USER INTERFACE AND ASSOCIATED METHOD FOR INDICATING STATUS USING KEYPAD BACKLIGHTS

A method for indicating status on a programmed communication device wherein each of one or more backlights is associated with a respective key of a plurality of keys. Status information to be communicated to a user of the communication device is then generated, and one or more backlights are illuminated according to a pattern corresponding to the status information. Thus, a visual graphical display is not necessary, cost is reduced, volume is conserved, and reliability is increased.
Declaration under Rule 4.17:

Published:
— without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
USER INTERFACE AND ASSOCIATED METHOD FOR INDICATING
STATUS USING KEYPAD BACKLIGHTS

5 **Technical Field**

The invention relates generally to user output interfaces and, more particularly, to an apparatus and associated method for displaying the status of a communication device using the backlights of a keypad.

Background

10 It is important that communication devices, such as cell phones, mobile telephone handsets, and the like, referred to herein as mobile telephones, be able to provide a user with relevant information about the operation of the mobile telephone, such as signal strength, remaining battery power, a dialed phone number, the phone number of an incoming call, and the like. Conventionally, such information has been provided via a visual graphical display, such as a liquid crystal display (LCD), light emitting diodes (LEDs), EL (electro-luminance).

15 There, however, are a number of drawbacks associated with using such visual graphical displays. For example, visual graphical displays are costly, thereby potentially precluding many people from being able to own a mobile telephone. A continuing effort is also being made to make mobile telephones as volumetrically efficient as possible. It can readily be appreciated, however, that a visual graphical display will inherently limit the volumetric efficiency of a mobile telephone. To compensate for the additional volume required by a visual graphical display, the visual graphical display and/or keypad may be reduced in size, thereby rendering such display difficult to read, or such keypad difficult to use. Visual graphical displays also consume substantial battery power, a precious commodity for a mobile telephone. Still further, visual graphical displays are also prone to breakage, and a mobile telephone that relies on a visual graphical display is virtually worthless if its display is broken.

20 In an attempt to overcome the drawbacks associated with visual graphical displays, some mobile telephones are provided with dedicated indicators, which indicate the status of a single item, such as battery level or signal strength, without a
visual graphical display. Such dedicated indicators, however, are generally limited to indicating only two states of an item, such as whether a battery level is below or above some predefined level. Furthermore, dedicated indicators also require volume, thereby imposing an additional limitation on how small a mobile telephone may be made.

Accordingly, a continuing search has been directed to the development of apparatuses and methods by which a mobile telephone may communicate information to a user in a manner which is relatively inexpensive, and which consumes less battery power and volume than conventional visual displays, and which is also less prone to breakage (i.e., more reliable) than conventional visual displays.

Summary

The present invention, accordingly, provides for a communication device, such as a cell phone, wherein status on a programmed communication device is indicated using backlights associated with a respective key of a plurality of keys. Status information to be communicated to a user of the communication device is then generated, and one or more backlights are illuminated according to a pattern corresponding to the status information.

In a corresponding apparatus, a plurality of keys are operably integrated into the communication device, and each of a plurality of backlights is associated with a respective key of the plurality of keys. A microprocessor is operatively connected for illuminating one or more backlights, and a data storage unit is operatively connected to the microprocessor for storing program code executable by the microprocessor for illuminating one or more backlights according to a pattern corresponding to status information to be communicated to a user of the communication device.

It can be appreciated that the present invention renders a visual graphical display unnecessary, thereby reducing cost, conserving volume and battery charge, and increasing reliability of a communication device.

Brief Description of the Drawings

For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
FIGURE 1 shows a partially broken-away view of a representative communication device embodying features of the present invention;

FIGURES 2-10 show the communication device of FIG. 1 indicating various states of status;

FIGURE 11 shows a flow chart illustrating control logic embodying features of the present invention for indicating status;

FIGURES 12-22 show the communication device of FIG. 1 indicating various states of status; and

FIGURE 23 shows an alternate embodiment of the communication device of FIG. 1, embodying features of the present invention.

Detailed Description

In the following discussion, numerous specific details are set forth to provide a thorough understanding of the present invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without such specific details. In other instances, well-known elements have been illustrated in schematic or block diagram form in order not to obscure the present invention in unnecessary detail. Additionally, for the most part, details concerning communication devices (e.g., mobile telephones), keypad backlights, and the like, have been omitted inasmuch as such details are not considered necessary to obtain a complete understanding of the present invention, and are considered to be within the skills of persons of ordinary skill in the relevant art.

