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1
EFFICIENT PREDICATE PREFILTER FOR
HIGH SPEED DATA ANALYSIS

FIELD OF THE INVENTION

The present invention generally relates to high speed data
analysis, and more particularly to a system and method for
organizing the operations that are performed in a query set to
be run on a high speed stream of data.

BACKGROUND OF THE INVENTION

A data stream is a continuous sequence of items, generated
at a possibly high rate and usually modeled as relational
tuples. A tuple is an ordered list of objects or attributes, such
as those found in a data packet. A Data Stream Management
System (DSMS) monitors the incoming data and evaluates
streaming queries, which are usually expressed in a high-level
language with SQL-like syntax. Streaming queries usually
constitute an infrequently changed set of queries that run over
a period of time, processing new tuple arrivals on-the-fly and
periodically computing up-to-date results over recently
arrived data. An example of such a data stream is the stream of
packets transmitted in a Gigabit Ethernet communications
network. An example of a DSMS is the AT&T Gigascope
processing architecture. The work performed by a DSMS can
vary, but for instance, a DSMS may intercept a stream of IP
packets and compute queries such as: “every five minutes,
return the bandwidth consumed by selected users, applica-
tions, or protocols over the most recent five-minute window”.
Results may be used for intrusion detection, performance
tuning, troubleshooting, and user billing.

An important and challenging application of DSMSs
involves monitoring high volume (Gigabytes per second) net-
work traffic in near real-time. It is not practical to store a
massive data stream locally; therefore there will be perma-
nent data loss if a DSMS cannot keep up with the inputs. In
one example, a high speed DAG4.3GE Gigabit Ethernet inter-
face receives approximately 105,000 packets per second
(about 400 Mbits per second).

Thus there is a need to provide query processing that can be
performed with high throughput, so that near real time pro-
cessing can occur, without data loss, on a sufficiently large set
of queries.

Given that complex stream analyses are often expressed as
combinations of simpler pieces, a DSMS workload consists
of sets of streaming queries submitted at the same time.
Therefore, there exists an opportunity to analyze the queries
before they start running and to organize them in ways that
enhance throughput.

Predicate pushdown is a known query optimization tech-
nique.

One form of predicate pushdown known to the prior art is
to identify overlapping parts of queries that would otherwise
be re-executed redundantly, and to execute such parts
once—a process generally known as multi-query optimiza-
tion. Such overlapping parts are common in network analysis.
For instance, all queries over TCP traffic contain the predicate
protocol=TCP in their WHERE clauses. Multi-query optimi-
zation as presently practiced is based on selectivity estimates,
i.e., predictions of the effect an overlapping query will have
on subsequent query processing, that are used to determine
which overlapping parts to execute. Selectivity estimates,
however, are problematic in much network analysis because
data stream composition varies over time.

Another way to increase throughput is by early data reduc-
tion. For instance, the AT&T Gigascope DSMS divides each
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2

query plan into a low-level and high-level component,
denoted LFTA and HFTA, respectively. (FTA stands for fil-
tering-transformation-aggregation, and an arrangement for
executing FTAs on a data stream is disclosed in U.S. Pat. No.
7,165,100B2.) An LFTA evaluates fast operators over the raw
stream, and includes operators such as projection, simple
selection, and partial group-by-aggregation using a fixed-size
hash table. Early filtering and pre-aggregation by the LFTAs
are crucial in reducing the data volume fed to the HFTAs,
which execute complex operators (e.g., expensive predicates,
user-defined functions, and joins) and complete the aggrega-
tion. This two-tier architecture, as shown in FIG. 1A, has
greatly contributed to the Gigascope’s efficiency and success-
ful deployment on high-speed links throughout AT&T’s net-
work.

Other prior art techniques for increasing throughput exist.
One such technique, known as predicate caching, involves
storing the result of a complex operator that will be used by
several queries so that complex operations will not have to be
repeated.

Another prior art technique is the use of predicate indices,
which are used by publish/subscribe systems. However,
predicate indices are only useful when there are thousands of
predicates on a particular attribute, a property not typically
found in the query sets used in network analysis. In the
publish-subscribe model, hundreds of events per second are
processed against millions of subscriptions. Moreover, it is
assumed that the subscription set contains subsets of many
similar predicates over the same attribute; e.g., simple predi-
cates of the form attribute op constant, with op € {=, <, >} and
constant € N. Predicate indexing is used to narrow down the
set of possibly matching subscriptions. In contrast, a high-
performance DSMS may process millions of tuples per sec-
ond against hundreds of queries. Thus, the number of queries
that could match a new tuple is already reasonably small and
large subsets of similar predicates over the same attribute are
less common. While predicate indexing might still be used in
a DSMS if justified by the workload, additional issues arise
due to the massive data rates encountered by predicates
pushed all the way down to the raw stream.

These approaches to increasing data throughput, while
effective to a certain degree, are not as fully able as desired to
handle high data rates with substantial numbers of queries
under the processing restraints necessitated by real time pro-
cessing of streaming data at high rates. In many cases, the
processor cost (meaning the number of operations the pro-
cessor must perform in order to complete the queries, which
correlates to processing time, processing rates and hardware
cost) for these approaches is unacceptably high.

Accordingly, there is a need to provide a method for pro-
cessing query sets on data streaming at high rates while reduc-
ing processor utilization cost. There is a further need to pro-
vide a data stream management system that is able to process
query sets on data streaming at high rates without excessive
processor cost.

BRIEF SUMMARY OF THE INVENTION

Briefly, the present invention is a method and system for
prefiltering data streams in a data stream management system
that processes sets of queries on data streams.

The method includes providing a prefilter in which, in one
aspect, predicates are selected from among those present in
the queries and evaluated on tuples before the queries are run.
In an exemplary embodiment, a tuple has the selected predi-
cates evaluated in the prefilter and the evaluation outcomes
are entered into a bit map or vector. The queries are assigned
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bit signatures to correspond to the predicates in the query. The
queries are run on the tuple only if the query bit signature has
matches in the tuple bit vector.

In another aspect of the invention, predicates are selected
for the prefilter by identifying all the predicates in the query
set, determining a predicate cost threshold C and including
those predicates in the prefilter that are below the cost thresh-
old C. In a further aspect of the invention, the predicates
selected as below the cost threshold C are combined in a
multi-query optimization step to avoid repeated execution of
the same predicate. Predicates are combined in a method that
includes creating a matrix representation of predicates in
queries, and solving a graph-covering problem on the matrix,
thereby minimizing the number of bits needed to represent
the predicates present in the queries. In another aspect of the
invention, predicates are combined using an efficient rect-
angle covering heuristic.

In another aspect of the invention, there may be a hardware
dependent limit on the number of bits available to use in the
prefilter and the query signatures, i.e., the “bit budget” will be
constrained. For instance, a 64-bit processor can perform
efficient operations on up to 64 bits using one register-com-
pare. Furthermore, in some cases, a query may be installed
directly on a network interface card of the Gigascope host
machine. If so, then the bit budget may be even smaller to
reflect the limited processing capabilities of network hard-
ware, e.g., 16 bits. In such instances, the invention provides
that the prefilter will be populated with combined predicates
and others to the extent of the available bits in the bit budget.

A method and system in accordance with the foregoing
features is able to perform aggressive early data reduction and
avoid not only redundant processing of shared predicates, but
also the high cost of query invocations on tuples with non-
shared predicates. The DSMS predicate migration heuristic
of the present invention reduces the workload of the LFTAs
and does not require accurate selectivity estimates. Using a
real-life network monitoring query set, we show that the
performance of AT&T’s Gigascope DSMS is significantly
improved by the prefilter—in one example, the expected
number of LFTA invocations per tuple decreased from 50 to
10 with use of the prefilter, and CPU utilization percentages
decreased from over 80% to under 50%. These results were
obtained with a 36 bit budget, and it was found that very large
improvements were available with a bit budget of as little as
10.

