Innovation, Sciences et Innovation, Science and
I*I Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office

(86) Date de dépo6t PCT/PCT Filing Date: 2016/01/26

(87) Date publication PCT/PCT Publication Date: 2016/08/04

(45) Date de délivrance/lssue Date: 2024/02/27
(85) Entrée phase nationale/National Entry: 2017/06/19

(86) N° demande PCT/PCT Application No.: US 2016/014857
(87) N° publication PCT/PCT Publication No.: 2016/123068

(30) Priorités/Priorities: 2015/01/26 (US62/107,964),

2015/02/16 (US62/116,631), 2016/01/25 (US15/005,934)

(51) CLInt./Int.Cl. HO4N 19/583(2014.01),

HO4N 19/126 (2014.01), HO4N 19/74(2014.01),

HO4N 19/176(2014.01)

(72) Inventeurs/Inventors:
LIU, HONGBIN, US;
CHEN, YING, US;
CHEN, JIANLE, US;
LI, XIANG, US;
KARCZEWICZ, MARTA, US

(73) Propriétaire/Owner:
QUALCOMM INCORPORATED, US

(74) Agent: SMART & BIGGAR LP

(54) Titre : COMPENSATION DE MOUVEMENT PAR SUPERPOSITION POUR CODAGE VIDEO
(54) Title: OVERLAPPED MOTION COMPENSATION FOR VIDEO CODING

200

CA 2971633 C 2024/02/27

1nen 2 971 633

(12 BREVET CANADIEN
CANADIAN PATENT

RECEIVE A FIRST BLOCK OF VIDEO DATA

!

RECEIVE ONE OR MORE BLOCKS OF VIDEO
DATA THAT NEIGHBOR THE FIRST BLOCK OF
VIDEO DATA

A

DETERMINE MOTION INFORMATION OF AT
LEAST ONE OF THE ONE OR MORE BLOCKS OF
VIDEO DATA THAT NEIGHBOR THE FIRST
BLOCK OF VIDEO DATA

h 4

DECODE, USING OVERLAPFED BLOCK MOTION
COMPENSATION, THE FIRST BLOCK OF VIDEQ
DATA BASED AT LEAST IN PART ON THE
MOTION INFORMATION OF THE AT LEAST ONE
OF THE ONE OR MORE ELOCKS THAT
NEIGHBOR THE FIRST BLOCK OF VIDEO DATA

L~

202

204

206

(57) Abrégé/Abstract:

In an example, a method of decoding video data may include receiving a first block of video data. The first block of video data may
be a sub-block of a prediction unit. The method may include receiving one or more blocks of video data that neighbor the first block
of video data. The method may include determining motion information of at least one of the one or more blocks of video data that
neighbor the first block of video data. The method may include decoding, using overlapped block motion compensation, the first
block of video data based at least in part on the motion information of the at least one of the one or more blocks that neighbor the

first block of video data.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

wo 2016/123068 A 1[I 000 0O O R A0 O

(43) International Publication Date

CA 02971633 2017-06-19

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/123068 A1l

4 August 2016 (04.08.2016) WIPOIPCT
(51) International Patent Classification: (74) Agent: MCADAMS, Paul; Shumaker & Sieffert, P.A.,
HO4N 19/583 (2014.01) 1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125
(21) International Application Number: (US).
PCT/US2016/014857 (81) Designated States (unless otherwise indicated, for every
. .) kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: . 2016 (26.01 2016 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
anuary (26.01.2016) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
L. . HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
62/107,964 26 January 2015 (26.01.2015) Us PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, 84, 5C,
62/116,631 16 February 2015 (16.02.2015) Us SD, SE, 8G, 8K, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
15/005,934 25 January 2016 (25.01.2016) Us TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant: QUALCOMM INCORPORATED [US/US] (84) Designated States (unless otherwise indicated, fO}" every
ATTN: International IP Administration, 5775 Morehouse kind of regional protection available): ARIPO (BW, GH,
Drive, San Diego, California 92121-1714 (US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
(72) Imventors: LIU, Hongbin; 5775 Morehouse Drive, San TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
Diego, California 92121-1714 (US). CHEN, Ying; 5775 DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Morehouse Drive, San Diego, California 92121-1714 (US). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
CHEN, Jianle; 5775 Morehouse Drive, San Diego, Cali- SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
fornia 92121-1714 (US). LI, Xiang; 5775 Morehouse GW, KM, ML, MR, NE, SN, TD, TG).
Drive, San Diego, California 92121-1714 (US). KAR- Published
ublished:

