
USOO8903898B2

(12) United States Patent (10) Patent No.: US 8,903,898 B2
Lategan (45) Date of Patent: *Dec. 2, 2014

(54) SESSION POOLING FOR LEGACY (51) Int. Cl.
APPLICATION TASKS G06F 5/16 (2006.01)

G06F 9/44 (2006.01)
(71) Applicant: Advanced Business link Corporation, H04L 2/9II (2013.01)

Kirkland, WA (US) (52) U.S. Cl.
CPC. H04L 47/70 (2013.01); G06F 8/70 (2013.01)

(72) Inventor: Christopher F. Lategan, Kirkland, WA USPC .. 709/203
(US) (58) Field of Classification Search

CPC H04I 12/582–12/585; H04N

(73) Assignee: Advanced Business link Corporation, USPC 709f2O1, 2032 3. y2.
Kirkland, WA (US) ''' - “ 78/107.108.75/744746

(*) Notice: Subject to any disclaimer, the term of this See application file for complete search history.
patent is extended or adjusted under 35 56 Ref Cited
U.S.C. 154(b) by 0 days. (56) eeees e

This patent is Subject to a terminal dis- U.S. PATENT DOCUMENTS
claimer. 5,228,137 A * 7/1993 Kleinerman et al. TO3.26

21) Appl. No.: 13/922 6,205,417 B1 * 3/2001 Butts et al. 703/27
. 9 ck CaS (ca. ... (ppl. No 106 2002fOO26507 A1* 2, 2002 Sears et all TO9,224

2011/01 13377 A1* 5/2011 Lategan 715.835
(22) Filed: Jun. 19, 2013 * cited by examiner

(65) Prior Publication Data Primary Examiner — Brendan Higa
US 2013/0282905 A1 Oct. 24, 2013 (74) Attorney, Agent, or Firm — Lowe Graham Jones PLLC

(57) ABSTRACT

Related U.S. Application Data Methods, systems, and techniques for handling session emu
(63) Continuation of application No. 12/914,834, filed on lation for running legacy applications/tasks in host environ

Oct. 28, 2010, now Pat. No. 8489.677 ments using session pools are provided. These enhanced ses
- irror sion emulation techniques may be used for many

(60) Provisional application No. 61/280,034, filed on Oct. applications, including modernizing legacy applications, par
28, 2009, provisional application No. 61/280,044,
filed on Oct. 28, 2009, provisional application No.
61/280,040, filed on Oct. 28, 2009, provisional
application No. 61/280,060, filed on Oct. 28, 2009,
provisional application No. 61/280,042, filed on Oct.
28, 2009, provisional application No. 61/280,041,
filed on Oct. 28, 2009, provisional application No.
61/280,043, filed on Oct. 28, 2009.

1510

Client Computing System
(e.g., Web Browser

Application)
1501

User input

Task Screen Output

\s,
?A. -

ticularly in mid-range or mainframe host computing.
Example embodiments provide a Role-Based Modernization
System (“RBMS), which uses the enhanced emulation tech
niques to provide role-based modernization of menu-based
legacy applications.

20 Claims, 23 Drawing Sheets
(8 of 23 Drawing Sheet(s) Filed in Color)

Host Computing System (e.g. mainframe, or midrange
computer such as AS400, etc.)

151
N
"Web"Application (Server Side) 1514

1512 1513 L

Web Emulation Services
Sever Manager (ESM)

()-vi

f5195, 1519a

U.S. Patent Dec. 2, 2014 Sheet 1 of 23 US 8,903,898 B2

U.S. Patent Dec. 2, 2014 Sheet 3 of 23 US 8,903,898 B2

U.S. Patent Dec. 2, 2014 Sheet 4 of 23 US 8,903,898 B2

US 8,903,898 B2 Sheet 5 of 23 Dec. 2, 2014 U.S. Patent

US 8,903,898 B2 Sheet 6 of 23 Dec. 2, 2014 U.S. Patent

8
8

61-I

US 8,903,898 B2 Sheet 7 of 23 Dec. 2, 2014 U.S. Patent

US 8,903,898 B2 Sheet 8 of 23 Dec. 2, 2014 U.S. Patent

G 61-I

U.S. Patent

"Configure"
Role Play System

Dec. 2, 2014 Sheet 9 of 23

Modernizing "Legacy" Application
for Roles-Based ACCeSS

Determine (manually or using a
computing system) all tasks in
application(s) (e.g., each menu item in
each legacy application of interest)

ASSOCiate each task With One Or more
roles (manually, automatically, or
Computer-assisted)

Store task and role associations in
configuration repository with
information for invoking each task on
host Computing system (e.g.,
execution string for host session
associated with a menu item)

Define users and associate each user
with One or more roles

US 8,903,898 B2

(Other configurations)

"Run" Role Play

Fig. 6

US 8,903,898 B2 Sheet 10 of 23 Dec. 2, 2014 U.S. Patent

Z ‘61-I

(~ 104
00/

US 8,903,898 B2 Sheet 11 of 23 Dec. 2, 2014 U.S. Patent

F –

Z88

8 '61-I

U.S. Patent Dec. 2, 2014 Sheet 12 of 23 US 8,903,898 B2

Overview for Running Modernized
Tasks of legacy Applications

Client-side display & control module
(DCM) determines user has
designated task (e.g., tab, hotkey,
selection, etc.)

901

Host-based task?

Process Web-based
application, extension,
Or Other module

DCM invokes client side host interface
(e.g., Java applet) to send input to
host task and/or receive updated
SCee

902

903 client side Host Interface forwards
input to host ESM via secure binary
Connection (e.g. secure Socket)

ESM routine receives request from
Host interface, authorizes, and uses
existing session with running task or
starts new task (in new session) to
process input and return current
screen via secure binary connection

904

client side Host Interface receives
updated screen (streamed data) from
ESM via Secure Connection, fitters it to
write context information; displays it
on task WorkSpace area

905

Fig. 9

U.S. Patent Dec. 2, 2014 Sheet 14 of 23 US 8,903,898 B2

Client Side Desktop Management &
Control

Determine whether extension,
host task or other (e.g., web or
local) application module
designated (mouse selection,
at-tab, hotkey, etc.)

(wait for next input event)

i 103
— a 4

1 105 Allocate 1 bring extension
workspace area "overlay" to
top of Z-order Host

(Legacy)Task
Designated? 1 104
- .24
invoke extension (role or
task) with determined
extension workspace area
(it paints overlay as
necessary)

Process, display, or forward
filtered f contextual
information as needed Fig. 11A

U.S. Patent

(client-side Host Interface receives
Current screen from host and draws
Current Screer. On its Canvas - the
task workspace area

Dec. 2, 2014 Sheet 15 Of 23 US 8,903,898 B2

(Legacy Task designated)

1110

Authorized
2

Shuffle task workspace areas
to make host interface Canvas
topmost in Z-order (e.g., move
Other application workspace
areas to bottom - Out of the
Way)

1112

forward TaskID and params to
client-side Host Interface to
cause designated task to be
"invoked" and resulting screen
displayed

1113

Reject request

11 if

Fig. 11B

U.S. Patent Dec. 2, 2014 Sheet 16 of 23 US 8,903,898 B2

(non-legacy Task designated)

Shuffle task workspace area to
move corresponding task
Workspace area (e.g. iframe of
browser & app) to top of Z-order
(make workspace area active
area)

Invoke or otherwise process other
designated application designating
Current workspace area as active
windowliframe etc.
(http://designated page)

Fig. 11C

U.S. Patent Dec. 2, 2014 Sheet 17 Of 23

Client-Side Host Interface

1201 Receive designated task input
from client-side display & control
module

1202 Forward received input to host
ESM via secure binary
connection (e.g. secure socket)

1203 Receive updated screen
(streamed data) from ESM via
Secure COnnection

Filter data stream (e.g., to obtain 1204
names, phone numbers,
locations, etc.), create enhanced
data stream, write Context
information to Context ist

1205
Display stream on current task
workspace area (active canvas)

Return (to DCM)

US 8,903,898 B2

Fig. 12

U.S. Patent Dec. 2, 2014 Sheet 18 of 23 US 8,903,898 B2

Create Enhanced Data
Stream

1301

Names found in
data?

