黑皮鸡枞菌生产方法

本发明公开了一种黑皮鸡枞菌生产方法，属于菌类培养领域，其过程包括母种的制备、原种的制备、生产种的制备及人工栽培，其特点是：母种由黑皮鸡枞菌的子实体菌丝体与黑皮鸡枞菌的假根菌丝体组合培养制得。与现有技术相比，本发明的黑皮鸡枞菌生产方法填补了现有技术中有关黑皮鸡枞菌人工培养技术的空白，具有成本低、易实现等特点，可广泛地应用于黑皮鸡枞菌的大规模人工生产中。
1、黑皮鸡枞菌生产方法，包括母种的制备、原种的制备、生产种的制备及人工栽培，其特征在于：母种由黑皮鸡枞菌的子实体菌丝体与黑皮鸡枞菌的假根菌丝体组合培养制得。

2、根据权利要求1所述的黑皮鸡枞菌生产方法，其特征在于，所述母种的制备包括以下步骤：

a、无菌条件下对黑皮鸡枞菌的子实体做孢子分离或者组织分离，分离得子实体菌丝体；对黑皮鸡枞菌的假根做组织分离，分离得假根菌丝体；

b、将子实体菌丝体转接到装有培养基的试管内，22～25℃下培养，待菌丝长至1.3～1.8cm时接入假根菌丝体，继续培养5～8日即得成熟母种。

3、根据权利要求1或2所述的黑皮鸡枞菌生产方法，其特征在于，所述母种的制备中，用于组合培养的培养基为：

土豆汁1000ml、琼脂18～50g、葡萄糖10～30g；
或
枣树汁1000ml、琼脂18～50g、葡萄糖10～30g；
或
槐树汁1000ml、琼脂18～50g、葡萄糖10～30g。

4、根据权利要求1所述的黑皮鸡枞菌生产方法，其特征在于，所述原种的制备中，原种培养基配方为：

锯木屑78%、麸皮20%、糖1%、石膏粉1%，含水量60～65%；
或
玉米粒90%、麸皮5%、锯木屑3%、石膏粉2%，含水量65～70%；
或
棉籽壳78%、麸皮10%、锯木屑10%、石灰粉1%、石膏粉1%，含水量55～65%。
5. 根据权利要求1所述的黑皮鸡枞菌生产方法，其特征在于，
所述生产种的制备中，生产种培养基中含有不低于90%的木质素类成分和/或副产品的下脚料成分，含水量为50%～70%；
所述人工栽培过程中，培养料中含有不低于90%的木质素类成分和/或副产品的下脚料成分，含水量为50%～70%。

6. 根据权利要求5所述的黑皮鸡枞菌生产方法，其特征在于所述木质素类成分为木屑、棉籽壳、玉米芯中的一种或两种以上的混合物；所述副产品的下脚料成分为麸皮、稻草、大豆秸粉中的一种或两种以上的混合物。

7. 根据权利要求1所述的黑皮鸡枞菌生产方法，其特征在于所述人工栽培过程中，培养料装袋、灭菌、冷却接种后制得菌棒，菌棒置于培养室内培养，
培养温度为22～25℃，培养至袋口形成环形圈即表明生理成熟，可转入覆土栽培阶段。

8. 根据权利要求1所述的黑皮鸡枞菌生产方法，其特征在于所述人工栽培过程中，黑皮鸡枞菌菌丝生理成熟后，菌棒去掉塑料袋，覆土5～12cm栽培，
栽培温度为15～32℃，湿度85%～95%，出菇后柄长达到8～16cm时即可采收烤干。

9. 根据权利要求8所述的黑皮鸡枞菌生产方法，其特征在于覆土栽培时，
昼夜温差控制在8～13℃。

10. 根据权利要求8所述的黑皮鸡枞菌生产方法，其特征在于覆土栽培时，
土壤PH值为6.0～7.5。
黑皮鸡枞菌生产方法

技术领域
本发明涉及菌类培养领域，具体地说是一种黑皮鸡枞菌生产方法。

背景技术
黑皮鸡枞菌（Termitomyces Heim）属伞菌目，白蘑科，是温带和亚热带地区夏秋季生长的野生食用菌，鸡枞菌的一种。由于其生长发育与土白蚁的活动有密切关系，且对生长地依赖性强，至今没有人工培养成功的先例。