CZEWICZ, Marta; 5775 Morehouse Drive, San Diego,
California 55125 (US).

with international search report (Art. 21(3))

(54) Title: OVERLAPPED MOTION COMPENSATION FOR VIDEO CODING

(57) Abstract: In an example, a method of decoding video data may include

200
RECEIVE A FIRST BLOCK OF VIDEO DATA

receiving a first block of video data. The first block of video data may be a
sub-block of a prediction unit. The method may include receiving one or
more blocks of video data that neighbor the first block of video data. The

l method may include determining motion information of at least one of the

RECEIVE ONE OR MORE BLOCKS OF VIDEO 202

DATA THAT NEIGHBOR THE FIRST BLOCK OF
VIDEO DATA

one or more blocks of video data that neighbor the first block of video data.
The method may include decoding, using overlapped block motion com-
pensation, the first block of video data based at least in part on the motion
information of the at least one of the one or more blocks that neighbor the

l first block of video data.

204
DETERMINE MOTION INFORMATION OF AT
LEAST ONE OF THE ONE OR MORE BLOCKS OF
VIDEO DATA THAT NEIGHBOR THE FIRST
BLOCK OF VIDEO DATA

!

206
DECODE, USING OVERLAPPED BLOCK MOTION L~
COMPENSATION, THE FIRST BLOCK OF VIDEO
DATA BASED AT LEAST IN PART ON THE
MOTION INFORMATION OF THE AT LEAST ONE
OF THE ONE OR MORE BLOCKS THAT

NEIGHBOR THE FIRST BLOCK OF VIDEO DATA

FIG. 11

84019466
1

OVERLAPPED MOTION COMPENSATION FOR VIDEO CODING

[0001]

TECHNICAL FIELD
[0002] This disclosure relates to video coding; and more specifically, motion compensation in

block based video coding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices, including
digital televisions, digital direct broadcast systems, wireless broadcast systems, personal
digital assistants (PDAs), laptop or desktop computers, tablet computers, e-book readers,
digital cameras, digital recording devices, digital media players, video gaming devices, video
game consoles, cellular or satellite radio telephones, so-called “smart phones,” video
teleconferencing devices, video streaming devices, and the like. Digital video devices
implement video compression techniques, such as those described in the standards defined by
MPEG-2, MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding
(AVC), ITU-T H.265, High Efficiency Video Coding (HEVC), and extensions of such
standards. The video devices may transmit, receive, encode, decode, and/or store digital video

information more efficiently by implementing such video compression techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e., a video frame or a portion of a
video frame) may be partitioned into video blocks. Video blocks in an intra-coded (I) slice of

a picture are encoded using spatial prediction with respect to reference

Date Regue/Date Received 2023-03-09

CA 02971633 2017-06~18

WO 2016/123068 5 PCT/US2016/014857

samples in other reference pictures. Pictures may be referred to as frames, and
reference pictures may be referred to as reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicates the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual coefficients, which then may be
quantized. The quantized coefficients, initially arranged in a two-dimensional array,
may be scanned in order to produce a one-dimensional vector of coefficients, and

entropy coding may be applied to achieve even more compression.

SUMMARY

[0006] Techniques of this disclosure relate to block-based video coding. For example,
the techniques described in this disclosure may include one or more techniques for
encoding or decoding a block of video data using overlapped block motion
compensation (OBMC).

[0007] In one example, this disclosure describes a method of decoding video data
comprising receiving a first block of video data, wherein the first block of video data is
a sub-block of a prediction unit; receiving one or more blocks of video data that
neighbor the first block of video data; determining motion information of at least one of
the one or more blocks of video data that neighbor the first block of video data; and
decoding, using overlapped block motion compensation, the first block of video data
based at least in part on the motion information of the at least one of the one or more
blocks that neighbor the first block of video data.