1302

look up corresponding
icon and dynamically
display Corresponding
icon proximate to name

1303

PhOne number
found in data?

Display UI control to
phone application (e.g.,
Skype)

ocation information
1306 found in data?

Display UI control to
mapping application
(e.g., Google.Maps)

Fig. 13

US 8,903,898 B2 Sheet 20 of 23 Dec. 2, 2014 U.S. Patent

}2!!!!!
- - - - - - - - - -?!!! !! suosses, suoisses :|×~ pelood | | | pelood | | | | pelood , !

?nd?nO uæ910S »?se | ---? <!----------------------------+--- }ndu|| 4æsn

GL '61-I

U.S. Patent Dec. 2, 2014 Sheet 22 of 23 US 8,903,898 B2

(Task D, UserAuthinfo,
TaskSpecification)

ESM - ProcessNext

AuthorizelAuthenticate
UserAuthInfo for running
task of Task)

1701

1703

Return
UnAuthorized User

(Non-Local processing
User Authorized?

- Y - 1710
A - --
\ ̂ : C

1704

Task aisready running?
(associated with a

Session)

AOCate Session from
Determine associated 1705 Session pool
Session, Connect to
session, and pass
designated parameters
to running session

jor
ASSOciate allocated
session with Task)

- - - - initiate task of TaskD in
B asSociated Session

using parameters

1709 Obtain Current Screen
and forward back to
requester

Wait for next
request

Fig. 17A

U.S. Patent Dec. 2, 2014 Sheet 23 of 23 US 8,903,898 B2

1711

Non-Local Task?

Process Non-local Task (cal 1742
remote ESM) (operates like
Figure D without remote test)

1713
Receive Current Screen from
remote ESM

Fig. 17B

US 8,903,898 B2
1.

SESSION POOLING FOR LEGACY
APPLICATION TASKS

TECHNICAL FIELD

The present disclosure relates to methods, systems, and
techniques for managing legacy application session emula
tion and, in particular, to methods systems, and techniques
providing emulation to legacy applications and tasks through
pooled sessions.

BACKGROUND

Traditional computing environments were often populated
by mainframe computers such as the IBM 3270, and, even
tually, mid-range computers, such as the IBM AS400. Over
the years, many companies made huge investments into these
platforms, which were notoriously good at providing very
large, complex applications, such as accounting, generalled
ger, and inventory systems for running businesses of all sizes,
and vertical applications which were developed to run in
optimized form in these host computing environments. Ini
tially, users of such programs used wired terminals to directly
communicate via "sessions' with these host environments. A
user could create a secure session to communicate with an
application running on the host computing system by present
ing credentials (e.g., username and log-on information) to the
host via the terminal for authentication and authorization. The
application would run on the "host computing system,
receive input from the user terminal via a session, and forward
output back to the terminal via a session for display. All
communication between the terminal and the host computing
system was done through sessions. Because the screens of
Such terminals were traditionally black with green writing,
the output from host applications (also referred to as “legacy
applications) were affectionately known as “green screens.”
FIGS. 1A and 1B are example screen displays of “green
screen' legacy application output as presented by Such prior
systems. There was no direct manipulation or pixel address
ing present, the data stream was a typically 80-character
stream presented line-by-line on the display screen.

Legacy applications can be typically characterized by their
Voluminous number of menus, their hierarchical access
nature, and their session-driven state. For example, in a legacy
application it is quite typical for an end user to select upwards
of 10 or more menus, each corresponding to a separately
executable task, to get to a point in the system where the user
can enter Some data, for example in an accounting form, only
to need to back all the way out and enter another set of 10 or
menus to obtain some related data, for example, apart number
of an inventoried item in an inventory system, and then need
to reenter all of the first set of 10 or more menus to get back to
where the user was originally entering the accounting data. In
a single session, this can happen hundreds if not thousands of
times. Moreover, to do multiple things at once, for example,
to handle the same data entry for multiple customers at a time,
each requires a separate session. Thus, it is easy for a user to
lose context and become frustrated.
As desktop and personal computing became more main

stream, terminal emulators, designed to run, for example, in
windowed environments on a personal computer (PC) and
using the Internet, replaced the hard wired terminals. These
PCs terminal emulators, emulating the terminals, thus con
tinue to communicate via sessions with the legacy applica
tions running on these host systems. The end user runs each
application in a session managed by the terminal emulator,
and legacy output is returned to the emulator. The emulator

10

15

25

30

35

40

45

50

55

60

65

2
typically presents the green screen equivalent within the con
fines of the emulator display, often a window. FIGS. 2A and
2B are example screen displays of the same 'green screen'
legacy application output presented by a terminal emulator.
Over time, as graphical user interfaces (GUIs) became an

expectation, and not just a nicety, increased modernization of
the “green screen” was made available. In particular, the
interfaces presented by the terminal emulators were made
Smarter so that some amount of enhanced graphics and visu
als could be delivered to interface to these legacy applica
tions. For example, commands could be accessed by check
boxes instead of numeric input, menus could be directly
selected, etc. FIGS.3A and 3B are example screen displays of
recent modernization of "green screen' legacy application
output as performed in current systems. Even though the user
interface is potentially more user-friendly, the underlying
host applications still require access through the multitude of
menus and via sessions. The protocol remains of sign on,
create a session, run one or more jobs, sign off, as many times
as needed to accomplish the user's objective.
As a result, although computing resources have become

cheaper, and many mid-range computing systems like the
AS400 have replaced the old mainframe hardware in many
companies, the legacy applications continue to have their
strong place in everyday use, especially in larger or geo
graphically distributed companies, such as companies with
many branch offices. This phenomenon is due in a large part
to the investment that has been made over the years to greatly
expand the capabilities of Such applications and to tailor the
applications for a particular company’s use. Customizations
may take hundreds of thousands of person-hours and Such
applications are typically rewritten, regenerated, and redis
tributed each time a new function or customization is needed.
Thus, in instances in which companies have invested large
amounts of money and resources, it may make more business
sense to continue to run the legacy application rather than
convert to another, more modern, tool. Often times it is both
cost and time prohibitive to do so.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawings will be provided by the
Office upon request and payment of any necessary fee.

FIGS. 1A and 1B are example screen displays of “green
screen' legacy application output as used in prior systems.

FIGS. 2A and 2B are example screen displays of the same
'green screen' legacy application output presented by a ter
minal emulator.

FIGS. 3A and 3B are example screen displays of more
recent modernization of "green screen' legacy application
output as performed in prior systems.

FIG. 4 is an example screen display of role-based modern
ization of a legacy application.

FIG. 5 is an example screen display of a legacy task mod
ernized according to techniques described herein.

FIG. 6 is an example block diagram of an example process
for reorganizing a legacy application by role for use with a
Role Based Modernization System such as the RolePlay.

FIG. 7 is an example block diagram of an example data
structure for storing role-based task associations for imple
menting role-based modernization of legacy applications.

FIG. 8 is an example block diagram of components of an
example Role-Based Modernization System.

US 8,903,898 B2
3

FIG. 9 is an example block diagram of an overview of an
example process for running legacy applications that have
been modernized according to role-based modernization
techniques.

FIG. 10 is an example block diagram of a computing sys
tem for practicing embodiments of a client computing system
of a Role-Based Modernization System.

FIGS. 11A-11C are example flow diagrams of example
logic used by a desktop management and control module of
an example Role-Based Modernization System.

FIG. 12 is an example flow diagram of example logic use
by a client-side host interface of a Role-Based Modernization
System to communicate with one or more emulators on a host
computing System.

FIG. 13 is an example flow diagram of logic for further
processing of context information received from an example
legacy application task.

FIG. 14 is an example block diagram of a computing sys
tem for practicing embodiments of a server computing sys
tem of a Role-Based Modernization System.

FIG. 15 is an example block diagram of server-side com
ponents of an example Role-Based Modernization System
using session pooling techniques.

FIG. 16 is an example block diagram of an alternative
layout of server-side components of an example Role-Based
Modernization System using session.