It is noted that, unless indicated otherwise, all functions described herein are performed by a processor such as a microprocessor, a microcontroller, an application-specific integrated circuit (ASIC), an electronic data processor, a computer, or the like, in accordance with code, such as program code, software, integrated circuits, and/or the like that are coded to perform such functions. Furthermore, it is considered that the design, development, and implementation details of all such code would be apparent to a person having ordinary skill in the art based upon a review of the present description of the invention.

Referring to FIGURE 1 of the drawings, the reference numeral 100 generally designates a communication device embodying features of the present invention. The communication device 100 may constitute a cellular mobile telephone, a
communicator, a multimedia phone, a personal digital assistant (PDA), a combination thereof, or the like. The communication device 100, furthermore, includes conventional features such as a processor, referred to herein as a microprocessor, 102 and a data storage unit 104 operatively connected to the microprocessor 102. The data storage unit 104 includes program code 106 for providing logic for operation of the microprocessor 102. An antenna 108 is connected to the microprocessor 102 for receiving radio frequency communications transmitted to the communication device 100, and passing such received communications to the microprocessor 102. A signal strength sensor 110 is connected to the antenna 108 for measuring the signal strength of the radio frequency communications received on the antenna 108 for generating a signal to the microprocessor 102 indicative of the such signal strength. A battery 112 is connected (in a conventional manner, not shown) within the communication device 100 for supplying electrical power to operate the communication device 100. A battery charge sensor 114 is connected to the battery 112 for measuring the charge of the battery 112 and generating to the microprocessor 102 a signal indicative of the strength of the battery charge. The communication device 100 also includes user interface features connected to the microprocessor 102, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, *, and # keys, a microphone 116, a speaker 118, and special purpose keys 120, such as a Talk key 122, an End key 124, scroll keys 126, and the like. Preferably, the communication device 100 is not provided with a visual graphical display, though one may be provided, as described in further detail with respect to FIGURE 23. The aforementioned features of the communication device 100 are considered to be well known to those skilled in the art and, therefore, will not be described in further detail herein, except insofar as deemed necessary to describe the present invention.

In accordance with the present invention, each of the 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, *, and # keys, the Talk key 122, the End key 124, and the scroll keys 126 and 128 are preferably provided and electrically associated with a corresponding respective backlight (preferably an LED, not depicted) for illuminating a respective key. A slave microcontroller 130 is preferably operatively interconnected between the microprocessor 102 and each backlight for individually illuminating each backlight in accordance with signals generated by the microprocessor 102 in further accord with the program code 106 in a manner described in further detail below. Alternatively,
the microprocessor 102 may, either by itself or in conjunction with a display driver integrated circuit (not shown), control the illumination of the backlights, thereby foregoing the need for the microcontroller 130. In yet another alternate embodiment, only backlights associated with the 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, *, and # keys may be individually illuminated. The present invention will be described herein with respect to control of illumination of the backlights by the microprocessor 102, it being understood, however, that the microcontroller 130 or a display driver integrated circuit may be used to effect such control.

In further accord with the present invention, the program code 106 includes logic for illuminating one or more of the backlights according to a pattern which corresponds to status information to be communicated from the communication device 100 to a user of the communication device. Such status information includes conventional information relating to status, such as signal strength, battery charge, phone number of an incoming call, and the like.

More specifically, in the operation of a preferred embodiment of the present invention, any one of five levels of signal strength are indicated by illuminating none or up to four backlights corresponding to the *, 7, 4, and 1 keys. If no signal or negligible signal is detected, then no backlights are illuminated. Weak signal strength, that is less than one-fourth of full signal strength, is indicated by illuminating the backlight associated only with the * key, as depicted by FIGURE 2. One-fourth to one-half of full signal strength is indicated by illuminating backlights associated with the * key and 7 key, as depicted by FIGURE 3. One-half to three-fourths of full signal strength is indicated by illuminating backlights associated with the * key, the 7 key, and the 4 key, as depicted by FIGURE 4. Any signal strength that is greater three-fourths of full signal strength is indicated by illuminating backlights associated with the * key, the 7 key, the 4 key, and the 1 key, as depicted by FIGURE 5. When more than one key is to be illuminated to indicate signal strength, the keys are preferably illuminated sequentially upwardly (as viewed in FIGS. 2-5), beginning with the * key, and then remain on for a predetermined period of time, such as ten seconds before again sequentially illuminating the backlights.

