ausreichend ist. Damit A_i den Wert logisch "Eins" annimmt, muss gelten:

$$\Delta Q_i \stackrel{!}{\geq} \Delta \overline{Q}_{V,i} \quad \text{bzw.}$$

$$\Delta \ell_i \stackrel{!}{\geq} \Delta \overline{\ell}_{V,i}.$$
(16a)

[0036] Darüber hinaus umfasst die Funktionseinheit 400 eine erste Zeitmessungseinheit 406, welche die innerhalb der Wartezeit $\Delta t_{V,i}$ zwischen den Zeitpunkten t_{i-1} und t_i aufeinanderfolgender Dekodierungsschritte D_{i-1} und D_i benötigte Rechenzeitdauer $\Delta t_{D,i}$ zur Dekodierung einer empfangenen Teildatenmenge ΔL_i durch das Dekodier- und Darstellungssystem 404 misst, welche als Ausgangsbasis zur Berechnung einer als Sollwert an den zweiten Schwellwertschalter 412 weitergeleiteten Referenzzeitdauer $\Delta t_{V,i}$ dient. Eine zweite Zeitmessungseinheit 414 misst die tatsächlich abgelaufene Zeitdauer Δt_i seit Beginn der Dekodierung der aktuellen Teildatenmenge ΔL_i durch das Dekodiersystem 404 und liefert den gemessenen Istwert an den zweiten Schwellwertschalter 412. Die Funktionseinheit 400 verfügt außerdem über einen zweiten Schwellwertschalter 412, dessen Ausgangssignal A_2 angibt, ob nach dem zuletzt durchgeführten Dekodierungsschritt D_i zur Dekodierung der aktuellen Teildatenmenge ΔL_i eine vorgebbare Wartezeit $t_{V,i}$, die sich als Funktion der benötigen Rechenzeit $\Delta t_{D,i-1}$ zur Dekodierung der unmittelbar zuvor geladenen Teildatenmenge ΔL_{i-1} durch das Dekodiersystem 404 ergibt, vergangen ist. Damit A_2 den Wert logisch "Eins" annimmt, muss gelten:

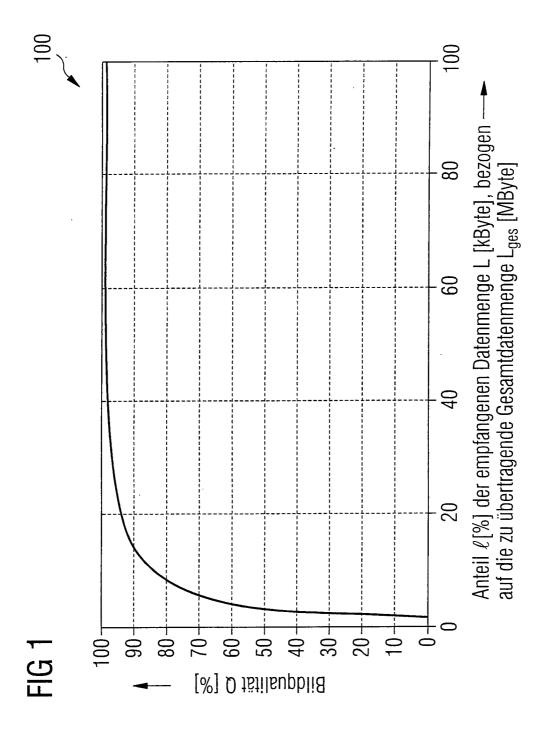
$$\Delta t_i \stackrel{!}{\geq} \Delta t_{v,i} . \tag{17}$$

