

**(12) PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 199670802 B2
(10) Patent No. 712586

(54) Title
Manufacture of bodies using rice hulls

(21) Application No: 199670802 (22) Application Date: 1996.10.04

(87) WIPO No: WO97/13629

(30) Priority Data

(31) Number	(32) Date	(33) Country
PN5852	1995.10.06	AU
PN6134	1995.10.23	AU
PN9993	1996.05.21	AU

(43) Publication Date : 1997.04.30

(43) Publication Journal Date : 1997.06.26

(44) Accepted Journal Date : 1999.11.11

(71) **Applicant(s)**
Richard Laurance Lewellen

(72) Inventor(s)
Richard Laurance Lewellin

(74) Agent/Attorney
PATENT ATTORNEY SERVICES, 26 Ellingworth Parade, BOX HILL VIC 3128

(51) International Patent Classification 6 : B27N 3/02, 3/08, 3/20		A1	(11) International Publication Number: WO 97/13629 (43) International Publication Date: 17 April 1997 (17.04.97)
(21) International Application Number: PCT/AU96/00626		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 4 October 1996 (04.10.96)		Published <i>With international search report.</i>	
(30) Priority Data: PN 5852 6 October 1995 (06.10.95) AU PN 6134 23 October 1995 (23.10.95) AU PN 9993 21 May 1996 (21.05.96) AU			
(71)(72) Applicant and Inventor: LEWELLIN, Richard, Laurance [AU/AU]; 2 Raymond Street, Somerville, VIC 3912 (AU).			
(74) Agent: GRANT, Michael, John; 26 Ellingworth Parade, Box Hill, VIC 3128 (AU).			

(54) Title: MANUFACTURE OF BODIES USING RICE HULLS

(57) Abstract

A process is described for forming a body of whole untreated rice hulls by mixing with a heat setting binder. The mixture is formed into a generally desired formed shape of the body e.g. in a mould or die. The temperature throughout the formed shape is raised until a parameter indicative of or associated with the start of setting of the binder reaches a predetermined level or is observed. The setting of the binder is progressed beyond the start of setting, preferably under different process conditions, until the binder has substantially fully cured. To raise the temperature of the body, an RF field can be applied to cause dielectric heating within the mixture until condensing steam is seen emerging from the body, whereupon application of the RF field is stopped. Another heating process suitable for a porous body comprises creating a pressure differential through the mass and introducing a heated fluid so that the heated fluid passes through the porous mass. To make a denser body the porous mass that has just been heated can be compressed until setting of the binder has occurred yielding a stable shape having the increased density.

MANUFACTURE OF BODIES USING RICE HULLS

This invention relates to the manufacture of cellulosic bodies, such as bodies in the form of panels, sheets, and other formed shapes, and to products of such processes.

5 In Australian patent specification No. AU-48947/93 there is described a process for manufacturing bodies composed of a binder mixed with a feed material including rice hulls and/or particles obtained by comminuting rice hulls. The binder comprises an RF curable composition. The mixture of the feed material and binder is formed into the generally desired shape of the body e.g. in a mould or in a press, and the binder is cured to form an adherent 10 body having substantially the required shape by applying to the formed shape an RF field of a suitable frequency and intensity and for a suitable period of time to cause dielectric heating within the mixture so as to cure the binder to form the final adherent body. The body is then removed from the mould or press.

It is an object of the present invention to improve the process of forming bodies 15 according to the said patent specification or to provide useful alternative or supplementary processes for forming bodies using rice hulls.

According to a first aspect of the present invention there is provided a process for forming a body of rice hulls, the process including: mixing rice hulls with a binder, the rice hulls being substantially whole untreated rice hulls with their edible rice grains removed, the 20 rice hulls being processed so as to be of substantially uniform density by separating relatively dense particles and removing fines or dust particles prior to mixing with the binder, the binder comprising a composition whose setting requires or is accelerated by heat; forming the mixture of the rice hulls and binder into a formed shape of the body by placing the mixture in a mould at a forming station and closing the mould; raising the temperature throughout

substantially the formed shape of the body in the mould until a parameter indicative of or associated with the start of setting of the binder reaches a predetermined level or is observed, the start of setting of the binder being defined by the formed shape of the body in the mould

5 achieving a stable shape enabling opening of the mould and removal therefrom of the formed shape; opening the mould and removing the stable formed shape from the mould; and progressing the setting of the binder in the formed shape beyond the start of setting by further treating the body in its stable shape under different process conditions to those in the mould so as to cure the binder to approach or reach its full strength.