Similarly, any one of five levels of battery charge of the battery 112 are indicated by illuminating none or up to four backlights corresponding to the #, 9, 6, and 3 keys. If no battery charge or negligible battery charge is detected, then no
backlights are illuminated. Weak battery charge, or less than one-fourth of full battery charge, is indicated by illuminating the backlight associated only with the # key, as depicted by FIGURE 6. One-fourth to one-half of full battery charge is indicated by illuminating backlights associated with the # key and 9 key, as depicted by FIGURE 7. One-half to three-fourths of full signal strength is indicated by illuminating backlights associated with the # key, the 9 key, and the 6 key, as depicted by FIGURE 8. Any signal strength that is greater three-fourths of full signal strength is indicated by illuminating backlights associated with the # key, the 9 key, the 6 key, and the 3 key, as depicted by FIGURE 9. When more than one key is to be illuminated to indicate battery charge, the keys are preferably illuminated sequentially upwardly (as viewed in FIGS. 6-9), beginning with the # key, and then remain on for a predetermined period of time, such as ten seconds before again sequentially illuminating the backlights. If less than three minutes of battery charge remain for operation of the communication device 100, then the # key preferably flashes intermittently for a period of time, such as three or four seconds, after which all the backlights are preferably illuminated to allow a user to view the entire interface. The # key may additionally be provided with a backlight of a different color from other backlights to further alert a user that battery charge is relatively low, or that less than three minutes of battery charge remain for operation of the communication device 100.

It is understood that the backlights described above with respect to signal strength and battery charge may be illuminated simultaneously to display the status of both signal strength and battery charge. For example, FIGURE 10 shows one-half signal strength and three-fourths of battery charge via the illumination of backlights associated with the *, 7, #, 9, and 6 keys.

FIGURE 11 is a flow chart illustrating logic embodied by the program code 106 for handling incoming communications, as depicted by step 1102. In step 1104, a determination is made whether the incoming communication is a message indicating that there is voicemail in queue to be received by the communication device 100. If it is determined that the incoming communication is a message indicating that there is voicemail in queue, then execution proceeds to step 1106 in which one or more backlights are preferably illuminated according to a pattern that signifies voicemail. One such preferred pattern would be to illuminate the 1, 4, 7, 0,
9, 6, and 3 keys, as shown in FIGURE 12, to thereby form a pattern resembling a "V" signifying voicemail.

If, in step 1104, it is determined that the incoming communication does not indicate that a voicemail message is in queue, then execution proceeds to step 1108 in which a determination is made whether the incoming communication includes a caller identification phone number ("caller ID"). If it is determined that the incoming communication does not include caller ID, then execution proceeds to step 1110 in which one or more backlights are preferably illuminated for a predetermined period of time, such as four seconds, according to a pattern that signifies an unknown number. For example, one such pattern may be to illuminate the 1, 2, 3, 6, 9, 8, and 0 keys, as shown in FIGURE 13, to thereby form a pattern similar to a "?" (i.e., a question mark) signifying an unknown number.

If, in step 1108, it is determined that the incoming communication does include caller ID, then execution proceeds to step 1112 in which a determination is made whether the caller ID matches a phone number stored in the data storage unit 104 for a speed dial key (i.e., a key programmed by the user to automatically dial a preset phone number when pressed). If it is determined that the caller ID matches a phone number stored in the data storage unit 104 for a speed dial key, then execution proceeds to step 1114 in which the respective speed dial key is illuminated for a predetermined period of time, such as four seconds, to indicate that a call is coming in from the number represented by the speed dial key. For example, if the caller ID matches the phone number represented by the speed dial key 4, then the backlight for the 4 key would be illuminated, as shown in FIGURE 14, and preferably flashed intermittently. In another example, if the caller ID matches the phone number represented by the speed dial key 8, then the backlight for the 8 key would be illuminated, as shown in FIGURE 15.

If, in step 1110, it is determined that the caller ID does not match a phone number stored in the data storage unit 104 for a speed dial key, then execution proceeds to step 1116 in which a determination is made whether the caller ID matches another number stored in the data storage unit, such as a previously dialed phone number, a previously called phone number, the caller ID of a previous call received, and/or the like. If it is determined that the caller ID matches another number stored in the data storage unit, then execution proceeds to step 1118 in
which all backlights are preferably flashed on (or alternatively flashed off) for a fraction of a second (e.g., half of a second), as depicted in FIGURE 16, and then the backlight of each key representing each digit of the caller ID phone number is preferably sequentially illuminated to communicate to the user the caller ID phone number of the incoming call, as exemplified in FIGURE 17 with respect to a caller ID phone number (214) 536-9870. As also shown in FIG. 17, the * key and # key preferably continue to be illuminated or, alternatively, just one of the * key or # key may continue to be illuminated, to indicate that the caller ID number is one stored in the data storage unit. Execution then returns to step 1118, and steps 1118 and 1120 are repeated until the user picks up the incoming call, or until the loop defined by steps 1118 and 1120 are executed a predetermined number of times, such as five times, or until a caller terminates the call.

