APPLATUS FOR INSERTING BOLTS INTO CONCRETE

INVENTOR:
STEPHEN M. DUNN

BY
DEPUTY ATTORNEY
APPARATUS FOR INSERTING BOLTS INTO CONCRETE

Stephen M. Dunn, Los Angeles, Calif.

Original application May 16, 1944, Serial No. 392,896. Divided and this application February 4, 1946, Serial No. 845,400

10 Claims. (Cl. 1—47)

My invention relates primarily to the art of embedding bolts, studs, or the like in concrete or similar substances, and more particularly to a method and apparatus for accomplishing this purpose.

My invention is of particular utility in concrete construction, and accordingly, will be described in connection therewith, although it is to be recognized that my apparatus, method, and article may be used in other arts without departing from the spirit of my invention. This is a division of my co-pending application, Serial No. 392,896, filed May 10, 1941, and issued as U. S. Letters Patent No. 2,400,878, on May 28, 1946.

In the concrete construction art, it is commonly desirable or necessary to set bolts or studs formed of steel or other material so that one end thereof is embedded in a mass of solid concrete. Such embedded bolts or studs are frequently used to provide means whereby other structures may be joined or fastened to such a concrete mass. For example, in the fabrication of concrete building structures it is frequently necessary to provide extensive metal piping systems, such as plumbing, which must be fastened in some manner to the concrete walls of the structure. The standard practice is to partially embed a series of bolts or studs in the concrete walls so as to leave an end thereof projecting, to which the piping may be tied by conventional methods. Hereunto, the embedding of the bolts or studs has been accomplished by either of two methods: (a) bolts or studs are set in the forms in which the walls are originally cast so as to actually cast the studs into the walls; or (b) the walls are first formed complete and then are drilled by conventional methods, as by a pneumatic drill, to form holes to receive the studs which are secured in the holes by anchoring devices or by cementing, or both. These are the only two methods of accomplishing this result known in the art at the present time, and both methods have many marked disadvantages. For example, it is extremely expensive to cast studs directly in the concrete as it is poured as special provision therefor must be made in the concrete forms, and, particularly in the casing of vertical walls, it is very difficult to secure a good bond between the concrete and the studs as voids tend to form below the studs as the concrete is poured. Also, by this standard method, errors in location or changes in plans after completion of the pouring of the concrete frequently necessitate the insertion of additional studs, which must then be put in by the second conventional method, which causes delay in construction. The second method, similarly, is expensive as special holes must be drilled in the concrete, and the studs must then be anchored and cemented in the holes, which are labor-consuming operations requiring additional material such as special anchors and cement, which also increase the cost. By either prior art method, however, only a relatively weak bond can be formed between the studs and the concrete, which allows the studs to pull out of the concrete if large pulling strains are impressed thereon. Thus, such prior art methods are not only expensive to perform but actually produce only a relatively weak bond between the studs and the concrete.

For the purpose of simplicity in this specification and claims, I shall describe my invention as being used in connection with a mass of "aggregated material," which I hereby define as meaning aggregated or fired earthen materials having a low modulus of elasticity and being substantially non-ductile, such as, for example, concrete, cement, brick, clay, and the like, to all of which my invention is applicable.

A primary object of my invention is to provide a method and apparatus for embedding a stud in a mass of aggregated material which is more economical to use than the prior art methods described above and which forms a much stronger bond between the stud and the aggregated material than such prior art methods. I intend to accomplish this by sheathing a stud directly into a mass of aggregated material so as to rigidly fix the stud therewith. I have found that such a method is very economical and attains a result much superior to the standard methods described above. For example, a large number of pulling tests have been run on sand-blasted studs which were carefully tamped and cemented in drilled holes in concrete blocks, in accordance with conventional prior art methods. It was found that all of such studs could be pulled from the concrete by applying a pulling force thereof of 500 pounds per square inch, or less, of circumferential area of the embedded portion of the stud. Similar pulling tests conducted by me on studs embedded in concrete by my method, as described hereinafter, have established that the pulling force required to pull such a stud is commonly over 3000 pounds per square inch of circumferential area of the embedded portion of the stud. In fact, by extensive tests on pulling studs having a diameter of one-quarter inch and which had been embedded in concrete by my process, I have discovered that a bond may be formed be-
between the stud and the concrete of such strength that the stud will break before the bond between the stud and the concrete will break; i.e., the bond between the stud and the concrete is greater than the breaking strength of the stud.