These and other objects, advantages and features of the
invention are set forth in the attached description.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary of the invention, as well as the
following detailed description of the preferred embodiments,
is better understood when read in conjunction with the
accompanying drawings, which are included by way of
example and not by way of limitation with regard to the
claimed invention:

FIG. 1A shows an example of a DSMS architecture.

FIG. 1B is a diagram of query processing in the DSMS
architecture of FIG. 1.

FIG. 2 shows an example of DSMS architecture modified
with a prefilter according to the present invention.

FIG. 2A is a flowchart showing a method for developing a
prefilter according to the invention.

FIG. 2B is a flowchart showing a method for operating a
prefilter according to the invention in a DSMS.

FIG. 3 is a diagram of an example of multi-query process-
ing using a prefilter according to the invention.
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FIG. 4 is a diagram illustrating an example of combining
individual query plans into a shared prefilter.

FIG. 5 is a diagram showing a technique for combining
predicates according to the invention.

FIG. 6 is a flowchart showing a method for finding rect-
angles in a matrix of predicates according to the invention.

FIG. 7 is a diagram showing alternate minimum-sized rect-
angle coverings for the same query set.

FIG. 8A is a flowchart showing a detailed method for
developing a prefilter according to the invention, and FIG. 8B
is a flowchart of a method for operating the prefilter devel-
oped according to FIG. 8A.

FIGS. 9-13 show experimental parameters and results of a
prefilter used in an existing DSMS, in which:

FIG. 9 is a matrix representation of the query setused inthe
experiment.

FIG. 10 is a graph comparing the running times of the
rectangle covering heuristic of the present invention com-
pared to an exhaustive solution.

FIG. 11 is a graph showing the effectiveness of the rect-
angle covering heuristic.

FIG. 12 is a graph showing LFTA invocations as a function
of the number of bits in a prefilter bit budget.

FIG. 13 is a graph showing CPU utilization percentages as
a function of the number of bits in a prefilter bit budget.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1A shows the architecture of the prior art Gigascope
DSMS 100, which receives a data stream S of individual
tuples and performs a query plan P. The DSMS 100 divides
the query plan P into a low-level component 110 and a high-
level component 120, denoted LFTA and HFTA, respectively.
An LFTA query evaluates fast operators over the raw stream,
such as projection, simple selection, and partial group-by-
aggregation using a fixed-size hash table. Early filtering and
pre-aggregation by the LFTAs are crucial in reducing the data
volume fed to the HFTAs, which execute complex operators
(e.g., expensive predicates, user-defined functions, and joins)
and complete the aggregation.

FIG. 1B shows an example of query processing in the
Gigascope DSMS 100 of FIG. 1A. The Gigascope DSMS 100
features a high-level query language with SQL-like syntax.
Supported operators include projection, selection, aggrega-
tion, grouping, stream-merge, stream-join, and user-defined
functions. The input and output of each operator (and each
query) is a stream, which enables query composition and
simplifies the semantics. Gigascope provides a set of schemas
corresponding to well-known protocols, protocol layers, and
applications (e.g., Netflow® records, raw packets, layer-2-
Ethernet, IP, TCP, UDP). This allows users to reference pro-
tocol-specific or application-specific fields in their queries
without manually specifying how to extract them from the
data packets.

Since streams S are unbounded, a blocking operator such
as aggregation would never produce any output. Aggregation
may be unblocked by defining windows over the stream by
way of a temporal group-by attribute. For instance, consider a
query Q1 thatis to compute the bandwidth usage (i.e., the sum
of packet lengths) and packet count of UDP traffic for each
source-destination address pair. Suppose that we want to
compute Q1 over non-overlapping windows of length one
minute each and return answers at the end of each window.
Assuming that the time attribute is measured in seconds, Q1
can be written as:
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SELECT t, srcIP, destIP, sum(length), count(*) FROM
UDP

WHERE protocol=UDP

GROUP BY time/60 as t, srcIP, destIP

Note that Q1 references a UDP schema, therefore the
Gigascope DSMS 100 can find the srcIP, destIP and length
attributes inside each UDP packet. However, the predicate
protocol=UDP must be evaluated in the query plan because
the reference to UDP in the FROM clause only specifies the
packet schema; it does not automatically filter out non-UDP
packets from the stream.

FIG. 1B shows how Gigascope evaluates the query Q1
along with the two other queries Q2 and Q3. For clarity, only
the details of the LFTA and HFTA of Q1 are shown, and
source and destination [P address pairs are represented as
pairs of letters <i, j>. A new tuple is placed in the ring buffer
150 upon arrival. The Gigascope runtime system 160 then
calls the Q1 LFTA with a pointer to the new tuple. The LFTA
first extracts the required attributes from the raw packet
according to the specified schema. The extracted attributes
include those referenced in the selection predicates assigned
for evaluation at the LFTA, the grouping columns, and the
aggregation functions. Next, the LFTA evaluates its selection
predicates, and, if the tuple matches the predicates, updates its
hash table 170. The hash table has fixed size and stores partial
aggregates for selected groups (the hash table sizeofan LFTA
can be set by the user when issuing the query). In order to
ensure that partial aggregation is done quickly, the hash table
cannot be very large—it is typically much smaller than the
total number of groups in the current window. Therefore,
collisions may occur. As illustrated in FIG. 1B, the new tuple
with source and destination addresses <c¢,d> collides with the
existing group <a, d>. In this case, the pre-aggregated values
of' sum(length) and count(*) for group <a,d> are ejected from
the hash table, placed in an output buffer (not shown) acces-
sible by the Q1 HFTA, and replaced with the values for group
<¢,d> obtained from the new tuple. The runtime system 160
then calls the remaining LFTAs to process the new tuple.
HFTAs are executed as separate processes scheduled asyn-
chronously by the operating system, typically with lower
priority than the run-time-system process.

Note that the Q1 HFTA maintains a complete aggregate
table 180 with each group having a separate entry. The table
is used to aggregate the partial sums and counts produced by
the LFTA. This process is similar to sub-aggregate and super-
aggregate computations in data cubes. Furthermore, recall
that Q1 is set to produce aggregates over one-minute win-
dows, therefore at the end of each minute, Q1 LFTA must
flush its hash table 170 and propagate the partial aggregates to
the HFTA (lazy flushing may also be performed).

For efficiency, LFTAs are translated into C code and linked
directly to the runtime library. They also read tuples directly
from the raw stream without memory-copy overhead, and
only evaluate simple operators. As already mentioned, there
are cases when an LFTA may be executed partly or wholly on
a network interface card. Furthermore, the Gigascope runt-
ime system 160 executes each LFTA serially inside a single
process. Serial execution of the LFTAs avoids the complexity
of multi-threading, eliminates the need to maintain multiple
pointers into the ring buffer, and exploits cache locality as all
the LFTAs process a new tuple before moving on to the next
one. As will be understood from the description below of the
prefilter according to the present invention, the serial execu-
tion model of the DSMS 100 easily accommodates the pre-
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filter: the run-time system executes the prefilter predicates
upon arrival of a new tuple, and invokes an LFTA only if its
signature matches the prefilter bit vector.

To avoid the overhead of dynamic linking, the set of LFTAs
110 cannot be changed without stopping and re-linking the
runtime. However, each HFTA is a separate process, therefore
new HFTAs may be added on-the-fly and connected to the
output streams of one or more existing LFTAs. In general, an
HFTA can be attached to several LFTAs—for instance, a join
of two streams requires two LFTAs to read the inputs and
evaluate simple predicates over individual streams, and an
HFTA to compute the join and any predicates referencing
attributes of both streams. Furthermore, multiple HFTAs can
read the output of one LFTA.

Splitting a set of query operators into an LFTA and an
HFTA is a complex optimization problem. However, the split
between LFTA and HFTA queries is transparent to the users,
and the split attempts to execute as much of a query as pos-
sible at the LFTA in order to take advantage of early data
reduction.

The two-tier architecture of the prior art Gigascope DSMS
100, as shown in FIG. 1A, has greatly contributed to its
efficiency and successful deployment on high-speed links
throughout AT&T’s network. Even so, as data streams S
increase in speed, and query plans P introduce new queries,
CPU capacities become strained.