If, in step 1116, it is determined that the caller ID does not match another number stored in the data storage unit, then execution proceeds to step 1120 in which all backlights are preferably flashed on (or alternatively flashed off) for a fraction of a second (e.g., half of a second), as depicted in FIGURE 16, and then the backlight of each key representing each digit of the caller ID phone number is preferably sequentially illuminated to communicate to the user the caller ID phone number of the incoming call, as exemplified in FIGURE 18 with respect to a caller ID phone number (214) 536-9870. It is noted that, in accordance with FIG. 17, neither the * key not the # key are illuminated while the caller ID phone number is displayed, to there indicate that the caller ID phone number is not one stored in the data storage unit. Execution then returns to step 1122, and steps 1122 and 1124 are repeated until the user picks up the incoming call, or until the loop defined by steps 1122 and 1124 are executed a predetermined number of times, such as five times, or until a caller terminates the call.

If a call is missed, then the backlights of the communication device 100 would preferably be flashed intermittently between two complementary patterns, such as the patterns depicted by FIGURES 19 and 20. It is understood that, alternatively, a number of different backlight patterns may be flashed intermittently, or a static display, rather than a sequential display, of the backlights may be illuminated to indicate a missed call.
FIGURE 21 depicts a sequence in which backlights may be illuminated to indicate that the communication device 100 is in a roaming mode. It is understood that there may be any number of different sequences in which the backlights may be illuminated to indicate a roaming mode, one such alternative being depicted in FIGURE 22. In a further alternative embodiment, a static display, rather than a sequential display, of the backlights may be illuminated to indicate a roaming mode.

FIGURE 23 illustrates an alternate embodiment of the present invention, in which a communication device 2300 similar to the communication device 100, is further provided with a conventional visual graphical display 2302 in which some or all of the aforementioned status information may be visually displayed. A visual graphical display such as the display 2302 is considered to be well-known and will, therefore, not be described in further detail herein.

It is understood that the present invention may take many forms and embodiments. Accordingly, several variations may be made in the foregoing without departing from the spirit or the scope of the invention. For example, any number of different backlight patterns may be utilized to convey various status information. The Talk key 122 and End key 124 may be illuminated during caller ID events, such as depicted by FIGS. 14-18, to assist a user in answering or rejecting a call. If any status changes, a unique pattern (such as all backlights flashing intermittently) may be utilized to draw the attention of the user to the communication device 100. Audio (e.g., sound or artificial voice) and vibrational indications may also be used in combination with varying backlight patterns to indicate status of, get the attention of, or alert, a user of significant status or a change in status.

Having thus described the present invention by reference to certain of its preferred embodiments, it is noted that the embodiments disclosed are illustrative rather than limiting in nature and that a wide range of variations, modifications, changes, and substitutions are contemplated in the foregoing disclosure and, in some instances, some features of the present invention may be employed without a corresponding use of the other features. Many such variations and modifications may be considered obvious and desirable by those skilled in the art based upon a review of the foregoing description of preferred embodiments. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
CLAIMS

1. A method for indicating status on a programmed communication device comprising the steps of:
 associating each of one or more backlights with a respective key of a plurality of keys;
 generating status information to be communicated to a user of said communication device; and
 illuminating one or more backlights according to a pattern corresponding to said status information.

2. The method of Claim 1, further comprising the step of determining, and generating to a microprocessor of said communication device, status information indicative of, whether the signal strength of an incoming call is less than or greater than a predetermined level of signal strength; and wherein said pattern corresponding to status information indicative of a signal strength less than said predetermined level of signal strength comprises at least a first backlight, and said pattern corresponding to status information indicative of a signal strength greater than said predetermined level of signal strength comprises at least a second backlight.

