US 20070136698A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2007/0136698 A1

Trujillo et al. 43) Pub. Date: Jun. 14, 2007

(54) METHOD, SYSTEM AND APPARATUS FOR A filed on Apr. 27, 2005. Provisional application No.

PARSER FOR USE IN THE PROCESSING OF 60/675,167, filed on Apr. 27, 2005. Provisional appli-
STRUCTURED DOCUMENTS cation No. 60/675,115, filed on Apr. 27, 2005.

(76) Inventors: Richard Trujillo, Austin, TX (US);
Bryan Dobbs, Round Rock, TX (US);
Rakesh Bhakta, Austin, TX (US); (51) Int.CL
Howard Tsoi, Austin, TX (US); Jack

Publication Classification

GO6F 17/50 2006.01
E. Randall, Austin, TX (US); Howard GOGF 7/00 52006 013
Liu, Plano, TX (US); Yongjian Zhou, GO6F 1700 2006.01
Santa Clara, CA (US); Daniel M. (01)
Cermak, Austin, TX (US) (52) US.CL .. 716/1; 707/100; 707/102;

715/513
Correspondence Address:
BLAKELY SOKOLOFF TAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD (57) ABSTRACT
SEVENTH FLOOR
LOS ANGELES, CA 90025-1030 (US)
Embodiments of systems, methods and apparatuses for a

(21) Appl. No.: 11/412,698 parser for generating one or more data structures represen-

tative of a structured document are disclosed. More specifi-

cally, embodiments of a parser may comprise hardware

Related U.S. Application Data circuitry operable to receive a structured document, begin

parsing the structured document as it is being received and

(60) Provisional application No. 60/675,349, filed on Apr. generating the data structures representative of the struc-
27, 2005. Provisional application No. 60/675,347, tured document as it is being parsed.

(22) Filed: Apr. 27, 2006

'SR
=
Text
Unit 530
—
Y
|
Input Secondary M Table
502 | Formatter Segmentation > Symbol emory
Unit Unit Unit 540 270 UManager | , Output
510 520 nit 570 502

Document
Scope
Unit 560

Memory
270

Primary
Symbol

320

Patent Application Publication

Jun.

14,2007 Sheet 1 of 13

112

112

112
®
®
112

Output
Document
140

XSLT

SOAP
XML
130

US 2007/0136698 A1

FIGURE 1

US 2007/0136698 A1

Patent Application Publication Jun. 14,2007 Sheet 2 of 13

c0s

¢ 34N9Ol4

Ui

0.Ss 1un

inding

Jabeuepy
sjqeL

056G Wun
joquiAs

Aewnd

096 Jun

adoog
wawnooq

0.¢
Aowa |y

b

oS N
|oqwiAg .
Aepuodsas
——
)
0€s Wun
Xxa] ———
—

nn
uonewswbag

0ce

0Ls
wn

i

< Janewo _l

c0s
nduy

Patent Application Publication Jun. 14,2007 Sheet 3 of 13

Data/Cmd
Stream

Interconnect

Fifo 630

Cmd

.
' W I\
_ Processing Unit

interconnect
Fifo 640

Data/Cmd
Stream

FIGURE 3

US 2007/0136698 A1

=
s
ARSI AL

%’(7

US 2007/0136698 A1

Patent Application Publication Jun. 14,2007 Sheet 4 of 13

Host Uni

Data/Cmd

Stream

Interconnect

|

Data

Fifo 710

Cmd

t510

_ Formatter Un

|

Interconnect
Fifo 730

Data/Cmd
Stream

Segmentation Uni

520

FIGURE 4

Patent Application Publication Jun. 14,2007 Sheet 5 of 13 US 2007/0136698 A1

Formatter Unit
510

Data/Cmd
Stream

Interconnect
Fifo 730

Cmd Data

Segmentation Unit .

\ 520
Interconnect Interconnect Interconnect
Fifo 830 Fifo 850 Fifo 840
Data/Cmd
Streams
Text Unit Primary Symbol Secondary Symbol
530 Unit 550 Unit 540

FIGURE 5

Patent Application Publication Jun. 14,2007 Sheet 6 of 13 US 2007/0136698 A1

Segmentation Unit

520
Data/Cmd
Stream
' Interconnect
Fifo 830
Cmd Data
[
_ Text Unit 530

Interconnect
Fifo 970

Data/Cmd
Stream

Table Manager Unit
570

FIGURE 6

Patent Application Publication Jun. 14,2007 Sheet 7 of 13 US 2007/0136698 A1

Segmentation Unit

520
Data/Cmd Document Scope Unit
Stream
Interconnect Interconnect
Fifo 850 Fifo 1250

/\ Da/

_ Primary Symbol Unit 550 .

A Memory

Interconnect Interconnect
Fifo 1070 Fifo 1060

Data/Cmd J] :ﬂ7
Stream
Table Manager Unit Document Scope Unit
570 560

FIGURE 7

Patent Application Publication Jun. 14,2007 Sheet 8 of 13 US 2007/0136698 A1

Segmentation Unit

520 Document Scope Unit
Data/Cmd 560
Stream
Interconnect Interconnect
Fifo 840 Fifo 1240

%,
| 4

Interconnect Interconnect '
Fifo 1170 Fifo 1160
Data/Cmd ‘Data/Cmd
Stream Stream
Table Manager Unit Document Scope Unit

FIGURE 8

Patent Application Publication Jun. 14,2007 Sheet 9 of 13 US 2007/0136698 A1

Secondary Symbol Unit

Primary Symbol Unit
540 Data/Cmd Y 5%l0
Stream
[Interconnecj Interconnect
Fifo 1160 Fifo 1060
/\ Da/

_ Document Scope Unit 560 -

Memory
270

Fifo 1270 Fifo 1250 Fifo 1240

Data/Cmd JL
Stream L L
Table Manager Primary Symbol Secondary Symbol
Unit 570 Unit 550 Unit 540

[InterconnectJ [Interconnect] [Interconnect}

FIGURE 9

Patent Application Publication Jun. 14,2007 Sheet 10 of 13 US 2007/0136698 A1

. Secondary Document
Text Unit Primary Symbol Symbol Scope Unit
530 Unit 550 Unit 540 560

} L b

Interconnect Interconnect Interconnect Interconnect
Fifo 970 Fifo 1070 Fifo 1170 Fifo 1270
\ J] / Data/Crnd
f \ Stream

SIS — . T—

_Table Manager Unit 570 _/ Memory
L 270
Interconnect
Fifo 1330
JL Data/Cmd
Stream

Parsetime Expression Processor 330

FIGURE 10

US 2007/0136698 A1

Patent Application Publication Jun. 14,2007 Sheet 11 of 13

FA B2 1

uonesijddy

| 3%1A198
q8sm

L1 3HNOId

cll xoels

uones|ddy

JE-LIVVETS
aam

¢l 3dNSld

0.2 fowspy

US 2007/0136698 A1

oie

SRR

L A T T T T T e ey g M UV

Patent Application Publication Jun. 14,2007 Sheet 12 of 13

US 2007/0136698 A1

Patent Application Publication Jun. 14,2007 Sheet 13 of 13

]

Web Service 112

[

€l 34No9ld

Aeigiy
uayo|

E
X

0vg auIBug uojewdlojsues | ﬁ 0ee

oce
Japdwion)

