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(57) ABSTRACT 
A method and system are disclosed for operating a high speed 
data stream management system which runs a query plan 
including a set of queries on a data feed in the form of a stream 
of tuples. A predicate prefilteris placed outside the query plan 
upstream of the set of queries, and includes predicates 
selected from those used by the queries. Predicates are 
selected for inclusion in the prefilter based on a cost heuristic, 
and predicates are combined into composites using a rect 
angle mapping heuristic. The prefilter evaluates the presence 
of individual and composite predicates in the tuples and 
returns a bit vector for each tuple with bits representing the 
presence or absence of predicates in the tuple. A bit signature 
is assigned to each query to represent the predicates related to 
that query, and a query is invoked when the tuple bit vector 
and the query bit signature are compatible. 
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EFFICIENT PREDICATE PREFILTER FOR 
HIGH SPEED DATA ANALYSIS 

FIELD OF THE INVENTION 

The present invention generally relates to high speed data 
analysis, and more particularly to a system and method for 
organizing the operations that are performed in a query set to 
be run on a high speed stream of data. 

BACKGROUND OF THE INVENTION 

A data stream is a continuous sequence of items, generated 
at a possibly high rate and usually modeled as relational 
tuples. A tuple is an ordered list of objects or attributes, such 
as those found in a data packet. A Data Stream Management 
System (DSMS) monitors the incoming data and evaluates 
streaming queries, which are usually expressed in a high-level 
language with SQL-like syntax. Streaming queries usually 
constitute an infrequently changed set of queries that run over 
a period of time, processing new tuple arrivals on-the-fly and 
periodically computing up-to-date results over recently 
arrived data. An example of such a data stream is the stream of 
packets transmitted in a Gigabit Ethernet communications 
network. An example of a DSMS is the AT&T Gigascope 
processing architecture. The work performed by a DSMS can 
vary, but for instance, a DSMS may intercept a stream of IP 
packets and compute queries such as: "every five minutes, 
return the bandwidth consumed by selected users, applica 
tions, or protocols over the most recent five-minute window'. 
Results may be used for intrusion detection, performance 
tuning, troubleshooting, and user billing. 
An important and challenging application of DSMSS 

involves monitoring high Volume (Gigabytes per second) net 
work traffic in near real-time. It is not practical to store a 
massive data stream locally; therefore there will be perma 
nent data loss if a DSMS cannot keep up with the inputs. In 
one example, a high speed DAG4.3GE Gigabit Ethernet inter 
face receives approximately 105,000 packets per second 
(about 400 Mbits per second). 
Thus there is a need to provide query processing that can be 

performed with high throughput, so that near real time pro 
cessing can occur, without data loss, on a Sufficiently large set 
of queries. 

Given that complex stream analyses are often expressed as 
combinations of simpler pieces, a DSMS workload consists 
of sets of streaming queries Submitted at the same time. 
Therefore, there exists an opportunity to analyze the queries 
before they start running and to organize them in ways that 
enhance throughput. 

Predicate pushdown is a known query optimization tech 
nique. 
One form of predicate pushdown known to the prior art is 

to identify overlapping parts of queries that would otherwise 
be re-executed redundantly, and to execute such parts 
once—a process generally known as multi-query optimiza 
tion. Such overlapping parts are common in network analysis. 
For instance, all queries over TCP traffic contain the predicate 
protocol=TCP in their WHERE clauses. Multi-query optimi 
Zation as presently practiced is based on selectivity estimates, 
i.e., predictions of the effect an overlapping query will have 
on Subsequent query processing, that are used to determine 
which overlapping parts to execute. Selectivity estimates, 
however, are problematic in much network analysis because 
data stream composition varies over time. 

Another way to increase throughput is by early data reduc 
tion. For instance, the AT&T Gigascope DSMS divides each 
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2 
query plan into a low-level and high-level component, 
denoted LFTA and HFTA, respectively. (FTA stands for fil 
tering-transformation-aggregation, and an arrangement for 
executing FTAs on a data stream is disclosed in U.S. Pat. No. 
7,165,100B2.) An LFTA evaluates fast operators over the raw 
stream, and includes operators such as projection, simple 
selection, and partial group-by-aggregation using a fixed-size 
hash table. Early filtering and pre-aggregation by the LFTAS 
are crucial in reducing the data volume fed to the HFTAs. 
which execute complex operators (e.g., expensive predicates, 
user-defined functions, and joins) and complete the aggrega 
tion. This two-tier architecture, as shown in FIG. 1A, has 
greatly contributed to the Gigascope's efficiency and Success 
ful deployment on high-speed links throughout AT&T's net 
work. 

Other prior art techniques for increasing throughput exist. 
One Such technique, known as predicate caching, involves 
storing the result of a complex operator that will be used by 
several queries so that complex operations will not have to be 
repeated. 

Another prior art technique is the use of predicate indices, 
which are used by publish/subscribe systems. However, 
predicate indices are only useful when there are thousands of 
predicates on a particular attribute, a property not typically 
found in the query sets used in network analysis. In the 
publish-subscribe model, hundreds of events per second are 
processed against millions of Subscriptions. Moreover, it is 
assumed that the Subscription set contains Subsets of many 
similar predicates over the same attribute; e.g., simple predi 
cates of the formattribute op constant, withope {-, <, >} and 
constant 6 N. Predicate indexing is used to narrow down the 
set of possibly matching Subscriptions. In contrast, a high 
performance DSMS may process millions of tuples per sec 
ond against hundreds of queries. Thus, the number of queries 
that could match a new tuple is already reasonably Small and 
large Subsets of similar predicates over the same attribute are 
less common. While predicate indexing might still be used in 
a DSMS if justified by the workload, additional issues arise 
due to the massive data rates encountered by predicates 
pushed all the way down to the raw stream. 

These approaches to increasing data throughput, while 
effective to a certain degree, are not as fully able as desired to 
handle high data rates with Substantial numbers of queries 
under the processing restraints necessitated by real time pro 
cessing of streaming data at high rates. In many cases, the 
processor cost (meaning the number of operations the pro 
cessor must perform in order to complete the queries, which 
correlates to processing time, processing rates and hardware 
cost) for these approaches is unacceptably high. 

Accordingly, there is a need to provide a method for pro 
cessing query sets on data streaming at high rates while reduc 
ing processor utilization cost. There is a further need to pro 
vide a data stream management system that is able to process 
query sets on data streaming at high rates without excessive 
processor cost. 

BRIEF SUMMARY OF THE INVENTION 

Briefly, the present invention is a method and system for 
prefiltering data streams in a data stream management system 
that processes sets of queries on data streams. 
The method includes providing a prefilter in which, in one 

aspect, predicates are selected from among those present in 
the queries and evaluated on tuples before the queries are run. 
In an exemplary embodiment, a tuple has the selected predi 
cates evaluated in the prefilter and the evaluation outcomes 
are entered into a bit map or vector. The queries are assigned 



US 8,051,069 B2 
3 

bit signatures to correspond to the predicates in the query. The 
queries are run on the tuple only if the query bit signature has 
matches in the tuple bit vector. 

In another aspect of the invention, predicates are selected 
for the prefilter by identifying all the predicates in the query 
set, determining a predicate cost threshold C and including 
those predicates in the prefilter that are below the cost thresh 
old C. In a further aspect of the invention, the predicates 
selected as below the cost threshold C are combined in a 
multi-query optimization step to avoid repeated execution of 
the same predicate. Predicates are combined in a method that 
includes creating a matrix representation of predicates in 
queries, and Solving a graph-covering problem on the matrix, 
thereby minimizing the number of bits needed to represent 
the predicates present in the queries. In another aspect of the 
invention, predicates are combined using an efficient rect 
angle covering heuristic. 