[0008] In another example, this disclosure describes a device for coding video data
comprising a memory configured to store the video data; and a video coder in
communication with the memory, wherein the video coder is configured to: store a first
block of video data in the memory, wherein the first block of video data is a sub-block
of a prediction unit; store one or more blocks of video data that neighbor the first block

of video data in the memory; determine motion information of at least one of the one or

84019466
3

more blocks of video data that neighbor the first block of video data; and code, using
overlapped block motion compensation, the first block of video data based at least in part on
the motion information of the at least one of the one or more blocks that neighbor the first
block of video data.

[0009] In another example, this disclosure describes an apparatus for coding video data
comprising means for receiving a first block of video data, wherein the first block of video
data is a sub-block of a prediction unit; means for receiving one or more blocks of video data
that neighbor the first block of video data; means for determining motion information of at
least one of the one or more blocks of video data that neighbor the first block of video data;
and means for coding, using overlapped block motion compensation, the first block of video
data based at least in part on the motion information of the at least one of the one or more
blocks that neighbor the first block of video data.

[0010] In another example, this disclosure describes a non-transitory computer-readable
storage medium having instructions stored thereon that, when executed, cause one or more
processors to store a first block of video data in a memory, wherein the first block of video
data is a sub-block of a prediction unit; store one or more blocks of video data that neighbor
the first block of video data in the memory; determine motion information of at least one of
the one or more blocks of video data that neighbor the first block of video data; and code,
using overlapped block motion compensation, the first block of video data based at least in
part on the motion information of the at least one of the one or more blocks that neighbor the
first block of video data.

[0010a] According to one aspect of the present invention, there is provided a method of
decoding video data, the method comprising: receiving a first coding unit of video data,
wherein the first coding unity of video data comprises a plurality of sub-blocks including a
first sub-block; receiving one or more sub-blocks of a second coding unit of video data that
neighbor the first sub-block of video data; receiving a syntax element having a value
representative of whether the first sub-block of video data is encoded according to an
overlapped block motion compensation mode, wherein the value of the syntax element is a
first value or a second value, wherein the first value indicates that the first sub-block of video

data is encoded according to the overlapped block motion compensation mode, and wherein

Date Regue/Date Received 2023-03-09

84019466
3a

the second value indicates that the first sub-block of video data is not encoded according to
the overlapped block motion compensation mode; determining that the first sub-block of
video data is encoded according to the overlapped block motion compensation mode based on
the value of the syntax element being equal to the first value; determining motion information
of at least one of the one or more sub-blocks of video data that neighbor the first sub-block of
video data; and decoding, using overlapped block motion compensation, the sub-first block of
video data based at least in part on the motion information of the at least one of the one or
more sub-blocks that neighbor the first sub-block of video data.

[0010b] According to another aspect of the present invention, there is provided a device for
coding video data, the device comprising: a memory configured to store the video data; and a
video coder in communication with the memory, wherein the video coder is configured to:
store a first coding unit of video data in the memory, wherein the first coding unit of video
data comprises a plurality of sub-blocks including a first sub-block; store one or more sub-
blocks of a second coding unit of video data that neighbor the first block of video data in the
memory; receive a syntax element having a value representative of whether the first sub-block
of video data is coded according to an overlapped block motion compensation mode, wherein
the value of the syntax element is a first value or a second value, wherein the first value
indicates that the first sub-block of video data is coded according to the overlapped block
motion compensation mode, and wherein the second value indicates that the first sub-block of
video data is not coded according to the overlapped block motion compensation mode;
determine that the sub-first block of video data is coded according to the overlapped block
motion compensation mode based on the value of the syntax element being equal to the first
value; determine motion information of at least one of the one or more sub-blocks of video
data that neighbor the first sub-block of video data; and code, using overlapped block motion
compensation, the first sub-block of video data based at least in part on the motion
information of the at least one of the one or more sub-blocks that neighbor the first sub-block
of video data.