鸡枞菌肉质细嫩，气味浓香，味道鲜美，是著名的野生食用菌之一，味道尤以黑皮鸡枞菌最好。中医认为鸡枞菌性平味甘，有健脾益气，开胃提神，止痛水肿之功效，是治疗痔疮的极理想食物。现代医学发现，鸡枞除对痔疮有特效外，还能预防肠癌、降低血压、增强人体免疫力。单纯采摘野生黑皮鸡枞菌已难以满足巨大的市场需求。

发明内容
本发明的技术任务是针对上述现有技术的不足，提供一种可大规模人工培养黑皮鸡枞菌的黑皮鸡枞菌生产方法。

本发明的技术任务是按以下方式实现的：黑皮鸡枞菌生产方法，包括母种的制备、原种的制备、生产种的制备及人工栽培，其特点是：母种由黑皮鸡枞菌子实体的菌丝体与黑皮鸡枞菌的假根菌丝体组合培养制得。

所述母种的制备包括以下步骤：

a、无菌条件下对黑皮鸡枞菌的子实体做孢子分离或者组织分离，分离得子实体菌丝体；对黑皮鸡枞菌的假根做组织分离，分离得假根菌丝体；

b、将子实体菌丝体转接到装有培养基的试管内，22～25℃下培养，待菌丝长至1.3～1.8cm时接入假根菌丝体，继续培养5～8日即得成熟母种。

所述母种的制备中，用于组合培养的培养基为：土豆汁1000ml、琼脂18～50g、葡萄糖10～30g；
或
枣树汁 1000ml、琼脂 18～50g、葡萄糖 10～30g；
或
槐树枝汁 1000ml、琼脂 18～50g、葡萄糖 10～30g。
所述土豆汁为土豆水提物。将土豆 150～250g 放入 1000ml水中加热，煮沸后继续加热 20～30 分钟，趁热过滤，滤液中加水补足 1000ml 后，放入琼脂、葡萄糖。琼脂、葡萄糖完全融化后，分装试管即得母种培养基。
所述枣树汁为枣树枝枝水提物。将枣树枝枝 180～400g 放入 1000ml水中加热，煮沸后继续加热 20～30 分钟，趁热过滤，滤液中加水补足 1000ml 后，放入琼脂、葡萄糖。琼脂、葡萄糖完全融化后，分装试管即得母种培养基。
所述槐树枝汁为槐树枝枝水提物。将槐树枝枝 200～800g 放入 1000ml水中加热，煮沸后继续加热 20～30 分钟，趁热过滤，滤液中加水补足 1000ml 后，放入琼脂、葡萄糖。琼脂、葡萄糖完全融化后，分装试管即得母种培养基。
因为黑皮鸡枞菌是属于木腐菌类，进行原种的制备、生产种的制备及人工栽培时，现有技术中含有高含量的木质素类及副产品的下脚料的培养基均可使用。所述木质素类成分为木屑、棉籽壳、玉米芯中的一种或两种以上的混合物；副产品的下脚料成分为麸皮、稻草、大豆秸秆中的一种或两种以上的混合物。经过发明人多次试验，优选以下配方的培养基：
所述原种的制备中，培养基配方为：
锯木屑 78%、麸皮 20%、糖 1%、石膏粉 1%，含水量为 60～65%；
或
玉米粒 90%、麸皮 5%、锯木屑 3%、石膏粉 2%，含水量为 65～70%；
或
棉籽壳 78%、麸皮 10%、锯木屑 10%、石灰粉 1%、石膏粉 1%，含水量为 55～65%。
所述生产种的制备中：
生产种培养基中含有不低于 90%的木质素类成分和/或副产品的下脚料成分，含水量为 50%～70%，如：“
谷粒 80%、麸皮 15%、石膏粉 3%、石灰粉 2%，含水量 60%；
或，锯木屑 78%、麸皮 20%、石膏粉 1%、糖 1%，含水量 60%；
或，棉籽壳 90%、麸皮 5%、锯木屑 3%、石灰粉 1%、石膏粉 1%，含水量 65%；
或，棉籽壳 30%、锯木屑 30%、玉米芯 30%、麸皮 5%、石膏粉 3%、石灰粉 2%，含水量 70%。
所述人工栽培过程中：
培养料中含有不低于 90%的木质素类成分和/或副产品的下脚料成分，含水量为 50%～70%。如：
谷粒 80%、麸皮 15%、石膏粉 3%、石灰粉 2%，含水量 60%；
或，锯木屑 78%、麸皮 20%、石膏粉 1%、糖 1%，含水量 60%；
或，棉籽壳 90%、麸皮 5%、锯木屑 3%、石灰粉 1%、石膏粉 1%，含水量 65%；
或，棉籽壳 30%、锯木屑 30%、玉米芯 30%、麸皮 5%、石膏粉 3%、石灰粉 2%，含水量 70%。
所述人工栽培过程中，培养料装袋、灭菌、冷却接种后制得菌棒，菌棒置于培养室内培养，培养温度为 22～25℃，培养至袋口形成环形圈即表明生理成熟，可转入覆土栽培阶段。
黑皮鸡枞菌丝生理成熟后，菌棒去掉塑料袋，覆土 5～12cm 栽培，栽培温度为 15～32℃，湿度 85%～95%，出菇后柄长达到 8～16cm 时即可采收烤干。
为了更好地刺激子实体的形成及发育，覆土栽培时，昼夜温差宜控制在 8～13℃。
覆土栽培时，土壤 PH 值优选为 6.0～7.5 的中性稍偏碱范围内。
本发明的黑皮鸡枞菌生产方法填补了现有技术中有关黑皮鸡枞菌人工培养技术的空白，具有以下突出的有益效果：
（1）实现了黑皮鸡枞菌的大规模人工栽培，既可以减少野外采摘对野生环境带来的影响，又可以满足人们对黑皮鸡枞菌的巨大市场需求；
（2）两部分菌丝体组合培养，为鸡枞菌的培养，甚至为其它菌类培养提供了新思路；
（3）生产过程简单、易实现，生产成本低。
（4）香菇、木耳、平菇、金针菇等食用菌春天以后随着温度增高都会出现各种各样的病虫害，唯有黑皮鸡枞菌在炎热的夏季也不发生，因为黑皮鸡枞菌子实体蛋白质含量为 28.6%（每 100 克干品），糖份超过任何菌类，还有人体必须的 8 种高含量氨基酸，并且还有清理体内垃圾和杀虫的效果，所以到目前为止只发现蜗牛啃食该菌子实体的菌盖部分。

