47107128 A2 I PO OO A0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

9 December 2004 (09.12.2004)

(10) International Publication Number

WO 2004/107128 A2

GO6F

(51) International Patent Classification’:

(21) International Application Number:
PCT/US2004/016893

(22) International Filing Date: 28 May 2004 (28.05.2004)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/474,008 29 May 2003 (29.05.2003) US

(71) Applicant (for all designated States except US): CO-
VARO NETWORKS, INC. [US/US]; 2301 N. Greenville
Avenue, #300, Richardson, TX 75082 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SANKEY, Wayne
Robert [CA/US]; 2616 Owl Creek Drive, Plano, TX
75025 (US). JAMIESON, Ross Alexander [US/US];
6712 Creekside, Plano, TX 75023 (US). WEEKS, John
Kevin [CA/US]; 2700 Berrywood Court, Richardson,
TX 75082 (US). ROA-DIAZ, Marlon B. [US/US]; 2513
Heather Glen Drive, Plano, TX 75025 (US). ELIAS, Paul
Anthony [US/US]; 3519 Willowbrook Drive, Richardson,
TX 75080 (US). MEZEUL, Michael Joseph [US/USJ;
Apartment 1836, 1420 West McDermott Drive, Allen, TX
75013 (US). YASEEN, Nimer Ibrahim [CA/US]; 204
Fairfax Drive, Allen, TX 75013 (US).

(74) Agents: BLISS, Timothy F. et al.; Haynes and Boone,

LLP, Suite 3100, 901 Main Street, Dallas, TX 75202 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ,
TM, IN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM,
ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA,
SD, SL, §Z, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE,
SN, TD, TG)

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for all designations

of inventorship (Rule 4.17(iv)) for US only

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR TIME-BASED SCHEDULING

& (57) Abstract: Provided are a system and method for time-based scheduling in a communications environment. In one example,
& the method includes assigning at least one token to each of multiple active queues during a predefined period of time. Each token
authorizes an amount of data to be dequeued from the queue. The method also includes waiting until the end of the predefined period
of time before starting a new round of assigning. At least one of the queues is nominated based on the token assigned to the queue,
where the nomination authorizes the dequeuing of the amount of data from the queue. The nomination is sent to a memory system

e
=

to dequeue the data and send the data to a network uplink.

10

15

20

25

30

35

WO 2004/107128 PCT/US2004/016893
-1-

SYSTEM AND METHOD FOR TIME-BASED SCHEDULING

CROSS-REFERENCE

This application claims priority from U.S. Provisional Patent Application Serial No. 60/474,008,
filed on May 29, 2003, and entitled METHOD FOR TIME-BASED SCHEDULING, which is hereby
incorporated by reference in its entirety.
BACKGROUND

Communications systems frequently handle different types of information (e.g., data, voice,
video, etc.) that may be transmitted on a single physical communications channel. Each type of
information may have different transmission requirements, such as buffering, latency, and latency
variation. To satisfy these different requirements, the system may use a scheduler to handle each type of
information differently as the information is admitted into a network. However, current schedulers are
limited in their abilities.

Accordingly, what is needed is a system and method for providing improved scheduling in a
communications network.
BRIEF DESCRIPTION OF THE DRAWINGS

Fig. la is an exemplary flow chart of a scheduling method.

Fig. 1b illustrates one embodiment of an exemplary communications system within which a
scheduler may be used.

Fig. 2 is a diagram illustrating an exemplary data flow for admitting data into the system of Fig.

Fig. 3 is one embodiment of a scheduler having slow-side and fast-side modules that may be used
to control the data flow of Fig. 2 into one or more uplinks.

Fig. 4 illustrates a predefined segment of time and various tasks performed by the slow-side
module of the scheduler of Fig. 3 during the time segment.

Fig. 5 is a flow chart of an exemplary method that may be executed for each queue by the slow-
side module of the scheduler of Fig. 3. -

Fig. 6a is a flow chart of an exemplary method that may be used to calculate a committed input
rate for a queue during the execution of the method of Fig. 5.

Fig. 6b is a flow chart of an exemplary method that may be used to calculate a peak input rate for
a queue during the execution of the method of Fig. 5.

Fig. 7 is a diagram of a more detailed embodiment of the fast-side module of the scheduler of
Fig. 3.

Fig. 8 is a flow chart of an exemplary method for loading a nomination table associated with the

fast-side module of Fig. 7.

10

15

20

25

30

35

WO 2004/107128 PCT/US2004/016893
2-

Figs. 9a and 9b are a flow chart of an exemplary method for a nomination process that may be
executed within the fast-side module of Fig. 7 using the nomination table to Fig. 8.

DETAILED DESCRIPTION

This disclosure relates generally to communications systems and, more particularly, to providing
a system and method for time-based scheduling in communication networks. It is understood, however,
that the following disclosure provides many different embodiments or examples. Specific examples of
components and arrangements are described below to simplify the present disclosure. These are, of
course, merely examples and are not intended to be limiting. In addition, the present disclosure may
repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of
simplicity and clarity and does not in itself dictate a relationship between the various embodiments
and/or configurations discussed.

Referring to Fig. 1a, an exemplary method 10 for scheduling traffic in a communications network
is illustrated. As will be described later in greater detail, the method 10 may calculate and assign one or
more tokens to each of one or more queues. The tokens are then used to regulate the dequeuing of
information from each queue.

In step 12, the method 10 may assign one or more one tokens to each of a plurality of active
queues during a predefined period of time. Each token authorizes an amount of data to be dequeued from
the queue. As will be described later, the predefined time period provides improved control of the
scheduling. In step 14, the method 10 waits until the end of the predefined period of time before starting
a new round of assigning. Sequentially or simultaneously, at least one of the queues may be nominated
based on the at least one token assigned to the queue. The nomination of a queue authorizes the
dequeuing of the amount of data (authorized by the token) from the queue. In step 18, the nomination is
sent to a memory system to dequeue the data and send the data to a network uplink.