[0010c] According to another aspect of the present invention, there is provided an apparatus
for coding video data, the apparatus comprising: means for receiving a first coding unit of

video data, wherein the first coding unit of video data comprises a plurality of sub-blocks

Date Recgue/Date Received 2022-05-11

84019466
3b

including a first sub-block; means for receiving one or more sub-blocks of a second coding
unit video data that neighbor the first sub-block of video data; means for receiving a syntax
element having a value representative of whether the first sub-block of video data is coded
according to an overlapped block motion compensation mode, wherein the value of the syntax
element is a first value or a second value, wherein the first value indicates that the first sub-
block of video data is coded according to the overlapped block motion compensation mode,
and wherein the second value indicates that the first sub-block of video data is not coded
according to the overlapped block motion compensation mode; means for determining that the
first sub-block of video data is coded according to the overlapped block motion compensation
mode based on the value of the syntax element being equal to the first value; means for
determining motion information of at least one of the one or more sub-blocks of video data
that neighbor the first sub-block of video data; and means for coding, using overlapped block
motion compensation, the first sub-block of video data based at least in part on the motion
information of the at least one of the one or more sub-blocks that neighbor the first sub-block
of video data.

[0010d] According to another aspect of the present invention, there is provided a non-
transitory computer-readable storage medium having instructions stored that, when executed,
cause one or more processors to: store a first coding unit of video data in a memory, wherein
the first coding unit of video data comprises a plurality of sub-blocks including a first sub-
block; store one or more sub-blocks of a second coding unit of video data that neighbor the
first sub-block of video data in the memory; receive a syntax element having a value
representative of whether the first sub-block of video data is coded according to an overlapped
block motion compensation mode, wherein the value of the syntax element is a first value or a
second value, wherein the first value indicates that the first sub-block of video data is coded
according to the overlapped block motion compensation mode, and wherein the second value
indicates that the first sub-block of video data is not coded according to the overlapped block
motion compensation mode; determine that the first sub-block of video data is coded
according to the overlapped block motion compensation mode based on the value of the
syntax element being equal to the first value; determine motion information of at least one of

the one or more sub-blocks of video data that neighbor the first sub-block of video data; and

Date Recgue/Date Received 2022-05-11

84019466
3¢

code, using overlapped block motion compensation, the first sub-block of video data based at
least in part on the motion information of the at least one of the one or more blocks that
neighbor the first sub-block of video data.

[0011] The details of one or more examples of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and advantages of

the disclosure will be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS
[0012] FIG. 1 is a block diagram illustrating an example video encoding and decoding system
that may utilize the techniques described in this disclosure.

[0013] FIG. 2 shows partition modes for inter prediction mode video coding.

Date Recgue/Date Received 2022-05-11

CA 02971633 2017-06~18

WO 2016/123068 . PCT/US2016/014857

[0014] FIGs. 3A and 3B show spatial neighboring motion vector (MV) candidates for
merge and advanced motion vector prediction (AMVP) video coding modes,
respectively.

[0015] FIG. 4A shows an example of a temporal motion vector prediction (TMVP)
candidate.

[0016] FIG. 4B shows an example of motion vector scaling.

[0017] FIG. 5 shows an example of overlapped block motion compensation (OBMC) in
as used in the ITU-T H.263 video coding standard.

[0018] FIGS. 6A and 6B show an example of prediction unit (PU)-based OBMC that
may be used in HEVC or other video coding standards.

[0019] FIGS. 7A-7C show sub-PUs and sub-blocks in a PU.

[0020] FIGS. 8A-8B show sub-blocks where OBMC may be applied.

[0021] FIG. 9 is a block diagram illustrating an example video encoder that may
implement OBMC techniques described in this disclosure.

[0022] FIG. 10 is a block diagram illustrating an example video decoder that may
implement OBMC techniques described in this disclosure.

[0023] FIG. 11 is a flowchart illustrating an example process for decoding video data
consistent with techniques for OMBC video coding of this disclosure.

[0024] FIG. 12 is a flowchart illustrating an example process for encoding video data

consistent with techniques for OMBC video coding of this disclosure.

DETAILED DESCRIPTION
[0025] The techniques of this disclosure generally relate to motion compensation in
block based video coding. The techniques of this disclosure may be applied to an
existing video codec or video coding standard (e.g., ITU-T H.265, HEVC), or may be
applied in a future video codec or video coding standard.
[0026] As used herein, instances of the term “content” may be changed to the term
“video,” and instances of the term “video” may be changed to the term “content.” This
is true regardless of whether the terms “content” or “video” are being used as an
adjective, noun, or other part of speech. For example, reference to a “content coder”
also includes reference to a “video coder,” and reference to a “video coder” also
includes reference to a “content coder.” Similarly, reference to “content” also includes

reference to “video,” and reference to “video” also includes reference to “content.”