N
)
[Web Service 112 J

{

US 2007/0136698 Al

METHOD, SYSTEM AND APPARATUS FOR A
PARSER FOR USE IN THE PROCESSING OF
STRUCTURED DOCUMENTS

RELATED APPLICATIONS

[0001] This application claims a benefit of priority under
35 U.S.C. § 119(e) to U.S. Provisional Patent Application
Nos. 60/675,349, by inventors Howard Tsoi, Daniel Cermak,
Richard Truyjillo, Trenton Grale, Robert Corley, Bryan
Dobbs and Russell Davoli, entitled “Output Generator for
Use with System for Creation of Multiple, Hierarchical
Documents”, filed on Apr. 27, 2005; 60/675,347, by inven-
tors Daniel Cermak, Howard Tsoi, John Derrick, Richard
Trujillo, Udi Kalekin, Bryan Dobbs, Ying Tong, Brendon
Cahoon and Jack Matheson, entitled “Transformation
Engine for Use with System for Creation of Multiple,
Hierarchical Documents”, filed on Apr. 27, 2005; 60/675,
167, by inventors Richard Trujillo, Bryan Dobbs, Rakesh
Bhakta, Howard Tsoi, Jack Randall, Howard Liu, Yongjian
Zhou and Daniel Cermak, entitled ‘“Parser for Use with
System for Creation of Multiple, Hierarchical Documents”,
filed on Apr. 27, 2005 and 60/675,115, by inventors John
Derrick, Richard Trujillo, Daniel Cermak, Bryan Dobbs,
Howard Liu, Rakesh Bhakta, Udi Kalekin, Russell Davoli,
Clifford Hall and Avinash Palaniswamy, entitled “General
Architecture for a System for Creation of Multiple, Hierar-
chical Documents”, filed on Apr. 27, 2005 the entire contents
of which are hereby expressly incorporated by reference for

all purposes.

TECHNICAL FIELD OF THE INVENTION

[0002] The invention relates in general to methods and
systems for processing structured documents, and more
particularly, to the design and implementation of efficient
parsers for use in the processing, transformation or rendering
of structured documents.

BACKGROUND OF THE INVENTION

[0003] Electronic data, entertainment and communica-
tions technologies are growing increasingly prevalent with
each passing day. In the past, the vast majority of these
electronic documents were in a proprietary format. In other
words, a particular electronic document could only be pro-
cessed or understood by the application that created that
document. Up until relatively recently this has not been
especially troublesome.

[0004] This situation became progressively more prob-
lematic with the advent of networking technologies, how-
ever. These networking technologies allowed electronic
documents to be communicated between different and vary-
ing devices, and as these network technologies blossomed,
so did user’s desires to use these networked devices to share
electronic data.

[0005] Much to the annoyance of many users, however,
the proprietary formats of the majority of these electronic
documents prevented them from being shared between dif-
ferent platforms: if a document was created by one type of
platform it usually could not be processed, or rendered, by
another type of platform.

[0006] To that end, data began to be placed in structured
documents. Structured documents may be loosely defined as

Jun. 14, 2007

any type of document that adheres to a set of rules. Because
the structured document conforms to a set of rules it enables
the cross-platform distribution of data, as an application or
platform may process or render a structured document based
on the set of rules, no matter the application that originally
created the structured document.

[0007] The use of structured documents to facilitate the
cross-platform distribution of data is not without its own set
of problems, however. In particular, in many cases the
structured document does not itself define how the data it
contains is to be rendered, for example for presentation to a
user. Exacerbating the problem is the size of many of these
structured documents. To facilitate the organization of data
intended for generic consumption these structured docu-
ments may contain a great deal of meta-data, and thus may
be larger than similar proprietary documents, in some cases
up to twenty times larger or more.

[0008] In many cases, instructions may be provided for
how to transform or render a particular structured document.
For example, one mechanism implemented as a means to
facilitate processing XML is the extensible stylesheet lan-
guage (XSL) and stylesheets written using XSL.. Stylesheets
may be written to transform XML documents from one
markup definition (or “vocabulary”) defined within XML to
another vocabulary, from XML markup to another structured
or unstructured document form (such as plain text, word
processor, spreadsheet, database, pdf, HTML, etc.), or from
another structured or unstructured document form to XML
markup. Thus, stylesheets may be used to transform a
document’s structure from its original form to a form
expected by a given user (output form).

[0009] Typically, structured documents are transformed or
rendered with one or more software applications. However,
as many definitions for these structured languages were
designed and implemented without taking into account
conciseness or efficiency of parsing and transformation, the
use of software applications to transform or render these
structured documents may be prohibitively inefficient.

[0010] Thus, as can be seen, there is a need for methods
and systems for an architecture for the efficient processing of
structured documents.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The drawings accompanying and forming part of
this specification are included to depict certain aspects of
embodiments of the invention. A clearer impression of
embodiments of the invention, and of the components and
operation of systems provided with embodiments of the
invention, will become more readily apparent by referring to
the exemplary, and therefore nonlimiting, embodiments
illustrated in the drawings, wherein identical reference
numerals designate the same components. Note that the
features illustrated in the drawings are not necessarily drawn
to scale.

[0012] FIG. 1 depicts an embodiment of an architecture
for the implementation of web services.

[0013] FIG. 2 depicts an embodiment of an architecture
for a parser.

[0014] FIG. 3 depicts an embodiment of an architecture
for logical units of a parser.

US 2007/0136698 Al

[0015] FIG. 4 depicts one embodiment of a formatter unit.

[0016] FIG. 5 depicts one embodiment of a segmentation
unit.

[0017] FIG. 6 depicts one embodiment of a text unit.

[0018] FIG. 7 depicts one embodiment of a primary sym-
bol unit.

[0019] FIG. 8 depicts one embodiment of a secondary
symbol unit.

[0020] FIG. 9 depicts one embodiment of a document
scope unit; and

[0021] FIG. 10 depicts one embodiment of a table man-
ager unit.

[0022] FIG. 11 depicts the processing of a structured
document.

[0023] FIG. 12 depicts one embodiment of an architecture
for a device for the processing of structured documents.

[0024] FIG. 13 depicts one embodiment of an architecture
for the processing of structured documents utilizing the
embodiment of the device depicted in FIG. 12.

DETAILED DESCRIPTION

[0025] Embodiments of the invention and the various
features and advantageous details thereof are explained
more fully with reference to the nonlimiting embodiments
that are illustrated in the accompanying drawings and
detailed in the following description. Descriptions of well
known starting materials, processing techniques, compo-
nents and equipment are omitted so as not to unnecessarily
obscure the invention in detail. Skilled artisans should
understand, however, that the detailed description and the
specific examples, while disclosing preferred embodiments
of the invention, are given by way of illustration only and
not by way of limitation. Various substitutions, modifica-
tions, additions or rearrangements within the scope of the
underlying inventive concept(s) will become apparent to
those skilled in the art after reading this disclosure.

[0026] Reference is now made in detail to the exemplary
embodiments of the invention, examples of which are illus-
trated in the accompanying drawings. Wherever possible,
the same reference numbers will be used throughout the
drawings to refer to the same or like parts (elements).

[0027] Before describing embodiments of the present
invention it may be useful to describe an exemplary archi-
tecture for a web service. Although web services are known
in the art, a description of such an architecture may be
helpful in better explaining the embodiments of the inven-
tion depicted herein.

[0028] FIG. 1 depicts an embodiment of one such archi-
tecture for implementing a web service. Typically, web
services provide a standard means of interoperating between
different software applications running on a variety of
platforms and/or frameworks. A web service provider 110
may provide a set of web services 112. Each web service 112
may have a described interface, such that a requestor may
interact with the web service 112 according to that interface.

[0029] For example, a user at a remote machine 120 may
wish to use a web service 112 provided by web service

Jun. 14, 2007

provider 110. To that end the user may use a requestor agent
to communicate message 130 to a service agent associated
with the desired web service 112, where the message is in a
format prescribe by the definition of the interface of the
desired web service 112. In many cases, the definition of the
interface describes the message formats, data types, trans-
port protocols, etc. that are to be used between a requester
agent and a provider agent.