3. The method of Claim 1, further comprising the step of determining, and generating to a microprocessor of said communication device, status information indicative of, whether the signal strength of an incoming call is less than or greater than a predetermined level of signal strength; and wherein said pattern corresponding to status information indicative of a signal strength less than said predetermined level of signal strength comprises at least a first backlight, and said pattern corresponding to status information indicative of a signal strength greater than said predetermined level of signal strength comprises at least said first backlight and a second backlight.
4. The method of Claim 1, further comprising the step of determining, and generating status information indicative of, whether said communication device is in a roaming mode; and wherein said pattern corresponding to status information indicative of said communication device is in a roaming mode comprises at least a first backlight.

5. The method of Claim 1, further comprising the step of determining, and generating status information indicative of, whether said communication device is in a roaming mode; and wherein said pattern corresponding to status information indicative of said communication device is in a roaming mode comprises a cyclic sequence of illuminating two or more backlights.

6. The method of Claim 1 further comprising the step of determining, and generating to a microprocessor of said communication device, status information indicative of, whether a battery charge of a battery electrically connected to said communication device for supplying electrical power to said communication device, is less than or greater than a predetermined level of battery charge; and wherein said pattern corresponding to status information indicative of a battery charge less than said predetermined level of battery charge comprises at least a first backlight, and said pattern corresponding to status information indicative of a battery charge greater than said predetermined level of battery charge comprises at least a second backlight.

7. The method of Claim 1 further comprising the step of determining, and generating to a microprocessor of said communication device, status information indicative of, whether a battery charge of a battery electrically connected to said communication device for supplying electrical power to said communication device, is less than or greater than a predetermined level of battery charge; and wherein said pattern corresponding to status information indicative of a battery charge less than said predetermined level of battery charge comprises at least a first backlight, and said pattern corresponding to status information indicative of a battery charge greater than said predetermined level of battery charge comprises at least said first backlight and a second backlight.
8. The method of Claim 1 further comprising the step of:

determining, in response to receipt of an incoming call with a caller
identification phone number, whether said caller identification phone number
corresponds to a selected phone number associated with a speed dial key; and

generating to a microprocessor of said communication device, in response to
a determination that said caller identification phone number corresponds to said
selected phone number, status information indicating that said caller identification
phone number corresponds to said selected phone number; and wherein said pattern
corresponding to said status information comprises a backlight associated with a
speed dial key.

9. The method of Claim 1 further comprising the steps of:

determining, in response to receipt of an incoming call with a caller
identification phone number, whether said caller identification phone number
corresponds to a phone number stored in a data storage unit of said communication
device, but does not correspond to a speed dial phone number stored in said data
storage unit; and

generating to a microprocessor of said communication device, in response to
a determination that said caller identification phone number corresponds to a phone
number stored in said data storage unit, but does not correspond to a speed dial
phone number stored in said data storage unit, status information indicating that said
caller identification phone number corresponds to a phone number stored in said
data storage unit, but does not correspond to a speed dial phone number stored in
said data storage unit; and wherein said pattern corresponding to said status
information comprises at least one backlight.

10. The method of Claim 1 further comprising the steps of:

determining, in response to receipt of an incoming call with a caller
identification phone number, whether said caller identification phone number
corresponds to a phone number stored in a data storage unit of said communication
device, but does not correspond to a speed dial phone number stored in said data
storage unit; and
generating to a microprocessor of said communication device, in response to a determination that said caller identification phone number corresponds to a phone number stored in said data storage unit, but does not correspond to a speed dial phone number stored in said data storage unit, status information indicating that said caller identification phone number corresponds to a phone number stored in said data storage unit, but does not correspond to a speed dial phone number stored in said data storage unit; and wherein said pattern corresponding to said status information comprises the sequential illumination of a backlight corresponding to each digit of said caller identification phone number.

11. The method of Claim 1 further comprising the steps of:

determining, in response to receipt of an incoming call with a caller identification phone number, whether said caller identification phone number corresponds to a phone number stored in a data storage unit of said communication device, but does not correspond to a speed dial phone number stored in said data storage unit; wherein said phone number stored in a data storage unit is one of one or more speed dial phone numbers, one or more previously dialed phone numbers, one or more previously called phone numbers, and one or more caller identification phone numbers of previous incoming calls; and

generating to a microprocessor of said communication device, in response to a determination that said caller identification phone number corresponds to a phone number stored in said data storage unit, but does not correspond to a speed dial phone number stored in said data storage unit, status information indicating that said caller identification phone number corresponds to a phone number stored in said data storage unit, but does not correspond to a speed dial phone number stored in said data storage unit; and wherein said pattern corresponding to said status information comprises at least one backlight.