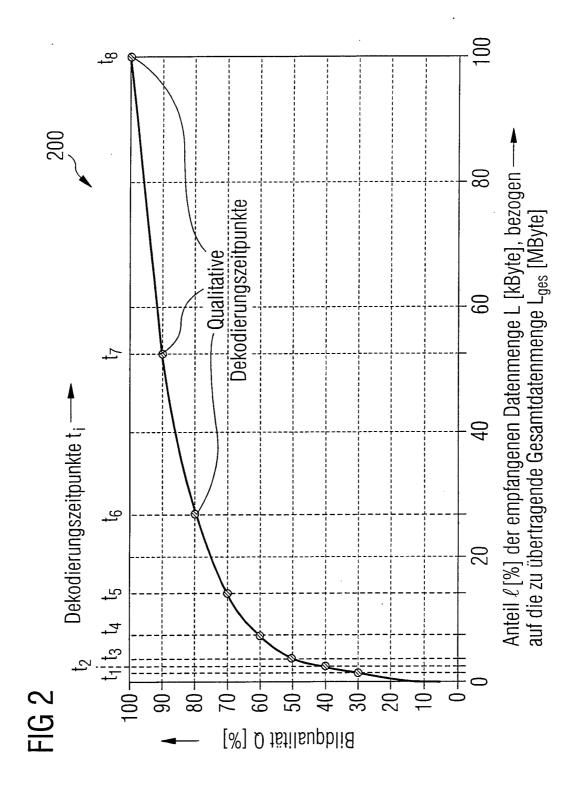
[0037] Mit Hilfe eines UND-Gatter **416**, dessen Boolesche Eingangssignale durch die Ausgangssignale A_1 und A_2 der beiden Schwellwertschalter **410** bzw. **412** gebildet werden, wird ein Steuersignal S berechnet, welches bei einem Wert von logisch "Eins" einen Startimpuls liefert, der das Dekodiersystem **404** zur Durchführung eines Dekodierungsschrittes D_i veranlasst und darüber hinaus zum Starten bzw. Rücksetzen und Neustarten der beiden Zeitmessungseinheiten **406** und **414** dient.

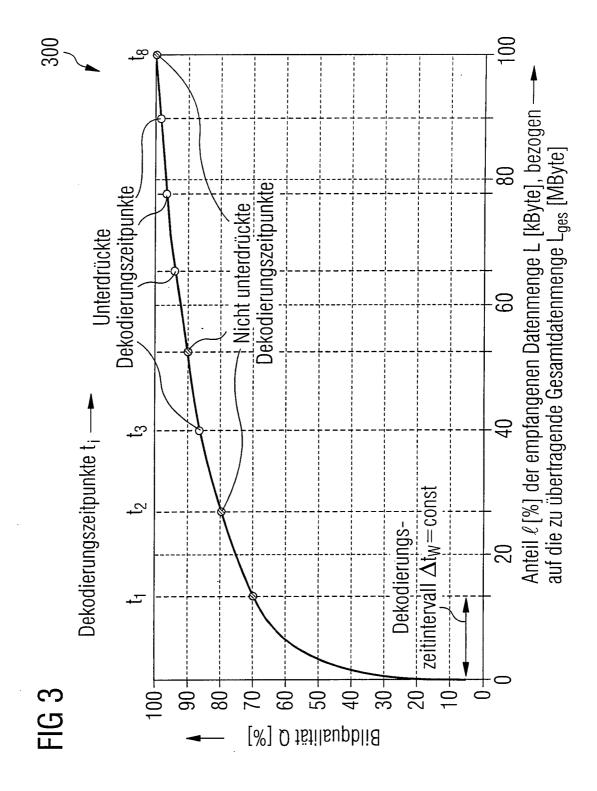
Patentansprüche

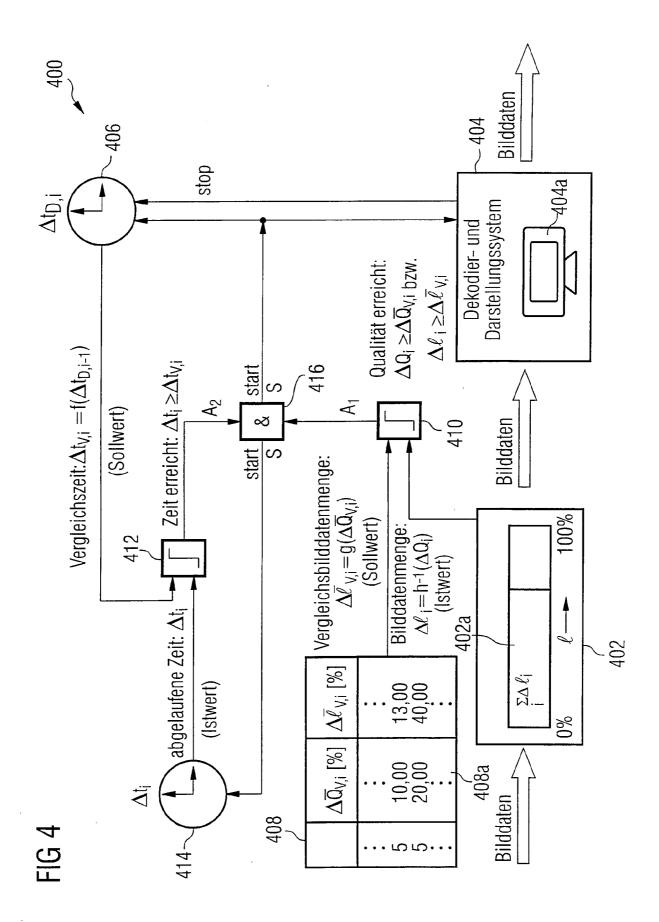
1. Verfahren zur schrittweisen Verarbeitung progressiv kodierter Bilddaten, die mit variabler Übertragungsrate (R_i) übertragen werden, durch Dekodierung und sukzessive Erhöhung der Bildauflösung (R_B) mit Zunahme der Datenmenge (L) der in einen Empfangsdatenspeicher (**402**) geladenen Bilddaten, dass