FIG. 2 shows the architecture of a DSMS 200 in accor-
dance with the present invention, which includes a query plan
P with a two-tier architecture of LFTA queries 210 and HFTA
queries 220 as described above, and in which a prefilter 230 is
positioned outside of the query plan P and upstream of the
LFTA queries 210 to examine tuples arriving in stream S. The
LFTA queries 210 comprise a set of individual queries 210.1,
210.2, etc., and the HFTA queries 220 comprise as set of
individual queries 220.1, 220.2, etc.

The insight behind the prefilter 230 is as follows. We
observed that invoking a query plan component (i.e., an
LFTA) in response to a newly arrived tuple is significantly
more expensive than evaluation of a simple scalar comparison
such as protocol=TCP. Furthermore, many queries in a large
stream analysis query set are effectively looking for “needles
in haystacks”. That is, they refer to a small fraction of the data;
e.g., network traffic corresponding to a rare protocol or pack-
ets generated by a particular application. However, to perform
the query set we must examine the entire stream S (i.e., invoke
at least the LFTA of each query for each newly arrived tuple)
in order to find these valuable rare packets. Hence, we can
reduce the performance bottleneck by pushing down a set of
simple predicates and evaluating them immediately after a
new tuple arrives. Then, if a pushed-down predicate belong-
ing to the i” query fails, we do not invoke the corresponding
part of the query plan (i.e., the i” LFTA) for this tuple. More-
over, if a predicate in the pushed-down set occurs in more than
one query, then we evaluate it only once.

The role of the prefilter 230 in the DSMS 200 illustrated in
FIG. 2 can be explained as follows: In effect, prefilter 230
forms an additional (shared) query plan component that: 1)
performs data reduction earlier and more aggressively by
eliminating a portion of LFTA 210 invocations and 2) incor-
porates multi-query optimization by avoiding repeated
execution of the same predicate. In turn, the overall LFTA
workload decreases, which enables DSMS 200 to handle
higher data rates without dropping packets. While predicate
pushdown as a general concept is known, the present inven-
tors believe that no prior arrangement has utilized a prefilter,
as here, that implements predicate pushdown outside the
query plan P.
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FIG. 2A is aflowchart showing a method 300 for construct-
ing prefilter 230 in accordance with the present invention for
use with a query plan P including a query set such as that
defined by the LFTA set 210. In step 310, predicates existing
in the query set 210 are selected for inclusion in the prefilter
using a cost test, to be described in greater detail below. In
step 320, predicates selected in step 310 and appearing in
more than one query are combined into composite predicates
using a rectangle covering heuristic, to be described in greater
detail below.

If the bit budget allowed by the processing hardware in the
DSMS 200 is less than the total number of individual and
composite predicates remaining after predicates have been
combined in step 320, then steps 330 and 340 are performed.
In step 330, the individual and composite predicates are
assigned a priority. In step 340, the predicates are added to the
prefilter in priority order up to the limit of the bit budget.

FIG. 2B is a flowchart showing a method 400 for operating
the DSMS 200 with a prefilter 230 constructed as shown in
FIG. 2A. Instep 410, each of the queries in set 210 is assigned
a bit signature based on the predicates it shares with the
prefilter 230. For example, prefilter 230 might have five predi-
cates pl through p5, and an individual query such as 210.1 in
the set of queries 210 might have a bit signature 00011 if it
requires the presence of the 4” and 5% predicates in prefilter
230 but not the 1%, 2"? and 3" predicates in prefilter 230.

In step 420, a tuple in the stream S is evaluated to determine
the presence of predicates in prefilter 230. As will be dis-
cussed below, the evaluating step may include steps of
unpacking attributes in the packet for comparison, and evalu-
ating the unpacked attributes with predicates in the prefilter.

In step 430, a bit vector or bitmap is returned for the
evaluated tuple with a bit corresponding to a predicate (indi-
vidual or combined) in the prefilter 230 only if the predicate
evaluates to true. For example, a tuple in stream S would
return a bitmap 10011 if predicates p1, p4 and p5 were evalu-
ated as true in the tuple, and predicates p2 and p3 were false.

In step 440, the bit signatures assigned to the queries 210
are compared with the bitmaps returned for the individual
tuples to determine if the query bit signature is compatible
with the returned bitmap. In the example given above, the bit
signature 00011 for query 210.1 would be compared with the
bitmap 10011 returned for the evaluated tuple. The compari-
son would show the tuple possessed the 47 and 5% predicates
required by the query.

In step 450, only those queries 210 that have bit signatures
compatible with the returned bitmap for a tuple are invoked
on the tuple. In the example given, the query 210.1 signature
was compatible with the tuple bitmap and query 210.1 would
be invoked on the tuple. Because only compatible LFTAs are
invoked, CPU loads are decreased. As will be explained
below, one experimental result indicates that prefilters 230
constructed according to the method 300 (FIG. 2A) and oper-
ated according to the method 400 (FIG. 2B) can reduce CPU
workloads in a DSMS from above 80% to below 50% in some
cases.

The following explanation provides further background
and detail on the selection step 310 and combining step 320 in
the method 300 described in FIG. 2A for developing prefilter
230.

FIG. 3 shows an illustrative example of the operation of
DSMS 200 with prefilter 230, running three illustrative net-
work monitoring queries 210 denominated Q1, Q2 and Q3.
Q1 computes the bandwidth usage (i.e., the sum of packet
lengths) and packet count of UDP traffic for each source-
destination address pair. Q2 and Q3 compute the same aggre-
gates over DNS requests and responses, respectively (DNS
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servers listen on port 53 while gr is a Boolean field in the DNS
packet header that distinguishes requests from responses).
Time window specifications are omitted for brevity. Note that
all the predicates occurring in the three queries are simple
scalar comparisons; therefore they would normally be evalu-
ated at the corresponding LFTAs. Suppose that the following
predicates are pushed down to the prefilter: protocol=UDP,
src_port=53 , and dest_port=53 . Each LFTA is labeled with
a bit signature, denoting which of the three pushed down
predicates are included in the corresponding query. We
denote the signature of the i LFTA as Li. Thus, since Q3
contains the first and second prefilter predicates, then [.3=
110. Whenever a new tuple arrives, the three predicates are
evaluated at the prefilter 230 and their outcomes entered into
a bit vector B. In the example of FIG. 3, the new tuple satisfies
the first two prefilter predicates, therefore B=110 . Assuming
that the WHERE clause of each query contains a conjunction
of predicates, we then invoke the i LFTA only if B & Li=Li,
where & is the bitwise-AND operation. That is, an LFTA is
invoked only if each of its pushed-down predicates evaluates
to true. The invoked LFTAs (Q1 and Q3 in the example of
FIG. 3) then evaluate any remaining simple predicates that
have not been pushed down to the prefilter 230 and produce
partial aggregates (e.g., the Q3 LFTA evaluates the predicate
qr=1). Finally, if needed, the corresponding downstream
HFTAs 220 compute expensive predicates and other expen-
sive operators (there are none in this example), and complete
the aggregation. Note that: (1) the shared predicate
protocol=UDP is evaluated only once per tuple, (2) we avoid
the cost of initializing the LFTA of Q2 for this tuple, (3)
simple bit operations are sufficient to determine which
LFTAs to execute over a new tuple. This example illustrates
the processing reduction advantages of using a prefilter.

We turn now to the step 310 of selecting which predicates
are to be pushed down to the prefilter 230 from the set of
queries 210.

Types Of Frequently Occurring Predicates In Network Moni-
toring Queries.

In reviewing predicates occurring in commonly used query
sets 210, a first observation is that network protocols are
layered. For example, HTTP is an application-level protocol
that uses TCP at the transport layer, i.e., the HTTP data are
contained in the TCP packet payload. This means that any
query referencing applications over TCP requires the predi-
cate protocol=TCP in addition to specific predicates that
identify the particular application. For instance, HTTP pack-
ets may be identified by the presence of the strings “GET”
(request) or “HTTP” (response) at the beginning of the TCP
packet payload.