My process and apparatus include the use of a gun of special design for firing a stud into aggregated materials. I have found that it is important in the practice of my process to hold the surface of the aggregated material in place while the bolt is shot thereinto, and I prefer to accomplish this by holding the muzzle of my gun solidly against the aggregated material when the gun is fired and until the stud is embedded therein, and this is a feature of my invention. To accomplish this purpose, it is necessary to provide for the exhaust of gases from the gun barrel, to assist in preventing recoil of the gun barrel away from the surface of the aggregated material, and it is another object of my invention to provide a gun capable of accomplishing this result.

It is also important to provide such a gun in which the recoil of the gun resulting from firing the same is put on the breechblock thereof which is allowed to recoil independently of the gun barrel, thus further reducing the possibility of recoil of the muzzle of the gun from the surface of the concrete, and this is another object of the invention.

A further object of my invention is to provide such a gun having a locking mechanism which is so designed that the gun cannot be fired unless the muzzle of the gun is in pressure engagement with a surface. This feature of my gun insures that the desirable supporting pressure is applied to the concrete while the gun is being fired.

Although in carrying out the method of my invention it is important to provide a supporting pressure on the surface of the concrete surrounding the area to be penetrated by the stud during penetration thereof, it is sometimes difficult for an operator to hold a gun barrel against the surface and perpendicular to the surface so as to supply the necessary supporting pressure from the muzzle of the gun. It is therefore another object of my invention to provide means for applying such supporting pressure to such a surface by the gun barrel without requiring the gun barrel to be perpendicular to the surface.

Other objects and advantages will appear from the following description and from the drawings, which are for the purpose of illustration only and in which:

Figure 1 is a longitudinal sectional view of my gun loaded with my novel projectile. Figure 2 is a view similar to Figure 1 but illustrating the position of the parts during firing of the gun.

Figure 3 is an enlarged cross-sectional view taken on the line 3—3 of Figure 1. Figure 4 is an enlarged cross-sectional view taken on the line 4—4 of Figure 1. Figure 5 is a longitudinal fragmentary sectional view, considerably enlarged, taken on the line 5—5 of Figure 1. Figure 6 is a cross-sectional view taken on the line 6—6 of Figure 2. Figure 7 is a diagrammatic view illustrating the gun muzzle in position for firing. Figure 8 is a diagrammatic view illustrating the projectile and the gun muzzle at the conclusion of firing. Figure 9 is a diagrammatic view showing the bolt at the conclusion of the operation.

Figure 10 is a longitudinal sectional view of an alternative form of gun muzzle for my invention.

Figure 11 is a sectional view illustrating the position of the parts at the time when the firing pin is fully retracted.

Referring to the drawings, I show a gun 15 including a breechblock member 16 to which is rigidly secured, as by an upper bolt 17 and a lower bolt 18, a handle frame member 19 having a handle 20 at its outer end. The breechblock member 16 is formed to provide a central chamber 22 and an outer chamber 23, and having an opening 24 in one side thereof, as best shown in Figure 6. The central chamber 22 is provided with a first wall 25 at one end thereof and a second wall 26 at the other end thereof, the latter being provided with a cylindrical boss 28 projecting into the central chamber.