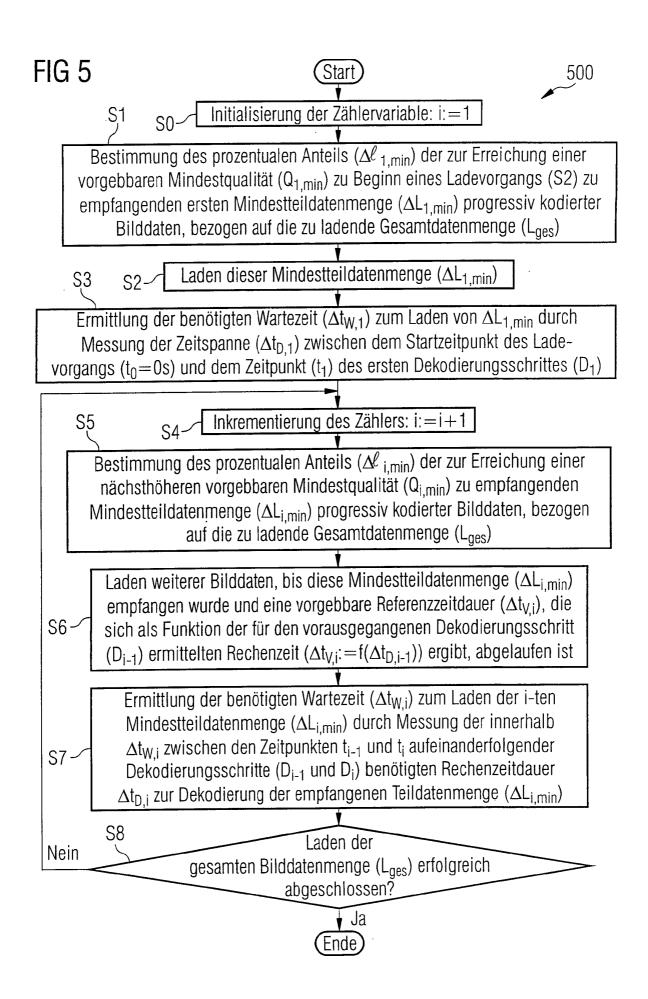
nur Dekodierschritte (D_i) , die zu einem Zeitpunkt (t_i) möglicher Dekodierseitpunkte mit konstanten zeitlichen Abständen (Δt_w) eine Wartezeit $(\Delta t_{v,i})$ seit dem letzten Dekodierschritt (D_{i-1}) , berechnet aus der benötigten Rechenzeit $(\Delta t_{D,i-1})$ des vorausgegangenen Dekodierschritts, nicht erfüllen oder die nicht zu einer wahrnehmbaren Verbesserung der Auflösung (R_B) eines teilweise rekonstruierten Bildes unter Einbeziehung von statistischen Bildqualitätsparametern $(\Delta Q_{v,i})$ empfangener Teilbilddaten führen, unterdrückt werden,


während Dekodierschritte (D_i) , die zu einem Zeitpunkt (t_i) der möglichen Dekodierzeitpunkte mit konstanten zeitlichen Abständen (Δt_w) eine Wartezeit $(\Delta t_{v,i})$ seit dem letzten Dekodierschritt (D_{i-1}) , berechnet aus der benötigten Rechenzeit $(\Delta t_{D,i-1})$ des vorrausgegangenen Dekodierschritts, erfüllen und die zu einer wahrnehmbaren Verbesserung der Auflösung (R_B) eines teilweise rekonstruierten Bildes unter Einbeziehung von statistischen Bildqualitätsparametern $(\Delta \overline{Q}_{v,i})$ empfangener Teilbilddaten führen, ausgeführt werden und das rekonstruierte Bild dargestellt wird.


- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die einzelnen Dekodierschritte (D_i) nach regelmäßigen Wartezeiten (Δt_w) gleicher Dauer erfolgen, wenn der prozentuale Anteil (Δl_i) der in den einzelnen Dekodierschritten (D_i) erfolgten Zunahme $(\Delta L_{i,min})$ der geladenen Datenmenge (L), bezogen auf die zu ladende Gesamtdatenenge (L_{ges}) , ausreichend ist, um eine vorgegebene Mindestqualität $(\Delta Q_{i,min})$ zu gewährleisten.
- 3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zur Durchführung der einzelnen Dekodierschritte (D_i) benötigten Parameter, welche die Sollwerte ($\Delta \overline{Q}_{v,i}$) der prozentualen Bildqualitätsverbesserungen ($\Delta Q_{v,i}$) je Dekodierschritt (D_i) sowie die dazugehörigen Sollwert-Anteile ($\Delta \overline{I}_{v,i}$) der zu empfangenden Teildatenmengen (ΔL_i), bezogen auf die zu übertragende Gesamtdatenmenge (L_{ges}), umfassen, in einer frei konfigurierbaren Datenbank (**408a**) gespeichert werden.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die zur Durchführung der einzelnen Dekodierschritte (D_i) benötigten Parameter ($\Delta \overline{Q}_{v,i}$ und $\Delta \overline{I}_{v,i}$) im Rahmen statistischer Messmethoden bestimmt werden.
- 5. Funktionseinheit zur schrittweisen Verarbeitung progressiv kodierter Bilddaten, die mit variabler Übertragungsrate (R_i) übertragen werden, durch Dekodierung und sukzessive Erhöhung der Bildauflösung (R_B) mit Zunahme der Datenmenge (L) der in einen Empfangsdatenspeicher (**402**) geladenen Bilddaten, wobei der Empfangsdatenspeicher (**402**) eine Füllstandsanzeige (**402a**) aufweist, welche den akkumulierten prozentualen Istwert-Anteil (I_{ist}) der bereits in den Empfangsdatenspeicher (**402**) geladenen Datenmenge (L_{ist}) bezogen auf die zu übertragende Gesamtdatenmenge (L_{ges}), berechnet und angibt, dadurch gekennzeichnet, dass
- nur Dekodierschritte (D_i) , die zu einem Zeitpunkt (t_i) möglicher Dekodierzeitpunkte mit konstanten zeitlichen Abständen (Δt_w) eine Wartezeit $(\Delta t_{v,i})$ seit dem letzten Dekodierschritt (D_{i-1}) , berechnet aus der benötigten Rechenzeit $(\Delta t_{D,i-1})$ des vorausgegangenen Dekodierschritts, nicht erfüllen oder die nicht zu einer wahrnehmbaren Verbesserung der Autlösung (R_B) eines teilweise rekonstruierten Bildes unter Einbeziehung von statistischen Bildqualitätsparametern $(\Delta \overline{Q}_{v,i})$ empfangener Teilbilddaten führen, unterdrückt werden,
- während Dekodierschritte (D_i) , die zu einem Zeitpunkt (t_i) der möglichen Dekodierzeitpunkte mit konstanten zeitlichen Abständen (Δt_w) eine Wartezeit $(\Delta t_{v,t})$ seit dem letzten Dekodierschritt (D_{i-1}) , berechnet aus der benötigten Rechenzeit $(\Delta t_{D,i-1})$ des vorrausgegangenen Dekodierschritts, erfüllen und die zu einer wahrnehmbaren Verbesserung der Auflösung (R_B) eines teilweise rekonstruierten Bildes unter Einbeziehung von statistischen Bildqualitätsparametern $(\Delta Q_{v,i})$ empfangener Teilbilddaten führen, ausgeführt werden und das rekonstruierte Bild dargestellt wird.
 - 6. Funktionseinheit nach Anspruch 5, gekennzeichnet durch
- einen Datenspeicher (**408**), der Sollwerte ($\Delta Q_{v,i}$) der prozentualen Verbesserungen (ΔQ_i) der Bildqualität (Q) je Dekodierschritt (D,) sowie die dazugehörigen Sollwert-Anteile ($\Delta I_{v,i}$) der zu empfangenden Teildatenmengen (ΔL_i), jeweils bezogen auf die zu übertragende Gesamtdatenmenge (L_{ges}), enthält und
- einen ersten Schwellwertschalter (**410**), dessen Ausgangssignal (A_1) angibt, ob eine zwischen den Zeitpunkten (t_{i-1} , t_i) des vorangegangenen (D_{i-1}) und aktuellen Dekodierschrittes (D_i) geladene Teildatenmenge (ΔL_i) zu ladender Bilddaten, bezogen auf die zu ladende Gesamtdatenmenge (L_{ges}), zum Erreichen eines vorgebbaren Schwellwerts ($\Delta \overline{Q}_{v_i}$) für die Verbesserung der Bildqualität (Q) ausreichend ist.
 - 7. Funktionseinheit nach Anspruch 5 oder 6, gekennzeichnet durch
- eine erste Zeitmessungseinheit (**406**), welche die für einen vorangegangenen Dekodierschritt (D_{i-1}) benötigte Rechenzeit ($\Delta t_{D,i-1}$) zur Dekodierung einer empfangenen Teildatenmenge (ΔL_i) durch das Dekodier- und Darstellungssystem (**404**) misst, wobei der gemessene Wert als Ausgangsbasis zur Berechnung einer als Sollwert an den zweiten Schwellwertschalter (**412**) weitergeleiteten Wartezeit ($\Delta t_{v,i}$) dient,
- eine zweite Zeitmessungseinheit (**414**), die die tatsächlich seit dem Beginn des aktuellen Dekodierschrittes (D_i) durch das Dekodiersystem (**404**) vergangene Zeit misst und den gemessenen Istwert an den zweiten Schwellwertschalter (**412**) liefert, und
- einen zweiten Schwellwertschalter (412), dessen Ausgangssignal (A_2) angibt, ob seit Beginn des aktuellen Dekodierschrittes (D_i) die Wartezeit ($\Delta t_{v,i}$), die sich als Funktion der für einen vorangegangenen Dekodierschritt