A second observation is that (unicast) network traffic is
bi-directional: there is a source and a destination (IP address
and/or port). Network analysts often pose queries that demul-
tiplex selected traffic streams, which are then joined (at the
HFTA) on the source and destination identifiers. Results are
then used to, e.g., track the latency between client requests
and server responses. Specific examples of demultiplexed
streams include HTTP requests and responses (as discussed
above) and DNS requests and responses, which correspond to
the exemplary queries Q2 and Q3, respectively, from FIG. 3.
Note that queries Q2 and Q3 contain a shared predicate that
selects DNS traffic, and two specific predicates each, which
perform the demultiplexing.

Third, network analysts want to eliminate fragmented,
empty, or otherwise irrelevant packets from reaching some of
the queries and possibly skewing aggregation results. This
may be done by appending predicates such as offset=0 or
data_length< >0. The former specifies that either the packet
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has not been fragmented or it is the first fragment (fragmen-
tation refers to splitting of IP packets by link layer protocols
that cannot handle large packet sizes). This is done for queries
that only access header fields, which are always found at the
start of a packet (i.e., in the first fragment; the remaining
fragments contain the payload of the original packet). The
latter predicate drops packets with an empty payload and is
added to queries that reference the payload in addition to the
header (this is very common since packets produced by
higher-level protocols such as TCP are encapsulated in lower-
level packets such as IP, therefore a TCP header is contained
in the payload of an IP packet).

Generalizing the above observations, we expect to find a
number of shared simple predicates across a set of network
monitoring queries 210, referencing common protocols,
applications, port numbers, and control fields inside packet
headers. This motivates the multi-query optimization goal of
the prefilter. Additionally, we expect to find non-shared predi-
cates corresponding to application-specific filtering or
demultiplexing. This motivates the data reduction goal of the
prefilter as these more specific predicates may be highly
selective.

Finally, in addition to the simple predicates described thus
far, users may include expensive predicates and functions for
complex analysis. These are usually more specialized and
therefore may not occur in more than one query. Some are
inexpensive enough to be evaluated at the LFTAs 210,
whereas others are very expensive and must be done at the
HFTAs 220. Examples of LFTA-compatible complex predi-
cates include regular expression matching within packet
headers. For instance, one can often determine which appli-
cation has produced a packet by scanning the payload for
strings such as “KaZaA”, “gnutella”, “BitTorrent”, or, as
mentioned earlier, “GET” or “HTTP”. Note that each appli-
cation corresponds to a different regular expression. Longest
prefix matching is another example, where a source or desti-
nation [P address is compared against a set of IP address
prefixes stored in a main-memory table. Thus, a longest prefix
match predicate may be used to restrict the query to a specific
subnet or a specific set of IP addresses.

Selecting the Predicates to Include in the Prefilter.

The first step in creating the prefilter 230 is to choose which
predicates to push down from the LFTAs 210. We assume a
query plan P giving rise to n LFTAs 210.1, 210.2, . . . 210.»
(the number of HFTAs is not relevant in terms of the pre-
filter). Note that the total number of queries may be larger
than n because some queries may subscribe to the output of
others and therefore do not need an LFTA. Without loss of
generality, we assume a single input stream. The case of
multiple inputs is handled by assigning independent prefilters
containing predicates over their respective streams, whereas
predicates over multiple streams are computed at the HFTAs.

We assume that each LFTA contains a conjunction of zero
or more base predicates. Two base predicates are said to be
equivalent if they are syntactically the same (modulo normal-
ization, as in traditional DBMSs (data base management sys-
tems)). Each unique LFTA (base) predicate is associated with
a cost and, optionally, a selectivity estimate, with the caveat
that the latter may not be accurate throughout the lifetime of
the query set.

One possibility for selecting predicates for the prefilter 230
is to employ traditional multi-query optimization techniques,
which consider pushing down shared predicates in order to
induce common sub-expressions in the global query plan,
even if the resulting orderings are locally sub-optimal. These
decisions are made with the help of predicate cost and selec-
tivity estimates. However, there are several drawbacks to this
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approach in the context of a high-performance DSMS 200.
First, the available selectivity estimates may become inaccu-
rate over time due to the time-evolving nature of streaming
data and the long-running nature of streaming queries. Sec-
ond, in addition to pushing down shared predicates to avoid
doing redundant work, it is desirable to reduce the high cost
(relative to simple predicate evaluation) of LFTA invocations.
This means that even simple non-shared predicates (e.g.,
src_port=53 and dest_port=53 in the example of FIG. 3) are
prefilter candidates. Traditional multi-query optimization
techniques do not address this consideration.

An exhaustive multi-query optimization solution (for
building an optimal global plan) attempts to push down each
subset of the LFTA base predicates, estimates the expected
cost of each alternative, and optimizes for lowest cost using
standard computer optimization programs. In addition to
being prohibitively expensive to compute, this technique
requires accurate selectivity estimates and an assumption, not
always well founded, that the estimates will hold for a useful
lifetime of the prefilter 230.

The present invention uses a DSMS predicate migration
heuristic that both reduces the workload of the LFTAs and
does not require accurate selectivity estimates.

In accordance with the present invention, predicates are
selected for inclusion in a prefilter 230 by means of a simple
and robust heuristic. First, we set C to be the maximum cost
of'a base predicate that may be considered “cheap”. The cost
C may be measured in terms of the number of operations
performed in evaluating the presence of a base predicate. The
value of C should be much smaller than the cost of LFTA
invocation (as an example, in a current implementation of the
prefilter, the cost threshold C=10 operations). The remaining
LFTA base predicates are labeled “expensive” (not to be
confused with “very expensive” predicates and functions
computed at the HF TAs). Then, we simply select all the cheap
base predicates (shared or otherwise) for inclusion in the
prefilter 230.

An example of the application of our heuristic is shown in
FIG. 4. On the left, LFTA query plans are shown for two
queries: Q1 and Q2. Both queries are assumed to perform
some grouping and aggregation, the details of which are not
relevant to the prefilter. The WHERE clause of Q1 is p1 and
p2 and p5, while the WHERE clause of Q2 is p2 and p3 and
p4 and p5. Suppose that p1 through p3 are cheap (as deter-
mined by comparison to a cost threshold C) and that the
illustrated query plans are locally optimal, i.e., the base predi-
cates of both LFTAs are ordered in an optimal way. The right
side of FIG. 4 shows the corresponding prefilter with all the
cheap base predicates pushed down to the prefilter (the cor-
responding HFTAs are omitted for clarity).

The advantages of the selection heuristic used in the
present invention are as follows. First, the cost of evaluating a
predicate is expected to be more stable over time than its
selectivity. Additionally, even if predicate selectivities are
known to be accurate and could be used to calculate optimal
local plans, chances are good that cheap base predicates are
still ordered early in an invoked query, unless they are very
non-selective. Therefore, pushing down cheap base predi-
cates is likely to create an efficient and robust global plan.
Second, recall from the discussion above that many shared
predicates typically encountered in network analysis are
expected to be inexpensive. Therefore, in the context of multi-
query optimization, pushing down all the cheap base predi-
cates induces common sub-expressions that would not exist if
only the locally optimal plans were considered. For instance,
the two queries in FIG. 4 share the cheap base predicate p2,
but this predicate could not be “factored out” unless we
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flipped the execution order of p1 and p2 in Q1’s plan. In other
words, our heuristic implicitly considers locally non-optimal
plans when building the global plan. Finally, from the point of
view of reducing the number of LFTA invocations, cheap
non-shared predicates should be pushed down aggressively;
in comparison, the relative cost savings of evaluating an
expensive non-shared predicate before an LFTA query are far
less significant.

