Title: HEALTHCARE CUM OPTIMAL ILLUMINATION DEVICE

Abstract: A healthcare cum illumination device comprising a chassis (20) placed at the top end of the modular frame (12) and fitted with electrical light source (26), ionizer (46) and essential oil to form an inventive device. The inventive device is enclosed by one of more layers of treated fabric filter cover (24) with antimicrobial properties. The electrical light source (26) emit visible light, infra red radiation and UV radiation, the visible light illuminating the surrounding, the infra red radiation heating the air around the lamps, so that the hot air rises to form a convection current which draws cool ambient air from the surroundings into the inventive device. Air borne pollutants, virus and bacteria passes through the one or more layers of treated fabric filter cover (24) with anti-bacterial and antiviral properties are destroyed and trapped, killed therein. The UV light kills air borne virus and bacteria drawn into the inventive device. The inventive device is modular in structure and can be configured to form lamps of varying lengths and sizes. It is fitted with other devices such as air circulation units, ionizers (46), MP3 or MP4 player and essential oils to produce healthy and more pleasant ambience in the surroundings of the inventive device.
FIELD OF INVENTION

The present invention relates to a healthcare cum optimal illumination device that makes full use of the electromagnetic radiation of different wavelengths (infra-red, visible light, ultra-violet) emitted from one or more light sources, such as a fluorescent lamp, to provide non-glaring illumination while at the same time, provide gentle air circulation and efficient air cleaning capabilities such as air filtration, ionization, sorption, electrostatic, photocatalysis and other technologies using one or more layers of treated fabric filter cover covering a modular lampshade.

BACKGROUND

Electric lamps are mainly used for illumination and decorating purposes since Thomas Edison invented the first incandescent bulb in 1879. Until now, other potentials of the lamp are not fully utilized.

The incandescent lamp is energy inefficient converting only 4-6% of electricity into illumination. The energy saving fluorescent lamp is much more efficient at energy usage, yet the major part of the electric energy (more than 75%) is converted to heat energy, raising the indoor temperature of buildings, where these are used.

For human comfort and energy conservation, air heating system and air cooling system are installed in highly insulated buildings to maintain the desired temperature range of 21-25 degree centigrade and humidity range of 20-40% in winter and 40-60% in summer. The air heating systems and air cooling systems in modern buildings often create conditions for indoor air pollution which adversely affect indoor air quality. Other sources include synthetic building materials and furnishings, household cleaning products and personal care products, home appliances and office equipments, indoor plants, pets and pests, pesticides, garbage and decayed food, waste substances, and above all human activities and human beings themselves are sources that continuously producing indoor biological and chemical pollutants which affect the health and wellbeing of the occupants especially the young, the old and the sick, thus contributing
adversely to the well being and productivity of people living and working therein, increasing the burden of healthcare costs on individuals, families, employers and the state.

Many of the common diseases and sickness like allergies, asthma, cold, influenza, sinus, fever, sore throat, bronchitis, pneumonia, tuberculosis, measles, chickenpox, eye and skin diseases, cancers, cardiovascular diseases are caused partly by airborne microbes like virus, bacteria, fungus, protozoa, spore, pollen, algae, dust mites danders and other biological and organic and inorganic chemical air pollutants. Current treatments like vaccination and taking drugs and antibiotics which are normally disease-specific and sometimes may not be very effective for various reasons and sometimes may have short term or long term harmful side effects. One main reason is that virus and bacteria may mutate and become resistance to some of the vaccines, drugs and antibiotics that are already used for many years and hence new products have to be formulated to destroy these drug resistance microbes to replace the existing products.

In modern cities and farms, outdoor air pollutants and indoor air pollutants consisting of dust particles, microbes, organic and inorganic substances, liquid droplets, odours and toxic gases from diverse sources are produced by man and nature continuously. We need clean air and proper lighting at appropriate, balance and non-toxic levels for healthy and productive indoor living.

It is desirable if indoor living environment such as residences, private and public buildings, offices, shopping malls, hospitals, school, factories, livestock housing, etc. can have proper lighting and can reduce and control the concentration level of various kind air pollutants to non-toxic levels by capturing them by air filtration. It would be better if there is an invention which can effectively destroy, decompose, and dispose these harmful microbes, odours, toxic substances captured or trapped by the fabric air filters.

The inventor has also observed there is a new approach to combat some of these infectious diseases by reducing the various harmful microbes/pathogens to a non-toxic level through injuring, killing and decomposing them continuously with hydroxyl radical, for superoxide anion and other charged particles. The traditional use of essential oil from antimicrobial and aromatherapy properties can be incorporated into the inventive device using the heat produced to evaporate and diffuse the essential oil into the surrounding. It is desirable if two or more of these air cleaning technologies can be
selectively adapted for use in an step-by-step and integrative manner in an invention, for healthy and pleasant living.

With the objective of lowering energy costs, reducing the carbon footprint of the light source further, improving the well being of individuals and reducing healthcare costs for individuals, employers and the state, the inventor has come up with a novel and cost effective way to make optimal use of the light (being visible light, infrared and ultra violet radiation) from energy efficient light sources such as fluorescent lamp, UV lamp and LED lamp while achieving all the stated purposes of killing airborne harmful microbes, trapping them therein as well as removing fine and ultra fine particulates, aerosols, volatile and non-volatile chemicals with the use of a number of treated fabric filter cover for the inventive device is new and unique.

The inventor has creatively integrated the three basic functions of non-glaring illumination, air circulation and elimination of air borne virus and bacteria and other microbes and removal of odours, VOC and other airborne pollutants into a useful, stand-alone and innovative multi-function healthcare cum optimal illumination device working at atmospheric pressure and ambient temperature. Such an inventive device which is efficient in terms of using the entire range of electromagnetic radiation for the light source and promotes the physical and mental health and social well being of the people in its surrounding is new and unique.

It is also desirable that the inventive device can be modular in combination so that standard modular units of various shapes, sizes, designs, colors, materials can be joined together to form larger size lamps with large number of configurations. With such a modular approach, the inventive device is scalable, and flexible and therefore made to accommodate varying room size ranging from a small bedroom to the lobby of a hotel to even the interior of a shopping mall and other large buildings. With such a modular approach, the inventory requirements of standard modular units can be greatly reduced because of standard sizes and common parts.

It is also desirable if the shape of each standard modular unit is either slightly tapered/slanted or in symmetrical half-shaped so that they can be stacked together to minimize space/volume required during storage and transportation and saving in packaging and delivery which will also reduce the carbon footprint and resources required.
It is also desirable that the inventive device not only can be covered with various types of treated fabric filter cover for air clearing but also for deco-matching and with patterns which can be changed to keep up with festive occasions and moods of the people and also with changing trends in interior design, thereby would not become obsolete.

It is desirable if the inventive device uses the combined features of a selection of devices with proven air cleaning technologies, a selection of treated fabric filter cover with anti-microbial properties and air cleaning properties, all of which can be preset by the user from the said selection depending on the indoor air qualities to meet not only the physical health conditions of the users and at the same time improve the mental health and social well being of the users through control of lighting of various colours and brightness and with improvement of ambience through music and other audio-visual therapies and also with essential oils which have antimicrobial aromatherapeutic properties. The audio-visual devices will not only create sound and sight conditions to help relaxation, rest and sleep but can also stimulate and facilitate physical movements and social interaction such as dancing, singing, exercising, etc using various hardwares and softwares for various health problems and healthcare solutions.

PRIOR ART

There exist already many air purifiers, fans and light bulbs with air purifying property in the market.

There are prior art patents that use fabric filter treated with photocatalytic materials together with UV radiation and fan positioned within enclosed casing to purifying air. United States patents 6,666,912 and 5,330,722 disclose stand-alone air cleaning apparatus. But they are not fabric lamps for illumination functions as well.