Referring now to Fig. 1b, one embodiment of an exemplary system 100 is illustrated. The system

100 includes a first network entity 102 connected via a synchronous optical network (SONET) 104 to a

_second network entity 106. For purposes of clarity, the term SONET is used throughout the present

disclosure to refer to SONET and/or synchronous digital hierarchy (SDH). Accordingly, it is understood
that references to SONET may be replaced with references to SDH, although some minor changes may
be needed, as will be known to those of skill in the art. Although a network entity in the present
disclosure may be any network accessible component, device, or system (hardware and/or software), the
network entity 102 may be an Ethernet-over-SONET entity configured to perform PPP processing.

In the present example, the network entity 106 is in a NOC 108 that also includes an EMS/NMS
112 connected to the network entity 106 via a data communications network (DCN) 110. Users 114a and
116a may access the network 104 via the network entity 102, while users 114b and 116b may access the

network 104 via the network entity 106. It is understood that additional users, network entities,

10

15

20

25

30

WO 2004/107128 PCT/US2004/016893
3-

networks, and/or subnets may be connected to various elements of Fig. 1. Accordingly, Fig. 1 is for
purposes of example only and has been simplified to better illustrate the present disclosure. Furthermore,
it is understood that other networks and/or protocols may be used, such as ethernet or token ring.

With additional reference to Fig. 2, in communications systems such as the system 100 of Fig. 1,
various types of information (e.g., data, voice, video, etc.) may be transmitted on a single physical
communications channel. However, each type of information may have different transmission
requirements, including requirements such as buffering, latency, and latency variation. To satisfy these
different requirements, the system may handle each type of information differently as the information is
admitted into the network. Accordingly, the admission of received information from many sources into a
single communications channel may use circuitry and/or software that satisfies the handling needs of the
various types of information. The processing which accomplishes this is called "scheduling,”" and the
hardware and/or software that implements the scheduling is called a scheduler.

In general, traffic is sent to a network element (NE) from multiple customer ports 1-M. The
traffic from these ports is classified and then placed into a queue system, where different traffic from the
ports may go into 1-N different queues. The queueing system and the ports are generally orthogonal
spaces. There is a mapping function (called “classification”) that determines how the traffic from the
customer ports is routed to the individual queues.

Once traffic is placed into the multitude of N queues, it is forwarded to one or more network
uplinks. For example, traffic from many queues may be sent into a particular STS-1 synchronous
payload envelope (SPE), which may be one of 1-P logical uplinks contained in an STS-12. It is
understood that this process may be applied to many different technology types, such as SONET, SDH,
ethernet, token ring, etc. As previously stated, the queueing system and the logical uplinks are
orthogonal spaces, and there exists a mapping function which determines to which uplink the traffic from
a given queue will go. The scheduler determines how the uplink bandwidth is divided into small
increments of time amongst the competing clients (queues). The method executed by the scheduler may
determine how much delay, delay variation, traffic burst size, etc., the traffic in each queue may
experience. The method may be based on different ordering techniques, such as a per-PDU (protocol
data unit) (e.g., a cell, frame, or packet) technique.

Referring now to Fig. 3, one embodiment of a scheduler 300 is illustrated. The scheduler 300
includes provisioning random access memory (RAM) 302, a slow-side module 304, token bank RAM
306, and a fast-side module 308. In the present example, the scheduler 300 is in communication with a
queuing (e.g., memory system) 310. As will be described later in greater detail, the scheduler 300 is
designed to send instructions to a memory system directing the memory system to dequeue a PDU from a

particular queue. When the PDU is removed from the given queue, it is sent to a selected uplink logical

10

15

20

25

30

WO 2004/107128 PCT/US2004/016893
4-

channel, possibly after being placed into a small holding area (e.g., a first in, first out (FIFO) queue) that
enables rate matching of the uplink data to the dequeued data from the memory system.

It is understood that the scheduler 300 of Fig 3 is only one possible implementation of a
scheduler. For example, the scheduler may be implemented using a digital circuit RTL (Register
Transfer Level) description that may be synthesized by a logic synthesizer and realized in a VLSI chip, or
as a Field Programmable Gate Array (FPGA). The scheduler may contain various memories (e.g.,
registers) and multiple functions realized in software and/or hardware. Accordingly, the following
description is not limited to the specific structure described.

Exemplary parameters of the dequeued PDUs that the scheduler 300 may control include: a
committed input rate (CIR) of each queue, a peak input rate (PIR) of each queue subject to uplink
availability, latency of a VoIP queue (e.g., the scheduler may attempt to keep latency so low that latency
variation is unimportant), burstiness of data traffic for queues, and a rate needed to keep an uplink full
given it could be full per provisioning. The CIR is the minimum rate to admit traffic to the network
given a non-empty queue, and the PIR is the maximum rate to admit traffic to the network given a non-
empty queue. For purposes of illustration, excess bandwidth (e.g., the difference between PIR and CIR)
is denoted PIR*. It is understood that references to the terms CIR and PIR may also refer to CIR and PIR
tokens representing those rates. '

Using the above information, the scheduler may make delayed or real-time decisions about which
queues to dequeue traffic from, and then sends these dequeue instructions to the queueing system. The
traffic that is dequeued may be PDU data in the form of cells, packets, or frames of fixed or varying
sizes.