In another aspect of the invention, there may be a hardware 
dependent limit on the number of bits available to use in the 
prefilter and the query signatures, i.e., the “bit budget' will be 
constrained. For instance, a 64-bit processor can perform 
efficient operations on up to 64 bits using one register-com 
pare. Furthermore, in Some cases, a query may be installed 
directly on a network interface card of the GigaScope host 
machine. If so, then the bit budget may be even smaller to 
reflect the limited processing capabilities of network hard 
ware, e.g., 16 bits. In Such instances, the invention provides 
that the prefilter will be populated with combined predicates 
and others to the extent of the available bits in the bit budget. 
A method and system in accordance with the foregoing 

features is able to perform aggressive early data reduction and 
avoid not only redundant processing of shared predicates, but 
also the high cost of query invocations on tuples with non 
shared predicates. The DSMS predicate migration heuristic 
of the present invention reduces the workload of the LFTAs 
and does not require accurate selectivity estimates. Using a 
real-life network monitoring query set, we show that the 
performance of AT&T's Gigascope DSMS is significantly 
improved by the prefilter—in one example, the expected 
number of LFTA invocations per tuple decreased from 50 to 
10 with use of the prefilter, and CPU utilization percentages 
decreased from over 80% to under 50%. These results were 
obtained with a 36 bit budget, and it was found that very large 
improvements were available with a bit budget of as little as 
10. 
These and other objects, advantages and features of the 

invention are set forth in the attached description. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The foregoing Summary of the invention, as well as the 
following detailed description of the preferred embodiments, 
is better understood when read in conjunction with the 
accompanying drawings, which are included by way of 
example and not by way of limitation with regard to the 
claimed invention: 

FIG. 1A shows an example of a DSMS architecture. 
FIG. 1B is a diagram of query processing in the DSMS 

architecture of FIG. 1. 
FIG. 2 shows an example of DSMS architecture modified 

with a prefilter according to the present invention. 
FIG. 2A is a flowchart showing a method for developing a 

prefilter according to the invention. 
FIG. 2B is a flowchart showing a method for operating a 

prefilter according to the invention in a DSMS. 
FIG. 3 is a diagram of an example of multi-query process 

ing using a prefilter according to the invention. 
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4 
FIG. 4 is a diagram illustrating an example of combining 

individual query plans into a shared prefilter. 
FIG. 5 is a diagram showing a technique for combining 

predicates according to the invention. 
FIG. 6 is a flowchart showing a method for finding rect 

angles in a matrix of predicates according to the invention. 
FIG. 7 is a diagram showing alternate minimum-sized rect 

angle coverings for the same query set. 
FIG. 8A is a flowchart showing a detailed method for 

developing a prefilter according to the invention, and FIG. 8B 
is a flowchart of a method for operating the prefilter devel 
oped according to FIG. 8A. 

FIGS. 9-13 show experimental parameters and results of a 
prefilter used in an existing DSMS, in which: 

FIG.9 is a matrix representation of the query set used in the 
experiment. 

FIG. 10 is a graph comparing the running times of the 
rectangle covering heuristic of the present invention com 
pared to an exhaustive solution. 

FIG. 11 is a graph showing the effectiveness of the rect 
angle covering heuristic. 

FIG. 12 is a graph showing LFTA invocations as a function 
of the number of bits in a prefilter bit budget. 

FIG. 13 is a graph showing CPU utilization percentages as 
a function of the number of bits in a prefilter bit budget. 

DETAILED DESCRIPTION OF THE INVENTION 

FIG. 1A shows the architecture of the prior art Gigascope 
DSMS 100, which receives a data stream S of individual 
tuples and performs a query plan P. The DSMS 100 divides 
the query plan Pinto a low-level component 110 and a high 
level component 120, denoted LFTA and HFTA, respectively. 
An LFTA query evaluates fast operators over the raw stream, 
Such as projection, simple selection, and partial group-by 
aggregation using a fixed-size hash table. Early filtering and 
pre-aggregation by the LFTAS are crucial in reducing the data 
volume fed to the HFTAs, which execute complex operators 
(e.g., expensive predicates, user-defined functions, and joins) 
and complete the aggregation. 

FIG. 1B shows an example of query processing in the 
Gigascope DSMS100 of FIG.1A. The Gigascope DSMS 100 
features a high-level query language with SQL-like syntax. 
Supported operators include projection, selection, aggrega 
tion, grouping, stream-merge, stream-join, and user-defined 
functions. The input and output of each operator (and each 
query) is a stream, which enables query composition and 
simplifies the semantics. GigaScope provides a set of schemas 
corresponding to well-known protocols, protocol layers, and 
applications (e.g., Netflow(R) records, raw packets, layer-2- 
Ethernet, IP, TCP, UDP). This allows users to reference pro 
tocol-specific or application-specific fields in their queries 
without manually specifying how to extract them from the 
data packets. 

Since streams S are unbounded, a blocking operator Such 
as aggregation would never produce any output. Aggregation 
may be unblocked by defining windows over the stream by 
way of a temporal group-by attribute. For instance, considera 
query Q1 that is to compute the bandwidth usage (i.e., the Sum 
of packet lengths) and packet count of UDP traffic for each 
Source-destination address pair. Suppose that we want to 
compute Q1 over non-overlapping windows of length one 
minute each and return answers at the end of each window. 
Assuming that the time attribute is measured in seconds, Q1 
can be written as: 
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SELECT t, srcIP, destIP, sum(length), count(*) FROM 
UDP 
WHERE protocol=UDP 
GROUP BY time? 60 ast, srcIP, destIP 

Note that Q1 references a UDP schema, therefore the 
Gigascope DSMS 100 can find the SrcIP, destIP and length 
attributes inside each UDP packet. However, the predicate 
protocol=UDP must be evaluated in the query plan because 
the reference to UDP in the FROM clause only specifies the 
packet schema; it does not automatically filter out non-UDP 
packets from the stream. 

FIG. 1B shows how Gigascope evaluates the query Q1 
along with the two other queries Q2 and Q3. For clarity, only 
the details of the LFTA and HFTA of Q1 are shown, and 
Source and destination IP address pairs are represented as 
pairs of letters <i,jd. A new tuple is placed in the ring buffer 
150 upon arrival. The Gigascope runtime system 160 then 
calls the Q1 LFTA with a pointer to the new tuple. The LFTA 
first extracts the required attributes from the raw packet 
according to the specified schema. The extracted attributes 
include those referenced in the selection predicates assigned 
for evaluation at the LFTA, the grouping columns, and the 
aggregation functions. Next, the LFTA evaluates its selection 
predicates, and, if the tuple matches the predicates, updates its 
hash table 170. The hash table has fixed size and stores partial 
aggregates for selected groups (the hashtable size of an LFTA 
can be set by the user when issuing the query). In order to 
ensure that partial aggregation is done quickly, the hash table 
cannot be very large it is typically much smaller than the 
total number of groups in the current window. Therefore, 
collisions may occur. As illustrated in FIG. 1B, the new tuple 
with source and destination addresses <c,d collides with the 
existing group <a, d. In this case, the pre-aggregated values 
of sum(length) and count() for group <a,d) are ejected from 
the hash table, placed in an output buffer (not shown) acces 
sible by the Q1 HFTA, and replaced with the values for group 
<c,dd obtained from the new tuple. The runtime system 160 
then calls the remaining LFTAS to process the new tuple. 
HFTAS are executed as separate processes scheduled asyn 
chronously by the operating system, typically with lower 
priority than the run-time-system process. 

Note that the Q1 HFTA maintains a complete aggregate 
table 180 with each group having a separate entry. The table 
is used to aggregate the partial sums and counts produced by 
the LFTA. This process is similar to Sub-aggregate and Super 
aggregate computations in data cubes. Furthermore, recall 
that Q1 is set to produce aggregates over one-minute win 
dows, therefore at the end of each minute, Q1 LFTA must 
flush its hash table 170 and propagate the partial aggregates to 
the HFTA (lazy flushing may also be performed). 

For efficiency, LFTAs are translated into C code and linked 
directly to the runtime library. They also read tuples directly 
from the raw stream without memory-copy overhead, and 
only evaluate simple operators. As already mentioned, there 
are cases when an LFTA may be executed partly or wholly on 
a network interface card. Furthermore, the GigaScope runt 
ime system 160 executes each LFTA serially inside a single 
process. Serial execution of the LFTAs avoids the complexity 
of multi-threading, eliminates the need to maintain multiple 
pointers into the ring buffer, and exploits cache locality as all 
the LFTAs process a new tuple before moving on to the next 
one. As will be understood from the description below of the 
prefilter according to the present invention, the serial execu 
tion model of the DSMS 100 easily accommodates the pre 
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6 
filter: the run-time system executes the prefilter predicates 
upon arrival of a new tuple, and invokes an LFTA only if its 
signature matches the prefilter bit vector. 
To avoid the overhead of dynamic linking, the set of LFTAs 

110 cannot be changed without stopping and re-linking the 
runtime. However, each HFTA is a separate process, therefore 
new HFTAs may be added on-the-fly and connected to the 
output streams of one or more existing LFTAS. In general, an 
HFTA can be attached to several LFTAs for instance, a join 
of two streams requires two LFTAs to read the inputs and 
evaluate simple predicates over individual streams, and an 
HFTA to compute the join and any predicates referencing 
attributes of both streams. Furthermore, multiple HFTAs can 
read the output of one LFTA. 