具体实施方式

参照以下具体实施例对本发明的黑皮鸡枞菌生产方法作详细地说明，但不作为对本发明的限定。

实施例 1：

1.1 母种的制备（以 2004 年采自云南楚雄州的黑皮鸡枞菌子实体及假根进行组合培养）：

1.1.1 培养基配方：
土豆汁 1000ml、琼脂 30g、葡萄糖 20g。

1.1.2 制备步骤：

a、按照上述配方配制培养基

将土豆 200g 放入 1000ml 水中加热，煮沸后继续加热 20 分钟，趁热过滤，滤液中加水补足 1000ml 后，放入配方量的琼脂、葡萄糖。琼脂、葡萄糖完全融化后，分装试管即得母种培养基；

b、无菌条件下在三角瓶内对黑皮鸡枞菌的子实体做孢子分离，分离得子实体菌丝体；对黑皮鸡枞菌的假根做组织分离，分离得假根菌丝体；

c、将子实体菌丝体接种到装有上述培养基的试管（18×180mm）内，22～25℃下培养，待菌丝长至 1.5cm（试管培养基长度的 1/3）左右时接入绿豆粒大小的假根菌丝体，同样条件又培养 7 日即得到成熟母种（菌丝气生型，浅灰白色）。
1.2 原种的制备