One consequence of preventing expensive predicates from
being evaluated at the prefilter is that shared expensive predi-
cates, if any, are re-executed redundantly. For instance, in the
example of FIG. 4, predicate p5 is an expensive base predicate
computed both at the Q1 LFTA and the Q2 LFTA. However,
adding p5 to the prefilter may not be optimal as it would
reverse the order of evaluation of p4 and p5 in Q2. If p5 is
much more expensive and/or much less selective than p4, then
the resulting global plan could be inefficient despite shared
evaluation of p5. One alternative is to push down p4 as well
and evaluate it in the prefilter before p5. However, this
approach presents two problems. First, in the worst case, all
the LFTA base predicates would have to be pushed down,
defeating our goal of keeping the prefilter bit vector B short.
Second, the prefilter evaluation logic would have to be more
complex in order to avoid unnecessary evaluation of expen-
sive predicates; e.g., in FIG. 4, we would first compute the
cheap base predicates, then p4, then p5, but only if either p4
evaluated to true, or pl or p2 evaluated to true.

Rather than computing expensive base predicates at the
prefilter, it is preferable to include only cheap predicates in
the prefilter 230 and to cache the outcomes of shared expen-
sive predicates in a separate data structure (not shown). This
way, if the Q1 LFTA in FIG. 4 is invoked and computes p5, the
Q2 LFTA can look up the result of p5 in the predicate cache.

Accordingly, the present method selects predicates for
inclusion in the prefilter 230 by comparing the cost of predi-
cates to a preselected value C and selects predicates with a
cost of C or less for inclusion in the prefilter 230.

We turn now to the step 320 of combining selected predi-
cates to form composite predicates.

Combining Selected Predicates in the Prefilter.

Itis desirable in prefilter design to assign a small number of
bits to represent the pushed-down predicates in bit vector B
and in query bit signatures Li, while still being able to avoid
all unnecessary LFTA invocations.

As explained with reference to FIGS. 2B and 3, the prefilter
230 must be executed for each new tuple, and therefore keep-
ing up with the raw data stream is of utmost importance. It is
therefore necessary to implement the prefilter 230 so that its
computational overhead does not defeat the performance
gains of early data reduction. As described with reference to
FIGS. 2 and 2B, the prefilter 230 performs two tasks: evalu-
ation of selected predicates and identification of parts of the
shared query plan to execute via bit comparisons. The former
would have to be done anyway (at the LFTAs) in the absence
of'the prefilter, but the latter step of identification represents a
source of overhead. Clearly, longer bit vectors B and query
signatures i are more expensive (in terms of processor use)
to compare.

Moreover, the prefilter 230 operates in a resource con-
strained environment. In particular, there may be a hardware
dependent limit on the number of bits to use in the prefilter for
the tuple bit vector B and the LFTA signatures Li. For
instance, a 64-bit processor can perform efficient operations
on up to 64 bits using one register-compare. Furthermore, in
some cases, an LFTA query 210 may be installed directly on
anetwork interface card of the host machine. If so, then the bit
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budget may be even smaller to reflect the limited processing
capabilities of network hardware, e.g., 16 bits.

In response to the processing overhead and hardware con-
straints on bit vector length, the present invention minimizes
prefilter overhead by representing the set of predicates
selected to be pushed-down (using the cost heuristic
described above) by using a small number of bits. Recall the
example of FIG. 3 and suppose that we want to evaluate all
five unique predicates in the prefilter, i.e., protocol=UDP,
dest_port=53, src_port=53, qr=0, and qr=1 . A naive solution
requires a prefilter bit vector B and query signatures Li of size
five bits. However, instead of spending one bit on each dis-
tinct predicate, we may assign a conjunction of several predi-
cates to a single bit, so long as we can still determine that an
LFTA does not have to be invoked if at least one of its
predicates has failed in the prefilter. For example, we can keep
the first bit the same, change the second bit to src_port=53
AND gr=1, and change the third bit to dest_port=53 AND
qr=0. This way, we do not increase the bit vector sizes (in fact,
we can use exactly the same query bit signatures as before),
yet we can push down two additional predicates into the
prefilter 230. Using the fewest possible bits to represent a set
of predicates can be formalized as a bipartite graph covering
problem. It can be proven that the problem is NP-hard. We
propose efficient heuristics for arriving at solutions to the
problem which avoid exhaustive analysis yet yield results
very close to those obtained with exhaustive analysis (at least
in instance where we have been able to compare such results).

We define a composite predicate as a conjunction of two or
more base predicates. The task is to assign bits to composite,
rather than base, predicates and thereby reduce the number of
bits needed to represent the prefilter predicates.

To illustrate the difficulty of this task, suppose that we want
to use only one bit for the prefilter in FIG. 4. One possibility
is to assign the bit to the composite predicate (p1 and p2 and
p3), i.e., the conjunction of all the base predicates designated
for execution at the prefilter. If the bit is false when evaluated
over a newly arrived tuple, then we know that at least one of
pl, p2, or p3 failed. However, we cannot determine which of
these base predicates has failed, and therefore we cannot
avoid executing the LFTA 210 queries Q1 and Q2.

To formalize the problem at hand, let n be the number of
LFTA queries and p be the number of unique base predicates
evaluated at the prefilter, as determined in the previous step
(comparison to a threshold cost C). Let M be a p-by-n boolean
matrix and M(i, j) be the entry in its i” row and j* column.
Define M(, j) to be 1 if the i base predicate is referenced in
the query corresponding to the j* LFTA query. Otherwise,
M(, j) =0. The following definitions will be used in our
formalization.

Definition 1. Let P and Q be subsets of the rows and
columns of M, respectively. P and Q define a rectangle
r(P,Q) if for each i€P and jEQ, M(4, j)=1.

Definition 2. A rectangle covering of M is a set of rect-
angles defined over M such that each non-zero entry in
M is in at least one rectangle.

We can now express the problem of minimizing the length
of the prefilter bit vector (and avoiding all the LFTA invoca-
tions that would be avoided if each base predicate was
assigned a separate bit) as finding a minimum-sized rectangle
covering of M. An example is illustrated in FIG. 5, showing a
workload of six queries Q1 through Q6 and their predicates
p1 through p6, the corresponding matrix M and a minimum-
sized rectangle covering (of size four). The four rectangles R1
through R4 denote respectively the following predicates to be
evaluated at the prefilter: pl, (p2 and p3), p4, and (p5 and p6).
For the six illustrative queries Q1 through Q6, the corre-
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sponding LFTA bit signatures Li are: L1=1100, [.2=1110,
L3=1010, [4=1000, L5=1001, and L.6=0001. Thus, we
require only four bits (i.e., four composite predicates) to
represent the six unique base predicates in the workload, and
this configuration is equivalent, in terms of avoiding LFTA
invocations, to assigning one bit per base predicate. Note that
for simplicity, we have illustrated a minimum-sized rectangle
cover that does not contain any overlapping rectangles; we
will deal with overlap below in the context of efficient evalu-
ation of prefilter predicates.

Finding a minimum-sized rectangle covering of a boolean
matrix M is an NP-hard problem as it can be reduced to
finding a minimum-sized bipartite graph covering using com-
plete bipartite subgraphs. Below, we present a heuristic for
finding a near-optimal solution; its efficiency and effective-
ness was experimentally evaluated and this evaluation will be
discussed below.

The heuristic consists of two steps: finding rectangles
embedded in M and using them to create a covering of M.
Finding a Rectangle Covering

Finding rectangles in M can be accomplished by the algo-
rithm shown in FIG. 6. The basic idea is to use rectangles
representing i base predicates to generate new rectangles with
i+1 base predicates. In steps 2 through 6 of FIG. 6, we initial-
ize a set BASE corresponding to the base predicates, as well
as the target set of rectangles RECTS. The latter initially
contains all the rows and columns of M. The loop in lines 7
through 12 creates rectangles of size i+1 by attempting to add
every possible base predicate (i.e., every rectangle in BASE)
to each rectangle of size i. Line 10 tests if each attempt
actually creates a new rectangle—all of its i+1 base predicates
must occur in more than one query (otherwise, the “new”
rectangle is contained in an individual column of M already
added to RECTS in line 6). If so, then we add the new
rectangle rto RECTS. Its base predicate set is the union of the
“old” rectangle’s base predicate set and the new base predi-
cate used in line 9. The query set of r consists of queries that
reference all of its predicates.