12. The method of Claim 1 further comprising the steps of:

determining, in response to receipt of an incoming call with a caller identification phone number, whether said caller identification phone number does not correspond to any phone number stored in a data storage unit of said communication device; and
generating to a microprocessor of said communication device, in response to a determination that said caller identification phone number does not correspond to any phone number stored in said data storage unit, status information indicating that said caller identification phone number does not correspond to any phone number stored in said data storage unit; and wherein said pattern corresponding to said status information comprises at least one backlight.

13. The method of Claim 1 further comprising the steps of:
determining, in response to receipt of an incoming call with a caller identification phone number, whether said caller identification phone number does not correspond to any phone number stored in a data storage unit of said communication device; and
generating to a microprocessor of said communication device, in response to a determination that said caller identification phone number does not correspond to any phone number stored in said data storage unit, status information indicating that said caller identification phone number does not correspond to any phone number stored in said data storage unit; and wherein said pattern corresponding to said status information comprises the sequential illumination of a backlight corresponding to each digit of said caller identification phone number.

14. The method of Claim 1, further comprising the steps of:
determining, in response to receipt of an incoming call, whether said incoming call does not include a caller identification phone number; and
generating to a microprocessor of said communication device, in response to a determination that said incoming call does not include a caller identification phone number, status information indicating that said incoming call does not include a caller identification phone number; and wherein said pattern corresponding to said status information comprises at least one backlight.

15. The method of Claim 1, further comprising the steps of:
determining, in response to receipt of an incoming call, whether said incoming call does not include a caller identification phone number; and
generating to a microprocessor of said communication device, in response to
a determination that said incoming call does not include a caller identification phone
number, status information indicating that said incoming call does not include a caller
identification phone number; and wherein said pattern corresponding to said status
information comprises a shape resembling a question mark.

16. The method of Claim 1, further comprising the steps of:
determining whether said communication device has voicemail; and
generating to a microprocessor of said communication device, in response to
a determination from said signal that said communication device has voicemail,
status information indicating that said communication device has voicemail; and
wherein said pattern corresponding to said status information comprises at least one
backlight.

17. The method of Claim 1, further comprising the steps of:
determining whether said communication device has voicemail; and
generating to a microprocessor of said communication device, in response to
a determination from said signal that said communication device has voicemail,
status information indicating that said communication device has voicemail; and
wherein said pattern corresponding to said status information comprises a shape
resembling a V.

18. The method of Claim 1, further comprising the steps of:
determining whether said communication device has missed calls or missed
messages; and
generating to a microprocessor of said communication device, in response to
a determination that said communication device has missed calls or missed
messages, status information indicating that said communication device has missed
calls or missed messages; and wherein said pattern corresponding to said status
information comprises at least one backlight.

19. The method of Claim 1, further comprising the step of displaying said
status information on a visual graphical display.
20. A communication device user interface comprising:
 a plurality of keys operably integrated into said communication device;
 a plurality of backlights, each of which backlights is associated with respective
 one key of said plurality of keys;
 a microprocessor operatively connected for illuminating one or more
 backlights;
 a data storage unit operatively connected to said microprocessor for storing
 program code executable by said microprocessor; and
 program code executable by said microprocessor for illuminating one or more
 backlights according to a pattern corresponding to status information to be
 communicated to a user of said communication device.

21. The communication device of Claim 20, further comprising:
 an antenna electrically connected to said microprocessor for receiving an
 incoming call transmitted to said communication device; and
 a signal strength sensor connected to said antenna and to said
 microprocessor for determining, and for generating to said microprocessor status
 information indicative of, whether the signal strength of said incoming call is less than
 or greater than a predetermined level of signal strength; and wherein said pattern
 corresponding to status information indicative of a signal strength less than said
 predetermined level of signal strength comprises at least a first backlight, and said
 pattern corresponding to status information indicative of a signal strength greater
 than said predetermined level of signal strength comprises at least a second
 backlight.

22. The communication device of Claim 20, further comprising:
 an antenna electrically connected to said microprocessor for receiving an
 incoming call transmitted to said communication device; and
 a signal strength sensor connected to said antenna and to said
 microprocessor for determining, and for generating to said microprocessor status
 information indicative of, whether the signal strength of said incoming call is less than
 or greater than a predetermined level of signal strength; and wherein said pattern
 corresponding to status information indicative of a signal strength less than said
predetermined level of signal strength comprises at least a first backlight, and said pattern corresponding to status information indicative of a signal strength greater than said predetermined level of signal strength comprises at least said first backlight and a second backlight.