10 By monitoring the heating to determine the start of setting of the binder, and treating the subsequent curing as a separate

process stage, greater control of the process is achieved, and production and product costs and quality can be optimised.

In the preferred process of the present invention, whole or untreated rice hulls form at least a substantial proportion of the feed material since whole rice hulls provide sound and/or 5 thermal insulation as a result of the cavities therein. The reference to "whole" or "untreated" rice hulls is referring to rice hulls after whole rice heads have been threshed to separate the edible grains. "Raw" rice hulls after the threshing operation can have for example between 5% and 10% by weight of fine particles having the consistency of dust. Preferably fines or dust particles are removed before mixing of the rice hulls with the binder. The process may 10 comprise winnowing the raw feed material. For example, the raw feed material may be aerated with an air current being formed to carry away the fine particles, while the current is insufficient to carry the larger fragments of rice hulls. The raw hulls for example can be progressively dropped through a tower with a cross air current or updraught collecting and separating the fines and dust particles. Fine dust particles can effectively soak up a significant 15 proportion of a liquid binder, greater than their proportion by weight in the mixture, probably due to the greater surface area per unit weight of the fine particles compared to the larger particles. For example, dust present in a percentage of 5% to 10% by weight may soak up 10% to 20% by weight of the liquid binder. As a result it has been found that the strength of binding of the formed body is reduced if there is a significant proportion of fine particles.

20 As an alternative to dropping the rice hulls through a tower, a batch of raw rice hulls may be fluidised in a vessel so that the lighter fine particles are lifted higher enabling them to be drawn off from the vessel. Preferably, also denser particles such as particles of dirt or mineral matter which can contaminate the raw rice hulls material are separated. By fluidising

the raw rice hulls, denser particles such as dirt or grit tend to collect at the bottom of the vessel where they can be separated from the rice hulls.

Preferably, the process further includes separating or inactivating any whole rice grains in the initial feed material. Bulk or raw rice hulls material can have up to 5% of whole rice grains mixed in the hulls, the percentage varying widely depending on the efficiency of the threshing and winnowing processes used to separate the hulls. Whole rice grains mixed within the feed material, if mixed with the binder and bound into the final adherent body, can create problems with use of the product, particularly if the rice seeds remain capable of germinating. For example, if whole rice grains are formed into the body and the body at any stage is exposed to water, including high humidity, the seeds if viable could germinate leading to structural and/or aesthetic physical defects in the product.

The raw feed material may be fluidised in a vessel so that the denser whole grains tend to accumulate at the bottom of the vessel making their removal possible.

Preferably any whole rice grains in the mixture are inactivated by raising the body to a temperature sufficient to sterilise or inactivate any viable seeds, e.g. during the step of raising the temperature of the formed shape. The temperature throughout the body may be raised to greater than 80°C and preferably to greater than 90°C.

The process for forming a body of rice hulls may be improved by generally processing the particulate feed material so that the density and/or composition of the mixture formed of the particulate feed material and binder is substantially uniform i.e. inhomogeneities are substantially removed. This processing preferably includes removal of relatively dense particles including contaminating dirt or mineral particles, and preferably removal of whole rice grains as discussed above. The process of making the mixture as uniform as possible preferably also includes removal of fines or dust particles as discussed above.

If desired, the mixture may include additional fillers or substances so as to utilise available feed materials and/or contribute desired properties to the final product. For example, fillers such as straw (which may be chopped or otherwise treated to desirable lengths), hemp fibres, or other cellulose fibres may be incorporated in the feed material 5 together with the whole rice hulls. Fillers or other additives having long fibres can help to bind the rice hulls and can add tensile strength to the final product. Fire retardants, pesticides, fungicides, colouring agents are examples of other additives.

The process utilises a binder which sets at an elevated temperature. For example, the binder may be suitable thermosetting or thermo-curing resin binder such as a urea 10 formaldehyde or phenolic resin which incorporates a suitable catalyst. The process includes the step of raising the temperature throughout the mixture of the rice hulls and binder when the mixture is formed in a generally desired shape, which may be the final desired shape or an intermediate shape.