FIGS. 17A-17B are example flow diagrams of logic of an
example Emulation Services Manager of a Role-Based Mod
ernization System according to session pooling techniques.

DETAILED DESCRIPTION

Embodiments described herein provide enhanced com
puter- and network-based methods, systems, and techniques
for handling session emulation for running legacy applica
tions/tasks in host environments using pooled sessions. These
enhanced session emulation techniques may be used for
many applications, including modernizing legacy applica
tions, particularly in mid-range or mainframe host computing
environments. For the purpose of this description, legacy
applications/tasks will refer to applications/tasks that run on
host computing systems through sessions, regardless of their
longevity. Example embodiments provide a Role-Based
Modernization System (“RBMS), which enables the reorga
nization of menu-based applications by role as a method of
legacy application modernization and enables user access to
Such modernized applications through one or more roles. In
addition, and as a result of these modernization techniques,
the RBMS supports the ability to enhance such legacy appli
cations by blending them with non-legacy tasks and functions
in a user-transparent fashion. According to such moderniza
tion techniques, legacy and non-legacy tasks are presented to
users in a uniform fashion, regardless of their disparate
Sources, such that they can be manipulated using the same
familiar GUI mechanisms. The end user invokes the applica
tion tasks without being exposed to sessions or the Volumi
nous and detailed menu structure, and context is maintained
between the tasks as the end user navigates between them, just
as if the legacy tasks were applications running in windows in
a windowing system. In addition, legacy tasks that have been
activated (e.g., caused to run on the host) remain so, such that
the user can logout of the system, only to return later, login,
and have the active tasks still active providing they are tasks
that don't terminate for some other reason.

FIG. 4 is an example screen display of an example role
based modernization of a legacy application. In FIG. 4, dis
play area 400 displays a modernized application in an

10

15

25

30

35

40

45

50

55

60

65

4
example RBMS environment called “RolePlay.” An indica
tion of the current role is shown as indicator 401. The current
role can be changed by selecting user interface control 402. A
task workspace area 405 displays whichever task has been
selected by the user to work on. Here, task workspace area
405 currently displays the home “desktop' area for the cur
rent role “client' 406. Tabs 410-412 indicate tasks that the
user has already started (from the desktop)—active tasks.
These tasks may include both legacy application tasks. Such
as “New Order and “Order Tracking” and non-legacy appli
cation tasks such as a webpage for “HotSteel, Inc''. The user
can switch between each of these tasks at will by a variety of
input mechanisms, including, for example, direct selection
using a mouse or other similar input device or a hotkey,
function key, favorites icon, etc. The possible tasks that have
been configured for the user to use in the “client' role 406 are
shown in task list 407. Tasks, such as "A/R Batch Detail can
be invoked by selecting indicator (e.g., hyperlink) 422, which
will result in another tab dynamically displayed along with
tabs 410-412. A user with configuration privileges, such as an
administrator or other user with abilities to configure roles
(e.g., a roles administrator), can configure the tasks that are
available for user selection in the client role. In the example
shown, icons such as icon 421 are dynamically added to the
task list 407 by the RBMS. In addition, the “client' role 406
has been extended to display a data feed 430, which appears
on the home desktop of the “client' role each time a user
navigates to that home desktop. The favorites dock 450 pro
vides a location for the user to add indicators for quick access
to tasks. In the example shown, indicators 451–453 enable
quick access to Order Tracking, Delivery Tracking (not
shown), and New Order, respectively. Hotkey list 440 pro
vides a list of hotkeys that the user has defined for quick
access to a (legacy or non-legacy) task.

For example, when the user selects the Order Tracking
favorites icon 451, the Order Tracking task (referred to by tab
412) is brought to the foreground. FIG. 5 is an example screen
display of a selected legacy task modernized according to
techniques described herein. In particular, FIG. 5 is an
example screen display of the Order Tracking task shown
after a particular order has been selected. Tab 500 shows that
the current selected task for the Client role is “Order Track
ing.” The “Main button 510 indicates that this is the main
display of the running Order Tracking task. User interface
controls 511-514 are task extensions that have been config
ured, for example by the end user, to imbue the legacy task
with added behavior without any programming necessary. In
an example embodiment, the user can configure task exten
sions for roles for which the user has authorization to the
extent a user with administrator privileges (an administrator)
has defined. Each task extension is associated with a rule for
when the extension is presented. In some cases, upon the host
generating certain types of content, task extensions may be
automatically presented. In general, the RMBS automatically
and dynamically causes an extension to be presented when
the eligibility criteria expressed by the associated rule has
been met. Task workspace area 520 displays the output of the
currently executing task (here, information on a selected
order). The output is filtered so that other GUI moderniza
tions can be added. Such as a link 521 to a telecommunica
tions application (e.g., Skype) when a phone number is
detected in the task output, or a link to a mapping program
when an address is detected in the task output. A user interface
control such as pull-down menu 530 is presented to configure
the task. In particular, a user can configure Such things as
removing an indicator to the task from the favorites dock,
making the task always run and appear, defining a hotkey to

US 8,903,898 B2
5

access the task in one user input action, and customizing by
adding, deleting, or modifying available task extensions.

Other and/or different aspects, although not shown, may be
similarly integrated or presented to role-modernized tasks
and applications.

Legacy applications typically comprise a series of indi
vidually executable tasks grouped into like-kind modules.
Each Such task is typically accessible via a single menu item
on a menu, which may be part of a very large hierarchy of
menus. In a typical enterprise legacy application, the modules
typically comprise tens of thousands of tasks which are like
wise accessed via tens of thousands of menu items.

The RBMS reorganizes such menu structured legacy appli
cations into roles as a means for providing modernization that
allows instant access to tasks, thereby avoiding the menu
driven (procedural) user interface altogether. Role-based
modernization insures that tasks associated with a role are
accessible to users that are using the application in that role,
i.e., have proper authorization to conduct the associated tasks.
In addition, role modernization supports the ability to extend
legacy applications and tasks with non-legacy functionality in
a seamless fashion, regardless of the Source of the function.
For example, in Some embodiments the legacy tasks for a
single "application' may be executing on remote computing
systems from each other. The location of each task can be
made purposefully transparent to the user.

FIG. 6 is an example block diagram of an example process
for reorganizing a legacy application by role for use with a
Role Based Modernization System such as the RolePlay. In
one example embodiment, in block 601, the tasks in the
application(s) that are part of the legacy application or appli
cation suite are determined as part of a "reorganization’ phase
of the role-based modernization configuration process. This
determination may be an automated process whereby a com
puting system is used to "harvest' the possible tasks from a
menu driven application definition or may be a manual or
semi-automated process. In an example embodiment, it is
assumed that each menu item on any menu no matter how
deep, is a potential task. A list of these tasks is created as a
result of performing block 601. Other organizations of tasks
can similarly be incorporated, such as applications where
tasks are associated at Some menu levels but not others.

In block 602, eachtask is associated with one or more roles,
as defined by the modernizer of the system. This block again
may be performed manually, automatically by a computing
system, or semi-automatically. For example, a 'wizard'
application may be provided in this reorganization configu
ration phase to assist the user in providing role names and
associating one or more roles with each task. In some embodi
ments, a limitation is placed on the number of tasks per role
before the role is to be subdivided into a plurality of smaller
roles with lesser numbers of tasks per role. Again, in some
RBMS systems this is done manually.

In block 603, the task and role associations are stored in
Some kind of configuration repository data structure. Infor
mation for invoking the task on the host computing system is
also stored. For example, an invocation string associated with
a menu item that corresponds to a task may be stored as this
invocation information string.

In block 604, users are defined and associated with one or
more roles are part of the configuration process. Then, the
RBMS (here, RolePlay) is run.