[0030] The message 130 may comprise data to be operated
on by the requested web service 112. More particularly,
message 130 may comprise a structured document and
instructions for transforming the structured document. For
example, message 130 may be a SOAP (e.g. Simple Object
Access Protocol) message comprising an eXtensible
Markup Language (XML) document and an eXstensible
Style Sheet Language Transformation (XSLT) stylesheet
associated with the XML document. It should be noted that,
in some cases, transformation instructions (e.g. a Document
Type Definition (DTD), schema, or stylesheet) may be
embedded in a structured document, for example, either
directly or as a pointer. In such cases the transformation
instructions may be extracted from the document before
being utilized in any subsequent method or process.

[0031] Thus, in some cases the provider agent associated
with a particular web service 112 may receive message 130;
web service 112 may process the structured document of
message 130 according to the instructions for transforming
the structured document included in message 130; and the
result 140 of the transformation returned to the requester
agent.

[0032] In some cases, many structured documents may be
sent to a particular web service 112 with one set of trans-
formation instructions, so that each of these documents may
be transformed according to the identical set of instructions.
Conversely, one structured document may be sent to a
particular web service 112 with multiple sets of transforma-
tion instructions to be applied to the structured document.

[0033] Hence, as can be seen from this brief overview of
the architecture for implementing web services 112, it may
be highly desired to process these structured documents as
efficiently as possible such that web services 112 may be
used on many data sets and large data sets without creating
a bottleneck during the processing of the structured docu-
ments and processing resources of web service provider 110
may be effectively utilized.

[0034] More particularly, in order to process or transform
these structured documents it may be necessary in some
cases to parse these structured documents (e.g. both lexically
and semantically) so that operations may performed on
identified semantic elements of the structured document, a
representation of the structured document created, the con-
tent of the structured document provided in an alternate
format, etc. Moreover, as the parsing of these structured
documents may be a possible bottleneck in the processing or
transformation of these structured documents it is desirable
to parse these structured documents in an efficient manner.

[0035] Attention is now directed to embodiments of sys-
tems and methods for an architecture for the efficient parsing
of structured documents. Embodiments of the present inven-
tion may provide a parser which comprises hardware cir-
cuitry, for example a hardware processing device such as an

US 2007/0136698 Al

Application Specific Integrated Circuit (ASIC), for efficient
parsing of a structured document. In other words, embodi-
ments the present invention may provide the capability to
parse a structured document substantially solely in hardware
(e.g. substantially without the use of software). This hard-
ware may generate data structures storing the parsed content,
some of which may reflect the structure of the document.
Additionally, the parser may generate output events com-
prising content of the structured document, or references to
this content, such that these events may be utilized by other
applications or hardware, for example to form a document
object model (DOM) of the parsed content, or to match
content of the document with certain expressions, etc.

[0036] More specifically, embodiments of the present
invention may provide a parser circuit operable to receive a
document in a streaming fashion. As the structured docu-
ment is received, data from the document may be segmented
into semantically meaningful groups, these groups classified
as one or more types, and routed to logical units of the parser
circuit based on their type. Each of these logical units may,
in turn, be operable to process the type of data routed to it.
By processing differing types of data from a structured
document using distinct logical processing units, where each
of'these logical processing units may operate substantially in
tandem with one another, parsing of a structured document
may be accomplished in a quick and efficient manner. More
specifically, the parsing of the structured document and the
creation of one or more data structures representative of the
structured document may be accomplished substantially
simultaneously (it will be understood that for purposes of
this disclosure that the occurrence of two events substan-
tially simultaneously indicates that each of the two events
may at least partially occur before the completion of the
other event).

[0037] Additionally, by providing events, or otherwise
identifying data of the structured document to other appli-
cations or hardware, while a structured document is in the
process of being parsed the overall efficiency of applications
or hardware which may utilize embodiments of this parser
may operate more quickly and efficiently as well,

[0038] One particular embodiment of parser 320 is
depicted in FIG. 2. Parser 320 can receive one or more
commands to operate on data, followed by the data (e.g.
corresponding to a structured document) at input 502. Docu-
ment data identified by parser 320 may be communicated to
applications or other hardware components through output
504. Parser 320 may comprise one or more interfaces with
memory 270 such that data structures may be filled,
accessed, or built in memory 270 through this interface.

[0039] Parser 320 may comprise formatter unit 510, seg-
mentation unit 520, text unit 530, secondary symbol unit
540, primary symbol unit 550, document scope unit 560, and
table manager unit 570. Formatter unit 510 may be coupled
to input 502 and segmentation unit 520 which, in turn may
be coupled to text unit 530, secondary symbol unit 540 and
primary symbol unit 550. Secondary symbol unit 540 and
primary symbol unit 550 are both coupled to document
scope unit 560, while all three of secondary symbol unit 540,
primary symbol unit 550 and document scope unit 560 are
coupled to table manager unit 570. Additionally, logical
units 510, 520, 530, 540, 550, 560, 570 may interface with
memory 270.

Jun. 14, 2007

[0040] Communication between the logical processing
units 510, 520, 530, 540, 550, 560, 570 may take place
through one or more First In First Out (FIFO) queues, such
that when a logical processing unit 510, 520, 530, 540, 550,
560, 570 wishes to send a communication to another logical
processing unit 510, 520, 530, 540, 550, 560, 570 this
communication may be placed in an output FIFO queue of
the sender which also serves as an input FIFO queue for the
intended recipient of the communication. In one embodi-
ment, these FIFO queues may be implemented in hardware
(e.g. on an ASIC comprising logical units 510, 520, 530,
540, 550, 560, 570) while in other embodiments these FIFO
queues may be implemented in memory 270.

[0041] Formatter unit 510 may receive a command indi-
cating that data to follow is to be processed, and the format
of the data that is to follow, followed by a stream of the data
itself. For example, one or more source documents may be
presented to formatter unit 510 in a serial fashion, as
opposed to a source document needing to be wholly present
before processing may begin.

[0042] Formatter unit 510 transcodes received data into an
internal format (e.g. a data format utilized by other logical
processing units 520, 530, 540, 550, 560, 570) and forwards
the data (in the internal format) to segmentation unit 520.
Thus, data may arrive at formatter unit 510 in a variety of
formats such as Unicode Transformation Format (UTF), Big
Endian, Little Endian, International Standards Organization
(ISO) 8859, Windows (Win) 1252, etc. and be converted to
an internal format such that each of the other logical units
520, 530, 540, 550, 560, 570 can process the data according
to the internal format. Formatter unit 510 may then com-
municate commands and data to segmentation unit 520.

[0043] Segmentation unit 520 may partition incoming data
from the formatter unit 510 into frames (logical groupings of
data) based on the markup of the structured document(s),
identify the type of the data frame and route data (e.g. data
frames) to a logical processing unit 530, 540, 550 operable
to process that type of data. The logical processing units 530,
540, 550 operable to handle these differing data types are
text unit 530, primary symbol unit 540 and secondary
symbol unit 560.

[0044] Text unit 530 processes data frames which have
been identified as text strings to store these text strings to
memory 270 and may mark or associate these text strings
with other associated properties, for example, if the text
string is a comment the stored text string may be associated
with a comment tag, if the string is whitespace it may be
associated with a whitespace tag, etc. Furthermore, text unit
530 may condition these text strings by adding or removing
portions of the text string, for example comment notation
may be removed before storing a text string, etc.

[0045] Primary symbol unit 550 processes data identified
as a primary symbol by matching the symbol to reference
data in memory or storing the symbol in memory and
associating the symbol with a unique reference number.