In the present example, the scheduler 300 includes two primary parts: the slow-side module 304
and the fast-side module 308. The slow-side module 304 executes using a millisecond timebase which
ensures that time sensitive calculations are performed correctly. The fast-side module 308 executes more
quickly than the slow-side module and searches for queues that have data ready to be dequeued and also
available bandwidth to use for the dequeues. The two modules are separated by the token bank RAM
306 (e.g., dual port RAM) that is used to hold the information that is passed between the slow-side
module 304 and the fast-side module 308 of the scheduler 300 and vice versa.

For purposes of example, an analogy may be used where the scheduler 300 acts somewhat like a
bank or clearing house for authority to dequeue PDUs from the various queues. In effect, the slow-side
module 304 fills the various accounts in the bank at the correct rate, and the fast-side module 308
withdraws all available funds from the accounts as fast as it can. The fast-side module 308 in turn tells
the slow-side module 304 how much it withdrew from each account so the slow-side module 304 can

ensure it continues to keep the proper amount of money going into the various accounts. In addition, the

10

15

20

25

30

WO 2004/107128 PCT/US2004/016893
5
fast-side module 308 attempts to solve the issues of traffic shaping, congestion control and fairness of
dequeuing among the uplinks and the queues.

The scheduler 300 may be designed using the slow-side and fast-side modules because there may
be two competing requirements for the scheduler as a whole. Firstly, in order to execute with a high
degree of absolute time accuracy and resolution, the scheduler should have a well controlled rate of
execution. Secondly, the scheduler also should try to get the uplink filled to the highest degree possible
using possibly varying sized PDUs, and this goal is at odds with the first goal.

The slow-side module 304 is used to allocate CIR and PIR* "tokens" to the fast-side module 308.
In the present example there are 512 queues, and the slow-side module 304 obtains the following
provisioning inputs from the provisioning RAM 302 on a per-queue basis: CIR, PIR*, Valid, VoIP,
Master, Slave, and Paired QID. As previously described, CIR is the minimum rate to admit traffic to the
network given a non-empty queue, and PIR* is the maximum rate to admit traffic to the network given a
non-empty queue. "Valid" instructs the scheduler to perform the calculations for this queue as it is going
to be carrying traffic. "VoIP" instructs the scheduler that this queue contains information that is sensitive
to delay and delay variation. "Master” indicates the leader of a binary queue pair (which will be
described later in greater detail), while "Slave" indicates the follower of a binary queue pair. "Paired
QID" is valid only for a Master and includes a pointer to the Slave QID that is paired with the Master.
The slow-side module 304 may also receive an uplink data rate (e.g., a capacity of the channel being
scheduled into) as a provisioning input on a per-uplink basis (e.g., 12 logical uplinks). The uplink data
rate affects the CIR calculated by the slow-side module 304.

The slow-side module 304 may also obtain the following real-time information from the
queueing system 310: number of bytes enqueued into a memory system, a queue number to which traffic
was enqueued, number of bytes dequeued from the memory system, and a queue number from which the
traffic was dequeued.

Referring now to Fig. 4, a time segment 400 illustrates how a predefined period of time may be
subdivided and used by the slow-side module 304 of Fig. 3. For purposes of example, a millisecond
timebase is used, but it is understood that other timebases may be used. The slow-side module 304
divides time into precisely known units (e.g., one millisecond) and performs its calculations based on that
defined time base. This allows for fine control of the scheduling parameters as requested by a network
operator. For example, in the present implementation, the calculations for each queue are executed
exactly 1000 times per second, which therefore gives the scheduler a 1.00000 ms time base. The
accuracy of the slow-side module 304 may be a function of the clock that is being used to run the
associated circuitry (e.g., using a twenty parts per million (ppm) clock source will ensure a scheduling

accuracy of twenty ppm). If the calculations are performed on a per-bit basis, the slow-side module 304

10

15

20

25

30

35

WO 2004/107128 PCT/US2004/016893
6-

may operate with a bandwidth resolution of 1 kbps. If the calculations are performed on a per-octet
basis, the slow-side module 304 may operate with a bandwidth resolution of 8.0 kbps.

The time segment 400 is divided into periods A, B, and C. Period A includes the period of time
used for per-queue calculations for N queues. Period B includes the period of time used for per-uplink
calculations for P uplinks. These calculations will be described later in greater detail. Period C is
reserved as "dead time" to ensure that the time segment 400 equals one millisecond is used (e.g., during
the "dead time", the slow-side module may be doing nothing but waiting in order to align to the 1.00000
ms boundaries as closely as possible) and may be used as needed by either of the periods A and B. It is
understood that, in some embodiments, the period C may equal zero if the entire period is used by the
periods A and/or B. After the expiration of the dead time, the slow-side module 304 may begin its next
set of calculations at a new millisecond boundary.

In the present example, the calculations that occur in the scheduler 300 are self-correcting
between subsequent calculation (e.g., 1.0 ms) intervals. Accordingly, the long-term accumulated
scheduling error is equal to 0. This result may be accomplished by arranging for the bandwidth used in
one scheduling interval to be known by the next scheduling interval. For example, if a queue sends 1000
octets too much traffic into the uplink in one interval, 1000 available octets may be subtracted from the
subsequent interval.

It is understood that many different calculations may be performed. For example, during period
B of the time segment 400, the available aggregate bandwidth for an uplink may be calculated as equal to
the uplink bandwidth minus the requested CIR for the uplink. Because the scheduler 300 may calculate
the uplink actual overhead bandwidth used on a per-frame basis, each user receives the amount of the
uplink that he has requested. This may provide the advantage of isolating each user from the others in
terms of the required encapsulation bandwidth used in cases where the uplink requires the use of some
type of encapsulation technology (e.g., PPP over SONET, ethernet over SONET). Accordingly, one user
does not consume more than his fair share of the uplink bandwidth.