CA 02971633 2017-06~18

WO 2016/123068 PCT/US2016/014857

3

[0027] As used herein, “content” refers to any type of content. For example, “content”
may refer to video, screen content, image, any graphical content, any displayable
content, or any data corresponding thereto (e.g., video data, screen content data, image
data, graphical content data, displayable content data, and the like).

[0028] As used herein, the term “video” may refer to screen content, movable content, a
plurality of images that may be presented in a sequence, or any data corresponding
thereto (e.g., screen content data, movable content data, video data, image data, and the
like).

[0029] As used herein, the term “image” may refer to a single image, one or more
images, one or more images amongst a plurality of images corresponding to a video,
one or more images amongst a plurality of images not corresponding to a video, a
plurality of images corresponding to a video (e.g., all of the images corresponding to the
video or less than all of the images corresponding to the video), a sub-part of a single
image, a plurality of sub-parts of a single image, a plurality of sub-parts corresponding
to a plurality of images, one or more graphics primitives, image data, graphical data,
and the like.

[0030] As used herein, “motion information” may refer to or otherwise include motion
vector information, or more simply, a motion vector. In other examples, “motion
information” may refer to or otherwise include motion information different from
motion vector information. In yet other examples, “motion information” may refer to
one or more motion vectors and any other motion related information, such as a
prediction direction identifying the reference picture list(s) to be used and one or more
reference indices identifying the reference picture(s) in the reference picture list(s). As
used herein, “a set of motion information” or the like may refer to “motion
information.” Similarly, “motion information” may refer to “a set of motion
information” or the like.

[0031] As used herein, a “neighbor,” a “neighboring block,” “neighbor block,” and the
like refer to a block of video that neighbors another block of video data on at least one
side/border. For example, a current block of video data may have four sides: left, right,
top, and bottom. A neighboring block of video data to the current block of video data
may include any block of video data that borders the left, right, top, or bottom border of
the current block of video. As another example, a first block that neighbors the second
block shares a border (e.g., left border, right border, top border, or bottom border) of the

second block.

CA 02971633 2017-06~18

WO 2016/123068 P PCT/US2016/014857

[0032] FIG. 1 is a block diagram illustrating an example video coding system 10 that
may utilize the techniques of this disclosure. As used herein, the term “video coder”
refers generically to both video encoders and video decoders. In this disclosure, the
terms “video coding” or “coding” may refer generically to video encoding or video
decoding. Video encoder 20 and video decoder 30 of video coding system 10 represent
examples of devices that may be configured to perform techniques for encoding or
decoding a block of video data using overlapped block motion compensation in
accordance with various examples described in this disclosure.

[0033] Video encoder 20 and/or video decoder 30 may be configured to operate
according to the techniques described in this disclosure. Video decoder 30 may be
configured to perform a process generally reciprocal to that of video encoder 20
described herein. Similarly, video encoder 20 may be configured to perform a process
generally reciprocal to that of video decoder 30 described herein.

[0034] As shown in FIG. 1, video coding system 10 includes a source device 12 and a
destination device 14. Source device 12 generates encoded video data. Accordingly,
source device 12 may be referred to as a video encoding device or a video encoding
apparatus. Destination device 14 may decode the encoded video data generated by
source device 12. Accordingly, destination device 14 may be referred to as a video
decoding device or a video decoding apparatus. Source device 12 and destination
device 14 may be examples of video coding devices or video coding apparatuses.
[0035] Source device 12 and destination device 14 may comprise a wide range of
devices, including desktop computers, mobile computing devices, notebook (e.g.,
laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called
“smart” phones, televisions, cameras, display devices, digital media players, video
gaming consoles, in-car computers, or the like.