[0046] Secondary symbol unit 560 processes data identi-
fied as secondary symbols or secondary data, for example
sub-elements or attributes of elements, that may require
further processing by segmenting these secondary symbols
according to their type and processing these secondary
symbols according to their type. Secondary symbol unit 560

US 2007/0136698 Al

may also identify directives embedded in these received
secondary symbols which may effect subsequent processing
of a structured document.

[0047] While performing their respective processing, each
of primary symbol unit 550 and secondary symbol unit 560
may interact with document scope unit 560 to track, refer-
ence or determine the order (e.g. scope) of data frames with
respect to a source document. Document scope unit 560 is
operable to maintain, construct and reference data structures
in memory 270 pertaining to the scope of a source document
and may provide scope information pertaining to symbols to
primary symbol unit 550, secondary symbol unit 560 or
table manger unit 570.

[0048] Table manager unit 570 assembles one or more
data structures in memory 270 representative of a source
document based on communications from text unit 530,
primary symbol unit 550, secondary symbol unit 540 or
document scope unit 560. The data structure created by table
manager unit 570 may represent the structure of a source
document and reference one or more of the data structures
created by text unit 530, primary symbol unit 550, secondary
symbol unit 540 or document scope unit 560.

[0049] In one embodiment, each of logical processing
units 510, 520, 530, 540, 550, 560, 570 may be based on a
similar architecture. A block diagram of one embodiment of
a general architectural format for the implementation of one
or more of logical units 510, 520, 530, 540, 550, 560, 570
is presented in FIG. 3. Logical processing unit 600 may be
operable to perform a specialized task and, as such may be
operable to execute a set of opcodes associated with that
specialized task. Logical processing unit 600 may have one
or more input interconnect FIFO queues 630 a sequence
control unit 610, a data path 620 and one or more output
FIFO queues 640 (which may also serve as input queues for
another logical processing unit). Input FIFO queue 630,
which may be implemented in hardware or through shared
memory, may serve to couple logical processing unit 600 to
another logical processing unit (e.g. input FIFO queue 630
may be the output FIFO queue of another logical processing
unit). Thus, commands and associated data may be received
at logical processing unit 600, data processed according to
the commands, and commands and data placed in one or
more output FIFO queues 640. In other words, an incoming
command/data stream may be conditioned for processing by
downstream logical processing units, for example by remov-
ing commands from the stream, inserting commands into the
command/data stream, changing arguments to commands,
augmenting, stripping or replacing data with other data, etc.

[0050] During operation, a communication for logical
processing unit 600 may be placed in input FIFO 630. This
communication may comprise one or more commands (e.g.
opcodes) and data associated with those commands. Logical
unit 600 may receive and process the commands and data in
each of input FIFO queues 630 using data path 620 which
may comprise hardware circuitry operable to accomplish at
least portions of the specialized task for which logical
processing unit 600 is operable. Furthermore, to facilitate
the processing of the data, logical processing unit 600 may
have an interface to memory 270 such that logical process-
ing unit 600 may create data structures in memory 270, or
reference existing data structures in memory 270 (e.g. to
read data from, or write data to these data structures).

Jun. 14, 2007

[0051] To speed the processing of data by logical process-
ing unit 600 sequence control unit 610 may be operable to
order the execution of commands in input FIFOs queues 630
(and thus the processing of data associated with these
commands) to take advantage of the operation of the archi-
tecture of the particular data path 620 of the logical pro-
cessing unit 600.

[0052] Turning to FIGS. 4-10 various embodiments of
formatter unit 510, segmentation unit 520, text unit 530,
secondary symbol unit 540, primary symbol unit 550, docu-
ment scope unit 560, and table manager unit 570 according
to an embodiment of the general architecture depicted in
FIG. 3 are presented.

[0053] In particular, FIG. 4 depicts one embodiment of
formatter unit 510. A command may be placed in input FIFO
710 indicating that a data stream to follow is to be processed
and that the data stream will be encoded in a certain format.
Formatter unit 510 may retrieve this command from input
FIFO 710 and, subsequently, as data is received, process this
data such that the received data is transcoded from its
original format into an internal format. Thus, in one embodi-
ment, each token of data received is converted such that the
same token is represented in the internal format.

[0054] To facilitate the transcoding of the incoming data
stream, data path 720 may have one or more hardware
circuits or hardware circuit paths designed for, or dedicated
to, the conversion of one particular data format to the
internal data format. For example, circuit path 722 may be
hardware designed to convert a big endian representation to
the internal format, circuitry path 724 may be hardware
designed to convert UTF representation to the internal
format, etc.

[0055] As it is processed this transcoded data may then be
placed in output FIFO queue 730 with one or more com-
mands for segmentation unit 520. Thus, formatter unit 510
may substantially simultaneously be receiving data and
commands, processing data, and placing data and commands
in output FIFO queue 730. By processing data as it arrives
at formatter unit 510 (as opposed to waiting for an entire
document to be present) more efficient processing of the data
may be achieved.

[0056] Moving to FIG. 5, one embodiment of segmenta-
tion unit 520 is represented. Segmentation unit 520 may
receive data and commands from input FIFO queue 730 as
they are placed there by formatter unit 510, and output
commands and associated data to one or more output FIFO
queues 830, 840 or 850 depending on the type of data
associated with the command.

[0057] More specifically, segmentation unit 520 may scan
the incoming data based on a definition of the language of
the source document to identify certain tokens and keys for
the type of document (e.g. special characters or character
sets or sequences) and strip the markup and separators from
the incoming data stream. This may be done by accessing a
data structure in memory 270 or a library that defines the
structure of the source document. Based on the markup (i.e.
structure of the source document) the incoming data stream
may be grouped into frames, each frame comprising a
logical grouping or type of data, such as a text string or a
symbol, and each data frame routed by router 822 to a
logical processing unit 530, 540, 550 operable to process the
data type of the frame.

US 2007/0136698 Al

[0058] Additionally, segmentation unit 520 may augment
the data of a data frame. For example, segmentation unit 520
may perform entity substitution for entities or macros of a
data frame by accessing a data structure in memory 270
defining an entity or macro and substituting that definition
for the entity or macro in the data. To accelerate these
operations (e.g. identification of characters or sequences,
entity or macro substitution, etc.) data path 820 may have
hardware circuitry to facilitate hexadecimal or decimal
comparisons such that character recognition may be per-
formed across multiple characters simultaneously.

[0059] Thus, each of the commands and associated data
placed in output FIFO queues 830, 840 or 850 by segmen-
tation unit 520 may comprise one or more commands
framing a particular type of data (which may have been
augmented), where the output FIFO queue 830, 840 or 850
into which the command and associated data frame is placed
by router 822 depends on the type of the data frame. By
splitting the data stream associated with a source document
according to data type, parallel processing of data frames by
downstream logical processing units 530, 540, 550, 560, 570
may be achieved.

[0060] As may be realized then, each of output FIFO
queues 830, 840, 850 may be associated, respectively, with
a logical processing unit 530, 540, 550 operable to process
a particular data type. FIGS. 6-8 depict, respectively, text
unit 530 operable to process text data (e.g. string data),
primary symbol unit 550 operable to process symbols of a
document, and a secondary symbol processing unit 540
operable to processes symbols in a data stream which are
associated with a primary symbol (e.g. a secondary symbol
may be a sub-element of a primary element or an attribute
associated with an element, etc.).

[0061] Referring now to FIG. 6, one embodiment of text
unit 530 is represented. Text unit 530 may receive com-
mands and data (e.g. data frames) from input FIFO queue
830 as they are placed there by segmentation unit 520 and
output commands and associated data to output FIFO queue
970. More specifically, a command and associated data
received at text unit 530 may comprise a command to
process a string while the data may comprise the string itself.
Text unit 530 may process the string in order to classify the
string (e.g. comment, whitespace, etc.). Text unit 530 may
access or build tables in memory 270 with a string and the
associated type of the string. In one embodiment, text unit
may build, access or create a table in memory 270 for each
type of string classification, thus one table may be built for
whitespace, another may be built for comments, etc. Text
unit 530 may then place one or more commands and an
associated reference (such as a pointer) to a string in output
FIFO queue 970.