FIG. 7 is an example block diagram of an example data
structure for storing role-based task associations for imple
menting role-based modernization of legacy applications. In
data structure 700, a list of tasks 701 is provided during the
reorganization phase. One or more of possible roles 710 is

10

15

25

30

35

40

45

50

55

60

65

6
indicated as associated with each task. In addition, an execu
tion specification such as an invocation string is indicated as
associated with each task, so that when the task is initially run
the RBMS knows what to pass to the host computing system
to cause the task to be executed. For example, task N 704 is
indicated as associated with execution spec N by specification
705 and with Role D by role indicator 706.
Once application tasks are reorganized by role, the RBMS

can execute a multitude of tasks concurrently and allow fur
ther configurations such as hotkey access or additional non
legacy task extensions as shown in FIGS. 4 and 5. Moreover,
the user interface between legacy and non-legacy tasks is
seamless—the RBMS provides a uniform mechanism for
invoking a task and displaying the results. In addition,
example embodiments of the RBMS present only a single
log-on for the user. Authentication and credential manage
ment is thereafter handled automatically between the client
side and server-side of the RBMS and with the host applica
tions.
As illustrated in FIGS. 4-7, one such RBMS for running

role-modernized legacy applications is the RolePlay Environ
ment. However, the techniques of an RBMS also may be
useful to create a variety of other application modernizations
and systems, including environments that present different
user interfaces or for different purposes.

In one embodiment, the Role-Based Modernization Sys
tem comprises one or more functional components/modules
that work together to provide role-based modernization of
legacy applications. These components may be implemented
in software or hardware or a combination of both. FIG. 8 is an
example block diagram of components of an example Role
Based Modernization System. Client computing system 810
communicates with Host computing system 830 to run one or
more legacy applications. The Role Play RBMS comprises a
client portion, the RolePlay Client Computing System 811,
which may be for example run as part of a Web browser
application, and a server portion, the Role Play Computing
System 831. In the example illustrated, the client portion 811
comprises a display and control module 812, one or more
RolePlay data repositories 817, a host interface 818 for com
municated with the legacy tasks, and other non-RolePlay
functions and data 819. The display and control module 812
further comprises an RP Desktop Management and Control
module 813 for handling the presentation events and support;
a configuration and role Support module 815 for providing,
managing and storing configuration of applications, roles,
and users; an extension interface 814 for providing and man
aging task extensions and role extensions; and a task control
module 816 for managing task-related State and other data.
The server portion 831 comprises a Web Application server
(e.g., a Service-Oriented Architecture SOA server that
responds to messages), one or more RolePlay data reposito
ries 833, and an Emulation Services Manager (ESM) 834.
The ESM talks to the host operating system API using appro
priate emulation protocols (e.g., IBM 5250/3270) to interface
to the legacy application tasks.

It is important to note that these host applications have not
been reprogrammed to run with the RBMS access to them
has been reorganized according to role during a configuration
process such as the one described with reference to FIGS. 6
and 7. A terminal emulator, here Emulation Services Manager
(ESM) 834, still is used to invoke each task through a standard
host interface (e.g., using the appropriate protocol Such as
IBM 5250/3270) as if a menu item were selected by an end
user. A difference is that from the end user's point of view a
completely modernized and seamless access to each task,
legacy or not, is provided. In the embodiment shown, the

US 8,903,898 B2
7

emulator ESM runs on the host machine itself so as to trans
parently provide any required session access to the applica
tion tasks. Other embodiments may provide an emulator in
other locations such as on the client computing system 810 or
on another system.
The implementation shown in the embodiment illustrated

in FIG. 8, shows client portion 811 divided into a javascript
portion, display and control module 812, and a java applet
portion, host interface 818. The java applet 818 is used to
communicate directly and efficiently over a secure commu
nications connection (e.g. using SSL or TLS) to the ESM834.
The javascript portion 812 is used to interface to the Web
Application (SOA) Server 832 over a separate secure connec
tion using, for example, HTTPS. This division of labor is
done to allocate functionality to the most appropriate tool and
to allow the legacy task to output concurrently without inter
ference from other functions being presented on the RolePlay
display. In a typical embodiment, the java applet 818 is loaded
as a consequence of an initial startup sequence on the client
side (e.g., the user navigates to a website-url for example,
“www.roleplay.com') and is instantiated inside of a Web
Browser. Also, to the extent possible, one or more configura
tion files are downloaded upon the client-side startup proce
dure, which define the roles, tasks, initial extensions, user
associations if any, etc.
The display and control module 812 in conjunction with

the host interface 818 use secure communications channel
825 to communicate with ESM 834 to invoke legacy appli
cations modernized using role-based modernization tech
niques and to display them for user input/output on a display
screen associated with the client computing system 810. FIG.
9 is an example block diagram of an overview of an example
process for running legacy applications that have been mod
ernized according to role-based modernization techniques. In
block 901, the client-side display and control module (DCM)
812 determines a designated task, for example, as a result of
a user selecting an indicator link to the task (e.g., link 421 in
FIG. 4), a hot-key, a link on the favorites dock (e.g., link 451
in FIG. 4), etc. Next, the DCM812 determines the designated
task is a legacy task (requiring communication with the host
computing system 830), and if so continues to execute at
block 902, otherwise continues with other processing to pro
cess the non-legacy task Such as a web-based application,
extension, or other code/logic module. In block 902, the
DCM 812 invokes the client-side host interface (Java applet)
818 to forward input to the host task and/or to receive an
updated "screen” from the host task. In block 903, the client
side host interface 818 forwards any input received to the host
ESM834 via the secure binary connection (e.g., secure socket
layer) 825.

In block 904, the ESM routine, which is listening on con
nection 825, receives the request from the client-side host
interface, authorizes the user, and determines which task as
been designated. Assuming the designated task corresponds
to an already running task, in one embodiment, the ESM finds
the appropriate session corresponding to the task and for
wards the received input. In such an embodiment the ESM or
other accessible module is responsible for tracking what tasks
are running, in which sessions etc. Alternatively, if the des
ignated task corresponds to a new task to be run, the ESM
initiates a new session, invokes the task, and stores task iden
tifying information. Of note, the ESM separately authenti
cates the credentials of the user to authorize the task invoca
tion so as to prevent spoofing of the user. The ESM can
perform this function using the original credentials Supplied
by the user in an initial log-on procedure. In some embodi
ments as described with respect to FIGS. 15 and 16, sessions

10

15

25

8
may be pooled, in some cases by user, and the ESM may
allocate one of the pooled sessions to run the newly requested
task. The task associated information is stored in the RolePlay
data repository 833.

Eventually, in block 905 the client-side host interface 818,
which is listening on connection 825, receives an updated
screen (i.e., streamed data) from the ESM via connection 825,
filters it according to a set of rules implemented by a rules
engine, writes context information such as what names,
phone numbers and addresses are found, modernizes the
screen according to a set of modernization rules and eligibil
ity criteria, and displays it on its associated canvas. Examples
of the modernization rules applied by the client-side host
interface 818 include instructions in the event of detecting
certain text Such as phone numbers and can result in the
“Skype” link 521 presented in FIG.5 when the interface 818
detects a phone number. This allows for further dynamic
modernizations to role-based modernized legacy tasks. The
client-side host interface 818 is also detecting the present of
certain data in the data stream to decide whether eligibility
criteria are met. For example, when defining a task extension,
one can define when it is displayed. This timing gets trans
lated to a “rule' which is used by a rules engine portion of the
host interface 818 to detect whether it is appropriate to place
a button to be used to invoke the task extension in the display
of the data stream on its canvas. A call-back function is
registered with the button, so that later selection of the button
will cause a call-back into the code of the client side display
and control module (e.g., the extension interface 814 of the

30 javaScript module 812) to cause the associated extension code

35

40

45

50

55

60

65

to be executed.
The associated canvas is the current task workspace area

displayed, so the received updated host screen is then dis
played to the user. The context information is written to a
context list, for example stored in RolePlay data repository
817, so that the display and control module components can
access the information and act upon it if they so desire or
forward it to consumer code. Such as task extensions.
The role-based modernization techniques of RolePlay and

the RBMS are generally applicable to any type of legacy
application task. For example, the phrase “task” is used gen
erally to imply any type of code module that is separately
executable by a host computing system. Also, although cer
tain terms are used primarily herein, other terms could be
used interchangeably to yield equivalent embodiments and
examples. In addition, terms may have alternate spellings
which may or may not be explicitly mentioned, and all Such
variations of terms are intended to be included.
Example embodiments described herein provide applica

tions, tools, data structures and other Support to implement a
Role-Based Modernization System to be used for accessing
applications that have been modernized by reorganizing them
by role. Other embodiments of the described techniques may
be used for other purposes. In the following description,
numerous specific details are set forth, Such as data formats
and code sequences, etc., in order to provide a thorough
understanding of the described techniques. The embodiments
described also can be practiced without some of the specific
details described herein, or with other specific details, such as
changes with respect to the ordering of the code flow, differ
ent code flows, etc. Thus, the scope of the techniques and/or
functions described are not limited by the particular order,
selection, or decomposition of steps described with reference
to any particular routine.