23. The communication device of Claim 20, further comprising:

an antenna electrically connected to said microprocessor for receiving an incoming call transmitted to said communication device; and

a signal strength sensor connected to said antenna and to said microprocessor for determining, and for generating to said microprocessor status information indicative of, whether said communication device should enter a roaming mode; and wherein said pattern corresponding to status information indicative that said communication device should enter a roaming mode comprises at least a first backlight.

24. The communication device of Claim 20, further comprising:

an antenna electrically connected to said microprocessor for receiving an incoming call transmitted to said communication device; and

a signal strength sensor connected to said antenna and to said microprocessor for determining, and for generating to said microprocessor status information indicative of, whether said communication device should enter a roaming mode; and wherein said pattern corresponding to status information indicative that said communication device should enter a roaming mode comprises a cyclic sequential illumination of two or more backlights.

25. The communication device of Claim 20 further comprising:

a battery electrically connected to said communication device for supplying electrical power to said communication device; and

a battery charge sensor connected to said battery and to said microprocessor for determining, and for generating to said microprocessor status information indicative of, whether the battery charge of said battery is less than or greater than a predetermined level of battery charge; and wherein said pattern corresponding to status information indicative of a battery charge less than said predetermined level of
battery charge comprises at least a first backlight, and said pattern corresponding to status information indicative of a battery charge greater than said predetermined level of battery charge comprises at least a second backlight.

26. The communication device of Claim 20 further comprising:

- a battery electrically connected to said communication device for supplying electrical power to said communication device; and
- a battery charge sensor connected to said battery and to said microprocessor for determining, and for generating to said microprocessor status information indicative of, whether the battery charge of said battery is less than or greater than a predetermined level of battery charge; and wherein said pattern corresponding to status information indicative of a battery charge less than said predetermined level of battery charge comprises at least a first backlight, and said pattern corresponding to status information indicative of a battery charge greater than said predetermined level of battery charge comprises at least said first backlight and a second backlight.

27. The communication device of Claim 20 wherein at least one of said plurality of keys is a speed dial key associated with a first backlight and a selected phone number stored in said data storage unit, and wherein said communication device further comprises:

- program code, responsive to receipt of an incoming call with a caller identification phone number, for determining whether said caller identification phone number corresponds to said selected phone number; and
- program code, responsive to a determination that said caller identification phone number corresponds to said selected phone number, for generating to said microprocessor status information indicating that said caller identification phone number corresponds to said selected phone number; and wherein said pattern corresponding to said status information comprises said first backlight.

28. The communication device of Claim 20 wherein said data storage unit is configured for storing phone numbers including one or more speed dial phone numbers; and wherein said communication device further comprises:
program code, responsive to receipt of an incoming call with a caller
identification phone number, for determining whether said caller identification phone
number corresponds to a phone number stored in said data storage unit, but does not correspond to a speed dial phone number stored in said data storage unit; and

program code, responsive to a determination that said caller identification
phone number corresponds to a phone number stored in said data storage unit, but does not correspond to a speed dial phone number stored in said data storage unit, for generating to said microprocessor status information indicating that said caller identification phone number corresponds to a phone number stored in said data storage unit, but does not correspond to a speed dial phone number stored in said data storage unit; and wherein said pattern corresponding to said status information comprises at least one backlight.

29. The communication device of Claim 20 wherein said data storage unit
is configured for storing phone numbers including one or more speed dial phone
numbers; and wherein said communication device further comprises:

program code, responsive to receipt of an incoming call with a caller identification phone number, for determining whether said caller identification phone number corresponds to a phone number stored in said data storage unit, but does not correspond to a speed dial phone number stored in said data storage unit; and

program code, responsive to a determination that said caller identification phone number corresponds to a phone number stored in said data storage unit, but does not correspond to a speed dial phone number stored in said data storage unit, for generating to said microprocessor status information indicating that said caller identification phone number corresponds to a phone number stored in said data storage unit, but does not correspond to a speed dial phone number stored in said data storage unit; and wherein said pattern corresponding to said status information comprises the sequential illumination of a backlight corresponding to each digit of said caller identification phone number.
30. The communication device of Claim 20 wherein said data storage unit is configured for storing phone numbers comprising at least one of one or more speed dial phone numbers, one or more previously dialed phone numbers, one or more previously called phone numbers, and one or more caller identification phone numbers of previous incoming calls; and wherein said communication device further comprises:

program code, responsive to receipt of an incoming call with a caller identification phone number, for determining whether said caller identification phone number corresponds to a phone number stored in said data storage unit, but does not correspond to a speed dial phone number; and

program code, responsive to a determination that said caller identification phone number corresponds to a phone number stored in said data storage unit, but does not correspond to a speed dial phone number, for generating to said microprocessor status information indicating that said caller identification phone number corresponds to a phone number stored in said data storage unit, but does not correspond to a speed dial phone number; and wherein said pattern corresponding to said status information comprises at least one backlight.