A gun barrel 29 is provided with a head member 30 which is rotatably supported on the lower bolt 18 which passes through an opening 31 formed in the head member. The opening 31 is provided with a counterebore 32 in which is retained a relatively stiff compression spring 33 which engages the inner end of the counterebore and also the second wall 26 of the breechblock member 16 so as to normally hold the head member 30 forwardly with considerable pressure against the first wall 25 and away from the second wall 26, in the position shown in Figure 1. The gun barrel 29 is provided with a bore 35, the inner end of which is provided with a cartridge chamber 36, the inner end thereof being chamfered at 37 so as to receive the cylindrical boss 28, as best shown in Figure 2. The outer end of the gun barrel 29 forms a muzzle 38, and the gun barrel is provided with radial ports 39 which communicate between the bore 35 and the outer chamber 23 of the breechblock member 16, the outer chamber in turn communicating through the opening 24 in the side thereof with the atmosphere so as to permit exhaust gases to discharge therethrough from the bore.

The handle frame member 19 is provided with a vertical wall 41 having a central opening 42 therein in which is held the outer sleeve 43 having an inner end 44 of reduced diameter which makes a close fit with the walls of an axial bore 45 formed through the second wall 26 of the breechblock member 16. The inner end 44 of the guide sleeve 43 is provided with a firing pin bore 46 through which extends a firing pin 47. The firing pin 47 is supported in an actuating cup element 48 so as to permit restricted relative axial movement therewithin, the firing pin being provided with a firing point 49 and an inner head 50 which limits rightward movement of the firing pin relative to the actuating cup element, and an outer head 51 engaged by a firing pin return spring 52 which is adapted to normally hold the firing pin relative to the actuating cup element 48 in the position shown in Figure 1. The actuating cup element 48 is adapted for sliding movement in the guide sleeve 43, being guided therein by a lug 55 (Fig. 4) formed on the top of the actuating cup element and confined in a longitudinal slot 56 formed in the top of the guide sleeve 43. A compression spring 54 is provided in the guide sleeve 43 and engages the outer face of the actuating cup element 48 and a screw plug 55 threaded into the outer end of the guide sleeve, the compression spring 54 exerting a substantial leftward force on the actuating cup element 48 so as to yieldably
retain it in the position shown in Figure 1. The inner end of the guide sleeve 43 is cut away to provide a transverse slot 57.

As best shown in Figures 3 and 4, against the outer face of the second wall 28 of the breechblock member 16, is provided a vertically movable plate member 58 which is guided for vertical movement by guide screws 59 which are threaded into the second wall 28 of the breechblock member. The plate member 58 has a cut-away central portion 60 providing a horizontal face 61 having a semicircular opening 62 therein. The radius of the semicircular opening 62 is less than the radius of the inner head 60 formed on the firing pin 47, and, as best shown in Figure 1, when the plate member 58 is in its lowest position, the semicircular opening 62 partially encircles the firing pin 47 and the inner head 60 engages the plate member to prevent the firing pin from moving to the left from the position shown in Figure 1.

Consequently, the vertically movable plate member 58 comprises a means for preventing actuation of the firing pin 47, and as will be understood by those skilled in the art, the plate member 58 must be raised before the firing pin can be moved to the left to firing relation. The plate member 58 is normally retained in its lowest position, as shown in Figure 3, by a leaf spring 64 which engages the top of the plate member and which is suitably secured to the breechblock member 16 as by screws 65.

Locking means is provided to positively lock the plate member 58 in its lower position, as shown in Figures 1, 3, and 5, which includes a stud 66 formed in the second wall 28 of the breechblock member and having an inner end 68 projecting, into the central chamber 22 into the line of the head member 30, the stud having a head member 69 thereon adapted to engage an angled top surface 70 formed on the plate member 58. The stud 66 is normally urged toward locking position by a compression spring 72, one end of which engages the head member 69 and the other end of which engages a bracket element 73 rigidly fixed to the handle frame member 19 as by screws 74. The compression spring 72 being centered by the outer end 75 of the stud 66 and by a boss 76 formed on the bracket element 73.