Referring now to Fig. 5, a method 500 may be executed during a predefined time period (e.g.,
period A of Fig. 4) for each QID using a predefined timebase (e.g., the one millisecond timebase of Fig.
4) to ensure that time sensitive calculations are performed correctly. The method 500 begins in step 502
by advancing the QID to N. In step 504, a determination may be made as to whether N is greater than the
maximum QID. IfN is greater, then there are no more queues to be handled during the current time
segment and the method continues to step 505, where it performs SPE calculations (this may correspond
to the period B of segment 400). In step 506, the method 500 enters a wait state (e.g., the period C of
segment 400), before setting the QID to zero in step 507 and returning to step 504. If N is not greater
than the QID (this branch may correspond to the period A of the segment 400), then the method

continues to step 508, where provisioning information and token bank information are obtained for the

10

15

20

25

30

35

WO 2004/107128 PCT/US2004/016893
-

current queue (QID N). The provisioning information obtained may include CIR, PIR*, Valid, VoIP,
Master, Slave, Paired QID, and uplink data rate. The token bank information obtained may include the
number of bytes dequeued from the memory system during the last predefined time interval (e.g.,
millisecond), as well as the previous PIR and CIR.

In step 510, a determination is made as to whether the obtained information includes a valid QID.
As previously described, a QID that is valid means that the scheduler is to perform calculations for this
queue as the queue is going to be carrying traffic. If the QID is not valid, the method 500 returns to step
502, where the QID is advanced. If the QID is valid, method continues to step 512, where a
determination is made as to whether the queue is a master/slave using, for example, provisioning
information such as the Master, Slave, and/or Paired QID described previously. If the queue is
determined to be a master, then the method continues to step 514 and performs CIR calculations for the
master using, for example, the obtained CIR and uplink data rate provisioning information. The obtained
CIR provisioning information provides a ceiling used to regulate the number of CIR tokens that can be
allocated.

In addition, unused CIR bandwidth may be transferred in step 514 to the slave. This allocation
of unused bandwidth may occur because of the master/slave relationship that may exist between a pair of
queues that enables unused output bandwidth from a given queue to be granted to another queue with
which it is associated (e.g., a binary queue). Such a binary queue enables queues to be paired together to
parallel the simultaneous provisioning of two services using a single provisioning command. Such
simultaneous provisioning enables a network operator to negotiate, provision, and manage a single
Service Level Agreement (SLA) with a customer for those two services. For example, a binary queue
may be used to allow a VoIP and data connection to be jointly negotiated, with the data connection
automatically receiving unused VoIP bandwidth in real-time. In such a scenario, the VolIP traffic may be
provisioned with a certain CIR and the data traffic may be provisioned with a certain PIR. Accordingly,
the CIR that is unused by the VoIP queue may be transferred as CIR to the data queue.

With additional reference to Fig. 6a, an exemplary method 600 illustrates one process for
calculation of the CIR and, if applicable, allocation of unused CIR to a slave queue. In step 602, the CIR
for the current QID is calculated as

CIRgpn = CIRpn-1 + CIR oy - CIRysednet
where, "tb,n" indexes the token bank entry for the current QID at the present time period, "prov"
indicates the provisioned CIR, and "used,n-1" indicates the CIR tokens used in the precious time period.
If the CIR calculation is for a master queue, the method 600 may continue to step 604 and calculate
whether there is any unused CIR to be allocated to the slave using:
if (master && valid && (CIR,, >= maxCIRyy,))
transfer (CIRy,, - maxCIRy,,) to slave.

10

15

20

25

30

35

WO 2004/107128 PCT/US2004/016893
8-

In step 606, the method 600 may limit the CIR tokens calculated for QID N to the maximum tokens
allowed for QID N:
if (CIRg,n >= maxCIRy,)
CIRp,n = maxCIRy,.

Referring again specifically to Fig. 5, in step 516, slave information may be obtained (e.g., using
the Paired QID) and CIR and PIR* calculations may be performed for the slave. The CIR calculations
may be performed as previously described, and exemplary PIR* calculations may be performed as
described in greater detail in Fig, 6b.

With additional reference to Fig. 6b, an exemplary method 610 illustrates one process for
calculation of the PIR*. In step 612, the method 610 may calculate the needed number of CIR tokens as

ClIRpceded = Q size for connection + CIR eq .1,
In addition, the method 610 may limit the needed number of CIR tokens to the number of provisioned
CIR tokens using
if (CIReeded > CIRprov)
CIRqecded = CIRproy
In step 614, the amount of needed CIR tokens for the uplink may be calculated as
ClIRqeeded uptink = Sum of CIR;eedeq for all connections in uplink.
In step 616, the total granted number of PIR tokens is calculated as
SUMOIPIR* yranes uptink = Bandwidth piny - CIR necded,uplink.
In step 618, the method 610 may calculate the desired number of PIR tokens as
PIR*4esireq = current Q size for connection - CIR,roy
In addition, the method 610 may limit the desired number of PIR tokens to the number of provisioned
PIR tokens using
if (PIR*gegired > PIR* 1)
PIR*jegired = PIR* .
In step 620, the amount of desired PIR tokens for the uplink may be calculated as
SUMOLPIR * yesired,uptink = SUM Of PIR* ye5ireq for all connections in the given uplink.

In step 622, the calculations from steps 616 and 620 are used to calculate the PIR* tokens to be
added as follows:

PIR*344 = (PIR* gesirea/SUMOTPIR * gesired uplink) * SUMOTPIR* yanes uptink.

In step 624, the PIR for the token bank indexed at N is calculated as
PIR*p 0 = PIR*p 01 + PIR*;44 - PIR* o411,

In step 626, the method 610 may limit the number of PIR* tokens given to QID N to the
maximum number of PIR* tokens in the token bank using

if (PIR*y,, > maxPIR*,)

10

15

20

25

30

35

WO 2004/107128 PCT/US2004/016893
9-

PIR*y,, = maxPIR*y,.