The number of rectangles contained in M may be large, but
avariety of pruning rules may be applied while the rectangles
are being generated. For instance, we can remove rectangles
contained in a newly created rectangle. Recall the rectangle in
the bottom-right corner of FIG. 5, which corresponds to the
composite predicate (p5 and p6) and may be characterized as:
P={5, 6}, Q={5, 6}. This rectangle contains two smaller
rectangles, corresponding to base predicates p5 and p6,
respectively, i.e., P={5}, Q={5, 6} and P={6}, Q={5, 6}.
Once the large rectangle is found, the smaller rectangles may
be removed.

Another straightforward optimization technique is to only
consider rectangles containing a small number of base predi-
cates, say up to j (i.e., modify line 7 to iterate from 1toj ). The
reasoning behind this approach is that we do not expecta very
large number of base predicates to be shared across a group of
queries.

Finally, having generated a set of rectangles embedded in
M, for example by using the algorithm of FIG. 6, we apply the
standard greedy heuristic for set-cover-type problems in
order to find an approximate solution for the minimum-sized
rectangle covering. That is, at each step, we choose the rect-
angle which covers the most uncovered “ones” in M. Each
rectangle in the covering is then translated into the composite
predicate that it represents—for example, the four rectangles
in FIG. 5 translate into predicates of {p1}, {p2 and p3}, {p4}
and {p5 and p6}.
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Efficient Evaluation of Prefilter Predicates

At this point, a set of predicates has been selected for
evaluation at the prefilter 230, and the predicates have been
combined using the rectangle covering heuristic described
above. Each bit may correspond to a unique base predicate or
a composite predicate. We next discuss how the predicates in
the prefilter 230 may be efficiently evaluated in the step 420 of
the method 400 of FIG. 2B.

First, we consider evaluation in cases where a base predi-
cate is repeated in several bits (composite predicates) in the
prefilter. This occurs if the rectangle covering produced in the
previous combining step contains overlapping rectangles. For
example, FIG. 7 shows two minimum-sized coverings 700
and 710 for the query workload from FIG. 5; the first covering
700 is the non-overlapping covering already shown in FIG. 5
and the second covering 710 contains overlapping rectangles.
The overlapping covering 710 consists of four rectangles: RS,
the first row of M corresponding to p1; R6, the circled rect-
angle corresponding to pl and p2 and p3; R7, the union of the
two dotted rectangles giving p1 and p4; and R8, the bottom
right rectangle corresponding to p5 and p6. Observe that the
overlapping covering yields three prefilter predicates contain-
ing pl. As a result, p1 is evaluated redundantly.

The present invention solves this redundancy problem by
adding a post-processing step to the rectangle covering heu-
ristic. In this step, we simplify the resulting rectangles (com-
posite predicates) in order to eliminate overlap whenever
possible. The idea is to remove a set of base predicates from
a composite predicate if a conjunction of those base predi-
cates already has its own bit. In FIG. 7, we note that p1 has its
own bit and occurs inside two composite predicates. With pl
removed, these two composite predicates simplify to (p2 and
p3), and p4, respectively. At this point, all the rectangles in the
covering are non-overlapping. In the general case, more than
one iteration of this procedure may be required to make all the
possible simplifications. Finally, with all possible overlaps
removed, we conform the LFTA signatures Li to the changes
in predicate definitions.

Our next evaluation efficiency improvement concerns
attribute unpacking. Recall from the explanation of operation
of'the DSMS 100 of FIG. 1B that the required attributes must
be extracted from a newly arrived tuple prior to predicate
evaluation. The attribute unpacking process may be expen-
sive for variable-offset and variable-length fields, in which
case we must first unpack the field length and offset attributes
inside the packet header. We observed that, in many cases, a
set of attributes may be unpacked more efficiently as a group
(as compared to on-demand unpacking of individual fields
done separately by each LFTA). For example, ifa TCP packet
is embedded in an IP packet, then it is easy to unpack all the
TCP header attributes sequentially. Since the prefilter 230
needs to extract all the fields referenced in all of its predicates
prior to evaluating them, it can take advantage of group
unpacking to amuch greater extent than the individual LFTAs
210.

To exploit group unpacking opportunities, it is advanta-
geous to use an optimizer that maintains two statistics for
each attribute of the stream S: the cost of unpacking it sepa-
rately and the cost of unpacking it along with a set of other
attributes, typically those at the same protocol layer. After the
prefilter predicates have been chosen, the optimizer finds an
efficient method of unpacking the required fields. We model
this problem in terms of weighted set covering and use a
greedy heuristic to obtain the answer: at each step, we choose
the group of fields which gives the cheapest overall unpacking
cost per field. Such a step may be used for the purpose of
assigning priorities to predicates, as discussed above at step
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330 of the method 300 of FIG. 2A. Predicates operating on
fields with the least unpacking cost may be selected first for
inclusion in a prefilter 230 with a limited bit budget.
Reducing Predicates to Match Constrained Resources.

As indicated previously, the number of bits to be used in the
prefilter is limited in order to reduce overhead and may be
limited by hardware constraints. For workloads containing
many queries and unique predicates, it may be the case that
even after “compressing” the predicates using the rectangle
covering heuristic, we may still have more composite predi-
cates than available bits. Suppose the number of available bits
is k. In this situation, we use one of the following two solu-
tions. The first is to take the first k rectangles returned by our
covering heuristic, eliminate rectangle overlap (as discussed
above), and install the corresponding k predicates in the pre-
filter. The second solution is used only when the optimizer has
accurate predicate selectivity estimates; e.g., if statistics are
collected periodically and the selectivities are known not to
change over time. In this case, we modify our covering heu-
ristic as follows. Rather than building the covering by always
choosing the rectangle which covers the most uncovered
“ones” in M, we choose the rectangle (i.e., composite predi-
cate) which yields the biggest decrease in the expected num-
ber of LFTA invocations. Assuming that all the predicates are
independent, we can calculate the expected number of invo-
cations of a particular LFTA as the product of the selectivities
of'all of'its predicates evaluated at the prefilter. As before, we
take the first k rectangles returned by the modified heuristic,
eliminate rectangle overlap, and place the resulting k predi-
cates in the prefilter.

FIG. 8A is a flowchart showing a method 800 according to
the invention. Method 800 is similar to method 300 of FIG.
2A, but includes more detailed steps as have been described
above. In step 810, a value C is set as a cost threshold for
cheap predicates. In step 820, all predicates in the query set at
or below value C are selected for inclusion in the prefilter. In
step 830, a matrix M is constructed to represent the selected
predicates and their corresponding queries. In step 840, a
rectangle covering heuristic is applied to the matrix M to
identify rectangles corresponding to composite predicates. In
step 850, the identified rectangles are reorganized to remove
rectangle overlap. In step 860, the simplified rectangles are
translated into evaluation predicates. In step 870, one bitof'a
tuple bitmap is assigned to each evaluation predicate. In step
880, a bit signature is assigned to each query. In step 890, the
prefilter code is translated to runtime system code (e.g., C
code) and linked to the runtime system for the DSMS. For
resource constrained systems, after step 860, in step 862, a
tuple attribute unpacking efficiency is determined; in step
864, predicates are assigned priorities based on the unpacking
efficiency of the attributes they examine; and in step 864,
predicates are added to the prefilter in priority order. Such
added predicates then are assigned a bit in step 870.

The DTMS then operates in accordance with the method
900 shown in FIG. 8B. In step 910, the runtime process
unpacks the attributes required by the prefilter predicates, and
in step 920 evaluates the predicates. In step 930, a tuple
bitmap is returned with bits representing the existence of
predicates in the tuple, and in step 940 the bitmap is compared
to query bit signatures. In step 950, queries are invoked if their
bit signatures correspond to the tuple bitmap.

Example of Prefilter Use

We have implemented a prefilter as described above in the
AT&T Gigascope and tested it on a live network data feed
from a data center tap. All of our experiments monitor a high
speed DAG4.3GE Gigabit Ethernet interface, which receives
approximately 105,000 packets per second (about 400 Mbits
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per second). All experiments were conducted on dual proces-
sor 2.8 GHz P4 server with 4 GB of RAM running FreeBSD
4.10.