[0036] Destination device 14 may receive encoded video data from source device 12 via
a channel 16. Channel 16 may comprise any type of medium and/or one or more media
or devices capable of moving the encoded video data from source device 12 to
destination device 14. In one example, channel 16 may comprise one or more
communication media that enable source device 12 to transmit encoded video data
directly to destination device 14 in real-time. In this example, source device 12 may
modulate the encoded video data according to a communication standard, such as a
wireless communication protocol, and may transmit the modulated video data to

destination device 14. The one or more communication media may include wireless

84019466
7

and/or wired communication media, such as a radio frequency (RF) spectrum or one or more
physical transmission lines. The one or more communication media may form part of a packet-
based network, such as a local area network, a wide-area network, or a global network (e.g., the
Internet). The one or more communication media may include routers, switches, base stations, or
other equipment that facilitate communication from source device 12 to destination device 14.
[0037] In some examples, encoded data may be output from output interface 22 to a storage
device 26, which may be configured to store encoded video data generated by source device 12.
Though depicted as being separate from channel 16, it is understood that channel 16 may be
communicatively coupled to storage device 26 in other examples. In this example, destination
device 14 may access encoded video data stored on storage device 26. For example, encoded
video data may be accessed from storage device 26 by input interface 28.

[0038] Storage device 26 may include any of a variety of distributed or locally accessed data
storage media such as a hard drive, Blu-ray™ discs, DVDs, CD-ROMs, flash memory, volatile or
non-volatile memory, or any other suitable digital storage media for storing encoded video data.
In some examples, storage device 26 may correspond to a file server or another intermediate
storage device that stores the encoded video data generated by source device 12. In such
examples, the file server may be any type of server capable of storing encoded video data and
transmitting the encoded video data to destination device 14. Example file servers include, for
example, web servers (e.g., for a website), file transfer protocol (FTP) servers, network attached
storage (NAS) devices, and local disk drives.

[0039] Destination device 14 may access the encoded video data through any data connection
(e.g., any standard data connection or otherwise), including, for example, an Internet connection.
Example types of data connections may include a wireless channel (e.g., a Wi-Fi connection), a
wired channel (e.g., DSL, cable modem, etc.), or any combination of both that is suitable for
accessing encoded video data stored on storage device 26 (e.g., a file server). The transmission of
encoded video data from storage device 26 may be a streaming transmission, a download
transmission, or a combination of both.

[0040] The techniques of this disclosure are not limited to wireless applications or settings. The
techniques of this disclosure may be applied to video coding in support of any of a variety of

multimedia applications, such as over-the-air television broadcasts,

Date Regue/Date Received 2023-03-09

CA 02971633 2017-06~18

WO 2016/123068 o PCT/US2016/014857

cable television transmissions, satellite television transmissions, streaming video
transmissions, e.g., via the Internet, encoding of video data for storage on a data storage
medium, decoding of encoded video data stored on a data storage medium, or other
applications. In some examples, video coding system 10 may be configured to support
one-way or two-way video transmission to support applications such as video
streaming, video playback, video broadcasting, and/or video telephony.

[0041] Video coding system 10 illustrated in FIG: 1 is merely an example and the
techniques of this disclosure may apply to video coding settings (e.g., video encoding or
video decoding) that do not necessarily include any data communication between the
encoding and decoding devices. In other examples, data is retrieved from a local
memory, streamed over a network, or the like. A video encoding device may encode
and store data to memory, and/or a video decoding device may retrieve and decode data
from memory. In many examples, the encoding and decoding is performed by devices
that do not communicate with one another, but simply encode data to memory and/or
retrieve and decode data from memory.

[0042] In the example of FIG. 1, source device 12 includes a video source 18, a video
encoder 20, and an output interface 22. In some examples, output interface 22 may
include a modulator/demodulator (modem) and/or a transmitter. Video source 18 may
include a video capture device, e.g., a video camera, a video archive containing
previously-captured video data, a video feed interface to receive video data from a video
content provider, and/or a computer graphics system for generating video data, or a
combination of such sources of video data.

[0043] Video encoder 20 may be configured to encode video data from video source 18.
For example, video encoder 20 may be configured to encode captured, pre-captured, or
computer-generated video data (or any other data). In some examples, source device 12
directly transmits the encoded video data to destination device 14 via output interface
22. In other examples, the encoded video data may also be stored onto a storage
medium (e.g., storage device 26) for later access by destination device 14 for decoding
and/or playback.