Referring again specifically to Fig. 5, in step 518, the calculated CIRy,, and PIR*y, , values (e.g.,
tokens) may be written to the token bank for QID N and the slave QID.

Retuming to step 512, if QID N is not a master/slave, the method proceeds to steps 520 and 522,
where CIR and PIR* calculations, respectively, are performed for QID N. The calculations may be
performed as described previously with respect to Figs. 6a and 6b. In step 524, the calculated CIR and
PIR* values may be written to the token bank for QID N, and the method may return to step 502.

Referring now to Fig. 7, a more detailed example of the fast-side module 308 of Fig. 3 is
illustrated. The fast-side module is used to control the dequeuing of information from the queues based .
on the CIR and PIR* "tokens" received from the slow-side module 304 via the token bank RAM 306. In
the present example, the fast-side module includes a RAM arbiter 700, a dequeue accumulator 702, a
nomination decision module 704, a random address generator 706, a nomination table loader 708, and
nomination table RAM 710. The RAM arbiter 700 aids in the interaction of the token bank RAM 306
with the fast-side module 308. The dequeue accumulator 702 uses the RAM arbiter 700 to store a
running sum of bytes dequeued over the millisecond window in the token bank RAM 306. It is
understood that some components, such as the nomination table loader 708, may obtain information from
the token bank 302 via the requests of other components (e.g., the nomination decision module 704) by
“listening in” on the requests. As previously described, this information may be used by the slow-side
module 304 during its calculations.

The fast-side module 308 employs a process to approximate fairness in the nomination of
dequeue instructions to the memory system. To accomplish this, the fast-side module 308 uses a
nomination table (stored in the nomination table RAM 710) that contains all the provisioned queue IDs
and that has a number of nomination table entries that are proportional to the actual provisioned PIR.
Accordingly, different weights may be created among queues based on their expected bandwidth.

A randomly distributed function provided by the random address generator 706 may be used to
read the nomination table RAM 710. This allows for a distribution of queue nominations along the
millsecond-window described previously, and may produce a traffic shaping effect on the uplinks. The
randomly distributed function may also read the nomination table multiple times, providing a rate of
nominations higher than, but proportional to, the queues' and/or uplink’s bandwidth. This compensates
for the loss of nominations by the memory system during back pressuring situations.

With additional reference to Fig. 8, an exemplary method 800 illustrates one process that may be
used by the nomination table loader 708 of Fig. 7 to load the nomination table in the nomination table
RAM 710. The loading of the nomination table may store the queue IDs linearly and at the start of a
timebase window. This facilitates the life reprovisioning of the nomination table with minimal

implementation needs and without affecting data rates. It is understood that any number of queues to

10

15

20

25

30

35

WO 2004/107128 PCT/US2004/016893
-10-

multiple uplinks may be supported with little or no interference between the uplink nomination paths or
among the queues.

In step 802, an index for the nomination table (ntable_index) and a QID are both set to zero. In
step 804, a determination is made as to whether the method is at the start of a timebase window (e.g., the
start of the one millisecond segment 400 of Fig. 4). If not, the method returns to step 802. If so, the
method continues to step 806, where it obtains the number of nomination table entries for QID. In step
808, the QID and uplink channel number of nomination table entries are stored in the nomination table
and, in step 810, the QID is incremented.

In step 812, a determination is made as to whether the last queue has been served. If not, the
method 800 returns to step 806. If so, the method continues to step 814, where a determination is made
as to whether the ntable_index is at the end of the nomination table entries. If so, the method 800 returns
to step 802. If not, the method continues to step 816, where it clears the remaining entries in the
nomination table before returning to step 802. Although not shown in Fig. 8, it is noted that all entries in
the nomination table may be marked as invalid upon resetting.

The fast-side module 308 of the scheduler 300 executes using as a reference the ms-window. In
addition and as a congestion control mechanism, it may break down the time base window into sub-
windows to evaluate traffic, so connections that finish their token bank funds can be blocked from
nominating early in the window. This may prevent unnecessary nominations that could affect other
queues dequeing nominations from reaching the memory system. This may be helpful in cases of
minimum vs. maximum PDU sizes. In addition, a force function per SPE may be added to allow a
connection falling behind during a 1 ms-window to catch up over consecutive windows. Furthermore, an
even faster reaction “lag” function used within a sub-window may be used to prevent connections from
falling behind. The function may evaluate whether a queue is behind its previous sub-window share of
bandwidth and is not currently being forced. If the queue meets these requirements, it is selected as a
“lagging” queue. The scheduler 300 nominates this QID when the fast-side module 308 is not making
any other nomination. These features may make the scheduler 300 more efficient in the generation of
dequeue nominations, may reduce burstiness by setting the force logic as a last resort, and may enable the
scheduler to support any frame size traffic without the need for burst size provisioning. Additionally,
any number of queues to multiple uplinks may be supported without interference between the uplink
nomination paths or among the queues.

Referring now to Figs. 9a and 9b, an exemplary method 900 illustrates one process that may be
used for queue nomination in the fast-side module of 308 of Fig. 7. In the following example, each sub-
window (sub_win_bw) is a fraction of the total CIR of the token bank (TBank CIR). The fraction
depends on the current sub-window. In addition, the maximum limits for each time out counter may vary

depending on the number of active uplinks (e.g., the SPEs).