Splitting a set of query operators into an LFTA and an 
HFTA is a complex optimization problem. However, the split 
between LFTA and HFTA queries is transparent to the users, 
and the split attempts to execute as much of a query as pos 
sible at the LFTA in order to take advantage of early data 
reduction. 
The two-tierarchitecture of the prior art Gigascope DSMS 

100, as shown in FIG. 1A, has greatly contributed to its 
efficiency and Successful deployment on high-speed links 
throughout AT&T's network. Even so, as data streams S 
increase in speed, and query plans P introduce new queries, 
CPU capacities become strained. 

FIG. 2 shows the architecture of a DSMS 200 in accor 
dance with the present invention, which includes a query plan 
P with a two-tierarchitecture of LFTA queries 210 and HFTA 
queries 220 as described above, and in which a prefilter 230 is 
positioned outside of the query plan P and upstream of the 
LFTA queries 210 to examine tuples arriving in stream S. The 
LFTA queries 210 comprise a set of individual queries 210.1, 
210.2, etc., and the HFTA queries 220 comprise as set of 
individual queries 220.1, 220.2, etc. 
The insight behind the prefilter 230 is as follows. We 

observed that invoking a query plan component (i.e., an 
LFTA) in response to a newly arrived tuple is significantly 
more expensive than evaluation of a simple Scalar comparison 
Such as protocol=TCP. Furthermore, many queries in a large 
stream analysis query set are effectively looking for “needles 
in haystacks'. That is, they refer to a small fraction of the data; 
e.g., network traffic corresponding to a rare protocol or pack 
ets generated by aparticular application. However, to perform 
the query set we must examine the entire stream S (i.e., invoke 
at least the LFTA of each query for each newly arrived tuple) 
in order to find these valuable rare packets. Hence, we can 
reduce the performance bottleneck by pushing down a set of 
simple predicates and evaluating them immediately after a 
new tuple arrives. Then, if a pushed-down predicate belong 
ing to the i' query fails, we do not invoke the corresponding 
part of the query plan (i.e., the i' LFTA) for this tuple. More 
over, if a predicate in the pushed-down set occurs in more than 
one query, then we evaluate it only once. 
The role of the prefilter 230 in the DSMS200 illustrated in 

FIG. 2 can be explained as follows: In effect, prefilter 230 
forms an additional (shared) query plan component that: 1) 
performs data reduction earlier and more aggressively by 
eliminating a portion of LFTA 210 invocations and 2) incor 
porates multi-query optimization by avoiding repeated 
execution of the same predicate. In turn, the overall LFTA 
workload decreases, which enables DSMS 200 to handle 
higher data rates without dropping packets. While predicate 
pushdown as a general concept is known, the present inven 
tors believe that no prior arrangement has utilized a prefilter, 
as here, that implements predicate pushdown outside the 
query plan P. 
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FIG. 2A is a flowchart showing a method 300 for construct 
ing prefilter 230 in accordance with the present invention for 
use with a query plan P including a query set Such as that 
defined by the LFTA set 210. In step 310, predicates existing 
in the query set 210 are selected for inclusion in the prefilter 
using a cost test, to be described in greater detail below. In 
step 320, predicates selected in step 310 and appearing in 
more than one query are combined into composite predicates 
using a rectangle covering heuristic, to be described in greater 
detail below. 

If the bit budget allowed by the processing hardware in the 
DSMS 200 is less than the total number of individual and 
composite predicates remaining after predicates have been 
combined in step 320, then steps 330 and 340 are performed. 
In step 330, the individual and composite predicates are 
assigned a priority. In step 340, the predicates are added to the 
prefilter in priority order up to the limit of the bit budget. 

FIG. 2B is a flowchart showing a method 400 for operating 
the DSMS 200 with a prefilter 230 constructed as shown in 
FIG. 2A. In step 410, each of the queries in set 210 is assigned 
a bit signature based on the predicates it shares with the 
prefilter 230. For example, prefilter 230 might have five predi 
cates p1 through p5, and an individual query such as 210.1 in 
the set of queries 210 might have a bit signature 00011 if it 
requires the presence of the 4" and 5" predicates in prefilter 
230 but not the 1, 2" and 3' predicates in prefilter 230. 

In step 420, a tuple in the stream S is evaluated to determine 
the presence of predicates in prefilter 230. As will be dis 
cussed below, the evaluating step may include steps of 
unpacking attributes in the packet for comparison, and evalu 
ating the unpacked attributes with predicates in the prefilter. 

In step 430, a bit vector or bitmap is returned for the 
evaluated tuple with a bit corresponding to a predicate (indi 
vidual or combined) in the prefilter 230 only if the predicate 
evaluates to true. For example, a tuple in stream S would 
return a bitmap 10011 if predicates p1, p4 and p5 were evalu 
ated as true in the tuple, and predicates p2 and p3 were false. 

In step 440, the bit signatures assigned to the queries 210 
are compared with the bitmaps returned for the individual 
tuples to determine if the query bit signature is compatible 
with the returned bitmap. In the example given above, the bit 
signature 00011 for query 210.1 would be compared with the 
bitmap 10011 returned for the evaluated tuple. The compari 
son would show the tuple possessed the 4" and 5" predicates 
required by the query. 

In step 450, only those queries 210 that have bit signatures 
compatible with the returned bitmap for a tuple are invoked 
on the tuple. In the example given, the query 210.1 signature 
was compatible with the tuple bitmap and query 210.1 would 
be invoked on the tuple. Because only compatible LFTAs are 
invoked, CPU loads are decreased. As will be explained 
below, one experimental result indicates that prefilters 230 
constructed according to the method 300 (FIG. 2A) and oper 
ated according to the method 400 (FIG. 2B) can reduce CPU 
workloads in a DSMS from above 80% to below 50% in Some 
CaSCS. 

The following explanation provides further background 
and detail on the selection step 310 and combining step 320 in 
the method 300 described in FIG. 2A for developing prefilter 
230. 

FIG. 3 shows an illustrative example of the operation of 
DSMS 200 with prefilter 230, running three illustrative net 
work monitoring queries 210 denominated Q1, Q2 and Q3. 
Q1 computes the bandwidth usage (i.e., the Sum of packet 
lengths) and packet count of UDP traffic for each source 
destination address pair. Q2 and Q3 compute the same aggre 
gates over DNS requests and responses, respectively (DNS 
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8 
servers listen on port 53 while qr is a Boolean field in the DNS 
packet header that distinguishes requests from responses). 
Time window specifications are omitted for brevity. Note that 
all the predicates occurring in the three queries are simple 
Scalar comparisons; therefore they would normally be evalu 
ated at the corresponding LFTAs. Suppose that the following 
predicates are pushed down to the prefilter: protocol=UDP. 
src port=53, and dest port=53. Each LFTA is labeled with 
a bit signature, denoting which of the three pushed down 
predicates are included in the corresponding query. We 
denote the signature of the i' LFTA as Li. Thus, since Q3 
contains the first and second prefilter predicates, then L3= 
110. Whenever a new tuple arrives, the three predicates are 
evaluated at the prefilter 230 and their outcomes entered into 
a bit vector B. In the example of FIG.3, the new tuple satisfies 
the first two prefilter predicates, therefore B=110. Assuming 
that the WHERE clause of each query contains a conjunction 
of predicates, we then invoke the i' LFTA only if B & Li-Li, 
where & is the bitwise-AND operation. That is, an LFTA is 
invoked only if each of its pushed-down predicates evaluates 
to true. The invoked LFTAs (Q1 and Q3 in the example of 
FIG. 3) then evaluate any remaining simple predicates that 
have not been pushed down to the prefilter 230 and produce 
partial aggregates (e.g., the Q3 LFTA evaluates the predicate 
qr 1). Finally, if needed, the corresponding downstream 
HFTAs 220 compute expensive predicates and other expen 
sive operators (there are none in this example), and complete 
the aggregation. Note that: (1) the shared predicate 
protocol=UDP is evaluated only once per tuple, (2) weavoid 
the cost of initializing the LFTA of Q2 for this tuple, (3) 
simple bit operations are sufficient to determine which 
LFTAs to execute over a new tuple. This example illustrates 
the processing reduction advantages of using a prefilter. 
We turn now to the step 310 of selecting which predicates 

are to be pushed down to the prefilter 230 from the set of 
queries 210. 
Types Of Frequently Occurring Predicates In Network Moni 
toring Queries. 