As best shown in Figure 5, a rectangular opening 77 is provided in the vertical wall 41 and acts as a guide for a trigger bar 78 passing therethrough, to the outer end of which is fixed a trigger handle 79, the trigger bar 78 also being guided by passing through a rectangular slot 80 formed in the bracket element 73 as best shown in Figure 4, the rectangular slot 80 providing an engagement shoulder 81 at the top thereof for a purpose to be described hereinafter. The inner end of the trigger bar 78 is provided with a vertical slot 82 in which is disposed an L-shaped releasing dog 83 having an upper leg 84 and a lower leg 85 and being pivoted to the trigger bar by a suitable pivot pin 87 passing therethrough. Resiliently engaging the lower leg 85 of the releasing dog 83 is the free end of a leaf spring 88 suitably fixed to the trigger bar 78, so as to tend to rotate the releasing dog in a clockwise direction as seen in Figure 1. Also secured in the trigger bar 78 is a cross pin 89 which engages beneath a spring plate 90, the inner end 91 of which is inserted into a suitable slot 92 formed in the plate member 58, as best shown in Figure 2, the cross pin 89 being press-fitted into a slot 94 formed in the vertical wall 41 of the handle frame member 19, the spring plate 90 being bent toward the rear thereof so as to form a cam face 95 thereon. The spring plate 90 is preferably formed of resilient material, such as spring steel.

Adapted to be inserted into the cartridge chamber 38 of the gun barrel 29, as shown in Figure 1, is a cartridge 102. A projectile 103 comprising a part of the projectile includes a stud 104 and a piston means 105 thereon. The stud 104 is preferably formed of a relatively hard metal, such as steel. The inner portion 108 of the stud 104 is cylindrical and is externally threaded so as to accommodate a nut 110 after the stud has been embedded in a surface, as best shown in Figure 9.

In operation, the gun 15 is first loaded with the cartridge 100, the operating parts of the gun being initially in the position shown in Figure 1. To accomplish this loading operation, the gun barrel 29 is first rotated on the lower bolt 16 in a counterclockwise direction, as seen in Figure 6, to the position shown by dotted lines 113 shown therein, rotation of the gun barrel being stopped by engagement thereof with a shoulder 114 formed by one wall of the compartment 24 in the breechblock member 16. When the gun barrel 29 is in the position shown by the dotted lines 113 of Fig. 6, it will be noted that the bore, indicated by dotted lines 115 thereof, is aligned with an arcuate opening 116 formed in the breechblock member 16 through which the cartridge 100 may be inserted into the cartridge chamber 38 formed in the gun barrel. The gun barrel is then rotated in a clockwise direction back to the full line position shown in Fig. 6, in which the gun is ready for firing.

Prior to firing the gun, the muzzle 38 of the gun barrel 29 is firmly pressed against the surface 117 of the mass of aggregated material 118 into which the stud 104 is to be embedded. Force is then applied by the operator through the handle 20 to move the handle frame member 19 and the breechblock member 16 rigidly secured thereto to the left, as shown in Fig. 1, against the action of the compression spring 33 to cause the cylindrical boss 28 formed on the second wall 26 to move into the chambered portion 37 of the cartridge chamber 38 of the barrel. The position thereof shown in Fig. 2. During such leftward movement of the breechblock member 16, as soon as the head member 30 of the gun barrel 29 engages the inner end 58 of the stud 66, the stud 66 is moved to the right to the position shown in Fig. 2, in which the head member 30 thereof is out of engagement with the angled top surface 70 of the vertically movable plate member 58, permitting the top of the plate member to clear the head member 69. Since the semicircular opening 62 in the plate member 58 now clears the firing pin 47 between the inner head 60 formed on the firing pin and the inner wall 26, it will be apparent that the firing pin cannot be moved to the left from the position shown in Fig. 1 into engagement with the primer 102 of the cartridge 100 until the vertically movable plate member 58 has been raised to the position shown in Fig. 2. Consequently, it will be understood that the stud 66, which is normally held in the position shown in Fig. 1 by the compression spring 72, operates as a locking means to prevent firing of the gun until such time as the muzzle 38 of the gun barrel 29 is in strong pressure engagement with the surface 117. This is an important feature of the invention.