10

15

20

25

30

35

WO 2004/107128 . PCT/US2004/016893
In step 902, an entry (e.g., an NTEntry) is read from the nomination table using a random
function (e.g., from the random address generator 706 of Fig. 7). In step 904, a determination is made as
to whether NTEntry is valid. If NTEntry is not valid (so no QID), the method 900 continues to step 906,
where a determination is made as to whether the queue is being forced per SPE (e.g., using round robin to

select the SPE). If the queue is not being forced per SPE, a determination is made in step 908 as to
whether the lag function is enabled for a selected SPE (where the selected SPE is chosen by a round
robin process). If not, the method returns to step 902. If so, the method continues to step 910, where the
current_{QID, SPE} is set equal to lag_{QID, SPE}. Returning to step 906, if force_round_robin SPE is
enabled, the method 900 moves to step 912, where current_{QID, SPE} is set equal to force {QID,
SPE}. It is noted that both steps 910 and 912 continue to step 918, which will be described later in
greater detail.

Returning to step 904, if NTEntry is valid, the QID and SPE received from the nomination table
are stored in step 913. In step 914, a determination is made as to whether the SPE is being forced. If so,
the method 900 moves to step 912, where current_{QID, SPE} is set equal to force_{QID, SPE} as
previously described. If not, the method moves to step 916, where current_{QID, SPE} is set equal to
normal_{QID, SPE}. From any of steps 910, 912, and 916, the method continues to step 918.

In step 918, the PIR, dq_count, and a force indicator (e.g., indicating that the current QID needs
to be forced) for the current QID are obtained from the token bank. In step 920, a determination is made
as to whether the current QID PIR is greater than a minimum dequeue value allowed. If not, the method
900 returns to step 902. If so, in step 922, a calculation is made as to the amount of CIR (e.g., number of
CIR tokens) that is to be dequeued for the current sub-window.

In step 924, a determination may be made as to whether the current SPE is being forced. Ifit is
being forced, the method continues to step 926, where the force function is disabled if either
force_sub_window_bw (e.g., indicating a minimum amount of CIR tokens to be forced in the current
sub-window) is less than or equal to dq_count or a timer has expired. In step 928, a determination is
made as to whether force_sub_window_bw is greater than dq_count. If it is not, the method 900 returns
to step 902. If it is, the method 900 continues to step 930, where a nomination is sent to the memory
system for current_{QID, SPE}.

Returning to step 924, if the current SPE is not being forced, the method 900 moves to step 932.
In step 932, if the force indicator is set and force_sub_window_bw is greater than dq_count, the force
function is enabled for QID and a time out count is started. Otherwise, if the lag function is disabled and
QID is falling behind, the lag function is enabled for QID and the time out count is started. In step 934,
if the lag function is enabled and QID has caught up or the time out count has expired, the lag function is
disabled and a time out count is stopped and cleared. In step 936, a determination is made as to whether

there is back pressure from the selected SPE. If there is not, the method continues to step 930, where a

10

15

20

WO 2004/107128 PCT/US2004/016893
-12-

nomination is sent to the memory system for current_{QID, SPE}. If there is back pressure, the method
moves to step 938. In step 938, if QID has not satisfied its CIR share for the current sub-window, then
the method continues to step 930, where a nomination is sent to the memory system for current_{QID,
SPE}. Otherwise, if it has (or there is no CIR) but it has excess bandwidth, then a determination is made
as to whether dq_count is less than an almost full level of the SPE’s FIFO. This aids in identifying one
or more queues that may be responsible for filling the FIFO, and enables continued dequeuing from
queues not responsible. If not, the method returns to step 902. If so, the method continues to step 930,

Accordingly, as described above, the scheduler 300 may ensure that each queue receives at least
the provisioned CIR bandwidth given that the queue contains PDUs to be dequeued, and may also ensure
that each connection receives at most the provisioned PIR bandwidth given that the queue contains PDUs
to be dequeued. In some examples, the scheduler may ensure that the uplink bandwidth is filled
completely given there is enough offered traffic within the provisioned parameters to keep the uplink
filled. In still other examples, the scheduler may ensure that extra bandwidth (that is, PIR bandwidth in
excess of CIR) is shared evenly on a proportional basis at all times.

While the preceding description shows and describes one or more embodiments, it will be
understood by those skilled in the art that various changes in form and detail may be made therein
without departing from the spirit and scope of the present disclosure. For example, various steps of the
described methods may be executed in a different order or executed sequentially, combined, further
divided, replaced with alternate steps, or removed entirely. In addition, various functions illustrated in
the methods or described elsewhere in the disclosure may be combined to provide additional and/or
alternate functions. Furthermore, various changes may be made to the methods and/or the scheduler to
coﬁform to various networks and/or protocols. Therefore, the claims should be interpreted in a broad

manner, consistent with the present disclosure.

10

15

20

25

30

35

WO 2004/107128 PCT/US2004/016893
-13-

WHAT IS CLAIMED IS:

1. A method for scheduling traffic in a communications network, the method comprising:

assigning at least one token to each of a plurality of active queues during a predefined period of
time, wherein each token authorizes an amount of data to be dequeued from the queue;

waiting until the end of the predefined period of time before starting a new round of assigning;

nominating at least one of the queues based on the at least one token assigned to the queue,
wherein the nominating authorizes the dequeuing of the amount of data from the queue; and

sending the nomination to a memory system to dequeue the data and send the data to a network

uplink.

2. The method of claim 1 wherein nominating at least one of the queues includes:

loading a plurality of entries into a nomination table based on the plurality of tokens, wherein the
loading occurs linearly by queue; and

selecting at least one of the entries from the nomination table by generating a random address

and retrieving the entry located at the random address.

3. The method of claim 2 wherein the selecting occurs a defined number of iterations
during the predefined period of time, and wherein the defined number is proportional to a total uplink

bandwidth.