In one possible embodiment, the mixture of rice hulls and binder is located in a mould 15 or die at the forming station so that the mixture is in the generally desired final shape of the product to be formed, the heat being applied to the mixture by conduction from the mould or die. For example the mould or die may be directly heated e.g. by an adjacent gas flame so that the hot combustion products contact and heat the mould or die. Alternatively electrical resistive heating elements may be incorporated in the mould parts or dies so as to electrically 20 heat the mould. As a further alternative, inductive heating of the mould parts may be achieved by providing windings in proximity to the die parts so that high frequency alternating current in the windings induces currents in the die thereby heating the same.

RF induced dielectric heating of the water content of the mixture is another heating option. When the formed shape of the body includes a significant water content throughout

the body, the step of raising the temperature may comprise application to the formed shape of an RF field of a suitable frequency and intensity to cause dielectric heating of water within the formed shape of the body. Thus according to a second aspect of the present invention there 5 is provided a process for forming a body of rice hulls, the process including: mixing rice hulls with a binder, the binder comprising a composition whose setting requires or is accelerated by heat; forming the mixture of the rice hulls and binder into a formed shape of the body at a forming station, the formed shape of the body including a significant water content; applying to the formed shape an RF field of a suitable frequency and intensity to cause dielectric 10 heating of water within the formed shape of the body, and continuing to heat the water by applying the RF field until the appearance of condensing steam emerging from the body; discontinuing application of the RF field substantially immediately upon or shortly after the appearance of the emerging condensing steam; and providing conditions for progressing the setting of the binder after discontinuance of application of the RF field until the binder has 15 substantially fully cured.

It has been found that continued application of the RF field for a substantial period after the appearance of condensing steam can lead to an electrical arc or discharge between the metal field plates, this discharge burning or damaging the formed body.

In a further possible embodiment, the formed shape comprises a porous mass and 20 heated fluid, particularly a heated gas such as heated air or steam, may be caused to flow under a pressure differential created through the formed shape within a mould or die cavity so that the passage of the heated fluid through the porous mixture causes direct heating throughout the thickness to initiate setting of the binder. For example, the body may be shaped between opposed perforated plates through which the heated fluid passes. The formed

5a

shape of the body may comprise a panel having opposed outer faces and side edges around the perimeter of the outer faces, the panel including an impervious sheet such as a laminating face sheet covering at least one of the outer faces and which becomes bound to the body.

5 The pressure differential is created between different portions of the side edges so that the heated fluid passes through the panel between the side edges and generally parallel to the outer faces.

To make a dense body of low porosity, the heated fluid may be passed through a porous mass until the start of setting of the binder is about to commence or has just 10 commenced and then the porous mass is compressed to a smaller volume creating a

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
997
998
998
999
999
1000

significantly denser body and the mass is held compressed until setting of the binder has occurred yielding a stable shape having the increased density.

It is also possible to extrude the mixture through a die having the desired shape. The mixture can be heated in the die so that by the time the product is emerging from the die, the 5 binder has set sufficiently for the emerging product to retain the required shape. The heating of the mixture as it is being forced through the die may be achieved by heating of the die surfaces, e.g. by direct contact with combustion products, or by resistance or inductive 10 electrically heating of the die. The feed material comprising a mixture of whole rice hulls (with or without other ingredients such as fillers) and the binder can be fed and simultaneously compressed in an auger so as to enter the heated extrusion die under pressure. The inside surfaces of the die may be treated so as to reduce friction or resistance e.g. by 15 being coated with a non-stick material such as known under the trade mark Teflon. This extrusion process will be suitable for continuous manufacture of a product such as pipe insulation lagging which can have a substantially annular cross-sectional shape with a split to receive a pipe to be insulated.

In a further embodiment, the step of forming the mixture comprises firstly locating the mixture in an enclosed sealed mould cavity and secondly compressing the mixture by substantially reducing the volume so that the internal pressure in the cavity is raised and consequently the temperature of the materials in the mould cavity increases.

20 Whichever method of raising the temperature of the mixture is used, and whichever system for forming the mixture into a formed shape is used, the step of progressing the setting of the binder preferably comprises subjecting the formed shape to different process conditions to those existing at the start of setting of the binder.