Prior art patents have also considered incorporation of air purifying properties into fluorescent bulbs. They coated the glass bulbs with photocatalytic materials but without the use of partially enclosed fabric lampshade as filter to capture the air pollutants and without the air circulation functions.
Prior art patents such as CN 2864975 have disclosed the use of ultraviolet light from an illumination coating of rare earth phosphor whose wavelength is between 280 - 400 nm, which is capable of transforming 7-deoxidation ergot cholesterol in the skin into vitamin D[3] or D[2].

Other prior art patents such as JP 9294817 has disclosed the features of air purification through ionization and use of biochemical rays and ultraviolet rays to refresh and promote the health of the user.

PROBLEMS OF PRIOR ART

Electric lamps are mainly used for illumination and decorating purposes since Thomas Edison invented the first incandescent bulb in 1879. Until now, other potentials of the lamp are not fully utilized.

The incandescent electric lamp is also quite wasteful in energy usage. The energy saving fluorescent lamp is more efficient at energy usage yet the major part of the energy is still converted to heat energy, raising the temperature of its surroundings.

Prior art appliances directed towards killing of virus and bacteria also exist. Prior art appliances directed towards removal of VOC and odors also exist. Prior art appliances for improvement of air quality similar exist.

It is desirable if an invention could creatively integrate these three kinds of products into a useful, stand-alone and innovative healthcare cum illumination device which is more energy efficient, cost effective, safe, flexible, environment friendly, save space, able to remain relevant to user's health and decor requirements, user-friendly and affordable.

OBJECTS OF THE INVENTION

These innovative healthcare optimal lamps not only (A) make optimal or full use of the electrical energy converted to radiation energy of different wavelengths (infra-red, visible light, ultra-violet) for non-glaring illumination but also (B) have, depending on the requirements of the users and with flexi-configuration / arrangement of various
standardized components of these optimal lamps, the capabilities to perform additional useful functions as follows:

1) Will circulate indoor air drawn through one or more layer(s) of treated fabric filter cover of the lampshade by:

 (a) convection means using only the heat (infra-red radiation) produced by one or more energy efficient light bulb(s), and / or

 (b) mechanical means by using one or more electric fan(s) to generate greater volume of air flow and also uses the heat energy produced by the electric fan(s) for air circulation.

2) Will improve indoor air quality (IAQ) by innovative improved and integrative applications of various proven air cleaning technologies in a flexible, efficient and cost effective manner to agglomerate, precipitate, capture, hold, decompose and dispose various kind of biological (living and dead organisms) and chemical (organic and inorganic substances) air pollutants such as particulates matters (PM) of various kinds and sizes (coarse > 2.5um, fine 2.5-0.1 um and ultra fine < 0.1 um), volatile organic and inorganic substances, odors and toxic gases from diverse sources which can cause adverse health effects. Air cleaning takes place at the treated fabric filter cover surface as well as outside the lamp by attaching negative ion and plasma ionizers at the outlet of the optimal lamp to produce several millions of charged particle(s) per c.c. per second and emit them like shower or spray into the surrounding indoor air containing air pollutants. Air circulation and random Brownian diffusion generated by the healthcare lamp will spread and mix the highly unstable and reactive negative and positive ions with the air pollutants, especially the ultra fine and volatile substances which are difficult to filter even with HEPA filter causing them to be charged, attract oppositely, interact and form larger and heavier particles and clusters. The agglomerated air pollutants cluster will become too large and heavy to remain suspended. Eventually, it will precipitate from the air by gravitational force. Some falling particulates will be drawn by the gentle circulating airflow and be captured and decomposed by nano-TiO$_2$ photocatalyst coated on the treated fabric filter cover of the lamp activated by UV radiation from light source(s) when switched on.
3) Will improve health by increasing the negative ions concentration / level and also balance the excess positive ions which exist in many enclosed and insulated buildings with insufficient ventilation.

4) Will enhance the safety of the lamp by restricting access into the partially enclosed treated fabric filter cover lampshade with the use of safety mesh (on top) and wrapped round with treated fabric filter cover (on the sides). In the event of accident, the lampshade will prevent the breaking of the light bulb(s). If the light bulb(s) is(are) broken inside the lampshade, the treated fabric filter cover will hold the harmful broken bulb(s), provide protection against harm from live electric current and toxic materials like mercury especially for young children.

5) Will enhance the cleanliness and brightness of the light bulb(s) and the useful service life span of the electric fan(s) with the removal of dusts and other air pollutants by the air treated fabric filter cover lampshade.

6) Can be used as a versatile and aesthetic fixture that blend and match well with other home fixtures (e.g. curtains, furniture, carpet, etc.) with its wide varieties of designs, texture and colors. The treated fabric filter cover used can be taken off easily, washed and used again.

7) Can be used to enhance physical and mental health and mood with appropriate volatile antimicrobial and aromatherapeutic essential oils treatment by natural inhalation and absorption. Plant extracts put into cups/containers are placed next to light source(s) in the chasis at the upper outlet of the lamp. The warm convectional airflow will evaporate and disperse the volatile essential oils throughout the room.

8) The healthcare lamp can be standardized or customized to the requirements of the buyers. The use of specific combination of treated fabric filter cover could also improve the anti-viral, anti-bacteria, anti-odor and other air cleaning properties of the inventive device.

9) Can be made and used as healthcare light boxes for learning, music, singing, dancing, exercising, advertising and display devices with anti-microbial, aromatherapeutic and audio-visual properties.
10) Can be made and used as therapeutic relaxation, SAD and circadian devices to reduce stress, depression and anxiety and to improve mood, relaxation and sleep.

11) Can be made and used to exterminate insects, such as mosquito and fly in a non toxic manner with the use of aroma, radiation, carbon dioxide and indoor plants etc at the lower part of the healthcare lamp.

The innovative integration of these capabilities and technologies for healthy indoor living, which is sustainable and caring, is a flexi-open system and continuously flow process to be called SC Technologies and in short SC-Tec.

SUMMARY OF THE INVENTION

A first object of the invention is a holistic healthcare cum illumination device for interior use, said healthcare cum illumination device with the application of SC-Tec comprise of:-

An electrical light source(s) connected by electric cable and on-off switch to an electric power source point;

a lampshade consist of a modular frame for holding the electrical light source(s), ionizer(s) essential oil(s), fan(s) and other audio-visual gadgets and also for holding one or more layer(s) of treated fabric filter cover(s) which function as mechanical and electrostatic air filter(s) substrate, glare diffuser, noise absorber, microbe shield, UV radiation shield, safety shield, decorative finishes and display screen

is that the electrical light source(s) emitting visible light and invisible infra-red radiation and UV radiation is optimally used, with the visible light illuminating the surrounding, the infra-red radiation heating the air around the electrical light source(s) and the said hot air within the inventive device rising to form a convection current, said convention current drawing cool ambient air from the surroundings into the lower part of the inventive device to replace the warm air that had risen through the upper end of the inventive device. Harmful air pollutants, including virus, bacteria, spores, molds, pollens, and various pathogens, allergens, and other organic matters that are captured by the treated fabric filter cover coated with nano-
Upon exposure to UV radiation from the electrical light source(s), TiO$_2$, a semiconductor type of photocatalyst produce strong oxidizing species such as hydroxyl radical (OH) and super oxide anion ions. These powerful oxidation processes break down organic hazardous matters into relatively innocuous molecules like carbon dioxide, water vapour and inorganic salts.

Preferably, the inventive device has additionally one or more electric fan(s) to produce a stronger air circulation and also utilizing the heat generated by the electric fan(s) to product convection airflow in the same direction.

A second object of the Invention is a holistic healthcare cum illumination device comprising

- a modular frame with an opening at its top and having a safety mesh, coated with activated carbon and TiO$_2$, for the outflow of warm clean air from the treated fabric filter cover lamp;

- a chassis connected to the safety mesh lower part, for housing one or more ionizers, light bulb(s) and essential oil container(s), and

- a lamp shade cover formed from one or more layer(s) of treated fabric filter cover, function as outer layer of mechanical filter(s) and also as substrate for holding and bonding anti-microbial agent to capture and kill various microbes physically by stabbing and electrocution; and/or treat the outer treated fabric filter cover layer with biocides like zinc oxide ZnO and calcium hydroxide Ca(OH)$_2$ which can also remove acidic gases like NO$_x$, SO$_x$, HCl, CO$_2$, etc, chemically by neutralization.