4, The method of claim 1 further comprising calculating first and second tokens for each
queue, wherein the first token is based on a first per-queue rate defining a minimum rate at which to
admit traffic to the network, and the second token is based on a per-queue rate defining a maximum rate

at which to admit traffic to the network given a non-empty queue.

5. The method of claim 5 further comprising, prior to calculating the first and second

tokens for a queue, determining whether the queue is active.

6. The method of claim 5§ wherein the determining is based on an identifier associated with

the queue that identifies whether the queue is carrying traffic to be dequeued.

7. The method of claim 1 further comprising retrieving provisioning information for a

queue prior to calculating the at least one token for that queue.

8. The method of claim 1 further comprising retrieving queue information from the memory

10

15

20

25

30

35

WO 2004/107128 PCT/US2004/016893
-14-

system prior to calculating the at least one token for that queue.

9. The method of claim 8 wherein the queue information includes a number of bytes
enqueued into the memory system, a queue number of a queue to which data was enqueued, a number of

bytes dequeued from the memory system, and a queue number of a queue from which data was dequeued.

10. The method of claim 1 further comprising allocating unused bandwidth from one queue

to an associated queue.

11. The method of claim 10 wherein the unused bandwidth is calculated based on a

minimum rate at which to admit traffic to the network given a non-empty queue.

12. The method of claim 1 further comprising calculating an uplink overhead bandwidth

used on a per-frame basis.

13. The method of claim 1 wherein nominating occurs at a rate greater than is needed to fill

a maximum possible bandwidth of the uplink.

14, A system for scheduling uplink traffic in a communications network, the
system comprising:

a slow-side module configured to calculate first and second tokens for each of a plurality of
queues, wherein the first token represents a minimum rate at which to admit traffic to the network given a
non-empty queue, and the second token represents a maximum rate at which to admit traffic to the
network given a non-empty queue;

a fast-side module configured to direct the dequeuing of information from the plurality of queues
based on the first and second tokens; and

a token bank positioned between the slow-side and fast-side modules, wherein the slow-side
module stores the first and second tokens in the token bank and the fast-side module removes the first

and second tokens from the token bank.

15. The system of claim 14 wherein the slow-side module is configured to calculate each of

the first and second tokens during a predefined period of time.

16. The system of claim 15 wherein the slow-side module is configured to wait until the end

10

15

WO 2004/107128 PCT/US2004/016893
-15-

of the predefined period of time before beginning to calculate new first and second tokens for each of the

plurality of queues.

17. The system of claim 14 wherein the slow-side module is configured to calculate each of

the first and second tokens on a per-bit basis.

18. The system of claim 14 wherein the slow-side module is configured to calculate each of

the first and second tokens on a per-octet basis.

19. The system of claim 14 wherein first and second queues are associated, and wherein the

slow-side is configured to allocate unused tokens from the first queue to the second queue.

20. The system of claim 14 wherein the slow-side and fast-side modules are in

communication with a queuing system.

PCT/US2004/016893

WO 2004/107128

1/12

81

91

14!

[4!

e] 31

waisAs Arowrawx
® 0} UOTJBUTWIOU Y} PU3S

I

ejep Jo Sumonbap
a1 ozZuIoyne 03 sananb
91} JO 9UO }SBI[JB JBUNWON

ﬁ

spuauIu3Isse uayo} Jo punol
mau e JuruuiSaq a10yeq sandxo
pourad awum a3 (un e

ﬁ

ananbap 0} ejep Jo junowre
ue azuoyine 0} ananb aAnoe
[oea 0} U0} SUO JSBI[Je uisse
‘pourad aurm) paurgepaid e Surm(g

PCT/US2004/016893

WO 2004/107128

2/12

B9T1

1980

20189
SromiaN

1980

L2408

5

01

Y01

001

201A0(J
YIoMION

oom /

198

011

SIAN
/SINH

PCT/US2004/016893

WO 2004/107128

3/12

43% éaﬁé iﬁsﬁ. :

18 Mzﬁ.

7310

.M:mzﬁﬂ_um - ;mmaﬁ

Esmmw, _

Surnandy

._ /.w‘.zﬁan A

L DWW YAOMIDN

PCT/US2004/016893

WO 2004/107128

4/12

01¢

S

[

WISAS
(A1owdA)
SurmanQ)

€ ‘31

80¢€ 90¢ #0€

S[MpoN
SpIS-MO[S

S[NPON

opIs-jseq Jueq usyo,

az1S ‘1) ananbaq

oz1§ ‘I ononbuyg

PCT/US2004/016893
5/12

WO 2004/107128

AL |

duny,

T

- sananb N 103 suonenoEd snanbasad

Tl. S i - .,5088._,

awy peap,,

Squijdn g o™ [ananb auo o5
 SuOBRNO[ES . 1 NROED O M

00v

-

PCT/US2004/016893

WO 2004/107128

6/12

143

(44

0Zs

ST |

Yueq uao} 0} N (IO 10J Suayo}
UId pPue YD pajenoes UM

%

suone[noyes JYId WIoig

%

SUOTIB[NO[BD Y[UWLIOJIa]

Jueq UINO} 0}
a1 2Ae[s pue N (10 10J SUNO}
Ald PUe JID PAAje[no[ed JIm

NN\

t

suone[no[es

MId pue 1D 2ae[s urojrad
PUE UOIBULIOJUT SAR[S UTRIQO

NN\
91¢

%

3A®[S 0)

PpLUspueq YIO pesnun 1djsuen
‘SUOTE[NO[ED Y[9IS ULIOJI]

NS
1485

00§

{OAR[S/IDISBIA]