FIG. 10 is an example block diagram of a computing sys
tem for practicing embodiments of a client computing system
of a Role-Based Modernization System. Note that a general

US 8,903,898 B2
9

purpose or a special purpose computing system Suitably
instructed may be used to implement an RBMS. Further, the
RBMS may be implemented in software, hardware, firmware,
or in some combination to achieve the capabilities described
herein.

The computing system 1000 may comprise one or more
server and/or client computing systems and may span distrib
uted locations. In addition, each block shown may represent
one or more such blocks as appropriate to a specific embodi
ment or may be combined with other blocks. Moreover, the
various blocks of the Role-Based Modernization System
1010 may physically reside on one or more machines, which
use standard (e.g., TCP/IP) or proprietary interprocess com
munication mechanisms to communicate with each other.

In the embodiment shown, computer system 1000 com
prises a computer memory (“memory”) 1001, a display 1002,
one or more Central Processing Units (“CPU”) 1003, Input/
Output devices 1004 (e.g., keyboard, mouse, CRT or LCD
display, etc.), other computer-readable media 1005, and one
or more network connections 1006. The RBMS installed as
part of Web Browser or other client application 1010 is shown
residing in memory 1001. In other embodiments, some por
tion of the contents, some of, or all of the components of the
RBMS 1010 may be stored on and/or transmitted over the
other computer-readable media 1005. The components of the
Role-Based Modernization System 1010 preferably execute
on one or more CPUs 1003 and manage the reorganization
and modernizations of legacy tasks as described herein. Other
code or programs 1030 and potentially other data reposito
ries, such as data repository 1020, also reside in the memory
1001, and preferably execute on one or more CPUs 1003. Of
note, one or more of the components in FIG. 10 may not be
present in any specific implementation.

In a typical embodiment, the RBMS installed in Web
Browser or other client application 1010 includes one or more
Javascript plug-ins 1011, a Java applet host interface 1012,
and role, task, and configuration data data repository 1013. In
at least some embodiments, the data repository 1013 is pro
vided external to the RBMS and is available, potentially, over
one or more networks 1050. Other and/or different modules
may be implemented. In addition, the RBMS may interact via
a network 1050 with application or other extension code 1055
that uses data received from legacy applications and stored in
the data repository 1013, one or more host computing systems
1060, and/or one or more server computing systems 1065.
Also, the role, task, and configuration data data repository
1013 may be provided external to the RBMS as well, for
example in a knowledge base accessible over one or more
networks 1050.

In an example embodiment, components/modules of the
RBMS 1010 are implemented using standard programming
techniques. However, a range of programming languages
known in the art may be employed for implementing Such
example embodiments, including representative implemen
tations of various programming language paradigms, includ
ing but not limited to, object-oriented (e.g., Java, C++, C#,
Smalltalk, etc.), functional (e.g., ML, Lisp, Scheme, etc.),
procedural (e.g., C. Pascal, Ada, Modula, etc.), Scripting (e.g.,
Perl, Ruby, Python, JavaScript, VBScript, etc.), declarative
(e.g., SQL, Prolog, etc.), etc.
The embodiments described above may also use well

known or proprietary synchronous or asynchronous client
server computing techniques. However, the various compo
nents may be implemented using more monolithic
programming techniques as well, for example, as an execut
able running on a single CPU computer system, or alternately
decomposed using a variety of structuring techniques known

5

10

15

25

30

35

40

45

50

55

60

65

10
in the art, including but not limited to, multiprogramming,
multithreading, client-server, or peer-to-peer, running on one
or more computer systems each having one or more CPUs.
Some embodiments are illustrated as executing concurrently
and asynchronously and communicating using message pass
ing techniques. Equivalent synchronous embodiments are
also supported by an RBMS implementation.

In addition, programming interfaces to the data stored as
part of the RBMS Web Browser or other client application
process 1010 (e.g., in the data repository 1013) can be made
available by standard means such as through C, C++, C#, and
Java APIs; libraries for accessing files, databases, or other
data repositories; through Scripting languages such as XML:
or through Web servers, FTP servers, or other types of servers
providing access to stored data. The repository 1013 may be
implemented as one or more database systems, file systems,
or any other method known in the art for storing Such infor
mation, or any combination of the above, including imple
mentation using distributed computing techniques.

Also the example RBMS Web Browser or other client
application 1010 may be implemented in a distributed envi
ronment comprising multiple, even heterogeneous, computer
systems and networks. Also, one or more of the modules may
themselves be distributed, pooled or otherwise grouped, such
as for load balancing, reliability or security reasons. Different
configurations and locations of programs and data are con
templated for use with techniques of described herein. A
variety of distributed computing techniques are appropriate
for implementing the components of the illustrated embodi
ments in a distributed manner including but not limited to
TCP/IP sockets, RPC, RMI, HTTP, Web Services (XML
RPC, JAX-RPC, SOAP, etc.) etc. Other variations are pos
sible. Also, other functionality could be provided by each
component/module, or existing functionality could be dis
tributed amongst the components/modules in different ways,
yet still achieve the functions of an RBMS.

Furthermore, in some embodiments, some or all of the
components of the RBMS may be implemented or provided
in other manners, such as at least partially in firmware and/or
hardware, including, but not limited to one ore more applica
tion-specific integrated circuits (ASICs), Standard integrated
circuits, controllers (e.g., by executing appropriate instruc
tions, and including microcontrollers and/or embedded con
trollers), field-programmable gate arrays (FPGAs), complex
programmable logic devices (CPLDs), etc. Some or all of the
system components and/or data structures may also be stored
(e.g., as executable or other machine readable Software
instructions or structured data) on a computer-readable
medium (e.g., a hard disk; a memory; a network; or a portable
media article to be read by an appropriate drive or via an
appropriate connection). Some or all of the system compo
nents and data structures may also be stored as data signals
(e.g., by being encoded as part of a carrier wave or included as
part of an analog or digital propagated signal) on a variety of
computer-readable transmission mediums, which are then
transmitted, including across wireless-based and wired/
cable-based mediums, and may take a variety of forms (e.g.,
as part of a single or multiplexed analog signal, or as multiple
discrete digital packets or frames). Such computer program
products may also take other forms in other embodiments.
Accordingly, embodiments of this disclosure may be prac
ticed with other computer system configurations.
As described above, one of the functions of the client-side

RBMS is to provide a uniform interface for accessing tasks,
be they legacy tasks or non-legacy tasks. FIGS. 11A-11C are
example flow diagrams of example logic used by a desktop
management and control module of an example Role-Based

US 8,903,898 B2
11

Modernization System to provide uniform access. This event
handler logic may, for example, be implemented by the Role
Play Display and Control module 812 of FIG. 8. Blocks
1101-1123 provide an event loop for processing different
types of tasks and functions. A uniform interface to the Vari
ous tasks is effectuated by essentially shuffling the task work
space areas between executing tasks, so that the current tasks
workspace area is "on top' in the display order. For example,
task workspace area 405 in FIG. 4 is “replaced by” (by
manipulating the Z-order of) task workspace area 520 in FIG.
5 when the Order Tracking task is selected by selecting the
Order Tracking tab 412 in FIG. 4. In a windowing type sys
tem, the Z-order refers to the Z-axis—or depth into the display
screen. That is, a location in the Z-order dictates what screen
real-estate appears on top of what.
More specifically, in block 1101, the module determines

what kind of task has been designated; that is, whether an
extension, legacy (host) task, or other application module has
been designated. Such designation may occur, for example,
by means of a mouse or other input device selection, an
ALTTAB selection technique, a hotkey, a selection of an
indicator on the favorites dock, etc. In block 1102, if the
designated task is an extension, then the module continues its
processing at block 1103, otherwise continues at block 1305.