- a layer of treated fabric filter cover treated with activated carbon, to remove odors and ozone by adsorption and reduction

- a layer of treated fabric filter cover having nano-TiO$_2$ photocatalytic material to destroy organic pollutants by oxidative decomposition to innocuous carbon dioxide, water vapor and mineraled salt;
Preferably, the chassis also hold one or more containers of essential oils.

Preferably, the inventive device has one or more electrical light sources which is a fluorescent lamp or a Light Emitting Device (LED) or incandescent lamp or High Intensity Discharge (HID) lamp.

Preferably, the inventive device has one or more air circulation units to produce a stronger convention current to draw in ambient air from the surrounding into a layer of treated fabric filter cover treated with anti pollutant properties so that that air borne pollutants are drawn through the layer of treated fabric filter cover and are caught and held by the said treated fabric filter cover.

Preferably, the inventive device has one or more air circulation units to produce a stronger convention current to draw in ambient air from the surrounding into a layer of treated fabric filter cover treated with anti-odour properties so that that air borne odours are drawn through the layer of treated fabric filter cover and are caught and held by the said treated fabric filter cover.

Preferably, the inventive device has one or more air circulation units to produce a stronger convention current to draw in air borne bacteria and virus from the surrounding and through a base of the inventive device and are destroyed or killed by the UV light emitted by the lamp.

A third object of the invention for a healthcare cum illumination device for interior use is a healthcare cum illumination device comprising:-

An electrical light source;

a chassis for holding one or more electrical light sources, one or more ionizers and one or more containers for essential oils; the electrical light source and the chassis fitted below the safety mesh at the top of the inventive device;

a Photocatalytic Air Cleaner (PAC) said PAC enclosing the electrical light source within, and having one or more layers of treated fabric
filter cover wrapped around it, with the base plate fitted with an air circulation unit characterized in that the electrical light source emit visible light, infra red light and UV light, said visible light illuminating the surrounding, said infra-red light heating the air around the inventive device, said hot air within the inventive device rising to form a convection current, said convention current

- evaporate and diffuse the essential oils, heated by the electrical light source, out of the inventive device to the surrounding;

- draws cool ambient air from the surroundings into the inventive device so that air pollutants, air borne virus and bacteria passes through the PAC, said UV light killing air borne virus and bacteria drawn into the inventive device and upwards through the inventive device and air borne pollutants and odors drawn through the said PAC are removed and trapped with the one or more layers of treated fabric filter cover and other air borne microbes are trapped and killed in the one or more layers of treated fabric filter cover.

Preferably, the base plate for a PAC has an electric fan for air circulation and a treated fabric filter cover coated with TiO$_2$ for photocatalytic oxidation to decompose air pollutants.

Preferably, the base plate for a PAC has one or more slots to house an electric fan, various audio-visual gadgets, programmable controller and other devices.

Preferably, the treated fabric filter cover for the inventive device is treated with antimicrobial properties and can be washed and cleaned of dead microbes.

Preferably, the treated fabric filter cover for the inventive device is treated with anti-odor properties and can be washed and cleaned of bad odors.
Preferably, the treated fabric filter cover for the inventive device is treated with anti-pollutants properties can be washed and cleaned of pollutants.

Preferably, the treated fabric filter cover for the inventive device is printed with designs to match the decor of the interior of a building.

Preferably, the treated fabric filter cover for the inventive device is printed with words and pictures to be used as advertisements, notices and signs or motivational messages.

More advantageously, the inventive device has one or more ionizing units.

Preferably, the ionizing unit is fitted into the chasis.

Preferably, the ionizing unit for the inventive device sterilizes the indoor air at ambient temperature is drawn in by the said air circulation unit and passes through the inventive device at atmospheric pressure.

Preferably, the ionizing unit for the inventive device ionizes the air, producing negative and positive ions which attracts air borne pollutants in the ambient air drawn in by the said air circulation unit, said pollutants being trapped in the one or more layers of treated fabric filter cover.

Preferably, the ionizing unit is negative ion ionizer.

Preferably, the ionizing unit is a plasma ionizer.

Preferably, the base plate for the inventive device has a plurality of slots spaced apart.

Preferably, the base plate has a slot for installation of a programmable controller.

Preferably, the base plate has a slot for installation of a MP3 or MP4 player and speakers.
Preferably, the base plate has a slot for installation of control means for operation of the lamp, the MP3 or MP4 player and speakers, microphones, ear-plugs and tuner.

Preferably, the control means is one or more switches.

Preferably, the control means is a programmable controller and a display panel.

More advantageously, the chassis for the inventive device is fitted with one or more light bulb and each of the bulb emits light of the same colour or emits light of different colours.

Preferably, the programmable controller for the inventive device is connected to the lamps and air circulation units to operate the lamps and air circulation units.

Preferably, the programmable controller for the inventive device is additionally connected to the MP3 or MP4 player and other audio devices.

Preferably, the programmable controller for the inventive device is additionally connected to the sources of essential oils.

Preferably, the programmable controller for the inventive device can be programmed to control the different colours of light emitted by the lamps and said colours can be synchronised with the MP3 or MP4 player and release of essential oils to introduce different ambience and atmosphere in the surroundings of the inventive device.

Preferably, the programmable controller for the inventive device controls the operation of the lamps, air circulation units, MP3 /MP4 player and release of essential oils using a radio frequency or an infra red device.

Preferably, the programmable controller for the inventive device controls the operation of the lamps, air circulation units, MP3 /MP4 player and release of essential oils, using a Bluetooth device.
Preferably, the programmable controller has a display panel so that the user can select various modes of working of the inventive device.

More advantageously, the modular frame for the inventive device is a cylinder, a sphere, a square, an oval, a rectangle, an oblong in circumference.

More advantageously, the modular frame for the inventive device is a cylinder, a cone, a hemisphere when viewed from the side.

More advantageously, the modular frame for the inventive device are combined to form inventive devices of different configurations and of various shapes and sizes.

Preferably, each of the modular frames of the same shape or size can be stacked into each other for storage and shipping purposes.

Preferably, the top of the modular frames has a protective safety mesh for safety purpose and as substrate for the coating of activated carbon and TiO$_2$.

Preferably, the inventive device is formed from combining a PAC at the lower part of the modular frames covered by one or more layers of treated fabric filter cover, two or more air circulation units and one or more ionizers, one or more essential oil containers and one or more electrical light sources all of which are housed or fitted onto the chasis connected below the safety mesh at the upper part of the modular frame.

Preferably, the inventive device can be placed on a table or a floor or suspended from a wall or from a ceiling of the interior of a building.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the invention, its advantages, and the objects attained by its use, reference should now be made to the accompanying drawings. The accompanying drawings illustrate one or more embodiments of the invention and together with the description herein, serve to explain the workings and principles of the invention.
FIG. 1 is an illustration of a basic embodiment of the invention.

FIG. 2a and 2b show the Top View and Front View of the basic embodiment and FIG. 2c and FIG. 2d shows the essential components added to the basic embodiment of the invention.

FIG. 3a-1 and 3a-2 are illustration of a working embodiment of the invention with an upper frame and lower frame joint together with the lower frame containing a PAC.

FIG. 3b and 3c show the top view of the chasis and base place respectively.

FIG. 3d is an illustration of the PAC.

FIG. 4 is an illustration of another working embodiment of the invention show a pendant lamp with LED light source and Treated Deco-Fabric added.

FIG. 5 is an illustration of how the modular frames can be used to construct the inventive device for use in a large interior with more illumination, air circulation, air cleaning and also with anti-microbial aromatherapeutic and audio-visual effects.

FIG. 6 shows two variations of modular frames used to make two different working embodiments of the invention.

FIG. 7 shows various combinations of lamps used on the inventive device of the invention.

FIG. 8 shows various modular frame shapes of lamp shades used on the inventive device to build various configurations of the invention using standard common parts.