{aIO PIEA

N IO 10J UOBULIOJUT
Jueq US3O) UL UOHELIUIOJUL
Buruoisiaoid ureiqQ

01

0=daI0 1S

%

sondxa aseq swm [Hun Jiep

%

LOS

90¢

suone[noes g4S WIoj9d

S

118

:

N 01 IO 2oueApY

<0s

PCT/US2004/016893

WO 2004/107128

7/12

€9 31
TAroxew = “Ty1o
coo\/\ (Taroxew < “I0) I1
A~ SAE[S 0} Aﬂ_.eﬂﬁuxmﬁ — "1D) 19ysuen
$09 (a1oxew =< “NgI1D) 979 piEA %979 I9yseu) I
ey PO ~ NI + VNI = TR
009

PCT/US2004/016893

WO 2004/107128

8/12

N\ (O d1dxew < “¥,41d) 31

979

aY

¥79

P drgxew = " oq1d

%

#AId — P d1d +

%

[-u‘pasn [-u‘q u‘qh

»dld=""+dld

(44

Nuidn‘sjuerd

paursap

+dId Joumns , (PP vy 4 yourns /PP yp1d) = P°d1d

%

U] TuIfdn UdAIS ot Ur SUONDLUTOD [[e 10§ PSP I JO wms — WP~y g
029
aosd __pansap
aoxd *Enmuulbmov +3ld
A~ (e 1d < «d1d) J1
819 Acidyry - WOYYAUU0D 10§ 9Z1S Q) JUALMD = PP y1q
[
e, THIPRINUG Ty - THN g g = THET g owms
919
A~ udn ur suonosuuod [re 103 PO jo tms = THERTAIO
v19
3 e
(10 < PPN10) J1
019 z ﬁm/\ Eaum:y:O + uonOauu0d 103 az1s O = PPNy ID

q9 “314

PCT/US2004/016893
9/12

WO 2004/107128

L34
80L
01L A
VA / o[npour opIs-Ise,|
- Iopeo]
UOTJRUIWION Sl9eL
AN UONBUIWION 90¢
% 0L w
> N
I0jeIoUdD) uoIs10a(g
7N\ ssaIppy UONBUIWON
90L wopuey WVY
uoneulwoN ananbaq Jueq
< 4 uayo[,
I0Je[NUINIOY onqry
p ononbog < > VY Rl
uoneuwuou] ananbag A m

w No\h oo\h

80¢

PCT/US2004/016893

WO 2004/107128

10/12

008

918

9[qe) UOEUTUIOU
a1} ur saLue JuruTewuaI 183D

£S91Ud
3[qE) UOLRUIUOU JO

. w\/\ pUS 8 Xopul o[qeiu S X
7PaAISS usaq ananb jse] S8 XA~
CI8
A~ Ao wawaIouy
018

808

908

%

3[qe) UOHEUTUIOU UT SSLIU
3]qE) UOT}RUIUION JO JOqUUNU
[ouueyd yurpdn pue Q) 101§

%

V) IO 10F S31nus 9[qe}

UONBUIUION JO ISqUINU UWIBIqO

JMOPUIM 3SeqaU] JO Je)S

¥08
%

ON

08

0 = QIO ‘0 = X3pur_ [qeiu 19§

*

i |

PCT/US2004/016893

WO 2004/107128

143

11/12

eg 31

7

Junos no-swn reajo/dols pue (IO 10 uonouny ey A[qesIp uayy

‘(pandxa seyf Junod
mo-auir} 10 dn Jydnes sey (10 pue pajqeus uonouny Jey) J1

(4%

A

JUNO9 JNO-9WL 1IelS pue uonouny Je[o[qeus U
‘(puryaq Furfrey st IO pue pa[qesip st uonouny Jey) J[ST
4unos no-swy Je)s pue (IO I0J UOOUN 30I0] [QEUD U}
‘(lunod bp <« mMq UIM™ QNS 90I0J pue Jas ST J0}BIIPUL 0I0J) AT

+

{umod bp <
Mq U qns 9910

uonounj 3510 9[qesip uay ‘pandxa sey Jno
-ow} JT 10 Junod” bp => Mq UM qns 9910j J|

SOX
ON

(P3dI10] S JUALIMND ST

143

ZonfeA” onbp umr
< Id-qIO Wwe1md

MOpULM-gNS ST} 10 snanbap
01 Y1) JO Junoure 2)e[moje)

)

6

{ads ‘ard} ey =
{ads ‘a1d} weumo

Palqeud 4ds
urqoI punol Je[S|

806

YAY
0c6
1o wsLmd
/| Iojumos bp pue iojedipur |g
816 9010] “YId Jued] pesyd
A <+
{2ds ‘a1d} [eunou
o1 = (ads ‘aro} wemmo

016

{ads ‘a10} 90103 =
{3ds ‘a1d;} wermo

(PoIqeus 44§
UIqOI punoI 9010J §

Sa X
¢PA1qeud 010§ FdS S

*

vi6

S[qeIN
woxy g4Ss pue
aiod s101§

¥0

(PUeA ARUF TN ST

716 906

ON

5

006 €16

06

S[qELN Woy

Anusg [N SpeaI uonounj wopuey

PCT/US2004/016893

WO 2004/107128

12/12

q6 ‘314

{014 9dS
JO [9A9] [[1Y & > JuUnoo bp

SIUOYJ (puas o}
IPIMPUE(Q SSIOX3 ARY JI
20p ‘(D ou 10) sey I

86 SOA

{mopuim

-qus STy 10J SIBYS v
IO 3 paysnes SO X
LE6 10U 10 SEHY
{AdS PaYos]as woy

amssaid yoeq 215 ST

sax

w 9¢6

006

wdsAs Arowowt 03 {4JS
‘@O} ueLmd 10J UOHEUTUIOU PUIS

A

ON

O,

0¢€6

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