In one preferred embodiment, the binder sets upon the parameter reaching the predetermined level (e.g. when the mixture reaching a predetermined temperature throughout, or when the mixture being subjected to a predetermined temperature for a predetermined time) so that the formed shape of the body has a stable shape substantially 5 upon reaching the start of setting. The step of progressing the setting of the binder may include removing the formed shape of the body from the forming station (e.g. from the mould or die) and further treating the body in its stable shape so as to cure the binder to approach or reach its full strength. The surprising finding that the formed shape becomes sufficiently stable to enable handling upon the start of setting of the binder leads to the ability to separate 10 the full curing process from the start of setting of the binder. This enables efficient use of the equipment used to form the mixture to the formed shape and equipment used to raise the temperature throughout the formed shape. For example, in the embodiment using an RF field to cause dielectric heating within the mixture so as to set the binder sufficiently to form the body of stable shape, the step of further treating the body may comprise further heating of the 15 body by application of conductive or radiant heat so that the binder is substantially fully cured. The other possible heating processes described above similarly can produce a stable formed shape in a short time which can be processed separately from the heating system until the binder is cured to full strength.

For some binders the time interval between the mixing of the binder with the rice hulls 20 and raising the temperature is preferably substantially less than 20 minutes, more preferably less than 10 minutes and desirably less than one minute, e.g. about 30 seconds. In specification No. AU-48947/93 it is stated that because rice hulls are water resistant, the addition of water based compositions does not result in significant absorption of the water into the rice hulls. However, contrary to this indication, it has been found that mixing of an

aqueous binder with the rice hulls substantially more than 10 minutes and particularly more than 20 minutes before curing of the binder can lead to significant absorption of water by the rice hulls. This, in turn, can lead to reduction in the effectiveness of binding of the particles so that a formed body when cured can have less strength and can have a surface which is 5 friable or crumbly or is more easily damaged by rubbing or impact. Furthermore when the mixture is formed into the generally desired shapes, if the mixture has had the binder mixed with the rice hulls more than 10 minutes before shaping, the formed body after heating to start setting of the binder tends to spring back or expand slightly upon removal of the compressive force from body. This is believed to be due to some setting or curing of the 10 binder having already taken place before the compression and application of heat.

However by mixing the liquid binder with the rice hulls, compressing the mixture to the desired shape, and starting setting of the binder as quickly as possible after mixing, the strength of binding is maximised (given all other conditions being equal) and the formed body retains the required shape that it had during the step of starting setting of the binder.

15 The process may include addition of a pH adjusting material, e.g. an alkaline material so as to adjust the pH of the final formed product. Natural rice hulls in their raw state can have a pH of about 7.7, although this can vary depending on the source of the rice crop. However the binders, or the catalysts used in binders, are often acidic so that the final pH of the formed product can be for example in the range 5.9 to 6.3.

20 By adjusting the pH of the mixture, e.g. by adjusting the pH of the liquid binder, the formed body may have any desired pH consistent with the purpose for which the body is to be used. For most applications, e.g. products for the building industry, a substantially neutral pH, e.g. in the range 6.5 to 7.2 will be preferred. Addition of dolomite or lime, or like material, to the binder or to the mixture at the time of forming the mixture of the feed

material and binder, may be sufficient to increase the pH to the desired level. Chemical pH adjusting agents may likewise be used. pH testing of the initial raw feed material is preferable so that the amount of pH adjusting additive can be determined to compensate for differing pH of the initial raw feed material.

5 The formed shape may incorporate a reinforcing material such as a metal mesh or fibre reinforcing mat to contribute tensile strength to the final body, e.g. for structural strength bodies for use in buildings. Tests suggest that a metal mesh (not electrically connected to earth or to either the metal plates through which RF field is applied) shortens the time for increasing the temperature throughout the formed shape when using RF dielectric heating.

10 The processes described herein in which there is direct heat transfer to the mixture while it is in the desired formed shape, and particularly the heating by conduction from the surfaces of a mould or die in which the mixture is confined, are particularly suitable for forming products having a thickness of the body up to about 6 cm. Because the rice hulls are effective thermal insulators, surface conduction heating is unsuitable for thicknesses in the 15 order of for example, 10 cm (which may be needed for acoustic insulation for use in building wall cavities). In the case of such relatively thick bodies, the RF dielectric heating or the forcing of heated fluid air or steam through the porous body so as to reach throughout the thickness are suitable heating processes.