FIG. 9 shows various combinations of shape of modular frame components used to build various configurations of the inventive device of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 is an illustration of a basic embodiment of the inventive device. FIG. 2 is an illustration of the essential features of the basic embodiment with chassis (20).
Referring to FIG. 1, the basic inventive device consists of these modules -

1. A chassis (20) for an electrical light source (26), being a fluorescent lamp;

The modular frame (12) is shown in bold black lines and the dashed lines represent the layers of treated fabric filter cover (26) covering the modular frame (12). The arrows show the convectional air inflow through the treated fabric filter cover (26) and air outflow through the upper end of the inventive device.

Referring to FIG. 2a to FIG. 2e, the basic modules of inventive device are shown:

- FIG. 2a is a top view of a chassis (20) for an electrical light source (26) showing the safety mesh (28) connected to the modular frame (12) of a circular taper shape lamp.
- FIG. 2b is a side view of the modular frame (12) of a circular taper shape lamp.
- FIG. 2c is a top view of the chassis (20) of the modular frame (12).
- FIG. 2d is a side view of the chassis (20) of the modular frame (12) with treated fabric filter cover (24).

The chassis (20) for the electrical light source (26) has one or more containers. The containers can be filled with essential oils or perfumed pieces or a mixture of different types of essential oils. The heat from the lamp will evaporate the essential oils allowing it to diffuse throughout the surroundings.

The chassis (20) has one or more ionizers (36) which product negative ions and positive ions. These charged particles or plasma will spread throughout the surrounding by air circulation and Brownian diffusion movement generated by the inventive device to clean the air outside the inventive device.

The PAC (10) consists of an electrical fan (44) connected to an opening of a base plate (22) at the top and a modular frame (12) at its bottom. An UV lamp (30) can be placed below the electric fan (44) which is fitted at the top of the base plate (22) of
the PAC (10). Preferably, the chassis (20) should be fitted at the top of the modular frame (12) for the essential oils to be vaporised into the surroundings. The PAC (10) at the bottom of the modular frame (12) has an opening for installation of an air circulation device and generate to movement of air. The base plate (22) has a number of slots (40) which can be fitted with numerous devices, as will be described later on.

The PAC (10) is wrapped air tight with one or more layers of treated fabric filter cover (24) to make it an effective air cleaning device. The modular frame (12) can be fitted with one or more layers of treated fabric filter cover (24) which not only acts as a lamp shade for aesthetic purpose but as a filter for air borne pollutants and as substrates for holding various air cleaning chemical/substances. In FIG. 1, a portion of the treated fabric filter cover (24) covering of the lamp shade is cut away to show the interior structure of the lamp housing fitted into the modular frame (12). It can be connected to another modular frame (12) to form a larger device. A few layers of treated fabric filter cover (24) is shown wrapped around the lamp shade. The layers of treated fabric filter cover (24) can be changed to suit the indoor air quality and the health requirements of users. The layers could include:-

a. a layer treated with anti-microbial agents to trap and kill microbes and capture coarse particulates.
b. a layer treated with bactericides like ZnO, CuO or Ca(OH)\textsubscript{2}; to trap and kill bacteria and to neutralize acidic gases like CO\textsubscript{2}, NO\textsubscript{x}, SO\textsubscript{x}, HCl, etc.
c. a layer treated with activated carbon, to remove odors and ozone
d. a layer having nano-TiO\textsubscript{2} photocatalytic material to oxide and decompose the trapped danders, V.O.C. and microbes upon radiation with UV light.

Although the inventive device can consist only of a single modular frame (12) which also acts as the lamp shade as shown in FIG. 1 and FIG. 2, a effective working embodiment of the inventive device is shown in FIG. 3.

Referring to FIG. 3a-1 and 3a-2, taking advantage of the modular method of fitting, another modular frame (12) is then placed over a first modular frame (12). The combined modular frames (12) will thus form the structure of a lamp shade. Due to
its length, an air circulation unit such as an electric fan (44), is included to build up a stronger stream of air currents flowing from the surroundings, through the base of the inventive device, and out through the top of the inventive device.

FIG. 3b shows a top view of the chassis (20), with sockets for lamps and containers for essential oils (42).

FIG. 3c shows a top view of the base plate (22). The base plate (22) is provided with more than one slots (40) to fit an electrostatic unit, a programmable controller (52), an air circulation unit, an audio unit (52) and other devices in accordance to user's requirements. The air circulation unit can be separately located at the top and bottom of the inventive device. It is preferred that if essential oils are used that the chassis (20) be situated at the top of the inventive device. This is because the heat from the electrical light source (26) will vaporise the essential oils which will then be lifted upwards and outwards from the inventive device due to the uprising convection current assisted by the electric fan (44) which is located at the lower part of the inventive device.

The electrical light source (26) such as a fluorescent lamp is connected by electrical wire to a source of electrical supply and has a programmable controller (52) to switch on or off the electrical supply to the electrical light source (26) and other devices, if fitted into the modular frame (12).

It is possible for each of the lamp shades to be fitted with different layers of treated fabric filter cover (24) for various functions so that with one or two layers for each modular frame (12), strong glare will be diffused to provide soft lighting for visual comfort.

Due to the modular nature of the inventive device, it is possible for the base plate (22) not to be fitted with any devices and merely be an opening, to allow air to flow through. Likewise, it is possible for the chassis (20) not to be fitted with two or more containers or two or more sockets for lamps. Therefore the modular approach of this inventive device makes it possible for the user to select:­

- the type of devices to be fitted into the base plate (22);
- the type and nature of lamps and the number of lamps;
the type of treated fabric filter covers (24) to be used as lamp shade covers;
the type of essential oils to be used;
the type of chemicals to be coated on the treated fabric filter covers (24);
the air filtration efficiency of the filter to be used;

all of which can be pre-selected or change according to the health requirements of the users and according to the nature of the surroundings.

Operation of the healthcare cum illumination device

Referring to FIG. 3d, the light source (such as an electrical florescent lamp) is switched on. With a programmable controller (50), the florescent lamp can be set to have the air circulation turned on for a period of time and the ionizing unit for another period of time while the lamp can be turned on indefinitely until switched off. The programmable controller (50) can be operated with a number of switches or buttons or with a display panel with a menu or even a touch screen with interactive menu.

When the fluorescent lamp is switched on, it gives out visible light, infra red light and ultra violet light. Since both visible light and infra-red light gives off heat too, the air surrounding the interior of the modular frame (12) is heated up. Hot air within the interior of the modular frame (12) rises through an opening at the top of the modular frame (12). As the hot air rises, it draws cooler ambient air from the surroundings into the modular frame (12), going through the bottom of the modular frame (12) and through the treated fabric filter cover (24) of the modular frame (12). A convection current is thus formed, with air within the modular frame (12) continuously heated, said hot air rising to the top of the modular frame (12) and drawing cooler ambient air through the treated fabric filter cover (24) of the modular frame (12) and through the lower end of the modular frame (12). A stronger convection current would be produced with the use of an air circulation unit.

Depending on the type of air cleaning devices, the type of treated fabric filter cover (24) used as modular frame (12), the inventive device fitted with ionizers (46) will improve indoor air quality (IAQ) in a flexible, efficient and cost effective manner to agglomerate, precipitate, capture, hold, decompose and dispose various kind of
biological (living and dead organisms) and chemical (organic and inorganic substances) air pollutants such as particulates (PM) of various sizes (coarse > 2.5\(\mu\)m, fine 2.5-0.1 \(\mu\)m and ultra fine < 0.1 \(\mu\)m), volatile organic and inorganic substances, odors and toxic gases from diverse sources which can cause adverse health effects.

Air cleaning takes place at the treated fabric filter cover (24) as well as outside the lamp by attaching negative ion and plasma ionizers at the outlet of the optimal lamp to produce several millions of charged particle(s) per c.c. per second and emit them like shower or spray into the surrounding indoor air containing air pollutants. Air circulation and random Brownian diffusion generated by the healthcare lamp will spread and mix the highly unstable and reactive negative and positive ions with the air pollutants, especially the ultra fine and volatile substances which are difficult to filter even with HEPA filter causing them to be charged, attract oppositely, interact and form larger and heavier particles and clusters. The agglomerated air pollutants cluster will become too large and heavy to remain suspended. Eventually, it will precipitate from the air by gravitational force. Some falling particulates will be drawn by the gentle circulating airflow and be captured and decomposed by the treated filtering treated fabric filter cover (24) of the lamp.