- (D_{i-1}) benötigten Rechenzeit $(\Delta t_{D,i-1})$ zur Dekodierung der unmittelbar zuvor geladenen Teildatenmenge (ΔL_{i-1}) durch das Dekodiersystem (404) ergibt, vergangen ist.
- 8. Funktionseinheit nach Anspruch 7, gekennzeichnet durch ein UND-Gatter (416), dessen Boolesche Eingangssignale durch die Ausgangssignale (A₁, A₂) der beiden Schwellwertschalter (410, 412) gebildet werden und dessen Boolesches Ausgangssignal (S) bei einem Wert von logisch "Eins" einen Startimpuls liefert, der das Dekodiersystem (404) zur Durchführung eines Dekodierschrittes (D_i) veranlasst und darüber hinaus zum Starten bzw. Rücksetzen und Neustarten der beiden Zeitmessungseinheiten (406, 414) dient.
- 9. Funktionseinheit nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Sollwerte der prozentualen Bildqualitätsverbesserungen ($\Delta \overline{Q}_{v,i}$) je Dekodierschritt (D_i) statistisch gemittelte Werte der in den einzelnen Dekodierschritten (D_i) zu erwartenden Bildqualitätsverbesserungen (ΔQ_i) sind.
- 10. Funktionseinheit nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass die Sollwert-Anteile ($\Delta \bar{l}_{v,i}$) der zu empfangenden Teildatenmengen (ΔL_i) je Dekodierschritt (D_i), jeweils bezogen auf die zu übertragende Gesamtdatenmenge (L_{ges}), statistisch gemittelte Werte der in den einzelnen Dekodierschritten (D_i) zu erwartenden prozentualen Zunahmen (Δl_i) der Teildatenmengen (ΔL_i), jeweils bezogen auf die zu übertragende Gesamtdatenmenge (L_{ges}), sind.


Es folgen 5 Blatt Zeichnungen


Anhängende Zeichnungen