In block 1103, the module processes the designated exten
sion by bringing the task workspace area associated with the
extension to overlay the prior task workspace area by moving
the task workspace area associated with the extension to the
top of the Z-order. This workspace area associated with the
extension thereby becomes the “current task workspace
area. The task workspace area of the extension may be a
portion of the task workspace area of the underlying task, so
that it appears part of that task. In block 1104, the module
invokes the extension designated the current task workspace
area for its output. The extension may be a “role extension—
which is code that is authorized for all users of a particular
role—or may be a task extension—which is code that is
associated with a particular task and a set of eligibility criteria
that dictate its availability or not. The module then continues
in block 1106 to process, display, or forward any filtered or
contextual information created by the output of the invoked
extension.

In block 1105, when the module has determined that the
designated task is not an extension, the module further deter
mines whether the designated task is a legacy task, thus
requiring communication with an associated host system. If
so, the module continues at block 1110; otherwise, the mod
ule continues at block1120.

In block 1110, the module determines whether the user
credentials indicate that the user is authorized to run the
designated legacy task. If so, the module continues in block
1112, otherwise, the module rejects the requestin block 1111,
and returns to the beginning of the event loop to wait for
another input event. In some embodiments this determination
is a secondary determination of authorization as the client
RBMS has already performed a check. Such double-checking
prevents against another system or user spoofing the RBMS
by masquerading as the user. In block 1112, the module
shuffles the task workspace area to insure that the canvas
associated with the java applet host interface (e.g., java applet
818 in FIG. 8) is topmost in the Z-order. This may be accom
plished in some windowing systems by moving the other task
workspace areas to the bottom. Of note, other implementa
tions that utilize a different type of host interface may require
other or different actions to insure that the canvas (or task
workspace area) of the hostinterface is topmost in the Z-order.
In block 1113, the module forwards an identifier of the des

10

15

25

30

35

40

45

50

55

60

65

12
ignated task and appropriate input parameters to the client
side host interface (e.g.java applet 818 in FIG. 8) to cause the
designated task to be run on the host computing system and a
resulting screen to be displayed on the client task workspace
area (the canvas in this case). The module then continues in
block 1106 to receive the output from the invoked task and to
process, display, or forward any filtered or contextual infor
mation created by the output of the invoked task.

In block 1120, when the module has determined that the
designated task is not a legacy task, the module processes the
designated non-legacy task and determines whether the user
credentials indicate that the user is authorized to run the
designated non-legacy task. If so, the module continues in
block1122, otherwise, the module rejects the request in block
1121, and returns to the beginning of the event loop to wait for
another input event. Again, in some embodiments this deter
mination is a secondary determination of authorization as the
client RBMS has already performed a check.

In block1122, the module shuffles the task workspace area
associated with the designated non-legacy task to insure that
it is topmost in the Z-order and becomes the current task
workspace area. In block 1123, the module invokes or other
wise processes the designated non-legacy task/application/
code and designates the current task workspace area as the
active window?iframe etc., depending upon the implementa
tion. The module then continues in block 1106 to receive the
output from the invoked task/application/code and to process,
display, or forward any filtered or contextual information
created by the output of the invoked task/application/code.
The processing at block 1106 enables the module logic to

process information that has been filtered, for example, by the
host interface receiving a data stream from a legacy applica
tion. Such information may be forwarded by the module
logic, for example, to communicate parameters to various
task extensions of the legacy task. As an example, consider
the order detail legacy task output of FIG. 5. The task work
space area 520 includes several task extensions accessible
through UI controls 511-514. One of these task extensions is
a mapping application invoked using the directions tab 514.
When the output shown in area 520 is filtered by the display
and control module (e.g., 812 in FIG. 8), the address of the
customer is written to the context for that legacy task. When
the user then selects the mapping extension via directions
button 514, the module forwards this address information
from the context to the mapping task extension. In other
examples, although not shown, the module itself performs
Some action as a result of context information received.

FIG. 12 is an example flow diagram of example logic use
by a client-side host interface module of a Role-Based Mod
ernization System to communicate with one or more emula
tors on a host computing system to run legacy tasks. For
example, this logic may be implemented by the host interface
818 in FIG. 8 to communicate with the Emulation Service
Manager (ESM) 834 on a host computing system. In block
1201, the host interface module receives designated task
input from the corresponding client-side display and control
module (e.g., module 813 in FIG. 8), for example, as a result
of executing block 1113 in FIG. 11B). In block 1202, the
module forwards the received input and any other parameters
to the appropriate host ESM via a secure connection, such as
secure binary connection 825 in FIG.8. As there may be more
than one host computing system available to execute legacy
tasks, the module may determine which one to use. In block
1203, the module receives updated screen information
(streamed data) from the ESM via the secure connection.
Although shown as Synchronous flow logic, it is understood
that equivalent asynchronous flow logic may be imple

US 8,903,898 B2
13

mented. While the input is received, the host interface module
filters the data stream in block 1204, for example, using a
rules engine that implements modernization rules and eligi
bility rules (the modernization rules can also be thought of as
eligibility rules). The modernization rules identify objects in
the data stream that may be enhanced with GUI information,
Such as phone numbers, addresses etc. This dynamically cre
ated information may be added to the output to create an
enhanced data stream. In addition, the eligibility rules may be
used to determine when/if the module needs to add certain
other capabilities to the output. For example, in the presence
of certain things (like addresses), the user may have defined
that a mapping program extension is to be added to the task
output. It may be then the host interface module’s responsi
bility to add the indicators (e.g., the task buttons) for invoking
these extensions, if only the host interface controls its canvas/
task workspace area. In block 1205, the module displays the
enhanced data stream on the current task workspace area, and
returns.

Of note, the different logic blocks of FIG. 12, although
shown separately, may be invoked in a sort of pipeline as the
data is received, rather than processing all of the data at each
step.

FIG. 13 is an example flow diagram of logic for creating an
enhanced data stream from output received from an example
legacy application task. This logic corresponds to more detail
executed as a result of the filtering process of block 1204 in
FIG. 12. It is one example of many of the functions that can be
performed as a result of filtering the data received. In one
embodiment, this logic is provided by a rules engine that is
created as a result of configuring the RBMS.

In block 1301, the logic determines whether names are
found in the data and, if so, proceeds to block 1302, otherwise
continues in block 1303. In block 1302, the logic looks up in
a storage repository or creates a corresponding icon and
dynamically displays each corresponding icon in a position
close to the corresponding name in the enhanced output. In
block 1303, the logic determines whether phone numbers are
found in the data and, if so, proceeds to block 1304, otherwise
continues in block 1305. In block 1304 the logic displays a UI
control to a phone application nearby each phone number in
the enhanced output. In block 1305, the logic determines
whether addresses are found in the data, and, if so, proceeds
to block 1306, otherwise continues to process other objects it
is looking for in a similar manner until all of the legacy task
output has been filtered and enhanced where indicated. In
block 1306, the logic displays a control to a mapping appli
cation nearby each address in the enhanced output, and con
tinues to process other objects.

FIG. 14 is an example block diagram of a computing sys
tem for practicing embodiments of a server computing sys
tem of a Role-Based Modernization System. Note that a
general purpose or a special purpose computing system Suit
ably instructed may be used to implement an RBMS. Further,
the RBMS may be implemented in software, hardware, firm
ware, or in Some combination to achieve the capabilities
described herein.
The computing system 1400 may comprise one or more

computing systems and may span distributed locations. In
addition, each block shown may represent one or more Such
blocks as appropriate to a specific embodiment or may be
combined with other blocks. Moreover, the various blocks of
the Role-Based Modernization System 1410 may physically
reside on one or more machines, which use standard (e.g.,
TCP/IP) or proprietary interprocess communication mecha
nisms to communicate with each other.