In operation, the inventive device will draw air through one or more layer(s) of treated fabric filter cover (24) (as filter) of the lampshade by:

(a) convection means using only the heat (infra-red radiation) produced by the light bulb(s), and / or

(b) mechanical means by using one or more air circulation units such as electric fan(s) (44) to generate greater volume of air flow.

The air is drawn through the layers of treated fabric filter cover (24) with anti microbial shield. Various kind of biological (living and dead organisms) and chemical (organic and inorganic substances) air pollutants such as particulates (PM) of various sizes (coarse > 2.5\(\mu\)m, fine 2.5-0.1 \(\mu\)m and ultra fine < 0.1 \(\mu\)m), volatile organic compounds (VOC), odors and toxic gases from diverse sources would go through the treated layers. Air cleaning takes place at the treated fabric filter cover (24) as well as outside the lamp by attaching negative ion and plasma ionizers at the outlet of the inventive device producing several millions of charged particle(s) per c.c. per second and emit them like...
shower or spray into the surrounding indoor air containing air pollutants. Air circulation and random Brownian diffusion generated by the inventive device will spread and mix the highly unstable and reactive negative and positive ions with the air pollutants, especially the ultra fine and V.O.C causing them to be charged, attract oppositely, interact and form larger and heavier particles and clusters. The agglomerated air pollutants cluster will become too large and heavy to remain suspended. Eventually, it will precipitate from the air by gravitational force. Some falling particulates will be drawn by the gentle circulating airflow and be captured and decomposed by the treated fabric filter cover of the lamp.

Indoor air quality (IAQ) is therefore improved through this innovative and integrative applications of various air cleaning technologies in the PAC unit of the inventive device.

Since the inventive device is used indoors, in a space in offices and apartments, the inventive device would be able to reduce the amounts of virus, bacteria, odors, pollutants to a minimum non-toxic level, after which it is no longer cost effective to remove the remaining amount of virus, bacteria, odors and pollutants. Thus, the controller having been various settings for the operation of the ionizing unit and air circulation unit so that it would switch off the ionizing unit and air circulation unit once the setting for each of their time period has been reached.

Each layer of treated fabric filter cover (24) would also have a minimum level of efficacy due to usage of the chemicals used on the particular layer. Such settings are provided with usage instructions for the use of the layer of treated fabric filter cover (24). Once the period of minimum efficacy has been reached, the user can remove the treated fabric filter cover (24) from the lamp shade and wash it, e.g. the treated fabric filter cover (24) for trapping pollutants. Alternatively, the same treated fabric filter cover (24) is replaced e.g. treated fabric filter cover (24) for killing bacteria.

It can be seen that the entire spectrum of light produced by a fluorescent lamp is thus utilised to produce illumination and assist in the process of cleaning the air. The use of one or more layers of treated fabric filter cover (24) as a lamp shade cover together with the ionizer (46) together with the PAC (10) clean the surrounding air by getting rid of air borne virus, bacteria, pollutants and odors. The use of essential oils would positively enhance the air quality of the surroundings. It can
be seen that the inventive device is a fully functional healthcare device which makes use of the entire visible wavelength of the light given out by the electrical light source (26), to promote healthy living.

Two tests were carried out by an independent testing laboratory on an enclosed office room of floor area approximately 9 m2 and room volume of approximately 25 m2. In the test, bacteria and fungi were introduced with common airborne bacteria and fungi culture media for the first five minutes of test duration. Similarly, another test was conducted in the same room, with introduction of nicotine by burning a Marlboro type cigarette for the first five minutes of test duration.

The following results recorded for the first test:

<table>
<thead>
<tr>
<th>Cumulative time (mins)</th>
<th>RSP (mg/m3)</th>
<th>MOM (PELTS) (mg/m3)</th>
<th>SIAQG (mg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.4</td>
<td>10 (Nuisance Particulates)</td>
<td>0.15 (for reference purpose only)</td>
</tr>
<tr>
<td>30</td>
<td>10.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: Respirable Suspended Particulates (RSP) was introduced into the indoor environment with Malboro type cigarettes burning for the first 5 minutes of test duration.

MOM : Ministry of Manpower, Singapore
PELTS : Permissible Exposure Levels of Toxic Substances
SIAQG : Singapore Indoor Air Quality Guidelines
## Cumulative time (mins)	VOC (ppm)	MOM (PELTS) (ppm)	SIAQG (ppm)
0 | 987 | | |
30 | 521 | | |
60 | 312 | | |
120 | 198 | | |
180 | 108 | | |
240 | 76 | | |
300 | 52 | | |
360 | 23 | | |
420 | 0 | | |

Remarks: Nicotine was introduced into the indoor environment with Malboro type cigarettes burning for the first 5 minutes of test duration.

The following results recorded for the second test:

## Cumulative time (hrs)	TBC (CFU/m³)	TFC (CFU/m³)	SIAQG (CFU/m³)
0 | 1110 | 420 | TBC:500
1 | 440 | 210 | TFC:500
6 | 45 | 30 | |

Remarks: Both Bacteria and Fungi were introduced into the indoor environment with common airborne bacteria and fungi cultures media for the first 5 minutes of test duration.

TBC: Total Bacteria Count TFC: Total Fungi Count

## Cumulative time (hrs)	Nicotine (mg/m³)	OSHA/ NIOSH/ ACGIA (mg/m³)
0 | 0.54 | Acetone=750ppm
1 | 0.03 | Trichloroethylene=50ppm
6 | 0.01 | Isopropyl Alcohol=400ppm

Remarks: Volatile Organic Compounds (VOC) was introduced into the indoor environment with evaporation of mixed solution comprised of acetone, trichloroethylene and isopropyl alcohol for the first 5 minutes of test duration.
The test results showed that after four hours, the inventive device working in a confined space could substantially reduce the amount of bacteria, fungi, odors and pollutants in a span of four hours.

Fitting of a healthcare cum illumination device

The chassis (20) for the fluorescent lamp has one or more sockets for insertion of one or more lamps.

The base plate (22) contains additional slots (40) for installation of an electrostatic unit, a programmable controller (50), MP3 or MP4 player and speakers and even a radio. The electric fan (44) can be fitted into the opening of the base plate (22). The modular frame (12) for the inventive device comes in a few standard shapes, such as cylindrical, conical and semi-spherical. By combining one or more of each shapes, various shapes and sizes of inventive device can be formed.

Depending on the size and height of the inventive device, a number of air circulation units could be fitted into the inventive. Also a plurality of fluorescent lamp, modular frames (12) and lamp shades can be assembled in various combinations to form many types of the inventive devices for large confined interior spaces like lobbies and halls.

Combinations of Modular Units

Due to the modular nature of the modular frames (12) and lamp shades, it is possible for the lamp shade to be fitted over the modular frame (12), making it a lamp shape without a base. It is possible that a few lamp shades and one or more modular frame (12) be arranged to form the inventive device, as illustrated later on.

FIG. 4 is an illustration of another working embodiment of the invention. This embodiment consists of an upper modular frame (12) and a lower modular frame (12)
with two electrical light sources (26) and the lamp shade covering the upper modular frame (12). The lamp shade is semi-hemispherical while the lamp stand is conical in shape. In this variation, the electrical light source (26) are two fluorescent lamps and a plate of LED (48).

FIG. 5 is an illustration of how the modular multi frames floor lamp can be used to construct a standing inventive device for use in a large interior.

FIG. 6 shows two variations of modular frames (12) used to make two different working embodiments of the invention.

FIG. 7 shows various combinations of lamps used on the inventive device of the invention.

FIG. 8 shows various shapes of modular frames (12) used on the inventive device to build various configurations of the invention using standard common parts.