[0062] Now looking at FIG. 7, one embodiment of pri-
mary symbol unit 550 is represented. Primary symbol unit
550 may receive commands and data (e.g. data frames) from
input FIFO queues 850, 1150 as they are placed there by
segmentation unit 520 or document scope unit 560 and
output commands and associated data to output FIFO queues
1070 and 1060.

[0063] Primary symbol unit 550 may process symbols
received from segmentation unit 520 and check to see if the
symbols are valid, and may access a data structure in
memory 270 to check to see if the symbol is in the data

Jun. 14, 2007

structure. If the symbol is recognized (e.g. in the data
structure), primary symbol unit 550 may append a prefix to
an associated symbol identifier to associate the symbol with
a particular scope or namespace and store this identifier and
symbol in a data structure in memory 270. If the symbol is
not recognized (e.g. not in a data structure in memory 270)
or a data structure referencing these symbols does not exist
in memory 270, the primary symbol unit 550 may create a
unique identifier for the symbol (which may include a prefix
designating the scope or namespace associated with the
symbol), create a data structure in memory 270 to store this
symbol data if one does not yet exist, and store the identifier
and the associated symbol to the data structure in memory
270.

[0064] To assist in these processes, the data path 1020 of
primary symbol unit 550 may have specialized hardware
operable to perform range checking for characters of a
symbol and a hash key generators such that a hash value can
be generated from a symbol and used for rapidly generating
a unique identifier for the symbol or for quickly searching
for a symbol in a table in memory 270.

[0065] During operation, primary symbol unit 520 may
desire to resolve the scope or namespace of a symbol. To
accomplish this task, primary symbol unit 520 may place a
command and associated data in output FIFO queue 1060
(i.e. the input FIFO queue 1060 for document scope unit
560), such that document scope unit 560 (elaborated on in
more detail below) receives the command and data, process
the data according to the command, and returns the desired
scope or namespace information to primary symbol unit 550
through a command and associated data placed into input
FIFO queue of primary symbol unit 550.

[0066] Moving to FIG. 8, one embodiment of secondary
symbol unit 540 is represented. Secondary symbol unit 540
may receive commands and data (e.g. data frames compris-
ing a symbol) from input FIFO queues 840, 1240, as they are
placed there by segmentation unit 520 or document scope
unit 560, and output commands and associated data to output
FIFO queues 1170 or 1160.

[0067] Secondary symbol unit 540 may process the sym-
bols received from segmentation unit 520. This processing
may be accomplished by segmenting received symbols
according to data type and routing these symbols for pro-
cessing according to their type. To accomplish this segmen-
tation and processing, secondary symbol unit 540 may
comprise secondary segmentation unit 1110, symbol pro-
cessing unit 1120 and text unit 1130, each of may have a
substantially similar architecture, and operate substantially
similarly to segmentation unit 520, primary symbol unit 550
and text unit 530, respectively. Thus, secondary symbol unit
540 may receive a command and associated data from
segmentation unit 520 through input FIFO queue 840. This
data may be classified by secondary segmentation unit 1110
and routed to text unit 1130 or symbol unit 1120 based upon
the type of the data. Symbol unit 1120 or text unit 1130 can
then process the data accordingly.

[0068] Thus, for secondary symbols, macro and character
identification and replacement may be performed by sec-
ondary symbol unit 540 and one or more index structures
accessed or constructed in memory 270 comprising unique
identifiers for these secondary symbols. Furthermore, pro-
cessing directives contained in a structured document, such
as parse directives may be identified and routed accordingly.

US 2007/0136698 Al

[0069] Secondary table unit 1140 may operate substan-
tially similarly to table manager unit 570 (elaborated on in
more detail below), to construct one or more data structures
in memory 270 which represent a portion of the structure of
the structured document being processed, for example a
subtree of a structured document where the root node of the
subtree is a secondary symbol.

[0070] As discussed above, both secondary symbol unit
540 and primary symbol unit 550 may interface with docu-
ment scope unit 560 to obtain scope or namespace informa-
tion for one or more pieces of data. FIG. 9 depicts one
embodiment of a document scope unit 560. Document scope
unit 560 may receive a command and associated data from
secondary symbol unit 540 or primary symbol unit 550
through input FIFO queues 1170 or 1070, respectively.
These commands may be executable to locate data relating
to the scope or namespace of the data. Document scope unit
560 may then process the data to obtain the scope or
namespace information and return this scope or namespace
information to the respective requestor (e.g. the primary
symbol unit 550 or secondary symbol unit 540). Addition-
ally, scope or namespace information, such as unique iden-
tifiers for different scope, may be forwarded to table manger
unit 570 through output FIFO queue 1270, such that table
manager unit 570 has access to these scope identifiers. To
locate the scope or namespace information associated with
a symbol, document scope unit 560 may build or access data
structures comprising namespaces, and prefixes associated
with those namespaces, in memory 270. Additionally, docu-
ment scope unit 560 may maintain a scope stack for keeping
track of a current scope.

[0071] Data produced by each of text unit 530, primary
symbol unit 550, secondary symbol unit 540 and document
scope unit 560 may be utilized by table manager unit 570 to
build a data structure in memory representing the structure
of' a document and identify document data for applications
or other hardware components concurrently with the build-
ing of this data structure in memory 270.

[0072] One embodiment of a table manager unit is
depicted in FIG. 10. Specifically, table manager unit 570
may receive commands and associated data from each of
text unit 530, primary symbol unit 550, secondary symbol
unit 540 and document scope unit 560 through, respectively,
input FIFO queues 970, 1070, 1170 or 1270. Concentrator
1310 may receive one or more of these commands and
associated data and order these commands appropriately for
processing by data path 1320. Data path 1320 may be
optimized for processing these commands to create a data
structure in memory, each entry in this data structure cor-
responding or associated with data of the structured docu-
ment such that the data structure reflects the structure of the
structured document. Concurrently with the construction of
the data structure in memory 270, table manager unit 570
may identify data of the structured document with semantic
meaning to applications or other hardware by this data in
output FIFO queue 1330.

[0073] While it should be understood that embodiments of
the present invention may be applied with respect to almost
any structured document (e.g. a document having a defined
structure that can be used to interpret the content) whether
the content is highly structured (such as an XML document,
Hypertext Markup Language (HTML) document, .pdf docu-

Jun. 14, 2007

ment, word processing document, database, etc.) or loosely
structured (such as a plain text document whose structure
may be, e.g., a stream of characters), it may be useful to
illustrate one particular embodiment of a parser in conjunc-
tion with an architecture for transforming XML or other
structured documents utilizing a set of transformation
instructions for the XML document (e.g. a stylesheet). While
this illustration of the uses of one embodiment of a parser
such as that described herein may helpful it will be apparent
that, as discussed above, embodiments of a parser may be
utilized in a wide variety of other architectures and may be
applied to parse structured document with or without the use
of transformation instructions or pre-generated data struc-
tures, etc.

[0074] Attention is now directed to an architecture for the
efficient transformation or processing of structured docu-
ments in which an embodiment of a parser may be utilized.
Embodiments of the architecture may comprise an embodi-
ment of the aforementioned parser along with other logical
components including a pattern expression processor, a
transformation engine and an output generator, one or more
of which may be implemented in hardware circuitry, for
example a hardware processing device such as an Applica-
tion Specific Integrated Circuit (ASIC) which comprises all
the above mentioned logical components.