And with the stud 66 in its unlocking position, as shown in Fig. 2, the trigger handle 78 is then drawn rearwardly in the direction of the arrow
muzzle 38 of the gun barrel 29 in pressure engagement with the surface 117 of the mass of material 116 during the firing of the gun 15, several additional features are incorporated in the gun. For example, during firing, after the projectile 103 has passed outwardly through the bore 38 of the gun barrel 29 and the combustion gases from the powder 99 may then pass radially outwardly therethrough to exhaust to the atmosphere, reducing the natural recoil of the gun barrel 29 which would occur if these ports were opened on the plate member 70. This is an important feature of my invention. From extensive tests, I have discovered that unless the muzzle of the gun barrel 29, or some other equivalent support, is provided for the surface 25 of the mass of material 87, it is very undesirable as it mars the surface f and weakens the bond between the projectile and the aggregated material.

23. After the projectile 103 has been fired into the mass of aggregated material 118, as shown in Fig. 8, the cylindrical piston 105 may be readily removed therefrom, as by cutting or otherwise, and a restraint, thus compressing the compression spring 54 and storing energy therein. Upon continued movement of the trigger bar 78 to the right, the upper leg 84 of the releasing dog 83 engages the engagement shoulder 81 (Fig. 2) formed on the bracket element 74, so as to cause the releasing dog to rotate in a counterclockwise direction so as to rotate the lower leg 85 thereof out of engagement with the lug 86 formed on the actuating cup element 48. The stored energy of the compression spring 54 is released thereby, which drives the actuating cup element 48 and the firing pin 47 to the left at high speed, the actuating cup element 48 stopping its leftward movement upon engagement with the guide sleeve 43, in the position shown in Fig. 2, but the firing pin 47, due to its inertia, continues its leftward movement and the point 49 thereof pierces the primer 102 of the cartridge case 101 for the cartridge in a manner well known in the art. Fig. 2 shows the firing pin 47 having just pierced the primer 102 to fire the cartridge 105, and shows the projectile 103 just starting its travel through the bore 38 of the gun barrel 29.

Under the impact of the explosion of the powder 99, the projectile 103 travels outwardly through the bore 38 of the gun barrel 29 and enters the mass of material 118 to approximately the position shown in Fig. 8. It is to be noted that until after the projectile 103 has penetrated the mass of aggregated material 118 to its desired depth, the muzzle 38 of the gun barrel 29 is held in pressure engagement with the surface 117 of the aggregated material, thus providing substantial support for the surface of the aggregate material around the area of penetration of the projectile 103. This is an important feature of my invention. From extensive tests, I have discovered that unless the muzzle 38 of the gun barrel 29, or some other equivalent support, is provided for the surface 117 of the mass of material 118 around the area of penetration of the projectile 103, the mass of material around such area is not sufficiently compressed by the small crater around the embedded stud, which is very undesirable as it mars the surface 117 and weakens the bond between the projectile and the aggregated material 118. Consequently, I believe it is very desirable to maintain a pressure support for the surface 117 of the mass of material 118 around the area of penetration of the projectile 103. To additionally assist in maintaining the
Although I have shown and described a preferred embodiment of my invention, it will be understood that certain patents by mechanical equivalents without departing from the spirit of my invention. Consequently, I do not intend to be limited to the specific embodiment shown and described but desire to be afforded the full scope of the following claims.

Having thus described my invention, what I claim as new and desire to secure by Letters Patent is:

1. A gun for shooting attachment projectiles into substances so as to have them embedded therein comprising means for providing a gun barrel, a chamber to receive a cartridge and said projectile, means for firing the cartridge, a foot member attached to and having the axis thereof shiftable relative to the axis of the gun barrel so as to be in a position squarely against the surface of the substance to be penetrated independently of the degree of deviation of the body of the gun barrel from a position normal to said surface.