10

15

25

30

35

40

45

50

55

60

65

14
In the embodiment shown, computer system 1400 com

prises a computer memory (“memory') 1401, a display 1402,
one or more Central Processing Units (“CPU”) 1403, Input/
Output devices 1404 (e.g., keyboard, mouse, CRT or LCD
display, etc.), other computer-readable media 1405, and one
or more network connections 1406. The RBMS 1410 is
shown residing in memory 1401. In other embodiments,
Some portion of the contents, some of, or all of the compo
nents of the RBMS 1410 may be stored on and/or transmitted
over the other computer-readable media 1405. The compo
nents of the Role-Based Modernization System 1410 prefer
ably execute on one or more CPUs 1403 and manage the
invocation and input/output to and from legacy tasks as
described herein. Other code or programs 1430 and poten
tially other data repositories, such as data repository 1420,
also reside in the memory 1401, and preferably execute on
one or more CPUs 1403. In addition, a Virtual Terminal
Interface 1415 to the host operating system, and one or more
tasks, for example 1417a and 1417b may be currently execut
ing on the one or more CPUs 1403 and stored in the memory
1401. Of note, one or more of the components in FIG. 14 may
not be present in any specific implementation. For example,
in various embodiments certain components, such as the dis
play 1402 and/or certain input/output devices 1404 (such as a
keyboard or mouse) may not be present.

In at least one typical embodiment, the RBMS 1410
includes one or more Web Application Servers 1411, an Emu
lation Services Manager (ESM) 1412, pooled sessions Y14.
and task and session data repository 1413. In at least some
embodiments, the data repository 1413 is provided external to
the RBMS and is available, potentially, over one or more
networks 1450. Other and/or different modules may be
implemented. In addition, the RBMS may interact via a net
work 1450 with application or other client code 1455, one or
more other host computing systems 1465, for example, run
ning remote legacy tasks, and/or one or more client comput
ing systems 1460 Such as the client system demonstrated in
FIG. 10. Also, the task and session data repository 1413 may
be provided external to the RBMS as well, for example in a
knowledge base accessible over one or more networks 1450.
As discussed with reference to the RBMS of FIG. 14, the

RBMS 1410 may similarly be implemented in various ways
and/or using various known or proprietary techniques. In
particular, the RBMS 1410 may be implemented inhardware,
software, and/or firmware. Software portions of the RBMS
1410 may be implemented using one or more programming
languages and associated tools (e.g., compilers, interpreters,
linkers, etc.) to generate code portions (e.g., instruction
sequences) that may be processed by hardware components
(e.g., a CPU) and/or software components (e.g., a virtual
machine). In addition, the RBMS 1410 may be decomposed,
if at all, using various techniques, including client-server
architectures, N-tier architectures, Web Services (e.g.,
SOAP), classes, libraries, archives, etc.

FIG. 15 is an example block diagram of server-side com
ponents of an example Role-Based Modernization System
that includes session pooling techniques. As described with
respect to FIG. 8 and elsewhere in the present Figures, the
client-side of the RBMS, here shown as client 1501, commu
nicates over one or more networks 1520 with one or more host
computing systems, e.g., system 1510, to run role-modern
ized legacy tasks. In example embodiments, the host comput
ing system 1510 comprises a Web Application 1511, which
comprises Web Application Server 1512 and Emulation Ser
vices Manager (ESM) 1513. As explained elsewhere, the Web
Application Server 1512 may comprise an SOA server con
figured to respond to messages from the client 1501. The host

US 8,903,898 B2
15

computing system 1510 also comprises a set of host (legacy)
applications 1516 and 1518, which in turn each comprise one
or more tasks, for example, tasks 1517a-1517c and tasks
1519-1519.

In one embodiment of the RBMS (there are other server
side ways to support role-modernization for RBMS clients),
the server employs a technique referred to as "session pool
ing to multiplex between several running tasks to enable the
correct output to be returned to the RBMS client in response
to client requests to communicate with a particular task. In
brief, a pool of host sessions, for example pooled sessions
1515a-1515c are created (potentially in advance or as
needed) for each user and allocated as needed to tasks invoked
by that user. Each session keeps track of its own state, as
sessions typically do. This state is “persistent, even when the
client is not actively working with the corresponding legacy
task, because the session that corresponds to the running task
is not terminated each time the user Switches to working with
another legacy task (maintained in a different session).
Accordingly, the ESM, instead of the user, is responsible for
keeping track of all of the running sessions and stores data as
needed, for example in data repository 833 of FIG. 8. As
described further below with respect to FIGS. 17A-17B,
when a client request for a legacy task comes in, typically in
the form of a task identifier and various input parameters, the
Emulation Services Manager (ESM) 1514 finds the corre
sponding task, and if it is already executing, Switches to
providing output from the corresponding session from a ses
sion pool, otherwise allocates a new session and starts up the
corresponding task from an appropriate session pool. In this
manner the ESM multiplexes between the various running
legacy tasks and provides the correct output Screens to the
client RBMS 1501 without starting and stopping other ses
sions to do so. In typical of these embodiments the ESM 1513
communicates with the operating system of the host comput
ing system 1510 using its virtual terminal services through an
applications programming interface (API). In the example
illustrated, the ESM 1513 communicates with the host envi
ronment using standard 5260/3270 protocol to manage its
sessions and communicate with the legacy applications/tasks.
Of note, the pooling session techniques handling legacy

task/application management described herein may be used
for purposes other than for responding to a role-based mod
ernization system.

FIG. 16 is an example block diagram of an alternative
layout of server-side components of an example Roles Based
Modernization System using session pooling techniques. In
this embodiment, the server-side portion of the RBMS resides
in a server computing system 1620 separate from the host
computing system 1610 where the applications 1612 having
legacy tasks 1613a-1613c reside. The server computing sys
tem 1620 comprises the Web Application (e.g., SOA) server
1621 and the Emulation Services Manager 1622. Because the
ESM 1622 is separated from the host computing system 1610,
it needs to communicate over the network 1630 using Telnet
or other protocol wrapping around the emulator protocol.
Of note, the architecture of FIG. 15 has an advantage that a

single binary for the Web Application 1511 can be installed on
the host computing system that the user already has without a
need to configure additional machines. Also, in some situa
tions it is possible that the client-side RBMS invokes tasks
that are executing or to be executed at a variety of locations,
potentially even geographically remote. In Such a situation,
according to one embodiment, the ESM 1513 can be distrib
uted and manage the ESMS on the other host computing
environments in a master-slave type of I/O relationship. This

5

10

15

25

30

35

40

45

50

55

60

65

16
provides a degree of location transparency to the client com
puting system, since the client need only communicate with a
single ESM.

FIGS. 17A-17B are example flow diagrams of logic of an
example Emulation Services Manager of a Role-Based Mod
ernization System according to session pooling techniques.
As mentioned with respect to FIG. 15, the Emulation Services
Manager (ESM) may be co-resident with the host applica
tions or on a remote computing system. In block 1701, the
ESM authorizes and authenticates user information for
warded by the client RBMS for the requested task. This action
protects against masquerading and other types of malicious
computing behaviors.

In block 1702, the ESM determines if the user is autho
rized, and, if not returns a status to the client-side host inter
face that an unauthorized user was detected. If authorized, the
ESM continues in block 1704 to determine whether the
requested legacy task is already running (in a session) and, if
so, continues with block 1705; otherwise, continues with
block 1706. Since the ESM maintains and manages its pools
of sessions, it stores appropriate information to be able to
make this determination.

In the case where the legacy task is already running, then in
block 1705 the ESM determines (for example, by table look
up, database query, etc.) which session corresponds to the
designated task, connects to the session, and passes any des
ignated parameters to the running session. The ESM then
continues in block 1709.

In the case where the legacy task is not yet running, then in
block 1706 the ESM allocates and starts a new session from
the session pool. In block 1707, the ESM associates the new
session with the task identifier, and in block 1708 initiates the
task that corresponds to the designated task identifier using
any designated parameters. The ESM then continues in block
1709.

In block 1709, the ESM obtains the current screen (after
running any designated input) and forwards the current Screen
to the client-side requester, which in the DBMS is the client
side host interface of the RBMS. The ESM then does any
other activities, and waits for the next request. Although the
ESM logic is shown to execute synchronously, in some
embodiments it uses asynchronous calling mechanisms to
determine when a request is to be processed.