[0075] More particularly, transformation instructions may
be compiled to generate instruction code and a set of data
structures. The parser parses the structured document asso-
ciated with the transformation instructions to generate struc-
tures representative of the structured document. The pattern
expression processor (PEP) identifies data in the structured
document corresponding to definitions in the transformation
instructions. The transformation engine transforms the
parsed document according to the transformation instruc-
tions and the output generator assembles this transformed
data into an output document.

[0076] Turning to FIG. 11, a block diagram for the trans-
formation of structured documents using embodiments of
the present invention is depicted. A structured document
may be received at a web service 112 from a variety of
sources such as a file server, database, internet connection,
etc. Additionally, a set of transformation instructions, for
example an XSLT stylesheet, may also be received. Docu-
ment processor 210 may apply the transformation instruc-
tions to the structured document to generate an output
document which may be returned to the requesting web
service 112, which may, in turn, pass the output document to
the requester.

[0077] In one embodiment, compiler 220, which may
comprise software (i.e. a plurality of instructions) executed
on one or more processors (e.g. distinct from document
processor 210) may be used to compile the transformation
instructions to generate data structures and instruction code
in memory 270 for use by document processor 210. Docu-
ment processor 210 may be one or more ASICs operable to
utilize the data structures and instruction code generated by
compiler 220 to generate an output document.

[0078] FIG. 12 depicts a block diagram of one embodi-
ment of an architecture for a document processor operable to
produce an output document from a structured document.
Document processor 210 comprises Host Interface Unit
(HIU) 310, Parser 320, PEP 330, Transformation Engine

US 2007/0136698 Al

(TE) 340, Output Generator (OG) 350, each of which is
coupled to memory interface 360, to Local Command Bus
(LCB) 380 and, in some embodiments, to one another
through signal lines or shared memory 270 (e.g. a source
unit may write information to be communicated to a desti-
nation unit to the shared memory and the destination unit
may read the information from the shared memory), or both.
Shared memory 270 may be any type of storage known in
the art, such as RAM, cache memory, hard-disk drives, tape
devices, etc.

[0079] HIU 310 may serve to couple document processor
210 to one or more host processors (not shown). This
coupling may be accomplished, for example, using a periph-
eral component interconnect express (PCI-X) bus. HIU 310
also may provide an Applications Programming Interface
(API) through which document processor 210 can receive
jobs. Additionally, HIU 310 may interface with LCB 380
such that various tasks associated with these jobs may be
communicated to components of document processor 210.

[0080] In one embodiment, these jobs may comprise con-
text data, including a structured document, data structures,
and instruction code generated from transformation instruc-
tions by the compiler. Thus, the API may allow the context
data to be passed directly to HIU 310, or, in other embodi-
ments, may allow references to one or more locations in
shared memory 270 where context data may be located to be
provided to HIU 310. HIU 310 may maintain a table of the
various jobs received through this API and direct the pro-
cessing of these jobs by document processor 210. By allow-
ing multiple jobs to be maintained by HIU 310, these jobs
may be substantially simultaneously processed (e.g. pro-
cessed in parallel) by document processor 210, allowing
document processor 210 to be more efficiently utilized (e.g.
higher throughput of jobs and lower latency).

[0081] Parser 320 may receive and parse a structured
document, identifying data in the structured document for
PEP 330 and generating data structures comprising data
from the structured document by, for example, creating data
structures in shared memory 270 for use by TE 340 or OG
350.

[0082] PEP 330 receives data from parser 320 identifying
data of the structured document being processed and com-
pares data identified by the parser 320 against expressions
identified in the transformation instructions. PEP 330 may
also create one or more data structures in shared memory
270, where the data structures comprises a list of data in the
structured document which match expressions.

[0083] Transformation engine 340 may access the data
structures built by parser 320 and PEP 330 and execute
instruction code generated by compiler 220 and stored in
memory 270 to generate results for the output document. In
some embodiments, one or more instructions of the instruc-
tion code generated by compiler 220 may be operable to be
independently executed (e.g. execution of one instruction
does not depend directly on the result of the output of the
execution of another instruction), and thus execution of the
instruction code by transformation engine 340 may occur in
substantially any order.

[0084] Output generator 350 may assemble the results
generated by transformation engine 340 in an order specified
by the transformation instructions and may write the output

Jun. 14, 2007

document to shared memory 270. The output document may
then be provided to the initiating web service 112 through
HIU 310, for example, by signaling the web service 112 or
a host processor that the job is complete and providing a
reference to a location in memory 270 where an output
document exists.

[0085] Moving now to FIG. 13, an example application of
one embodiment of the present invention to an XML docu-
ment and an XSLT stylesheet is illustrated. It is noted that,
while the description herein may include examples in which
transformation instructions are applied to a single source
document, other examples may include applying multiple
sets of transformation instructions to a source document
(either concurrently or serially, as desired) or applying a set
of transformation instructions to multiple source documents
(either concurrently with context switching or serially, as
desired). Generally, an XML document is a structured docu-
ment which has a hierarchical tree structure, where the root
of the tree identifies the document as a whole and each other
node in the document is a descendent of the root. Various
elements, attributes, and document content form the nodes
of the tree. The elements define the structure of the content
that the elements contain. Each element has an element
name, and the element delimits content using a start tag and
an end tag that each include the element name. An element
may have other elements as sub-elements, which may fur-
ther define the structure of the content. Additionally, ele-
ments may include attributes (included in the start tag,
following the element name), which are name/value pairs
that provide further information about the element or the
structure of the element content. XML documents may also
include processing instructions that are to be passed to the
application reading the XML document, comments, etc.

[0086] An XSLT stylesheet is a set of transformation
instructions which may be viewed as a set of templates. Each
template may include: (i) an expression that identifies nodes
in a document’s tree structure; and (ii) a body that specifies
a corresponding portion of an output document’s structure
for nodes of the source document identified by the expres-
sion. Applying a stylesheet to a source document may
comprise attempting to find a matching template for one or
more nodes in the source document, and instantiating the
structures corresponding to the body of the matching tem-
plate in an output document.

[0087] The body of a template may include one or more
of: (i) literal content to be instantiated in the output docu-
ment; (i) instructions for selection of content from the
matching nodes to be copied into the output document; and
(iii) statements that are to be evaluated, with the result of the
statements being instantiated in the output document.
Together, the content to be instantiated and the statements to
be evaluated may be referred to as “actions” to be performed
on the nodes that match the template.

[0088] The body of a template may include one or more
“apply templates™ statements, which include an expression
for selecting one or more nodes and causing the templates in
the stylesheet to be applied to the selected nodes, thus
effectively nesting the templates. If a match to the apply
templates statement is found, the resulting template is
instantiated within the instantiation of the template that
includes the apply templates statement. Other statements in

US 2007/0136698 Al

the body of the template may also include expressions to be
matched against nodes (and the statements may be evaluated
on the matching nodes).

[0089] The expressions used in a stylesheet may generally
comprise node identifiers and/or values of nodes, along with
operators on the node identifiers to specify parent/child (or
ancestor/descendant) relationships among the node identifi-
ers and/or values. Expressions may also include predicates,
which may be extra condition(s) for matching a node. A
predicate is an expression that is evaluated with the associ-
ated node as the context node (defined below), where the
result of the expression is either true (and the node may
match the expression node) or false (and the node does not
match the expression). Thus, an expression may be viewed
as a tree of nodes to be matched against a document’s tree.

[0090] A given document node may satisfy an expression
if the given document node is selected via evaluation of the
expression. That is, the expression node identifiers in the
expression match the given document node’s identifier or
document node identifiers having the same relationship to
the given document node as specified in the expression, and
any values used in the expression are equal to corresponding
values related to the given document node.