In reviewing predicates occurring in commonly used query 
sets 210, a first observation is that network protocols are 
layered. For example, HTTP is an application-level protocol 
that uses TCP at the transport layer, i.e., the HTTP data are 
contained in the TCP packet payload. This means that any 
query referencing applications over TCP requires the predi 
cate protocol-TCP in addition to specific predicates that 
identify the particular application. For instance, HTTP pack 
ets may be identified by the presence of the strings “GET 
(request) or “HTTP (response) at the beginning of the TCP 
packet payload. 
A second observation is that (unicast) network traffic is 

bi-directional: there is a source and a destination (IP address 
and/orport). Network analysts often pose queries that demul 
tiplex selected traffic streams, which are then joined (at the 
HFTA) on the source and destination identifiers. Results are 
then used to, e.g., track the latency between client requests 
and server responses. Specific examples of demultiplexed 
streams include HTTP requests and responses (as discussed 
above) and DNS requests and responses, which correspond to 
the exemplary queries Q2 and Q3, respectively, from FIG. 3. 
Note that queries Q2 and Q3 contain a shared predicate that 
selects DNS traffic, and two specific predicates each, which 
perform the demultiplexing. 

Third, network analysts want to eliminate fragmented, 
empty, or otherwise irrelevant packets from reaching some of 
the queries and possibly skewing aggregation results. This 
may be done by appending predicates such as offset 0 or 
data lengths >0. The former specifies that either the packet 
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has not been fragmented or it is the first fragment (fragmen 
tation refers to splitting of IP packets by link layer protocols 
that cannot handle large packet sizes). This is done for queries 
that only access header fields, which are always found at the 
start of a packet (i.e., in the first fragment; the remaining 
fragments contain the payload of the original packet). The 
latter predicate drops packets with an empty payload and is 
added to queries that reference the payload in addition to the 
header (this is very common since packets produced by 
higher-level protocols such as TCP are encapsulated in lower 
level packets such as IP, therefore a TCP header is contained 
in the payload of an IP packet). 

Generalizing the above observations, we expect to find a 
number of shared simple predicates across a set of network 
monitoring queries 210, referencing common protocols, 
applications, port numbers, and control fields inside packet 
headers. This motivates the multi-query optimization goal of 
the prefilter. Additionally, we expect to find non-shared predi 
cates corresponding to application-specific filtering or 
demultiplexing. This motivates the data reduction goal of the 
prefilter as these more specific predicates may be highly 
selective. 

Finally, in addition to the simple predicates described thus 
far, users may include expensive predicates and functions for 
complex analysis. These are usually more specialized and 
therefore may not occur in more than one query. Some are 
inexpensive enough to be evaluated at the LFTAs 210, 
whereas others are very expensive and must be done at the 
HFTAs 220. Examples of LFTA-compatible complex predi 
cates include regular expression matching within packet 
headers. For instance, one can often determine which appli 
cation has produced a packet by scanning the payload for 
strings such as “KaZaA”, “gnutella”, “BitTorrent’, or, as 
mentioned earlier, “GET' or “HTTP. Note that each appli 
cation corresponds to a different regular expression. Longest 
prefix matching is another example, where a source or desti 
nation IP address is compared against a set of IP address 
prefixes stored in a main-memory table. Thus, alongest prefix 
match predicate may be used to restrict the query to a specific 
subnet or a specific set of IP addresses. 
Selecting the Predicates to Include in the Prefilter. 
The first step in creating the prefilter 230 is to choose which 

predicates to push down from the LFTAs 210. We assume a 
query plan P giving rise to n LFTAs 210.1, 210.2, ... 210.n 
(the number of HFTAs is not relevant in terms of the pre 
filter). Note that the total number of queries may be larger 
than n because some queries may subscribe to the output of 
others and therefore do not need an LFTA. Without loss of 
generality, we assume a single input stream. The case of 
multiple inputs is handled by assigning independent prefilters 
containing predicates over their respective streams, whereas 
predicates over multiple streams are computed at the HFTAs. 
We assume that each LFTA contains a conjunction of Zero 

or more base predicates. Two base predicates are said to be 
equivalent if they are syntactically the same (modulo normal 
ization, as in traditional DBMSs (database management sys 
tems)). Each unique LFTA (base) predicate is associated with 
a cost and, optionally, a selectivity estimate, with the caveat 
that the latter may not be accurate throughout the lifetime of 
the query set. 
One possibility for selecting predicates for the prefilter 230 

is to employ traditional multi-query optimization techniques, 
which consider pushing down shared predicates in order to 
induce common Sub-expressions in the global query plan, 
even if the resulting orderings are locally Sub-optimal. These 
decisions are made with the help of predicate cost and selec 
tivity estimates. However, there are several drawbacks to this 
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10 
approach in the context of a high-performance DSMS 200. 
First, the available selectivity estimates may become inaccu 
rate over time due to the time-evolving nature of streaming 
data and the long-running nature of streaming queries. Sec 
ond, in addition to pushing down shared predicates to avoid 
doing redundant work, it is desirable to reduce the high cost 
(relative to simple predicate evaluation) of LFTA invocations. 
This means that even simple non-shared predicates (e.g., 
src port=53 and dest port=53 in the example of FIG. 3) are 
prefilter candidates. Traditional multi-query optimization 
techniques do not address this consideration. 
An exhaustive multi-query optimization Solution (for 

building an optimal global plan) attempts to push down each 
subset of the LFTA base predicates, estimates the expected 
cost of each alternative, and optimizes for lowest cost using 
standard computer optimization programs. In addition to 
being prohibitively expensive to compute, this technique 
requires accurate selectivity estimates and an assumption, not 
always well founded, that the estimates will hold for a useful 
lifetime of the prefilter 230. 
The present invention uses a DSMS predicate migration 

heuristic that both reduces the workload of the LFTAs and 
does not require accurate selectivity estimates. 

In accordance with the present invention, predicates are 
selected for inclusion in a prefilter 230 by means of a simple 
and robust heuristic. First, we set C to be the maximum cost 
of a base predicate that may be considered “cheap'. The cost 
C may be measured in terms of the number of operations 
performed in evaluating the presence of a base predicate. The 
value of C should be much smaller than the cost of LFTA 
invocation (as an example, in a current implementation of the 
prefilter, the cost threshold C=10 operations). The remaining 
LFTA base predicates are labeled “expensive' (not to be 
confused with “very expensive' predicates and functions 
computed at the HFTAs). Then, we simply select all the cheap 
base predicates (shared or otherwise) for inclusion in the 
prefilter 230. 
An example of the application of our heuristic is shown in 

FIG. 4. On the left, LFTA query plans are shown for two 
queries: Q1 and Q2. Both queries are assumed to perform 
Some grouping and aggregation, the details of which are not 
relevant to the prefilter. The WHERE clause of Q1 is p1 and 
p2 and p5, while the WHERE clause of Q2 is p2 and p3 and 
p4 and p5. Suppose that p1 through p3 are cheap (as deter 
mined by comparison to a cost threshold C) and that the 
illustrated query plans are locally optimal, i.e., the base predi 
cates of both LFTAs are ordered in an optimal way. The right 
side of FIG. 4 shows the corresponding prefilter with all the 
cheap base predicates pushed down to the prefilter (the cor 
responding HFTAs are omitted for clarity). 
The advantages of the selection heuristic used in the 

present invention areas follows. First, the cost of evaluating a 
predicate is expected to be more stable over time than its 
selectivity. Additionally, even if predicate selectivities are 
known to be accurate and could be used to calculate optimal 
local plans, chances are good that cheap base predicates are 
still ordered early in an invoked query, unless they are very 
non-selective. Therefore, pushing down cheap base predi 
cates is likely to create an efficient and robust global plan. 
Second, recall from the discussion above that many shared 
predicates typically encountered in network analysis are 
expected to be inexpensive. Therefore, in the context of multi 
query optimization, pushing down all the cheap base predi 
cates induces common Sub-expressions that would not exist if 
only the locally optimal plans were considered. For instance, 
the two queries in FIG. 4 share the cheap base predicate p2. 
but this predicate could not be “factored out unless we 
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flipped the execution order of p1 and p2 in Q1's plan. In other 
words, our heuristic implicitly considers locally non-optimal 
plans when building the global plan. Finally, from the point of 
view of reducing the number of LFTA invocations, cheap 
non-shared predicates should be pushed down aggressively; 
in comparison, the relative cost savings of evaluating an 
expensive non-shared predicate before an LFTA query are far 
less significant. 
One consequence of preventing expensive predicates from 

being evaluated at the prefilter is that shared expensive predi 
cates, if any, are re-executed redundantly. For instance, in the 
example of FIG.4, predicate p5 is an expensive base predicate 
computed both at the Q1 LFTA and the Q2LFTA. However, 
adding p5 to the prefilter may not be optimal as it would 
reverse the order of evaluation of p4 and p5 in Q2. If p5 is 
much more expensive and/or much less selective than p4, then 
the resulting global plan could be inefficient despite shared 
evaluation of p5. One alternative is to push down p4 as well 
and evaluate it in the prefilter before p5. However, this 
approach presents two problems. First, in the worst case, all 
the LFTA base predicates would have to be pushed down, 
defeating our goal of keeping the prefilter bit vector B short. 
Second, the prefilter evaluation logic would have to be more 
complex in order to avoid unnecessary evaluation of expen 
sive predicates; e.g., in FIG. 4, we would first compute the 
cheap base predicates, then p4, then p5, but only if either p4 
evaluated to true, or p1 or p2 evaluated to true. 