The processes according to the present invention can be used for producing a wide 20 range of products such as pipe insulation lagging which can have a wall thickness up to about 5 cm. Other possible products include ceiling panels having a thickness of about 2 cm. Other possible products include cores for doors or building panels with surface laminations being applied during or after formation of the core material to provide external surfaces having the desired finish.

CLAIMS

1. A process for forming a body of rice hulls, the process including: mixing rice hulls with a binder, the rice hulls being substantially whole untreated rice hulls with their edible rice grains removed, the rice hulls being processed so as to be of substantially uniform density by separating relatively dense particles and removing fines or dust particles prior to mixing with the binder, the binder comprising a composition whose setting requires or is accelerated by heat; forming the mixture of the rice hulls and binder into a formed shape of the body by placing the mixture in a mould at a forming station and closing the mould; raising the temperature throughout substantially the formed shape of the body in the mould until a parameter indicative of or associated with the start of setting of the binder reaches a predetermined level or is observed, the start of setting of the binder being defined by the formed shape of the body in the mould achieving a stable shape enabling opening of the mould and removal therefrom of the formed shape; opening the mould and removing the stable formed shape from the mould; and progressing the setting of the binder in the formed shape beyond the start of setting by further treating the body in its stable shape under different process conditions to those in the mould so as to cure the binder to approach or reach its full strength.

2. A method as claimed in claim 1 wherein the step of raising the temperature of the body includes application to the formed shape of an RF field of a suitable frequency and intensity and for a suitable period of time to cause dielectric heating within the mixture so as to set the binder sufficiently to form the body of stable shape, the step of further treating the body including further heating of the body by application of conductive or radiant heat so that the binder is substantially fully cured.

AMENDED SHEET
IPEA/AU

3. A process as claimed in claim 1 or 2 wherein the formed shape of the body includes a significant water content throughout the formed body, the step of raising the temperature including application to the formed shape of an RF field of a suitable frequency and intensity to cause dielectric heating of water within the formed shape of the body, the parameter indicative of or associated with the start of setting of the binder comprising the appearance of condensing steam emerging from the body, the step of progressing the setting of the binder including the step of discontinuing application of the RF field substantially immediately upon or shortly after the appearance of the emerging condensing steam.

10 4. A process for forming a body of rice hulls, the process including: mixing rice hulls with a binder, the binder comprising a composition whose setting requires or is accelerated by heat; forming the mixture of the rice hulls and binder into a formed shape of the body at a forming station, the formed shape of the body including a significant water content; applying to the formed shape an RF field of a suitable frequency and intensity to cause dielectric heating of water within the formed shape of the body, and continuing to heat the water by applying the RF field until the appearance of condensing steam emerging from the body; discontinuing application of the RF field substantially immediately upon or shortly after the appearance of the emerging condensing steam; and providing conditions for progressing the setting of the binder after discontinuance of application of the RF field until the binder has 15 substantially fully cured.

20

5. A process as claimed in claim 1 or 2 wherein the formed shape of the body of rice hulls and binder comprises a porous mass, and the step of raising the temperature of the body comprises creating a pressure differential through the mass and introducing a fluid at an elevated temperature so that the fluid passes through the porous mass under the action of the

pressure differential thereby raising the temperature throughout substantially the formed shape of the body.

6. A process as claimed in claim 5 wherein the formed shape of the body comprises a 5 panel having opposed outer faces and side edges around the perimeter of the outer faces, the panel including a sheet covering at least one of the outer faces and which becomes bound to the body, the pressure differential being created between different portions of the side edges so that the fluid passes through the panel between the side edges and generally parallel to the outer faces.

10 7. A process as claimed in claim 5 or 6 wherein the fluid at the elevated temperature is passed through the porous mass until the start of setting of the binder is about to commence or has just commenced and then the porous mass is compressed to a smaller volume creating a significantly denser body and the mass is held compressed until setting of the binder has occurred yielding a stable shape having the increased density.

15 8. A process as claimed in claim 1 or 2 wherein the steps of forming the mixture and raising the temperature includes firstly locating the mixture in an enclosed sealed mould cavity and secondly compressing the mixture by substantially reducing the volume so that the internal pressure in the cavity is raised and consequently the temperature of the materials in the mould cavity increases.

20 9. A process as claimed in claim 4 wherein the rice hulls are substantially whole untreated rice hulls with their edible rice grains removed, the rice hulls being processed so as to be of substantially uniform density by separating relatively dense particles and removing fines or dust particles prior to mixing with the binder.