[0091] A document node may also be referred to as a
“matching node” for a given expression if the node satisfies
the given expression. In some cases in the remainder of this
discussion, it may be helpful for clarity to distinguish nodes
in expression trees from nodes in a structured document.
Thus, a node may be referred to as an “expression node” if
the node is part of an expression tree, and a node may be
referred to as a “document node” if the node is part of the
document being processed. A node identifier may comprise
a name (e.g. element name, attribute name, etc.) or may
comprise an expression construct that identifies a node by
type (e.g. a node test expression may match any node, or a
text test expression may match any text node). In some
cases, a name may belong to a specific namespace. In such
cases, the node identifier may be a name associated with a
namespace. In XML, the namespace provides a method of
qualifying element and attribute names by associating them
with namespace names. Thus, the node identifier may be the
qualified name (the optional namespace prefix, followed by
a colon, followed by the name). A name, as used herein (e.g.
element name, attribute name, etc.) may include a qualified
name. Again, while XSLT stylesheets may be used in one
example herein of transformation instructions, generally a
“transformation instructions” may comprise any specifica-
tion for transforming a source document to an output docu-
ment, which may encompass, for example, statements
indented to identify data of the source document or state-
ments for how to transform data of the source document. The
source and output documents may be in the same language
(e.g. the source and output documents may be different XML
vocabularies), or may differ (e.g. XML to pdf, etc.).

[0092] Referring still to FIG. 13, an XML document and
an associated XSL stylesheet may be received by web
service 112. Web service 112 may invoke embodiments of
the present invention to transform the received document
according to the received stylesheet. More specifically, in
one embodiment, compiler 220 may be used to compile the
XSL stylesheet to generate data structures and instruction
code for use by document processor 210. Compiler 220 may

Jun. 14, 2007

assign serial numbers to node identifiers in the stylesheet so
that expression evaluation may be performed by document
processor 210 by comparing numbers, rather than node
identifiers (which would involve character string compari-
sons).

[0093] Compiler 220 may also store a mapping of these
node identifiers to serial numbers in one or more symbol
tables 410 in memory 270. Additionally, compiler 220 may
extract the expressions from the stylesheet and generate
expression tree data structures in memory 270 to be used by
the document processor 210 for expression matching (e.g.
one or more parse-time expression trees 420 comprising
expression nodes). Still further, compiler 220 may generate
an instruction table 430 in memory 270 with instructions to
be executed for one or more matching expressions. The
instructions in the instruction table 430, when executed by
document processor 210, may result in performing the
actions defined when an expression associated with the
instruction is matched. In some embodiments, the instruc-
tions may comprise the actions to be performed (i.e. there
may be a one-to-one correspondence between instructions
and actions). The compiler may also generate whitespace
tables 440 defining how various types of whitespace in the
source document are to be treated (e.g. preserved, stripped,
etc.), an expression list table 450, a template list table 460
and one or more DTD tables 462 to map entity references to
values or specify default values for attributes.

[0094] At this point, processing of the source document by
document processor 210 may begin. Parser 320 receives the
structured document and accesses the symbol tables 410,
whitespace tables 440, or DTD tables 462 in memory 470 to
parse the structured document, identify document nodes, and
generate events (e.g. to identify document nodes parsed
from the document) to PEP 330. More particularly, parser
320 converts node identifiers in the source document to
corresponding serial numbers in the symbol tables 410, and
transmits these serial numbers as part of the events to the
PEP 330. Additionally, parser 320 may generate a parsed
document tree 470 representing the structure of the source
document in memory. Nodes of the parsed document tree
may reference corresponding values stored in one or more
parsed content tables 472 created in memory by parser 320.

[0095] PEP 330 receives events from the parser 320 and
compares identified document nodes (e.g. based on their
serial numbers) against parse-time expression tree(s) 420 in
memory 270. Matching document nodes are identified and
recorded in template or expression match lists 480 in
memory 270.

[0096] Transformation engine 340 accesses the template
or expression match lists 480, the parsed document tree 470,
the parsed content tables 472 or the instruction table 430.
The transformation engine 340 executes instructions from
the instruction table 430 in memory 270. These instructions
may be associated with one or more expressions. Transfor-
mation engine 340 may execute the instructions on each of
the document nodes that matches the expression associated
with the expression. Transformation engine 340 may store
the results of the execution of these instructions in one or
more tables in memory and forwards references to these
results to output generator 350.

[0097] Output generator 350 may access form output
tables 490 from these references to construct an output

US 2007/0136698 Al

document. In some embodiments, output generator 350 may
access a set of formatting parameters for the assembly of the
output document. After the output document is assembled
the output document may be returned to the proper web
service 112.

[0098] In one embodiment, a host may provide a source
document as it is received or accessed and the parser 320
may transmit events to the PEP 330 as they are generated, as
well. That is, as the portions of the source document are
received by the host, the host passes the portion of the
document to the parser 320 (e.g. through the HIU 310). The
parser 320 may thus begin parsing prior to the host receiving
the entirety of the source document. Similarly, events are
passed to the PEP 330 as they are identified or generated,
allowing PEP 330 to process these events before parser 320
has completed the processing of the source document(s).

[0099] Since parser 320 may process source documents as
they are presented (i.e. without having to have the entire
document present before processing may begin), the
throughput of parser 320 may be maximized and latency
minimized. During the processing of these structured docu-
ments, parser 320 may operate to create and organize data
structures in memory for efficient parallelized data process-
ing by downstream logical components PEP 330, transfor-
mation engine 340 or output generator 350 of processor 210.

[0100] The operation of the particular embodiment of
parser 320 for use with document processor 210 may be
elaborated on again with reference to FIG. 5. Formatter unit
510 may retrieve commands from input FIFO 710 and,
subsequently, as data is received from host unit 310, process
this data such that the received data is transcoded from its
original format into an internal format.

[0101] As itis processed this transcoded data may then be
placed in output FIFO queue 730 with one or more com-
mands for segmentation unit 520. Segmentation unit 520
may receive data and commands from input FIFO queue 730
as they are placed there by formatter unit 510, and output
commands and associated data to one or more output FIFO
queues 830, 840 or 850 depending on the type of data
associated with the command.

[0102] More specifically, segmentation unit 520 may scan
the incoming data and strip the markup and separators from
the incoming data stream. The incoming data stream of the
XML document may then be grouped into frames, each
frame comprising a text string or a symbol, and each data
frame routed by router 822 to a logical processing unit 530,
540, 550 operable to process the data type of the frame.

[0103] Additionally, segmentation unit 520 may augment
the data of a data frame. For example, segmentation unit 520
may perform entity substitution for entities or macros of a
data frame by accessing a DTD table 462 to determine if an
entity or macro is defined and, if it is, substituting that
definition for the entity or macro in the data, or may access
whitespace table 440 to determine how whitespace within
the framed data is to be dealt with (e.g. stripped or pre-
served).

[0104] Thus, each of the commands and associated data
placed in output FIFO queues 830, 840 or 850 by segmen-
tation unit 520 may comprise one or more commands
framing a particular type of data (which may have been
augmented), Text unit 530 may receive commands and

Jun. 14, 2007

framed string data from input FIFO queue 830. More
specifically, a command and associated data received at text
unit 530 may comprise a command to process a string while
the data may comprise the string itself. Text unit 530
processes the string in order to classify the string (e.g.
comment, whitespace, etc.). Text unit 530 may access or
build a parsed content table 472 (e.g. an element index table
or element name/value table) in memory 270 with a string
and an associated type of the string. In one embodiment, text
unit may build, access or create a table in memory 270 for
each type of string classification, thus one table may be built
for whitespace, another may be built for comments, etc. Text
unit 530 may then place one or more commands and an
associated reference (such as a pointer) to a string in output
FIFO queue 970.