Rather than computing expensive base predicates at the 
prefilter, it is preferable to include only cheap predicates in 
the prefilter 230 and to cache the outcomes of shared expen 
sive predicates in a separate data structure (not shown). This 
way, if the Q1 LFTA in FIG. 4 is invoked and computes p5, the 
Q2LFTA can look up the result of p5 in the predicate cache. 

Accordingly, the present method selects predicates for 
inclusion in the prefilter 230 by comparing the cost of predi 
cates to a preselected value C and selects predicates with a 
cost of C or less for inclusion in the prefilter 230. 
We turn now to the step 320 of combining selected predi 

cates to form composite predicates. 
Combining Selected Predicates in the Prefilter. 

It is desirable in prefilter design to assign a small number of 
bits to represent the pushed-down predicates in bit vector B 
and in query bit signatures Li, while still being able to avoid 
all unnecessary LFTA invocations. 
As explained with reference to FIGS. 2B and 3, the prefilter 

230 must be executed for each new tuple, and therefore keep 
ing up with the raw data stream is of utmost importance. It is 
therefore necessary to implement the prefilter 230 so that its 
computational overhead does not defeat the performance 
gains of early data reduction. As described with reference to 
FIGS. 2 and 2B, the prefilter 230 performs two tasks: evalu 
ation of selected predicates and identification of parts of the 
shared query plan to execute viabit comparisons. The former 
would have to be done anyway (at the LFTAs) in the absence 
of the prefilter, but the latter step of identification represents a 
source of overhead. Clearly, longer bit vectors B and query 
signatures Li are more expensive (in terms of processor use) 
to compare. 

Moreover, the prefilter 230 operates in a resource con 
strained environment. In particular, there may be a hardware 
dependent limit on the number of bits to use in the prefilter for 
the tuple bit vector B and the LFTA signatures Li. For 
instance, a 64-bit processor can perform efficient operations 
on up to 64bits using one register-compare. Furthermore, in 
some cases, an LFTA query 210 may be installed directly on 
a network interface card of the host machine. If so, then the bit 
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12 
budget may be even Smaller to reflect the limited processing 
capabilities of network hardware, e.g., 16 bits. 

In response to the processing overhead and hardware con 
straints on bit vector length, the present invention minimizes 
prefilter overhead by representing the set of predicates 
selected to be pushed-down (using the cost heuristic 
described above) by using a small number of bits. Recall the 
example of FIG. 3 and suppose that we want to evaluate all 
five unique predicates in the prefilter, i.e., protocol=UDP. 
dest port=53, Src port=53, qr-0, and qr=1. A naive solution 
requires a prefilter bit vector Band query signatures Li of size 
five bits. However, instead of spending one bit on each dis 
tinct predicate, we may assign a conjunction of several predi 
cates to a single bit, so long as we can still determine that an 
LFTA does not have to be invoked if at least one of its 
predicates has failed in the prefilter. For example, we can keep 
the first bit the same, change the second bit to src port=53 
AND qr=1, and change the third bit to dest port=53 AND 
qr-0. This way, we do not increase the bit vector sizes (in fact, 
we can use exactly the same query bit signatures as before), 
yet we can push down two additional predicates into the 
prefilter 230. Using the fewest possible bits to represent a set 
of predicates can be formalized as a bipartite graph covering 
problem. It can be proven that the problem is NP-hard. We 
propose efficient heuristics for arriving at Solutions to the 
problem which avoid exhaustive analysis yet yield results 
very close to those obtained with exhaustive analysis (at least 
in instance where we have been able to compare Such results). 
We define a composite predicate as a conjunction of two or 

more base predicates. The task is to assign bits to composite, 
rather than base, predicates and thereby reduce the number of 
bits needed to represent the prefilter predicates. 
To illustrate the difficulty of this task, suppose that we want 

to use only one bit for the prefilter in FIG. 4. One possibility 
is to assign the bit to the composite predicate (p1 and p2 and 
p3), i.e., the conjunction of all the base predicates designated 
for execution at the prefilter. If the bit is false when evaluated 
over a newly arrived tuple, then we know that at least one of 
p1, p.2, or p3 failed. However, we cannot determine which of 
these base predicates has failed, and therefore we cannot 
avoid executing the LFTA 210 queries Q1 and Q2. 
To formalize the problem at hand, let n be the number of 

LFTA queries and p be the number of unique base predicates 
evaluated at the prefilter, as determined in the previous step 
(comparison to a threshold cost C). Let Mbeap-by-n boolean 
matrix and M(i,j) be the entry in its i' row and j" column. 
Define M(i,j) to be 1 if the i' base predicate is referenced in 
the query corresponding to the j" LFTA query. Otherwise, 
M(i, j) =0. The following definitions will be used in our 
formalization. 

Definition 1. Let P and Q be subsets of the rows and 
columns of M, respectively. P and Q define a rectangle 
r(PQ) if for eachiePandjeO, M(i,j)=1. 

Definition 2. A rectangle covering of M is a set of rect 
angles defined over M Such that each non-Zero entry in 
M is in at least one rectangle. 

We can now express the problem of minimizing the length 
of the prefilter bit vector (and avoiding all the LFTA invoca 
tions that would be avoided if each base predicate was 
assigned a separate bit) as finding a minimum-sized rectangle 
covering of M. An example is illustrated in FIG. 5, showing a 
workload of six queries Q1 through Q6 and their predicates 
p1 through p6, the corresponding matrix M and a minimum 
sized rectangle covering (of size four). The four rectangles R1 
through R4 denote respectively the following predicates to be 
evaluated at the prefilter: pl. (p2 and p3), p4, and (p5 and p6). 
For the six illustrative queries Q1 through Q6, the corre 
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sponding LFTA bit signatures Li are: L1=1100, L2=1110, 
L3=1010, L4=1000, L5=1001, and L6-0001. Thus, we 
require only four bits (i.e., four composite predicates) to 
represent the six unique base predicates in the workload, and 
this configuration is equivalent, in terms of avoiding LFTA 
invocations, to assigning one bit per base predicate. Note that 
for simplicity, we have illustrated a minimum-sized rectangle 
cover that does not contain any overlapping rectangles; we 
will deal with overlap below in the context of efficient evalu 
ation of prefilter predicates. 

Finding a minimum-sized rectangle covering of a boolean 
matrix M is an NP-hard problem as it can be reduced to 
finding a minimum-sized bipartite graph covering using com 
plete bipartite subgraphs. Below, we present a heuristic for 
finding a near-optimal Solution; its efficiency and effective 
ness was experimentally evaluated and this evaluation will be 
discussed below. 
The heuristic consists of two steps: finding rectangles 

embedded in M and using them to create a covering of M. 
Finding a Rectangle Covering 

Finding rectangles in M can be accomplished by the algo 
rithm shown in FIG. 6. The basic idea is to use rectangles 
representing i base predicates to generate new rectangles with 
i+1 base predicates. In steps 2 through 6 of FIG. 6, we initial 
ize a set BASE corresponding to the base predicates, as well 
as the target set of rectangles RECTS. The latter initially 
contains all the rows and columns of M. The loop in lines 7 
through 12 creates rectangles of size i+1 by attempting to add 
every possible base predicate (i.e., every rectangle in BASE) 
to each rectangle of size i. Line 10 tests if each attempt 
actually creates a new rectangle-all of its i+1 base predicates 
must occur in more than one query (otherwise, the “new” 
rectangle is contained in an individual column of Malready 
added to RECTS in line 6). If so, then we add the new 
rectanglerto RECTS. Its base predicate set is the union of the 
“old” rectangle's base predicate set and the new base predi 
cate used in line 9. The query set of r consists of queries that 
reference all of its predicates. 
The number of rectangles contained in M may be large, but 

a variety of pruning rules may be applied while the rectangles 
are being generated. For instance, we can remove rectangles 
contained in a newly created rectangle. Recall the rectangle in 
the bottom-right corner of FIG. 5, which corresponds to the 
composite predicate (p5 and p6) and may be characterized as: 
P={5, 6, Q={5, 6}. This rectangle contains two smaller 
rectangles, corresponding to base predicates p5 and p6. 
respectively, i.e., P={5}, Q={5, 6 and P={6}, Q={5, 6}. 
Once the large rectangle is found, the Smaller rectangles may 
be removed. 