31. The communication device of Claim 20 wherein said data storage unit is configured for storing phone numbers; and wherein said communication device further comprises:

program code, responsive to receipt of an incoming call with a caller identification phone number, for determining whether said caller identification phone number does not correspond to any phone number stored in said data storage unit; and

program code, responsive to a determination that said caller identification phone number does not correspond to any phone number stored in said data storage unit, for generating to said microprocessor status information indicating that said caller identification phone number does not correspond to any phone number stored in said data storage unit; and wherein said pattern corresponding to said status information comprises at least one backlight.
32. The communication device of Claim 20 wherein said data storage unit is configured for storing phone numbers; and wherein said communication device further comprises:

program code, responsive to receipt of an incoming call with a caller identification phone number, for determining whether said caller identification phone number does not correspond to any phone number stored in said data storage unit; and

program code, responsive to a determination that said caller identification phone number does not correspond to any phone number stored in said data storage unit, for generating to said microprocessor status information indicating that said caller identification phone number does not correspond to any phone number stored in said data storage unit; and wherein said pattern corresponding to said status information comprises the sequential illumination of a backlight corresponding to each digit of said caller identification phone number.

33. The communication device of Claim 20, further comprising:

program code, responsive to receipt of an incoming call, for determining whether said incoming call does not include a caller identification phone number; and

program code, responsive to a determination that said incoming call does not include a caller identification phone number, for generating to said microprocessor status information indicating that said incoming call does not include a caller identification phone number; and wherein said pattern corresponding to said status information comprises at least one backlight.

34. The communication device of Claim 20, further comprising:

program code, responsive to receipt of an incoming call, for determining whether said incoming call does not include a caller identification phone number; and

program code, responsive to a determination that said incoming call does not include a caller identification phone number, for generating to said microprocessor status information indicating that said incoming call does not include a caller identification phone number; and wherein said pattern corresponding to said status information comprises a shape resembling a question mark.
35. The communication device of Claim 20, further comprising:
an antenna electrically connected to said microprocessor for receiving signals
transmitted to said communication device;
 program code, responsive to receipt of said signal, for determining from said
 signal whether said communication device has voicemail; and
 program code, responsive to a determination from said signal that said
 communication device has voicemail, for generating to said microprocessor status
 information indicating that said communication device has voicemail; and wherein
 said pattern corresponding to said status information comprises at least one
 backlight.

36. The communication device of Claim 20, further comprising:
an antenna electrically connected to said microprocessor for receiving signals
transmitted to said communication device;
 program code, responsive to receipt of said signal, for determining from said
 signal whether said communication device has voicemail; and
 program code, responsive to a determination from said signal that said
 communication device has voicemail, for generating to said microprocessor status
 information indicating that said communication device has voicemail; and wherein
 said pattern corresponding to said status information comprises a shape resembling
 a V.

37. The communication device of Claim 20, further comprising:
 program code for determining whether said communication device has
 missed calls or missed messages; and
 program code for generating to said microprocessor of said communication
device, in response to a determination that said communication device has missed
calls or missed messages, status information indicating that said communication
device has missed calls or missed messages; and wherein said pattern
 corresponding to said status information comprises at least one backlight.

38. The communication device of Claim 20, further comprising a visual
 graphical display for displaying said status information.
FIG. 11

1102
Incoming Communication

1104
Yes

1106
Indicate Voicemail

1108
No

1110
Indicate Unknown Number

1112
Caller ID?

1114
Yes

1116
In Other Memory?

1118
Yes

1120
Illuminate * And # Keys While Sequentially Illuminating Digits Of Phone Number

1122
No

1124
Sequentially Illuminate Digits Of Phone Number

1110
No

1112
In A Speed Dial Key?

1114
Yes

1116
In Other Memory?

1118
Yes

1120
Illuminate Speed Dial Key Backlight

1122
No

1124
Flash All Backlights