[0105] Primary symbol unit 550 may process the symbols
received from segmentation unit 520 and check to see if the
symbols are valid, and may access a symbol table 410 in
memory 270 to check to see if the symbol is recognized. If
the symbol is recognized primary symbol unit 550 may
append a prefix to an associated symbol identifier to asso-
ciate the symbol with a particular scope or namespace and
store this identifier and symbol to a parsed content table 472
such as an element index table or element name/value table.
If the symbol is not recognized (e.g. not in a symbol table
410 in memory 270) primary symbol unit 550 may create a
unique identifier for the symbol (which may include a prefix
designating the scope or namespace associated with the
symbol) and store this identifier and the associated symbol
to a symbol table 410 in memory 270.

[0106] Secondary symbol unit 540 may receive com-
mands and data (e.g. data frames comprising a symbol) from
input FIFO queues 840, 1240, as they are placed there by
segmentation unit 520 or document scope unit 560, and
output commands and associated data to output FIFO queues
1170 or 1160. As elaborated on above, secondary symbol
unit 540 may comprise secondary segmentation unit 1110,
symbol processing unit 1120 and text unit 1130, each of may
have a substantially similar architecture, and operate sub-
stantially similarly to segmentation unit 520, primary sym-
bol unit 550 and text unit 530, respectively. Thus, for
secondary symbols macro and character identification and
replacement may be performed by secondary symbol unit
540 and one or more parsed content table 472 (e.g. an
element index table or element name/value table) accessed
or constructed in memory 270 comprising unique identifiers
for these secondary symbols. Furthermore, processing direc-
tives contained in the structured document, such as parse
directives may be identified and routed accordingly.

[0107] Secondary table unit 1140 may operate substan-
tially similarly to table manager unit 570 (as elaborated on
above), to construct one or more data structures which
represent a portion of the structure of the structured docu-
ment being processed, for example a subtree of the struc-
tured document where the root node of the subtree is a
secondary symbol.

[0108] Results produced by each of text unit 530, primary
symbol unit 550, secondary symbol unit 540 and document
scope unit 560 may be utilized by table manager unit 570 to
build a data structure in memory representing the structure
of' a document and identify node information (e.g. events)
for PEP 330 concurrently with the building of the data
structure in memory 270.

US 2007/0136698 Al

[0109] Specifically, table manager unit 570 may receive
commands and associated data from each of text unit 530,
primary symbol unit 550, secondary symbol unit 540 and
document scope unit 560 through, respectively, input FIFO
queues 970, 1070, 1170 or 1270. Table manager unit may
construct a parsed content table 472 reflecting the structure
of the XML document, where each entry in this parsed
content table 472 corresponds to a node of the XML
document and comprises a node record with pointers or
references to one or more entries in other parsed content
tables 472 comprising information on the node, and order
information such as references to parent nodes and child
nodes such that the parsed content table 472 reflects the
structure of the structured document. Concurrently with the
construction of this data structure in memory 270, table
manager unit 570 may identify node information (e.g.
events) for PEP 330 by placing commands and associated
data in output FIFO queue 1330.

[0110] In the foregoing specification, the invention has
been described with reference to specific embodiments.
However, one of ordinary skill in the art appreciates that
various modifications and changes can be made without
departing from the scope of the invention as set forth in the
claims below. Accordingly, the specification and figures are
to be regarded in an illustrative rather than a restrictive
sense, and all such modifications are intended to be included
within the scope of invention. For example, it will be
apparent to those of skill in the art that although the present
invention has been described with respect to a protocol
controller in a routing device the inventions and method-
ologies described herein may be applied in any context
which requires the determination of the protocol of a bit
stream.

[0111] Benefits, other advantages, and solutions to prob-
lems have been described above with regard to specific
embodiments. However, the benefits, advantages, solutions
to problems, and any component(s) that may cause any
benefit, advantage, or solution to occur or become more
pronounced are not to be construed as a critical, required, or
essential feature or component of any or all the claims.

What is claimed is:
1. An apparatus, comprising

a parser hardware circuit operable to receive a structured
document, and parse the structured document to create
a set of data structures, wherein the set of data struc-
tures are representative of the structured document.

2. The apparatus of claim 1, wherein the parser hardware
circuit is operable to parse the structured document and
create the set of data structures substantially simultaneously.

3. The apparatus of claim 2, wherein the parser hardware
circuit comprises a formatter circuit operable to encode the
structured document in an internal format.

4. The apparatus of claim 3, wherein the parser hardware
circuit comprises a segmentation unit operable to segment
the structured document into a set of data frames and route
each data frame according to one of a set of data types
associated with each data frame, wherein each data frame is
routed to one of a set of hardware circuits operable to
process one of the set of data types.

5. The apparatus of claim 4, wherein each of the data
frames is associated with a first command

Jun. 14, 2007

6. The apparatus of claim 5, wherein the parser circuit
comprises the set of hardware circuits and the set of hard-
ware circuits comprises a text circuit, a primary symbol
circuit and a secondary symbol circuit, each of the hardware
circuits operable to execute the first command in conjunc-
tion with the associated data frame.

7. The apparatus of claim 6, wherein the parser circuit
comprises a document scope circuit operable to execute the
second command to associate an order with a data frame.

8. The apparatus of claim 6, wherein the parser circuit
comprises a table manager circuit operable to construct the
set of data structures representative of the structured docu-
ment.

9. A system, comprising:

a compiler operable to generate a first set of data struc-
tures from a set of transformation instructions corre-
sponding to a structured document; and

a parser hardware circuit operable to receive the struc-
tured document, and parse the structured document,
utilizing the first set of data structures, to create a
second set of data structures, wherein the second set of
data structures are representative of the structured
document.

10. The system of claim 9, wherein the parser hardware
circuit is operable to parse the structured document and
create the second set of data structures substantially simul-
taneously.

11. The system of claim 10, wherein the parser is operable
to generate a set of events associated with data of the
structured document substantially simultaneously with the
parsing of the structured document and the creation of the
second set of data structures.

12. The system of claim 11, comprising a pattern expres-
sion processor circuit operable to create a third set of data
structures based on the set of events, wherein the creation of
the third set of data occurs substantially simultaneously with
the parsing of the structured document and the creation of
the second set of data structures.

13. The system of claim 12, wherein the parser circuit
comprises a table manager circuit operable to construct the
second set of data structures representative of the structured
document and generate the set of events.

14. The system of claim 13, wherein the compiler is
operable to create a set of instructions.

15. The system of claim 14, comprising a transformation
engine circuit operable to access the first set of data struc-
tures, the second set of data structures or the third set of data
structures to execute the set of instructions to transform the
structured document according to the transformation
instructions.

16. A method, comprising:

segmenting a received structured document into a set of
data frames; and

processing the data frames based on one of a set of types
associated with each data frame to create a first set of
data structures representative of the structured docu-
ment, wherein segmenting the structured document and
processing the set of data frames occurs substantially
simultaneously with the document being received.
17. The method of claim 16, wherein processing the set of
data frames and creating the first set of data structures occurs
substantially simultaneously.

US 2007/0136698 Al

18. The method of claim 17, comprising encoding the
structured document in an internal format.

19. The method of claim 18, wherein the set of types
comprise text, primary symbols and secondary symbols.

20. The method of claim 19, comprising associating an
order with one or more of the data frames.

21. The method of claim 20, comprising generating a set
of events associated with data of the structured document
substantially simultaneously with the parsing of the struc-

Jun. 14, 2007

tured document and the creation of the second set of data
structures.

22. The method of claim 21, wherein processing the set of
data frames utilizes a second set of data structures.

23. The method of claim 22, wherein the second set of
data structures was generated by a compiling a set of
transformation instructions corresponding to the structured
document.