Another straightforward optimization technique is to only 
consider rectangles containing a small number of base predi 
cates, say up to j (i.e., modify line 7 to iterate from 1 to j). The 
reasoning behind this approach is that we do not expectavery 
large number of base predicates to be shared across a group of 
queries. 

Finally, having generated a set of rectangles embedded in 
M, for example by using the algorithm of FIG. 6, we apply the 
standard greedy heuristic for set-cover-type problems in 
order to find an approximate solution for the minimum-sized 
rectangle covering. That is, at each step, we choose the rect 
angle which covers the most uncovered “ones' in M. Each 
rectangle in the covering is then translated into the composite 
predicate that it represents—for example, the four rectangles 
in FIG. 5 translate into predicates of p1}, {p2 and p3}, {p4} 
and p5 and p6}. 
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Efficient Evaluation of Prefilter Predicates 
At this point, a set of predicates has been selected for 

evaluation at the prefilter 230, and the predicates have been 
combined using the rectangle covering heuristic described 
above. Each bit may correspond to a unique base predicate or 
a composite predicate. We next discuss how the predicates in 
the prefilter 230 may be efficiently evaluated in the step 420 of 
the method 400 of FIG. 2B. 

First, we consider evaluation in cases where a base predi 
cate is repeated in several bits (composite predicates) in the 
prefilter. This occurs if the rectangle covering produced in the 
previous combining step contains overlapping rectangles. For 
example, FIG. 7 shows two minimum-sized coverings 700 
and 710 for the query workload from FIG. 5; the first covering 
700 is the non-overlapping covering already shown in FIG. 5 
and the second covering 710 contains overlapping rectangles. 
The overlapping covering 710 consists of four rectangles: R5, 
the first row of M corresponding to p1; R6, the circled rect 
angle corresponding to p1 and p2 and p3; R7, the union of the 
two dotted rectangles giving p1 and p4; and R8, the bottom 
right rectangle corresponding to p5 and p6. Observe that the 
overlapping coveringyields three prefilterpredicates contain 
ing p1... As a result, p1 is evaluated redundantly. 
The present invention solves this redundancy problem by 

adding a post-processing step to the rectangle covering heu 
ristic. In this step, we simplify the resulting rectangles (com 
posite predicates) in order to eliminate overlap whenever 
possible. The idea is to remove a set of base predicates from 
a composite predicate if a conjunction of those base predi 
cates already has its own bit. In FIG. 7, we note that p1 has its 
own bit and occurs inside two composite predicates. With p1 
removed, these two composite predicates simplify to (p2 and 
p3), and p4, respectively. At this point, all the rectangles in the 
covering are non-overlapping. In the general case, more than 
one iteration of this procedure may be required to make all the 
possible simplifications. Finally, with all possible overlaps 
removed, we conform the LFTA signatures Li to the changes 
in predicate definitions. 
Our next evaluation efficiency improvement concerns 

attribute unpacking. Recall from the explanation of operation 
of the DSMS 100 of FIG. 1B that the required attributes must 
be extracted from a newly arrived tuple prior to predicate 
evaluation. The attribute unpacking process may be expen 
sive for variable-offset and variable-length fields, in which 
case we must first unpack the field length and offset attributes 
inside the packet header. We observed that, in many cases, a 
set of attributes may be unpacked more efficiently as a group 
(as compared to on-demand unpacking of individual fields 
done separately by each LFTA). For example, ifa TCP packet 
is embedded in an IP packet, then it is easy to unpack all the 
TCP header attributes sequentially. Since the prefilter 230 
needs to extract all the fields referenced in all of its predicates 
prior to evaluating them, it can take advantage of group 
unpacking to a much greater extent than the individual LFTAS 
210. 
To exploit group unpacking opportunities, it is advanta 

geous to use an optimizer that maintains two statistics for 
each attribute of the stream S: the cost of unpacking it sepa 
rately and the cost of unpacking it along with a set of other 
attributes, typically those at the same protocol layer. After the 
prefilter predicates have been chosen, the optimizer finds an 
efficient method of unpacking the required fields. We model 
this problem in terms of weighted set covering and use a 
greedy heuristic to obtain the answer: at each step, we choose 
the group offields which gives the cheapest overall unpacking 
cost per field. Such a step may be used for the purpose of 
assigning priorities to predicates, as discussed above at step 
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330 of the method 300 of FIG. 2A. Predicates operating on 
fields with the least unpacking cost may be selected first for 
inclusion in a prefilter 230 with a limited bit budget. 
Reducing Predicates to Match Constrained Resources. 
As indicated previously, the number of bits to be used in the 

prefilter is limited in order to reduce overhead and may be 
limited by hardware constraints. For workloads containing 
many queries and unique predicates, it may be the case that 
even after "compressing the predicates using the rectangle 
covering heuristic, we may still have more composite predi 
cates than available bits. Suppose the number of available bits 
is k. In this situation, we use one of the following two solu 
tions. The first is to take the first k rectangles returned by our 
covering heuristic, eliminate rectangle overlap (as discussed 
above), and install the corresponding k predicates in the pre 
filter. The second solution is used only when the optimizer has 
accurate predicate selectivity estimates; e.g., if statistics are 
collected periodically and the selectivities are known not to 
change over time. In this case, we modify our covering heu 
ristic as follows. Rather than building the covering by always 
choosing the rectangle which covers the most uncovered 
“ones' in M, we choose the rectangle (i.e., composite predi 
cate) which yields the biggest decrease in the expected num 
ber of LFTA invocations. Assuming that all the predicates are 
independent, we can calculate the expected number of invo 
cations of a particular LFTA as the product of the selectivities 
of all of its predicates evaluated at the prefilter. As before, we 
take the first k rectangles returned by the modified heuristic, 
eliminate rectangle overlap, and place the resulting k predi 
cates in the prefilter. 

FIG. 8A is a flowchart showing a method 800 according to 
the invention. Method 800 is similar to method 300 of FIG. 
2A, but includes more detailed steps as have been described 
above. In step 810, a value C is set as a cost threshold for 
cheap predicates. In step 820, all predicates in the query set at 
or below value C are selected for inclusion in the prefilter. In 
step 830, a matrix M is constructed to represent the selected 
predicates and their corresponding queries. In step 840, a 
rectangle covering heuristic is applied to the matrix M to 
identify rectangles corresponding to composite predicates. In 
step 850, the identified rectangles are reorganized to remove 
rectangle overlap. In step 860, the simplified rectangles are 
translated into evaluation predicates. In step 870, one bit of a 
tuple bitmap is assigned to each evaluation predicate. In step 
880, a bit signature is assigned to each query. In step 890, the 
prefilter code is translated to runtime system code (e.g., C 
code) and linked to the runtime system for the DSMS. For 
resource constrained systems, after step 860, in step 862, a 
tuple attribute unpacking efficiency is determined; in step 
864, predicates are assigned priorities based on the unpacking 
efficiency of the attributes they examine; and in step 864, 
predicates are added to the prefilter in priority order. Such 
added predicates then are assigned a bit in step 870. 
The DTMS then operates in accordance with the method 

900 shown in FIG. 8B. In step 910, the runtime process 
unpacks the attributes required by the prefilterpredicates, and 
in step 920 evaluates the predicates. In step 930, a tuple 
bitmap is returned with bits representing the existence of 
predicates in the tuple, and in step 940 the bitmap is compared 
to query bit signatures. In step 950, queries are invoked if their 
bit signatures correspond to the tuple bitmap. 
Example of Prefilter Use 
We have implemented a prefilter as described above in the 

AT&T Gigascope and tested it on a live network data feed 
from a data center tap. All of our experiments monitor a high 
speed DAG4.3GE Gigabit Ethernet interface, which receives 
approximately 105,000 packets per second (about 400 Mbits 
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per second). All experiments were conducted on dual proces 
sor 2.8 GHz P4 server with 4 GB of RAM running FreeBSD 
4.10. 
We have tested the prefilter on a network monitoring query 

set developed for an AT&T application. The set contains 22 
complex queries (i.e., 22 output streams to which other appli 
cations may connect), which in total subscribe to 50 LFTAs. 
The LFTAs contain 47 cheap predicates (with 10 or fewer 
operations) that are pushed down to the prefilter. Neither the 
prefilter nor any of the LFTAs are executed on the network 
interface card. 
FIG.9 shows the corresponding matrix M (of size 47x50). 