We have tested the prefilter on a network monitoring query
set developed for an AT&T application. The set contains 22
complex queries (i.e., 22 output streams to which other appli-
cations may connect), which in total subscribe to 50 LFTAs.
The LFTAs contain 47 cheap predicates (with 10 or fewer
operations) that are pushed down to the prefilter. Neither the
prefilter nor any of the LFTAs are executed on the network
interface card.

FIG. 9 shows the corresponding matrix M (of size 47x50).
In matrix M: (1) The first 14 rows correspond to shared
predicates. The remaining 33 prefilter predicates occur in one
query each. (2) Four columns are all-zeros, therefore of the 50
LFTAs, 46 contain at least one prefilter predicate. (3) The
matrix is quite sparse and contains 116 rectangles. There are
44 “main” rectangles if the pruning rule is used to remove
smaller rectangles contained in larger ones. The height of the
tallest rectangles is six (i.e., corresponding to rows 1, 3, 6, 7,
8, and 14, and columns 19 and 20).

Performance of the Rectangle Covering Heuristic

As noted above, the cost of finding a rectangle covering for
a matrix M consists of two parts: finding the rectangles in M
and then generating the covering. F1G. 10 plots the total time
taken by our heuristic and by an exhaustive approach as a
function of the number of rectangles in the matrix represen-
tation of the query workload. The exhaustive approach exam-
ines every permutation of the rectangles in order to find a
minimum-sized covering, starting with all sets of one rect-
angle each and working upwards. Therefore, its time com-
plexity is exponential in the number of rectangles. As shown
in the graph, the exhaustive technique requires over 1000
seconds (over 20 minutes) to find a covering when M contains
27 rectangles. Therefore, the optimal algorithm is intractable
over our query set, even if rectangle pruning is used. In
contrast, our heuristic can handle hundreds of rectangles in a
fraction of a second, with the majority of the processing time
taken by the rectangle finding algorithm from FIG. 6, not the
rectangle cover selection process.

In FIG. 11, we show in bar graph form the effectiveness of
the rectangle covering heuristic by comparing the number of
bits it requires versus the optimal solution and the number of
base predicates. The first set of bars on the left corresponds to
our query set; note that we did not obtain the optimal solution
in a reasonable time. As shown, the rectangle covering heu-
ristic can represent the 47 prefilter predicates using only 36
bits. The next set of bars corresponds to a subset of our query
set consisting of the first 29 queries. This subset contains 28
base predicates, 96 rectangles, and 27 main rectangles (which
is small enough to compute the optimal solution in under one
hour). In this case, our heuristic represents the 28 base predi-
cates using 21 bits, one bit more than the optimal solution.
Finally, the two sets of bars on the right correspond to two
smaller query sets used for network monitoring at AT&T. In
both cases, our heuristic reduces the number of bits needed by
the prefilter and is only one bit away from the optimal solu-
tion.

Performance of the Prefilter

Next, we report the performance of Gigascope DSMS with
and without the prefilter. Our experiments proceeded in two
stages. First, we obtained selectivity estimates of the 47 base
predicates by creating 47 COUNT (*) queries, each with one
of the base predicates in its WHERE clause. Next, we com-
piled two versions of the prefilter: one that chooses the rect-
angle covering without considering selectivities, and one that
chooses rectangles according to the expected number of



US 8,051,069 B2

17

LFTA invocations. For each version, we experimented with
several different bit budgets, from one to 36.

The expected performance of the two strategies in terms of
the expected number of LFTA invocations per tuple, assum-
ing that our selectivity estimates remain accurate, is plotted in
FIG. 12 for various numbers of bits in the prefilter, up to 36
(which is enough to represent all 47 base predicates). Note
that when the number of bits is zero, the prefilter is disabled
and therefore all 50 LFTAs are invoked for each new tuple.
Using 36 bits, fewer than ten LFTAs are expected to be
invoked; at this point, using predicate selectivities does not
matter as all the composite predicates fit in the prefilter any-
way. If fewer than 36 bits are available, then the knowledge of
(accurate) selectivities can potentially improve performance,
but not by a significant margin. Moreover, note that even
using as few as ten bits is expected to yield a noticeable
performance improvement.

After gathering the selectivity estimates, we immediately
executed our experiments with the two versions of the prefil-
ter and using various numbers of bits. Each experiment was
performed serially on live traffic data, and hence there is a
significant amount of noise error in our results. However, the
network feed represents the aggregation of a very large num-
ber of users, and tends to be stable over short periods of time
(but not over the long run; e.g., morning vs. evening traffic or
weekdays vs. weekends). As a result, the selectivity estimates
obtained just prior to running the experiments were still accu-
rate, aside from ignoring correlations across predicates due to
the independence assumption.

For each experiment, we report the CPU utilization of the
run-time system, which executes the prefilter and the LFTAs;
the CPU consumption of all the HFTAs combined amounted
to less than 25 percent and is not affected by the prefilter. For
each data point, we collected the average packet rate as well
as the CPU utilization. We then normalized the CPU utiliza-
tion by the average packet rate to obtain the equivalent utili-
zation at 105,000 packets/sec (the most common packet rate
over the course of the experiments). We observed that the
CPU utilization of the runtime system alone (i.e., processing
every packet, but not running any queries) was 8.8 percent
with the prefilter, and 8.7 percent with the prefilter turned off.
Thus, the prefilter is not a source of overhead.

FIG. 13 shows the CPU utilization of the runtime system
for the variants of the prefilter described above. First, we note
that without the prefilter (i.e., when the number of bits is
zero), the CPU usage is over 80 percent. However, we noticed
that there was packet loss at the LFTAs (but Gigascope was
unable to boost the priority of the process without starving the
HFTAs). There was also packet loss with one bit (with or
without selectivity estimates). However, increasing the bit
budget to four brought the CPU utilization down below 70
percent and eliminated packet loss. Further increasing the bit
budget caused a gradual decrease of CPU utilization, down to
47 percent when all 36 composite predicates were included.
As expected, selectivity knowledge yielded moderate
improvement of less than ten percent. Again, this improve-
ment is likely to vanish (or even become negative) as time
goes on and the selectivity estimates get stale.

The dotted horizontal line in FIG. 13 represents the CPU
utilization (roughly 58 percent) achieved by evaluating the 14
shared cheap predicates at the prefilter. This shows the benefit
ascribable to multi-query optimization, although we have
found it unnecessary to use the selectivity estimates this tra-
ditional optimization technique requires. Due to the relatively
high costs of LFTA invocation, the additional benefit of push-
ing down non-shared predicates for even greater data reduc-
tion can be seen in FIG. 13 as well, as we show reduced CPU
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utilization, even without selectivity estimates, for all
examples greater than 14 bits. When all 36 composite predi-
cates are included, CPU utilization drops from 58 percent to
47 percent, a substantial improvement.

From the foregoing results, several advantages of the
present invention become apparent:

A. The rectangle covering heuristic very quickly finds near
optimal solutions in terms of the number of bits needed to
represent a set of prefilter predicates

B. The prefilter significantly reduces the CPU utilization of
the LFTAs, even if only a subset of the candidate predicates is
pushed down. This means that 1) the prefilter may be evalu-
ated efficiently on network hardware, where the bit budget is
smaller, and 2) even if the query set is very large, we should be
able to find a small set of prefilter predicates that will greatly
reduce the number of LFTA invocations.

C. Selectivity estimates are not necessary for the prefilter to
be effective.

Thus, the invention describes a feature enabling a prefilter
to be constructed that improves the performance of a DSMS.
The improved feature includes both system and method
aspects. While the present invention has been described with
reference to preferred and exemplary embodiments, it will be
understood by those of ordinary skill in the art that various
changes may be made and equivalents may be substituted for
elements thereof without departing from the scope of the
invention. In addition, many modifications may be made to
adapt a particular situation to the teachings of the invention
without departing from the scope thereof. Therefore, it is
intended that the invention not be limited to the particular
embodiments disclosed, but that the invention include all
embodiments falling within the scope of the appended claims.