FIG. 9 shows various combinations of shape of modular frame (12) used to build various configurations of the inventive device of the invention.

Selection of combinations of technologies for health and personal requirements of users

The inventive device can have various types of treated fabric filter cover (24) as treated fabric filter cover (24) cover for the lamp shades, according to the requirements and choice of the users.

a. a layer treated with anti-microbial agents; to trap and kill microbes and filter calcium hydroxide coarse particulates.

b. a layer treated with bactericide like ZnO, CuO or Ca(OH)_2; to trap and kill bacteria and also to neutralize acidic gases like CO₂, NOₓ, SOₓ, HCl etc.

c. a layer treated with activated carbon, to remove odors and ozone

d. a layer having nano-TiO₂ photocatalytic material to trap, hold, kill and decompose microbes and organic pollutants.
Since the lamp shade covers acts like "pull overs" for the lamp shapes, it can be wrapped around the modular frame (12). For additional layers of lamp shade cover to be added, the user would have to wrap the additional layer of lamp shade cover over the inner lamp shade covers, which are already wrapped around the lamp shade. The lamp shade covers are therefore selected by the users to meet the health concerns of users:

For clean air, and to remove air borne pollutants, the user may choose to use a combination of treated fabric filter cover (24) and an ionizer (46).

For bacteria free and germ free air, the user may choose to use a combination of treated fabric filter cover (24) treated with antimicrobial agents to trap and kill microbes and a second layer treated with bactericide; to trap and kill bacteria and neutralize acidic gases like C0₂, NOₓ, SOₓ, HCl etc. together with an ionizer (46).

For relaxation and to reduce stress, the user may choose an aromatherapeutic essential oil combined with different lights of soft colours and music (from the MP3 player installed in the lamp holder). He or she may sing or dance with the music.

The above are just a few combinations how the inventive device can promote health. The combinations are too many to describe herein.

Scalability

The power of the inventive device in cleaning the air and improving air quality would depend on the location of the inventive device. If the inventive device is placed in a open interior space such as lobby, the power of the inventive device both in terms of lighting and cleaning air-borne microbes and removing air borne pollutants would be much higher. The inventive device can then be fitted with a few lamps and electric fans (44), connected together by several modular frames (12). The use of various combinations of modular frames (12) and lamp shades together with a number of lamps and electric fans (44) offer flexibility to the user as the inventive device consisting of several modular frames (12), lamps, electric fans (44)
and lamp shades could be constructed to ensure the inventive device is efficient in lighting and removing air borne viruses and bacteria and odors from the large volume of space. Such an inventive device is shown in FIG. 5 which is a tall inventive device standing on the floor. The same can be hung from the ceiling of the lobby of a building.

The various shapes and sizes would also enable the user to use the inventive device in spaces of varying dimensions ranging from very large inventive devices for use in a lobby of an apartment building or hotel to a lamp in a small room. If the inventive device is used in a large space, it would be fitted with more fluorescent lamps, and more air circulation units, and more ionizing units (46), to enable it to work effectively in the larger space.

Safety

The use of lamp shades and modular frame (12) will enhance the safety of the lamp by restricting access into the partially enclosed treated fabric filter cover (24) lampshade. In the event of accident, the lampshade will help to prevent the breaking of the light bulb(s). If the light bulb(s) is (are) broken inside the lampshade, the treated fabric filter cover (24) will hold the harmful broken bulb(s), provide protection against harms from live electric current and toxic materials like mercury especially for young children. Additional protection is through the use of a safety mesh (28) on top of the inventive device when necessary. The treated fabric filter cover (24) wrapped around the PAC (10) too also act to prevent the hands of children from accidentally being placed inside the inventive device.

Keeping with decor and fashion

The treated fabric filter cover (24) of lamp shade can be changed to fit the requirements of the user. For example the treated fabric filter cover (24) used can be treated with charcoal to absorb odors and germicide in a kitchen. If there is a flu epidemic the treated fabric filter cover (24) could include a viricide. Therefore the combination of treated fabric filter cover (24) could be changed according to users' needs. The use of changeable layers of treated fabric filter cover (24) means healthcare aspect of this inventive device is flexible and adjustable. The use of treated fabric filter cover (24)
would also allow users to remove and replace those treated layers which have been used up and no longer effective.

Adaptation for other uses

Although the treated fabric filter cover (24) is treated, the first and outermost treated fabric filter cover (24) layer can also be used as advertisement signage. The inventive device can have lamp shade covers which are not only treated but can be overprinted with advertisement or notices or motivational messages. Therefore the inventive device can also be used as healthcare light boxes for advertising, learning and display devices.

Programmable to synchronize operations of various devices

The programmable controller (50) would ensure the inventive device operates at an efficient and optimal level at all times.

Since the inventive device can be suspended from a ceiling or the wall. As such, a remote control is used to control the programmable controller (50). The remote control can be by infra red or radio signals or Bluetooth.

Other health benefits

A MP3 or music player with speakers, microphone, ear plug, etc can also be fitted into the inventive device.

Whether the inventive device is on or off, the inventive device can play music in the background or motivational and spiritual messages in meditation.

Since the inventive device can have a plurality of fluorescent lamps, the colour of the light given out can also be changed. Some of the fluorescent lamps can give out red colour, or blue colour or green colour and the colour patterns can be varied or programmed to suit the seasons or the change of light from dawn to dusk. Such use of colour lights can have an positive effect on the mental state of the users especially in colder climates.
Controls

The programmable controls (50) can be activated by a remote control using infra red or blue tooth. Such remote controls are useful when the inventive device is hung high up or out of reach.

A display panel may also be added for table size inventive devices so that the user can select various modes of working of the inventive device, such as:-

a. Normal Lighting in early evening; without the air circulation unit on.

b. Subdued lighting in the later part of the evening with different coloured lights and music and with air circulation unit and the ionizer (46) on.

The display panel would also allow the user to set the inventive device to operate certain features or lights during certain times of the day to reflect the outside environment or to simulate daylight conditions in winter.

With a programmable controller (50) and use of wired transmission or wireless transmission of signals, such as Wi Fi, a plurality of inventive devices could be installed in a building and connected through a computer communications network. In this manner, efficient use of the inventive devices not only in terms of lighting consumption but also usage of the other features of the inventive devices could be managed. For example all the features of the inventive devices in the lobby could be turned on to the maximum if the lobby is packed during peak hours and some inventive devices could be turned off during non-peak hours, all these by managing each inventive device through issue of instructions to each inventive device, through keying of instructions through a display console in a Personal Computer in a control room.

The above are again examples of how the modular nature of the inventive device can used.
ADVANTAGEOUS EFFECTS OF THE INVENTION

The Healthcare cum Optimal Illumination Device makes use of the entire spectrum of visible light, infra-red and ultra violet light emitted by a fluorescent lamp. It not only lights the interior space but improves the indoor air quality by removing air borne pollutants and microbes at the same time.

It can incorporate other therapeutic and circadian devices to further extend its health promoting properties.

Its modular properties and flexibility in the type, nature and even designs in the treated fabric filter cover (24) used to cover the modular frames (12) would ensure the invention remains relevant and useful for a long time.
CLAIMS

1. A healthcare cum illumination device for interior use, said healthcare cum illumination device comprising:-

 an electrical light source (26);

 a chassis (20) for holding the electrical light source (26); and

 one or more modular frames (12) enclosed in one or more layers of treated fabric filter cover (24) treated with photocatalytic materials and antimicrobial materials, and with an opening at the top of the inventive device for air outflow,

 characterized in that the electrical light source (26) emit visible light, infra red radiation and UV radiation, said visible light illuminating the surrounding with diffused and non-glaring lighting, said infra red radiation heating the air around the inventive device, said hot air within the inventive device rising to form a convection current, said convention current drawing cool ambient air from the surroundings into the electrical light source (26) inside the inventive device, said hot air within the inventive device rising to form a convection current, said convection current drawing cool ambient air from the surroundings into the inventive device through the treated fabric filter cover (24) so that air pollutants, including air borne microbes passes through one or more layers of treated fabric filter cover (24) are captured, held, injured, killed and decomposed as the air borne microbes are drawn into the inventive device through the treated fabric filter cover (24) and other air borne pollutants and odors drawn through the treated fabric filter cover (24) of the said inventive device are also removed by the said treated fabric filter covers (24), thereby resulting in energy optimization.