In some embodiments, as mentioned with respect to FIGS.
15 and 16, a client application optionally may request execu
tion of legacy tasks that are on remote computing systems. In
Such a case, additional logic instructions are added to divert to
block 1711 after authorizing the user in block 1702. In block
1711, the ESM determines whether the requested task is a
non-local task and, if so, continues in block 1712, otherwise
progresses to block 1704.

In block 1712, the ESM processes the non-local task
request by forwarding the request to the remote ESM. The
remote ESM then processes the request using similar logic to
FIG. 17A, typically without the non-local task test branch
(blocks 1711-1713). In block 1713, the ESM receives a
resultant output Screen (data stream from the requested task)
from the remote ESM and continues with block 1709 to
forward the data stream to the requestor.

All of the above U.S. patents, U.S. patent application pub
lications, U.S. patent applications, foreign patents, foreign
patent applications and non-patent publications referred to in
this specification and/or listed in the Application Data Sheet,
including but not limited to U.S. Provisional Patent Applica
tion No. 61/280,034, entitled “ROLE-BASED MODERN
IZATION OF LEGACY APPLICATIONS filed Oct. 28,
2009; U.S. Provisional Patent Application No. 61/280,044,

US 8,903,898 B2
17

entitled SESSION POOLING FOR LEGACY APPLICA
TION TASKS, filed Oct. 28, 2009: U.S. Provisional Patent
Application No. 61/280,040, entitled “MODERNIZATION
OF LEGACY APPLICATIONS USING DYNAMIC
ICONS, filed Oct. 28, 2009; U.S. Provisional Patent Appli
cation No. 61/280,060, entitled “DYNAMIC EXTENSIONS
TO LEGACY APPLICATION TASKS filed Oct. 28, 2009;
U.S. Provisional Patent Application No. 61/280,042, entitled
HOTKEY ACCESS TO LEGACY APPLICATION

TASKS." filed Oct. 28, 2009; U.S. Provisional Patent Appli
cation No. 61/280,041, entitled “TIERED CONFIGURA
TION OF LEGACY APPLICATION TASKS filed Oct. 28,
2009; U.S. Provisional Patent Application No. 61/280,043,
entitled MANAGEMENT OF MULTIPLE INSTANCES
OF LEGACY APPLICATION TASKS, filed Oct. 28, 2009;
and U.S. patent application Ser. No. 13/278,680, entitled
SESSION POOLING FOR LEGACY APPLICATION
TASKS." filed Oct. 28, 2010, and published as US2011/
0270911, are incorporated herein by reference, in their entire
ties.

From the foregoing it will be appreciated that, although
specific embodiments have been described herein for pur
poses of illustration, various modifications may be made
without deviating from the spirit and scope of the present
disclosure. For example, the methods and systems for per
forming role-based modernization discussed hereinare appli
cable to other architectures other than a windowing architec
ture. Also, the methods and systems discussed herein are
applicable to differing protocols, communication media (op
tical, wireless, cable, etc.) and devices (such as wireless hand
sets, electronic organizers, personal digital assistants, por
table email machines, game machines, pagers, navigation
devices such as GPS receivers, etc.)

The invention claimed is:
1. A method in a computing system for providing pooled

terminal emulation sessions for access to menu-driven legacy
application tasks on a host computing system, each session
configured to concurrently run a separate legacy application
task of a single menu-driven legacy application comprising:

receiving a first request from a client computing system to
run an identified legacy application task, wherein the
application task is one of a plurality of separately execut
able menu-driven tasks of the single menu-driven legacy
application;

causing a first host session to be allocated on the host
computing system from the pooled terminal emulation
sessions;

assigning a task identifier to the allocated first host session
and associating the task identifier with the legacy appli
cation task identified in the first request;

causing the legacy application task identified in the first
request to be executed in the allocated first host session
on the host computing device; and

forwarding to the client computing system the task identi
fier assigned to the legacy application task identified in
the first request.

2. The method of claim 1, further comprising:
receiving a second request from a client computing system

to run an identified legacy application task:
determining whether a host session has already been allo

cated on the host computing system for executing the
legacy application task identified in the second request;
and

returning to the client computing system an output data
stream from the legacy application task executing in the
allocated first host session to fulfill the second request.

5

10

15

25

30

35

40

45

50

55

60

65

18
3. The method of claim 2 wherein the received second

request includes the task identifier assigned to the legacy
application task identified in the first request.

4. The method of claim 2, further comprising:
receiving a third request from the client computing system

to run an identified legacy application task:
determining whether a host session has already been allo

cated on the host computing system for executing the
legacy application task identified in the third request;

causing a second host session to be allocated on the host
computing System;

assigning a second task identifier to the allocated second
host session and associating the second task identifier
with the legacy application task identified in the third
request:

causing the legacy application task identified in the third
request to be executed in the allocated second host ses
sion on the host computing device; and

forwarding to the client computing system the second task
identifier assigned to the legacy application task identi
fied in the third request.

5. The method of claim 4, further comprising:
receiving a fourth request from a client computing system

to run an identified legacy application task:
determining whether a host session has already been allo

cated on the host computing system for executing the
legacy application task identified in the fourth request;
and

returning to the client computing system an output data
stream from the legacy application task executing in the
allocated second host session to fulfill the fourth request.

6. The method of claim 5 wherein the legacy application
task executing in the allocated first session is concurrently
executing when the method returns the output data stream
from the allocated second session to the client computing
system.

7. The method of claim 1, further comprising:
determining whether the first request from the client com

puting system is authorized.
8. The method of claim 1 wherein the providing the pooled

sessions is provided to an existing menu-driven legacy appli
cation.

9. The method of claim 1 performed without executing
terminal emulation sessions on the client computing system.

10. The method of claim 1 used to run a client application
and wherein the client computing system receives login infor
mation from a user one time per executing the client applica
tion and the method provides a plurality of terminal emulation
sessions on behalf of the user without requiring the user to
logon more than the one time.

11. The method of claim 1 wherein the legacy application
tasks are used to implement a role-based modernization sys
tem on the client computing system.

12. The method of claim 1 wherein the first request is from
a role-based modernization system executing on the client
computing System.

13. An emulation services manager comprising:
a memory; and
a plurality of pooled terminal emulation sessions stored in

the memory, each session configured to concurrently run
a separately executable legacy application task of a
single menu-driven legacy application, the emulation
services manager further configured to return the output
data stream of one of the plurality of pooled sessions
when a task identifier identifying the legacy application
task running in the one of the plurality of pooled sessions
is requested.

US 8,903,898 B2
19

14. The emulation services manager of claim 13 further
configured to allocate a one of the plurality of pooled sessions
to a requested legacy application task when it is determined
that the requested legacy application task is not already run
ning in one of the plurality of pooled sessions.

15. The emulation services manager of claim 14 further
configured to return the output data stream of the allocated
pooled session in response to the requested legacy application
task.

16. The emulation services manager of claim 13 connected
via a secure binary connection to a client computing system.

17. A non-transitory computer-readable storage medium
containing content for controlling a computing system to
multiplex between a plurality of pooled terminal emulation
sessions stored in a memory, each session configured to con
currently run a corresponding menu-driven application task
of a single menu-driven legacy application, by performing a
method comprising:

returning an output data stream of one of the plurality of
pooled sessions when a task identifier identifying the

5

10

15

20
corresponding menu-driven application task of the
single menu-driven legacy application that is running in
the one of the sessions is requested;

allocating a one of the plurality of pooled sessions to a
requested application task of the single menu-driven
legacy application when it is determined that the
requested application task is not already running in one
of the pooled sessions.

18. The computer-readable storage medium of claim 17,
wherein requests originate from a client computing system
running a plurality of role-based modernized legacy applica
tion tasks.

19. The computer-readable storage medium of claim 17
wherein the menu-driven legacy application is an existing
menu-driven legacy application.

20. The computer-readable storage medium of claim 17
wherein the method is performed without executing terminal
emulation sessions on a client computing system from which
the requests are received.

k k k k k