What is claimed is:

1. A high speed data stream monitoring system for moni-
toring and ascertaining desired characteristics of a high speed
data stream flowing in a network, the data in the data stream
being in the form of serial tuples, the monitoring system
comprising:

means for evaluating new tuples arriving in the stream, the

means for evaluating including computation means for
running a query plan on new tuples arriving in the
stream, the query plan including a set of high level
queries and a set of different low level queries, the low
level queries being characterized by different sets of
predicates to be evaluated on the tuples as part of the
queries, the set of different low level queries including a
plurality of different low level queries sharing acommon
predicate,

a predicate prefilter outside of the query plan that includes

a set of predicates selected from the low level query
predicates including a common predicate shared by dif-
ferent low level queries and that evaluates the selected
predicates on a new tuple arriving in the stream before
running any of the low level queries on the tuple and
produces a predicate signature for each new tuple in
response to the evaluation;

means for assigning a predicate signature to each of the low

level queries,

means for determining those low level queries which have

a predicate signature compatible with the predicate sig-
nature of the tuple produced by the prefilter;

means for applying to the tuple only those low level queries

determined to have a predicate signature compatible
with the predicate signature of the tuple produced by the
prefilter, along with selected high level queries, to ascer-
tain the desired characteristics of the high speed data
stream;
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whereby low level queries that do not have a compatible bit
signature are not applied to the tuple by the monitoring
system and the computation means has a computation
load for running the query plan that is reduced.

2. The high speed data stream management system claimed
in claim 1 wherein the high level queries are high level filter-
ing-transformation-aggregation queries and the low level
queries are low level filtering-transformation-aggregation
queries.

3. The high speed data stream management system claimed
in claim 1 wherein the predicates selected to be evaluated in
the prefilter have an execution cost that is less than a value C,
where C is an execution cost chosen to be less than the
execution cost of executing a low level query.

4. The high speed data stream management system claimed
in claim 3 wherein the predicates selected to be evaluated in
the prefilter include both base predicates and groups of base
predicates that are present in the low level queries.

5. The high speed data stream management system claimed
in claim 4 wherein the groups of base predicates are selected
to reduce overlapping predicates.

6. The high speed data stream management system claimed
in claim 3 wherein the predicates selected to be evaluated in
the prefilter are the predicates that require the fewest attribute
unpacking operations to evaluate.

7. The high speed data stream management system claimed
in claim 1 wherein the predicate signature for each tuple is a
bit vector with bits representing the presence and absence of
selected predicates in the tuple, and wherein the predicate
signature assigned to a low level query has bits representing
predicates that are required to be present by the low level
query, and wherein the means for invoking a low level query
compares the bits in the tuple bit vector with the bits in the low
level query bit signature.

8. A method for operating a high speed data stream moni-
toring system for monitoring and ascertaining desired char-
acteristics of a high speed data stream flowing in a network,
the data in the data stream being in the form of serial tuples,
the monitoring method evaluating new tuples arriving in the
stream with computation means running a query plan on new
tuples arriving in the stream, the query plan including a set of
high level queries and a set of different low level queries, the
low level queries being characterized by sets of different
predicates to be evaluated on the tuples as part of the queries,
the set of different low level queries including a plurality of
different low level queries sharing a common predicate, the
method comprising:

prefiltering the tuples outside of the query plan with a set of

predicates selected from the low level query predicates
including a common predicate shared by different low
level queries to evaluate a new tuple arriving in the
stream before running any of the low level queries on the
tuple and to determine if the selected predicates evaluate
to true in the tuple;

generating a tuple predicate signature representing the

selected predicates that evaluate to true in the tuple;
assigning a predicate signatures to each of the low level
queries
determining those low level queries that have signatures
that are compatible with the tuple predicate signature;

applying to the tuple only those low level queries deter-
mined to have signatures compatible with the tuple
predicate signature, along with selected high level que-
ries, to ascertain the desired characteristics of the high
speed data stream;

20

25

30

35

40

45

50

55

60

65

20

whereby low level queries that have predicate signatures
that are not compatible with the tuple predicate signature
are not applied to the tuple and the computation means
has a computational load for running the query plan that
is reduced.

9. The method claimed in claim 8 wherein the selected
predicates evaluated by prefiltering have an execution cost
that is less than a value C, where C is a cost chosen to be less
than the cost of executing a low level query.

10. The method claimed in claim 9 where the predicates
selected to be evaluated by prefiltering include both base
predicates and groups of base predicates that are present in the
low level queries.

11. The method claimed in claim 10 where the groups of
base predicates have been selected to reduce overlapping
predicates.

12. The method claimed in claim 9 where the predicates
selected to be evaluated by prefiltering are predicates selected
to require the fewest attribute unpacking operations to evalu-
ate.

13. The method claimed in claim 8 wherein the predicate
signature for each tuple is a bit vector with bits representing
the presence and absence of selected predicates in the tuple,
and wherein the predicate signature assigned to a low level
query has bits representing predicates that are required to be
present by the low level query, and wherein invoking a query
compares the bits in the tuple bit vector with the bits in the low
level query bit signature.

14. The method claimed in claim 8 wherein the high level
queries are high level filtering-transformation-aggregation
queries and the low level queries are low level filtering-trans-
formation-aggregation queries.

15. A method for selecting predicates to be evaluated in a
prefilter in a high speed data stream monitoring system for
monitoring and ascertaining desired characteristics of a high
speed data stream flowing in a network, the data in the data
stream being in the form of serial tuples, the monitoring
method evaluating new tuples arriving in the stream with
computation means running a query plan on new tuples arriv-
ing in the stream, the query plan including a set of high level
queries and a set of different low level queries, the different
low level queries being characterized by different sets of
predicates to be evaluated on the tuples and each of the low
level queries being assigned a predicate signature, the prefil-
ter evaluating a new tuple arriving in the stream before run-
ning any of the low level queries on the tuple with predicates
selected from the low level query predicates to determine if
the selected predicates are present in the tuple and to create a
tuple predicate signature to be compared to a predicate sig-
nature assigned to a low level query to cause the computation
means to apply to the tuple only those low level queries on the
tuple that have a predicate signature matching the tuple predi-
cate signature, the prefilter predicate selection method com-
prising:

identifying base predicates in the low level queries;

establishing an execution cost C for processing of predi-

cates, where C is chosen to be less than the cost of
executing a low level query;

selecting base predicates with a cost level below the estab-

lished level C; and

placing the selected base predicates with a cost level below

the established level C in the prefilter.

16. The method claimed in claim 15 further comprising:

combining the selected base predicates into groups of two

or more predicates present in one or more low level
queries.
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17. The method claimed in claim 16 wherein combining
the base predicates into groups comprises:

constructing a matrix M to represent the predicates with a

cost level below the established level C and their corre-
sponding low level queries; and

applying a rectangle covering heuristic to the matrix M to

locate groups of predicates present in one or more low
level queries.

18. The method claimed in claim 17 further comprising:

removing rectangle overlaps to produce a set of groups of

predicates which do not duplicate predicate presence in
the groups.

19. The method claimed in claim 16 wherein the predicates
are assigned priority according to the attribute unpacking
operations that are required to evaluate them.

20. The method claimed in claim 15 wherein the prefilter
has a limited bit budget, further comprising:
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assigning a priority to the selected predicates; and

adding the selected predicates to the prefilter to the limit of

the bit budget in priority order.

21. The method claimed in claim 20 wherein the predicates
are selected by constructing a matrix M to represent the
predicates and their corresponding queries, and a rectangle
covering heuristic is applied to the matrix M to locate groups
of predicates present in one or more queries, and wherein the
predicates are assigned priority according to their identifica-
tion by the rectangle covering heuristic.

22. The method claimed in claim 20 wherein the predicates
are assigned priority according to their selectivities such that
their choice will result in minimum application of low level
queries.

23. The method as claim in claim 15 wherein the estab-
lished execution cost C is 10 operations.
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