2. A healthcare cum illumination device as claimed in Claim 1, having one or more of electric fans (44) units fitted to the inventive device with energy optimization to produce a stronger air circulation for cleaning a greater volume of air.

3. A healthcare cum illumination device as claimed in Claim 1 or in Claim 2 having a Photocatalytic Air Cleaner ("PAC") (10) comprising:
a modular frame (12);

an ionizer (46) fitted in the chassis (20);

said modular frame (12) forming a lamp shade cover having one or more layers of treated fabric filter cover (24), including:-

a layer of treated fabric filter cover (24) with anti-microbial agents; to trap and kill microbes;

a layer of treated fabric filter cover (24) treated with calcium hydroxide to filter coarse particulates and to neutralize gases like CO₂, NOₓ, SOₓ, HCl, etc.

a layer of treated fabric filter cover (24) with activated carbon, to remove odors and ozone

a layer of treated fabric filter cover (24) having nano-TiO₂ photocatalytic material to break down organic matters and gases;

said lamp shade also having a safety mesh (28) fitted onto the top of the lampshade;

4. The chassis (20) for a healthcare cum illumination device as claimed in Claim 1 or Claim 2 or Claim 3 wherein the chassis (20) also hold one or more containers of essential oils (42).

5. The PAC (10) as claimed in Claim 3 further comprising a base plate (22), said base plate having a housing for an electric fan (44) and an UV lamp (30), and one or more slots (40) to house audio-visual and control devices, said modular frame (12) enclosed with an airtight treated fabric filter cover (24) (HEPA or sub HEPA), the fabric treated with photocatalytic materials.

6. A healthcare cum illumination device as claimed in any one of Claim 1 to 5 having more than one modular frame (12) wherein the PAC (10) forms a lower modular frame (12) for more filtration and redox detoxification by photocatalytic decomposition.
7. A healthcare cum illumination device as claimed in Claim 1, wherein the one
or more electrical light sources (26) is a fluorescent lamp or a Light Emitting Device
(LED) or incandescent lamp or High Intensity Discharge (HID) lamp.

8. A healthcare cum illumination device as claimed in any of the preceding
Claims having one or more air circulation units to produce a stronger convention
current to draw in ambient air from the surrounding into a layer of treated fabric
filter cover (24) with anti pollutant properties so that the air borne pollutants are
drawn through the layer of treated fabric filter cover (24) and are caught and trapped
by the said treated fabric filter cover (24).

9. A healthcare cum illumination device as claimed in any of the preceding
Claims having one or more air circulation units to produce a stronger convention
current to draw in ambient air from the surrounding into a layer of treated fabric
filter cover (24) with anti-odour properties so that that air borne odours are drawn
through the layer of treated fabric filter cover (24) and are absorbed and adsorbed
by the sorbents coated on the said treated fabric filter cover (24).

10. A healthcare cum illumination device as claimed in any of the preceding
Claims, having one or more air circulation units to produce a stronger convention
current to draw in air borne bacteria and virus from the surrounding and through
the PAC (10) and are destroyed, caught, killed, captured and decomposed by the UV
light emitted by the UV lamp (30) onto the photocatalytic material coated on the
treated fabric filter cover (24).

11. A healthcare cum illumination device for interior use, said healthcare cum
inventive device comprising:-

an electrical light source (26);

a chassis (20) for holding the electrical light source (26) and one or
more sources of essential oils; the electrical light source (26) and the
chassis (20) fitted near the top of the inventive device;

a PAC (10) placed at the lower frame of the modular frame (12), said
PAC (10) enclosing an UV light source within, and having one or
more layers of treated fabric filter cover (24) wrapped around it as treated fabric filter cover (24), with the base plate (22) fitted with an air circulation unit

classified in that the electrical light source (26) emit visible light, infra red and UV radiation, said visible light illuminaing the surrounding, said infra red radiation heating the air around the inventive device, said hot air within the inventive device rising to form a convection current, said convention current

- lifts the essential oils, heated by the electrical light source (26) and the electric fan (44), out of the inventive device to the surrounding;

- draws cool ambient air from the surroundings into the inventive device so that air pollutants including air borne virus and bacteria are filtered through the PAC (10) inside the modular frame (12) said photocatalytic oxidation kill and decompose air borne virus and bacteria which are captured and held by the treated fabric filter cover (24) as ambient air is drawn into the inventive device and upwards through the inventive device and air borne pollutants and odors drawn through the said inventive device coated with sorbents.

15. The treated fabric filter cover (24) for a healthcare cum illumination device as claimed in any one of preceding Claims, wherein the treated fabric filter cover (24) is treated with anti-bacteria properties can be washed and cleaned of dead bacteria, inorganic substances and any undecomposed pollutants.

16. The treated fabric filter cover (24) for a healthcare cum illumination device as claimed in any one of the preceding Claims, wherein the treated fabric filter cover (24) is treated with anti-virus properties can be washed and cleaned of dead and undecomposed virus.

17. The treated fabric filter cover (24) for a healthcare cum illumination device as claimed in any one of the preceding Claims, wherein the treated fabric filter cover
(24) is treated with anti-odor properties can be washed and cleaned of any undecomposed bad odors.

18. The treated fabric filter cover (24) for a healthcare cum illumination device as claimed in any one of the preceding Claims, wherein the treated fabric filter cover (24) is treated with anti-pollutants properties, and said treated fabric can be washed and cleaned of any undecomposed pollutants.

19. The treated fabric filter cover (24) for a healthcare cum illumination device as claimed in any one of the preceding Claims, wherein the treated fabric filter cover (24) is printed with designs to match the decor of the interior of a building.

20. The treated fabric filter cover (24) for a healthcare cum illumination device as claimed in any one of the preceding Claims, wherein the treated fabric filter cover (24) is printed with words and pictures to be used as advertisements, notices and signs or motivational messages.

21. A healthcare cum illumination device as claimed in Claim 1 or Claim 11, having one or more ionizers (46).

22. An ionizer (46) for a healthcare cum illumination device as claimed in Claim 21, said ionizer (46) fitted onto the chassis (20) or the base plate (22).

23. An ionizer (46) for a healthcare cum illumination device as claimed in Claim 21, wherein said ionizer (46) sterilizes the air as ambient air is drawn in by the said air circulation unit and passes through the inventive device.

24. An ionizer (46) for a healthcare cum illumination device as claimed in Claim 21, wherein said UV light from the electrical light source (26) as well as said ionizer (46) ionizes the air, producing ions which attracts air borne pollutants in the ambient air drawn in by the said air circulation unit, said pollutants being trapped in the one or more layers of treated fabric filter cover (24).

25. An ionizer (46) for a healthcare cum illumination device as claimed in Claim 21, which oxidizes free radicals in the ambient air thus improving the quality of the ambient air over a period of time.
26. An ionizer (46) for a healthcare cum illumination device as claimed in Claim 21, wherein the ionizer (46) is an anion ionizer.

27. An ionizer (46) for a healthcare cum illumination device as claimed in Claim 21, wherein the ionizer (46) is a plasma ionizer.

28. A base plate (22) for a healthcare cum illumination device as claimed in Claim 3, wherein said base plate (22) has a plurality of slots spaced apart.

29. A base plate (22) for a healthcare cum illumination device as claimed in Claim 3, wherein said base plate (22) has a slot (40) for installation of a programmable controller (50).

30. A base plate (22) for a healthcare cum illumination device as claimed in Claim 3, wherein said base plate (22) has a slot (40) for installation of a MP3 or MP4 player and speakers.

31. A base plate (22) for a healthcare cum illumination device as claimed in Claim 3, wherein said base plate (22) has a slot (40) for installation of control means for operation of the lamp, the MP3 or MP4 player and speakers and the containers of essential oils (42).