1.2.1 培养基配方

锯木屑 78%、麸皮 20%、糖 1%、石膏粉 1%
含水量为 60～65%；

1.2.2 制备步骤

在母种培养好以后，接入原种培养基，经过 30-40 天即可成熟。（接种及培养方法与常规食用菌相同）

1.3 生产物种的制备

1.3.1 培养基配方

棉籽壳 90%、麸皮 5%、锯木屑 3%、石灰粉 1%、石膏粉 1%
含水量 65%

1.3.2 制备步骤

原种培养好以后接入生产物种培养基。（接种及培养方法与常规食用菌相同）

1.4 人工栽培

1.4.1 培养基配方

棉籽壳 90%、麸皮 5%、锯木屑 3%、石灰粉 1%、石膏粉 1%
含水量 65%

1.4.2 栽培过程

（1）装袋，按以上培养基配方，采用 17×33cm×0.05 厘米聚乙烯塑料袋，每袋装 450g；

（2）灭菌，1.5kg 压力/cm² 下高压灭菌 2 小时，彻底杀灭杂菌；

（3）接种，制得菌棒（菌浓 15%）；

（4）培养，将菌棒移入培养室内，22～25℃下避光培养，30～40 天后，培养至袋口形成环形圈即表明生理成熟；

（5）覆土培养，在菇棚内建好畦，将菌棒的塑料袋去掉，菌棒与菌棒之间间隔 3～4cm，摆满后上面覆土约 10cm，土壤以握手成团掉地能散的自然土壤为宜（PH 值 7.5）。棚内温度 15～32℃、昼夜温差控制在 10℃左右，湿度保持在 90%左右，散射光线照射。该菌丝不爬土层靠边缘菌丝吸收土壤中的养分，

8
大约覆土30天后在菌棒上形成原基并长出很长的假根，原基上部膨大形成菇蕾冒出土面。又经过7天左右的生长期，长16厘米以下，8厘米以上及时即可采收烘干。共采收4茬菇，生物学效率达80%。

实施例2:
2.1 母种的制备（以2002年秋采自云南楚雄州，并用常规液体石蜡保藏于3～5℃冰箱中的黑皮鸡枞菌子实体及2004年采自云南楚雄州的黑皮鸡枞菌假根进行组合培养）：
2.1.1 培养基配方：
枣树汁1000ml，琼脂25g，葡萄糖25g
2.1.2 制备步骤：
a、按照上述配方配制培养基
将枣树树皮250g放入1000ml水中加热，煮沸后继续加热25分钟，趁热过滤，滤液中加水补足1000ml后，放入琼脂、葡萄糖。琼脂、葡萄糖完全融化后，分装试管即得母种培养基。
b、无菌条件下在三角瓶内对黑皮鸡枞菌的子实体做孢子分离，分离得子实体菌丝体。对黑皮鸡枞菌的假根做组织分离，分离得假根菌丝体；
c、将子实体菌丝体转接到装有上述培养基的试管（18×180mm）内，22～25℃下培养，待菌丝长至1.5cm（试管培养基长度的1/3）左右时接入绿豆粒大小的假根菌丝体，同样条件又培养7日即得到成熟母种（菌丝气生型，浅灰白色）。
2.2 原种的制备
2.2.1 培养基配方
棉籽壳78%、麸皮10%、锯木屑10%、石灰粉1%、石膏粉1%，含水量为60%
2.2.2 制备步骤
在母种培养好以后，接入原种培养基，经过30-40天既可成熟。（接种及培养方法与常规食用菌相同）
2.3 生产种的制备
2.3.1 培养基配方
棉籽壳 30%、锯木屑 30%、玉米芯 30%、麸皮 5%、石膏粉 3%、石灰粉 2%，含水量 70%。
2.3.2 制备步骤
原种培养好以后接入生产种培养基。（接种及培养方法与常规食用菌相同）
2.4 人工栽培
2.4.1 培养料配方
谷粒 80%、麸皮 15%、石膏粉 3%、石灰粉 2%，含水量 60%
2.4.2 栽培过程
（1）装袋，按以上培养料配方，采用
17×33cm×0.05 厘米聚丙烯塑料袋，每袋装 450g;
（2）灭菌，100℃下常压灭菌 12 小时，彻底杀灭杂菌;
（3）接种，制得菌棒（菌浓 15%）;
（4）培养，将菌棒移入培养室内，22～25℃下遮光培养，30-40 天后，培养至袋口形成环形圈即表明生理成熟;
（5）覆土培养，在菇棚内建好畦，将菌棒的塑料袋去掉，菌棒与菌棒之间间隔 3～4cm，摆满后上面覆土约 10cm，土壤以握手成团掉地能散的自然土壤为宜（PH 值 7.5）。棚内温度 15～32℃、昼夜温差控制在 10℃左右，湿度保持在 90%左右，散射光线照射。该菌丝不爬土层靠边缘菌丝吸收土壤中的养分，大约覆土 30 天后在菌棒上形成原基并长出很长的假根，原基上部膨大形成菇蕾冒出土面。又经过 7 天左右的生长柄长 16 厘米以下 8 厘米以上及时即可采收烤干。共采收 4 批菇，生物学效率达 80%。