In matrix M: (1) The first 14 rows correspond to shared 
predicates. The remaining 33 prefilterpredicates occur in one 
query each. (2) Four columns are all-zeros, therefore of the 50 
LFTAs, 46 contain at least one prefilter predicate. (3) The 
matrix is quite sparse and contains 116 rectangles. There are 
44 “main rectangles if the pruning rule is used to remove 
Smaller rectangles contained in larger ones. The height of the 
tallest rectangles is six (i.e., corresponding to rows 1, 3, 6, 7, 
8, and 14, and columns 19 and 20). 
Performance of the Rectangle Covering Heuristic 
As noted above, the cost of finding a rectangle covering for 

a matrix M consists of two parts: finding the rectangles in M 
and then generating the covering. FIG. 10 plots the total time 
taken by our heuristic and by an exhaustive approach as a 
function of the number of rectangles in the matrix represen 
tation of the query workload. The exhaustive approach exam 
ines every permutation of the rectangles in order to find a 
minimum-sized covering, starting with all sets of one rect 
angle each and working upwards. Therefore, its time com 
plexity is exponential in the number of rectangles. As shown 
in the graph, the exhaustive technique requires over 1000 
seconds (over 20 minutes) to find a covering when M contains 
27 rectangles. Therefore, the optimal algorithm is intractable 
over our query set, even if rectangle pruning is used. In 
contrast, our heuristic can handle hundreds of rectangles in a 
fraction of a second, with the majority of the processing time 
taken by the rectangle finding algorithm from FIG. 6, not the 
rectangle cover selection process. 

In FIG. 11, we show in bar graph form the effectiveness of 
the rectangle covering heuristic by comparing the number of 
bits it requires versus the optimal solution and the number of 
base predicates. The first set of bars on the left corresponds to 
our query set; note that we did not obtain the optimal Solution 
in a reasonable time. As shown, the rectangle covering heu 
ristic can represent the 47 prefilter predicates using only 36 
bits. The next set of bars corresponds to a subset of our query 
set consisting of the first 29 queries. This subset contains 28 
base predicates, 96 rectangles, and 27 main rectangles (which 
is Small enough to compute the optimal Solution in under one 
hour). In this case, our heuristic represents the 28 base predi 
cates using 21 bits, one bit more than the optimal solution. 
Finally, the two sets of bars on the right correspond to two 
Smaller query sets used for network monitoring at AT&T. In 
both cases, our heuristic reduces the number of bits needed by 
the prefilter and is only one bit away from the optimal solu 
tion. 
Performance of the Prefilter 

Next, we report the performance of Gigascope DSMS with 
and without the prefilter. Our experiments proceeded in two 
stages. First, we obtained selectivity estimates of the 47 base 
predicates by creating 47 COUNT(*) queries, each with one 
of the base predicates in its WHERE clause. Next, we com 
piled two versions of the prefilter: one that chooses the rect 
angle covering without considering selectivities, and one that 
chooses rectangles according to the expected number of 
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LFTA invocations. For each version, we experimented with 
several different bit budgets, from one to 36. 
The expected performance of the two strategies in terms of 

the expected number of LFTA invocations per tuple, assum 
ing that our selectivity estimates remain accurate, is plotted in 
FIG. 12 for various numbers of bits in the prefilter, up to 36 
(which is enough to represent all 47 base predicates). Note 
that when the number of bits is zero, the prefilter is disabled 
and therefore all 50 LFTAs are invoked for each new tuple. 
Using 36 bits, fewer than ten LFTAs are expected to be 
invoked; at this point, using predicate selectivities does not 
matter as all the composite predicates fit in the prefilter any 
way. If fewer than 36 bits are available, then the knowledge of 
(accurate) selectivities can potentially improve performance, 
but not by a significant margin. Moreover, note that even 
using as few as ten bits is expected to yield a noticeable 
performance improvement. 

After gathering the selectivity estimates, we immediately 
executed our experiments with the two versions of the prefil 
ter and using various numbers of bits. Each experiment was 
performed serially on live traffic data, and hence there is a 
significant amount of noise error in our results. However, the 
network feed represents the aggregation of a very large num 
ber of users, and tends to be stable over short periods of time 
(but not over the long run; e.g., morning vs. evening traffic or 
weekdays vs. weekends). As a result, the selectivity estimates 
obtained just prior to running the experiments were still accu 
rate, aside from ignoring correlations across predicates due to 
the independence assumption. 

For each experiment, we report the CPU utilization of the 
run-time system, which executes the prefilter and the LFTAs: 
the CPU consumption of all the HFTAs combined amounted 
to less than 25 percent and is not affected by the prefilter. For 
each data point, we collected the average packet rate as well 
as the CPU utilization. We then normalized the CPU utiliza 
tion by the average packet rate to obtain the equivalent utili 
zation at 105,000 packets/sec (the most common packet rate 
over the course of the experiments). We observed that the 
CPU utilization of the runtime system alone (i.e., processing 
every packet, but not running any queries) was 8.8 percent 
with the prefilter, and 8.7 percent with the prefilter turned off. 
Thus, the prefilter is not a source of overhead. 

FIG. 13 shows the CPU utilization of the runtime system 
for the variants of the prefilter described above. First, we note 
that without the prefilter (i.e., when the number of bits is 
Zero), the CPU usage is over 80 percent. However, we noticed 
that there was packet loss at the LFTAs (but Gigascope was 
unable to boost the priority of the process without starving the 
HFTAs). There was also packet loss with one bit (with or 
without selectivity estimates). However, increasing the bit 
budget to four brought the CPU utilization down below 70 
percent and eliminated packet loss. Further increasing the bit 
budget caused a gradual decrease of CPU utilization, downto 
47 percent when all 36 composite predicates were included. 
As expected, selectivity knowledge yielded moderate 
improvement of less than ten percent. Again, this improve 
ment is likely to vanish (or even become negative) as time 
goes on and the selectivity estimates get stale. 

The dotted horizontal line in FIG. 13 represents the CPU 
utilization (roughly 58 percent) achieved by evaluating the 14 
shared cheap predicates at the prefilter. This shows the benefit 
ascribable to multi-query optimization, although we have 
found it unnecessary to use the selectivity estimates this tra 
ditional optimization technique requires. Due to the relatively 
high costs of LFTA invocation, the additional benefit of push 
ing down non-shared predicates for even greater data reduc 
tion can be seen in FIG. 13 as well, as we show reduced CPU 
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utilization, even without selectivity estimates, for all 
examples greater than 14 bits. When all 36 composite predi 
cates are included, CPU utilization drops from 58 percent to 
47 percent, a Substantial improvement. 
From the foregoing results, several advantages of the 

present invention become apparent: 
A. The rectangle covering heuristic very quickly finds near 

optimal solutions in terms of the number of bits needed to 
represent a set of prefilter predicates 

B. The prefilter significantly reduces the CPU utilization of 
the LFTAs, even if only a subset of the candidate predicates is 
pushed down. This means that 1) the prefilter may be evalu 
ated efficiently on network hardware, where the bit budget is 
Smaller, and 2) even if the query set is very large, we should be 
able to find a small set of prefilter predicates that will greatly 
reduce the number of LFTA invocations. 