32. The control means for a healthcare cum illumination device as claimed in Claim 31, wherein the control means is one or more switches.

33. The control means for a healthcare cum illumination device as claimed in Claim 31, wherein the control means is a programmable controller (50) and a display panel.

34. A chassis (20) for a healthcare cum illumination device as claimed in Claim 1, wherein the chassis (20) is fitted with one or more light bulbs and each of the light bulb emits light of the same colour or emits light of different colours.

35. A programmable controller (50) for a healthcare cum illumination device as claimed in Claim 29, wherein said programmable controller (50) is connected to the lamps and air circulation units to operate the lamps and air circulation units.
36. A programmable controller (50) for a healthcare cum illumination device as claimed in Claim 29, wherein said programmable controller (50) is additionally connected to the MP3 or MP4 player.

37. A programmable controller (50) for a healthcare cum illumination device as claimed in Claim 29, wherein said programmable controller (50) is additionally connected to the sources of essential oils.

38. A programmable controller (50) for a healthcare cum illumination device as claimed in Claim 29, wherein said programmable controller (50) can be programmed to control the different colours of light emitted by the lamps and said colours can be synchronized with the MP3 or MP4 player and release of essential oils to introduce different ambience and atmosphere in the surroundings of the inventive device.

39. A programmable controller (50) for a healthcare cum illumination device as claimed in Claim 29, wherein said programmable controller (50) controls the operation of the lamps, air circulation units, MP3/MP4 player and release of essential oils using an infra-red device or an radio frequency device.

40. A programmable controller (50) for a healthcare cum illumination device as claimed in any one of Claim 35 to 40, wherein said programmable controller (50) is controlled by a hand held device using infra-red or Bluetooth or WiFi.

41. A programmable controller (50) for a healthcare cum illumination device as claimed in Claim 29, wherein said programmable controller (50) controls the operation of the lamps.

42. A programmable controller (50) for a healthcare cum illumination device as claimed in any one of Claim 35 to 40 having a display panel so that the user can select various modes of working of the inventive device.

43. A healthcare cum illumination device as claimed in Claim 1 or Claim 4, wherein the one or more modular frames (12) is a cylinder, a sphere, a square, an oval, a rectangle, an oblong in circumference.
44. A healthcare cum illumination device as claimed in Claim 1 or Claim 4, wherein the one or more modular frames (12) is a cylinder, a cone, a hemisphere when viewed from the side.

45. A healthcare cum illumination device as claimed in any of the preceding Claims, wherein the one or more modular frames (12) are combined to form inventive devices of different configurations and of various shapes and sizes.

46. A modular frame (12) for a healthcare cum illumination device as claimed in any of the preceding Claims, wherein each of the modular frames (12) of the same shape or size can be stacked into each other for storage and shipping purposes.

47. A modular frame (12) for a healthcare cum illumination device as claimed in any of the preceding Claims, wherein the top of the modular frame (12) has a safety mesh (28) for safety purpose.

48. A healthcare cum illumination device as claimed in any of the preceding Claims, formed from combining two or more modular frames (12) covered by two or more layers of treated fabric filter cover (24), two or more air circulation units and two or more ionizers (46), two or more chassis (20) and two or more electrical light sources (26).

49. A healthcare cum illumination device as claimed in any of the preceding Claims, wherein the inventive device is placed on a table or a floor or suspended from a wall or from a ceiling of the interior of a building.
FIG. 7
Various Combination of Frames
FIG. 8
Various Shapes and Configuration of Frames with Stand common Parts
FIG. 9
Shapes and Configuration of Frame Components
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl.
F21 V 1/04 (2006.0 1) BOW 46/00 (2006.0 1)
A62B 23/00 (2006.0 1) F21 W 1 3 1/20 (2006.0 1)

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPODOC.WPI: illuminat+ or light+ or lamp?, filter+ or screen+ or clean+ or cover+ or remov+ or +contaminat+, hepa or pac or +microb+ or +pollutant+ or od[ou,ol]r? or air_borne or photo_cataly+ or fung+ or viral or bacteria?, (air or thermal) 3d (+flow+ or current? or hot or cold or convection* or circulate or gradient?), fabric or material or cloth or textile? or lining? or liner?.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN 20 114 516 4 Y A (FU AN CHEN) 5 November 2007 See f1g 1.</td>
<td>1,3 1,4, 44, 46</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>2-27, 29, 3, 3, 7, 40-43, 45</td>
</tr>
<tr>
<td></td>
<td>See paras 24-27.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 2009/01225 16 A1 (YANG) 14 May 2009</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>See abstract.</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

Date of the actual completion of the international search 30 July 2010.

Date of mailing of the international search report 27 August 2010.

Name and mailing address of the ISA/AU
AUSTRALIAN PATENT OFFICE
PO BOX 200, WODEN ACT 2606, AUSTRALIA
E-mail address: pct@ipaaustralia.gov.au
Facsimile No. +61 2 6283 7999

Authorized officer
S. T. PRING
AUSTRALIAN PATENT OFFICE
(ISO 9001 Quality Certified Service)
Telephone No: +61 2 6283 2210

Form PCT/ISA/2 10 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>NL 88008 12 A (WILHELMUS) 16 October 1989 See fig 1.</td>
<td>2,3,8-11,18-24,45</td>
</tr>
<tr>
<td>Y</td>
<td>US 4 926 293 A (SABA) 15 May 1990 See col 5 lines 37-38.</td>
<td>2,3,8-11,18-24,45</td>
</tr>
</tbody>
</table>

Form PCT/ISA/2 10 (continuation of second sheet) (July 2009)
Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [] Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. [] Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. [] Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See Supplemental Box 1

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. [X] As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. [] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- [] The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- [X] The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- [] No protest accompanied the payment of additional search fees.

Form PCT/ISA/2 10 (continuation of first sheet (2)) (July 2009)
Continuation of Box No: III

Item 1(i) continued

The international application does not comply with the requirements of unity of invention because it does not relate to one invention or to a group of inventions so linked as to form a single inventive concept. In coming to this conclusion the International Searching Authority has found that there are eight inventions:

1. Claims 1-3,6-1 1,18,40-42,45,46 appear to be directed to an illumination device. It is considered that this comprises a "first special technical feature".

2. Claims 4,31 appear to be directed to a chassis. It is considered that this comprises a "second special technical feature".

3. Claim 5 appears to be directed to a PAC. It is considered that this comprises a "third special technical feature".

4. Claims 12-17 appear to be directed to a treated fabric filter cover. It is considered that this comprises a "fourth special technical feature".

5. Claims 19-24 appear to be directed to an ionizer. It is considered that this comprises a "fifth special technical feature".

6. Claims 25-28 appear to be directed to a base plate. It is considered that this comprises a "sixth special technical feature".

7. Claims 29,30,32-39 appear to be directed to a control means. It is considered that this comprises a "seventh special technical feature".

8. Claim 44 appears to be directed to a modular frame. It is considered that this comprises a "eighth special technical feature".

Since the above mentioned groups of claims do not share either of the technical features, a "technical relationship" between the inventions, as defined in PCT Rule 13.2 does not exist. Accordingly the international application does not relate to one invention or to a single inventive concept.

The claims of Inventions 2-8 are considered to merely be suitable for use in the device of Invention 1. Thus it is considered they are directed to separate inventions. As such they are not restricted to the features of claim 1 and are limited to only those features to which the Inventions are directed eg claim 4 is limited to a chassis holding one or more oil containers.
This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NL 88008 12</td>
<td>NONE</td>
</tr>
<tr>
<td>US 4926293</td>
<td>CA 1234089 EP 0269524 US 48294 11</td>
</tr>
<tr>
<td>CN 20 1145 164</td>
<td>NONE</td>
</tr>
<tr>
<td>JP 2005 149888</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2009 1225 16</td>
<td>NONE</td>
</tr>
<tr>
<td>JP 2006 18 1000</td>
<td>NONE</td>
</tr>
<tr>
<td>US 6174340</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.

END OF ANNEX