2. A gun for shooting attachment devices into substances so as to have them embedded therein comprising means for providing a gun barrel, a chamber to receive said attachment device and means for propelling said attachment device through the gun barrel, and a foot member attached to and having the axis thereof shiftable relative to the axis of the barrel whereby said foot member is capable of being adjusted flatly against the surface of the substance to be penetrated independently of the degree of deviation of the body of the gun barrel from a position normal to said surface.

3. A gun for shooting attachment devices into substances so as to have them partially embedded therein comprising means for providing a gun barrel, a chamber to receive said attachment device and means for propelling said attachment device through the gun barrel, and an adjustable foot member having a flat outer face, said foot member and the gun barrel having a ball and socket joint between whereby the foot member is capable of being adjusted flatly against the surface of the substance to be penetrated independently of the degree of deviation of the body of the gun barrel from a position normal to said surface.

4. A gun for shooting attachment projectiles into substances so as to have them partially embedded therein comprising means for providing a gun barrel adapted to receive a cartridge containing the projectile, means for firing the cartridge, a breechblock mounted around the barrel adapted to receive a projectile and an explosive charge, a firing pin mechanism in the stock for igniting said explosive charge, adapted to receive a projectile and an explosive charge, a firing pin mechanism in the stock for igniting said explosive

5. A gun comprising a barrel having a bore larger in diameter than the bore of the barrel whereby the axis of the gun barrel may deviate considerably from a line normal to the engaging surface of the foot plate and the foot plate and the gun will function as a unitary structure in providing an inert mass either held or pressed against the surface of the substance.

6. A gun for shooting attachment projectiles into substances so as to have them partially embedded therein comprising means providing a jointed gun barrel adapted to receive a cartridge containing the projectile, means for firing the cartridge, said jointed barrel comprising a fixed portion and a foot plate adjustable to the said fixed portion and capable of adjusting itself relatively to the fixed portion and to a position squarely against the surface of the substance to be penetrated independently of the body of the gun barrel, there being outlets for air in the jointed gun barrel ahead of the projectile.

7. A gun for shooting attachment projectiles into substances so as to have them partially embedded therein comprising means for providing a gun barrel adapted to receive a cartridge containing the projectile, means for firing the cartridge, foot plate adjustable to the body of the gun barrel and to a position squarely against the surface of the substance to be penetrated independently of the position of the body of the gun barrel, there being an outlet in said adjustable foot plate for air ahead of the projectile in the barrel, and an outlet intermediate the ends of the body of the barrel for gases generated by the cartridge.

8. A gun comprising a barrel, a chamber to receive a projectile and an explosive charge, a breechblock mounted around the barrel adapted for movement endwise with respect thereto and spring means adapted to extend the barrel relative to the breechblock, means for igniting the explosive charge, means on the breechblock adapted to prevent the ignition of said charge until a positive pressure is applied to the end of the barrel against the spring means, comprising an arresting device normally holding said igniting means in inoperative position, and a release responsive for movement of the barrel relative to the breechblock for releasing said arresting device.

9. A gun comprising a barrel having a bore therein open endwise to the atmosphere, a chamber to receive a projectile and an explosive charge, a breechblock mounted for spring-loaded longitudinal movement relative to the barrel, arresting means on the breechblock for the firing pin, a pressure release therefor cooperable with the barrel adapted to prevent the ignition of said charge until a positive pressure is applied to the end of said barrel adapted to move said barrel relative to the breechblock, and a series of interconnected passage means through the barrel communicating between the chamber and the atmosphere adapted to permit the escape of air in the barrel directly into the atmosphere ahead of said projectile.

10. A gun comprising a stock, a barrel having a longitudinally movable attachment to the stock, a chamber in the barrel adapted to receive a projectile and an explosive charge, a firing pin mechanism in the stock for igniting said explosive
charge, means to prevent the ignition of said charge until a positive longitudinal pressure is applied to the end of said barrel comprising pressure means adapted to normally extend the barrel relative to the stock, an arresting device on the stock normally engaging the mechanism in safety position, and a release for said arresting device responsive to movement of the barrel against the pressure means and actuable by longitudinal movement of the barrel relative to the stock.

STEPHEN M. DUNN.