C. Selectivity estimates are not necessary for the prefilter to 
be effective. 

Thus, the invention describes a feature enabling a prefilter 
to be constructed that improves the performance of a DSMS. 
The improved feature includes both system and method 
aspects. While the present invention has been described with 
reference to preferred and exemplary embodiments, it will be 
understood by those of ordinary skill in the art that various 
changes may be made and equivalents may be substituted for 
elements thereof without departing from the scope of the 
invention. In addition, many modifications may be made to 
adapt a particular situation to the teachings of the invention 
without departing from the scope thereof. Therefore, it is 
intended that the invention not be limited to the particular 
embodiments disclosed, but that the invention include all 
embodiments falling within the scope of the appended claims. 
What is claimed is: 
1. A high speed data stream monitoring system for moni 

toring and ascertaining desired characteristics of a high speed 
data stream flowing in a network, the data in the data stream 
being in the form of serial tuples, the monitoring system 
comprising: 
means for evaluating new tuples arriving in the stream, the 
means for evaluating including computation means for 
running a query plan on new tuples arriving in the 
stream, the query plan including a set of high level 
queries and a set of different low level queries, the low 
level queries being characterized by different sets of 
predicates to be evaluated on the tuples as part of the 
queries, the set of different low level queries including a 
plurality of different low level queries sharing a common 
predicate, 

a predicate prefilter outside of the query plan that includes 
a set of predicates selected from the low level query 
predicates including a common predicate shared by dif 
ferent low level queries and that evaluates the selected 
predicates on a new tuple arriving in the stream before 
running any of the low level queries on the tuple and 
produces a predicate signature for each new tuple in 
response to the evaluation; 

means for assigning a predicate signature to each of the low 
level queries, 

means for determining those low level queries which have 
a predicate signature compatible with the predicate sig 
nature of the tuple produced by the prefilter; 

means for applying to the tuple only those low level queries 
determined to have a predicate signature compatible 
with the predicate signature of the tuple produced by the 
prefilter, along with selected high level queries, to ascer 
tain the desired characteristics of the high speed data 
Stream; 



US 8,051,069 B2 
19 

whereby low level queries that do not have a compatible bit 
signature are not applied to the tuple by the monitoring 
system and the computation means has a computation 
load for running the query plan that is reduced. 

2. The high speed data stream management system claimed 
in claim 1 wherein the high level queries are high level filter 
ing-transformation-aggregation queries and the low level 
queries are low level filtering-transformation-aggregation 
queries. 

3. The high speed data stream management system claimed 
in claim 1 wherein the predicates selected to be evaluated in 
the prefilter have an execution cost that is less than a value C, 
where C is an execution cost chosen to be less than the 
execution cost of executing a low level query. 

4. The high speed data stream management system claimed 
in claim 3 wherein the predicates selected to be evaluated in 
the prefilter include both base predicates and groups of base 
predicates that are present in the low level queries. 

5. The high speed data stream management system claimed 
in claim 4 wherein the groups of base predicates are selected 
to reduce overlapping predicates. 

6. The high speed data stream management system claimed 
in claim 3 wherein the predicates selected to be evaluated in 
the prefilter are the predicates that require the fewest attribute 
unpacking operations to evaluate. 

7. The high speed data stream management system claimed 
in claim 1 wherein the predicate signature for each tuple is a 
bit vector with bits representing the presence and absence of 
selected predicates in the tuple, and wherein the predicate 
signature assigned to a low level query has bits representing 
predicates that are required to be present by the low level 
query, and wherein the means for invoking a low level query 
compares the bits in the tuplebit vector with the bits in the low 
level query bit signature. 

8. A method for operating a high speed data stream moni 
toring system for monitoring and ascertaining desired char 
acteristics of a high speed data stream flowing in a network, 
the data in the data stream being in the form of serial tuples, 
the monitoring method evaluating new tuples arriving in the 
stream with computation means running a query plan on new 
tuples arriving in the stream, the query plan including a set of 
high level queries and a set of different low level queries, the 
low level queries being characterized by sets of different 
predicates to be evaluated on the tuples as part of the queries, 
the set of different low level queries including a plurality of 
different low level queries sharing a common predicate, the 
method comprising: 

prefiltering the tuples outside of the query plan with a set of 
predicates selected from the low level query predicates 
including a common predicate shared by different low 
level queries to evaluate a new tuple arriving in the 
stream before running any of the low level queries on the 
tuple and to determine if the selected predicates evaluate 
to true in the tuple: 

generating a tuple predicate signature representing the 
selected predicates that evaluate to true in the tuple: 

assigning a predicate signatures to each of the low level 
queries 

determining those low level queries that have signatures 
that are compatible with the tuple predicate signature; 

applying to the tuple only those low level queries deter 
mined to have signatures compatible with the tuple 
predicate signature, along with selected high level que 
ries, to ascertain the desired characteristics of the high 
speed data stream; 
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whereby low level queries that have predicate signatures 

that are not compatible with the tuple predicate signature 
are not applied to the tuple and the computation means 
has a computational load for running the query plan that 
is reduced. 

9. The method claimed in claim 8 wherein the selected 
predicates evaluated by prefiltering have an execution cost 
that is less than a value C, where C is a cost chosen to be less 
than the cost of executing a low level query. 

10. The method claimed in claim 9 where the predicates 
selected to be evaluated by prefiltering include both base 
predicates and groups of base predicates that are present in the 
low level queries. 

11. The method claimed in claim 10 where the groups of 
base predicates have been selected to reduce overlapping 
predicates. 

12. The method claimed in claim 9 where the predicates 
selected to be evaluated by prefiltering are predicates selected 
to require the fewest attribute unpacking operations to evalu 
ate. 

13. The method claimed in claim 8 wherein the predicate 
signature for each tuple is a bit vector with bits representing 
the presence and absence of selected predicates in the tuple, 
and wherein the predicate signature assigned to a low level 
query has bits representing predicates that are required to be 
present by the low level query, and wherein invoking a query 
compares the bits in the tuplebit vector with the bits in the low 
level query bit signature. 

14. The method claimed in claim 8 wherein the high level 
queries are high level filtering-transformation-aggregation 
queries and the low level queries are low level filtering-trans 
formation-aggregation queries. 

15. A method for selecting predicates to be evaluated in a 
prefilter in a high speed data stream monitoring system for 
monitoring and ascertaining desired characteristics of a high 
speed data stream flowing in a network, the data in the data 
stream being in the form of serial tuples, the monitoring 
method evaluating new tuples arriving in the stream with 
computation means running a query plan on new tuples arriv 
ing in the stream, the query plan including a set of high level 
queries and a set of different low level queries, the different 
low level queries being characterized by different sets of 
predicates to be evaluated on the tuples and each of the low 
level queries being assigned a predicate signature, the prefil 
ter evaluating a new tuple arriving in the stream before run 
ning any of the low level queries on the tuple with predicates 
selected from the low level query predicates to determine if 
the selected predicates are present in the tuple and to create a 
tuple predicate signature to be compared to a predicate sig 
nature assigned to a low level query to cause the computation 
means to apply to the tuple only those low level queries on the 
tuple that have a predicate signature matching the tuple predi 
cate signature, the prefilter predicate selection method com 
prising: 

identifying base predicates in the low level queries; 
establishing an execution cost C for processing of predi 

cates, where C is chosen to be less than the cost of 
executing a low level query; 

selecting base predicates with a cost level below the estab 
lished level C.; and 

placing the selected base predicates with a cost level below 
the established level C in the prefilter. 

16. The method claimed in claim 15 further comprising: 
combining the selected base predicates into groups of two 

or more predicates present in one or more low level 
queries. 
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17. The method claimed in claim 16 wherein combining assigning a priority to the selected predicates; and 
the base predicates into groups comprises: adding the selected predicates to the prefilter to the limit of 

constructing a matrix M to represent the predicates with a the bit budget in priority order. 
cost level below the established level C and their corre- 21. The method claimed in claim 20 wherein the predicates 
sponding low level queries; and 5 are selected by constructing a matrix M to represent the 

predicates and their corresponding queries, and a rectangle 
covering heuristic is applied to the matrix M to locate groups 
of predicates present in one or more queries, and wherein the 
predicates are assigned priority according to their identifica 

0 tion by the rectangle covering heuristic. 
22. The method claimed in claim 20 wherein the predicates 

are assigned priority according to their selectivities such that 
the groups. - - - their ch 11 lt licat flow level 19. The method claimed in claim 16 wherein the predicates II. o1ce W111 result 1n minimum applicauon of low leve 

are assigned priority according to the attribute unpacking is 23. The method as claim in claim 15 wherein the estab 
operations that are required to evaluate them. lished execution cost C is 10 operations. 

20. The method claimed in claim 15 wherein the prefilter 
has a limited bit budget, further comprising: k . . . . 

applying a rectangle covering heuristic to the matrix M to 
locate groups of predicates present in one or more low 
level queries. 

18. The method claimed in claim 17 further comprising: 
removing rectangle overlaps to produce a set of groups of 

predicates which do not duplicate predicate presence in 