[0044] In the example of FIG. 1, destination device 14 includes an input interface 28, a
video decoder 30, and a display device 32. In some examples, input interface 28
includes a receiver and/or a modem. Input interface 28 may receive encoded video data
over channel 16. The encoded video data communicated over channel 16, or provided

by storage device 26, may include a variety of syntax elements generated by video

CA 02971633 2017-06~18

WO 2016/123068 0 PCT/US2016/014857

encoder 20 for use by a video decoder, such as video decoder 30, in decoding the video
data. Such syntax elements may be included with the encoded video data transmitted on
a communication medium, stored on a storage medium, or stored a file server.

[0045] Display device 32 may be integrated with or may be external to destination
device 14. In some examples, destination device 14 may include an integrated display
device and also be configured to interface with an external display device. In other
examples, destination device 14 may be a display device. In general, display device 32
displays decoded video data. Display device 32 may comprise any of a variety of
display devices such as a liquid crystal display (LCD), a plasma display, an organic light
emitting diode (OLED) display, or another type of display device.

[0046] Techniques of this disclosure may utilize HEVC terminology or other video
standard terminology for ease of explanation. However, it is understood that the
techniques of this disclosure are not limited to HEVC or other video standards. The
techniques of this disclosure may be implemented in successor standards to HEVC and
its extensions as well as other video standards, whether past, present, or future.

[0047] Although not shown in FIG. 1, in some aspects, video encoder 20 and video
decoder 30 may each be integrated with an audio encoder and decoder, and may include
appropriate MUX-DEMUX units, or other hardware and software, to handle encoding
of both audio and video in a common data stream or separate data streams. If
applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223
multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
[0048] This disclosure may generally refer to video encoder 20 “signaling” or
“transmitting” certain information to another device, such as video decoder 30. The
term “signaling” or “transmitting” may generally refer to the communication of syntax
elements and/or other data used to decode the compressed video data. Such
communication may occur in real- or near-real-time. Alternately, such communication
may occur over a span of time, such as might occur when storing syntax elements to a
computer-readable storage medium in an encoded bitstream at the time of encoding,
which then may be retrieved by a decoding device at any time after being stored to this
medium. Thus, while video decoder 30 may be referred to as “receiving” certain
information, the receiving of information does not necessarily occur in real- or near-
real-time and may be retrieved from a medium at some time after storage.

[0049] Video encoder 20 and video decoder 30 each may be implemented as any of a

variety of suitable circuitry, such as one or more microprocessors, digital signal

CA 02971633 2017-06~18

WO 2016/123068 o PCT/US2016/014857

processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, hardware, or any combinations thereof. If the
techniques are implemented partially in software, a device may store instructions for the
software in a suitable, non-transitory computer-readable storage medium and may
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Any of the foregoing (including hardware, software, a
combination of hardware and software, etc.) may be considered to be one or more
processors. Each of video encoder 20 and video decoder 30 may be included in one or
more encoders or decoders, either of which may be integrated as part of a combined
encoder/decoder (CODEC}) in a respective device.

[0050] In HEVC and other video coding standards, a video sequence typically includes
a series of pictures. Pictures may also be referred to as “frames.” In some examples,
video encoder 20 may be configured to use a picture order count (POC) to identify a
display order of a picture relative to a plurality of pictures (e.g., a sequence of pictures).
In such examples, video encoder 20 may be configured to assign a POC value to picture.
In an example where multiple coded video sequences are present in a bitstream, pictures
with the same POC value may be closer to each other in terms of decoding order. POC
values of pictures are may be used for reference picture list construction, derivation of a
reference picture set as in, for example, HEVC and motion vector scaling.

[0051] In some examples, a picture may include three sample arrays. In such examples,
a picture may include three sample arrays denoted Si, S¢p and S¢;. In such examples, Sp
is a two-dimensional array (e.g., a block) of luma samples, Scy is a two-dimensional
array (e.g., a block) of Cb chrominance samples, and SCr is a two-dimensional array
(e.g., a block) of Cr chrominance samples. Chrominance samples may also be referred
to herein as “chroma” samples. In other instances, a picture may be monochrome and
may only include an array of luma samples.

[0052] To generate an encoded representation of a picture, video encoder 20 may
generate a set of coding tree units (CTUs). The set of the CTUs may include a coding
tree block of luma samples, two corresponding coding tree blocks of chroma samples,
and syntax structures used to code the samples of the coding tree blocks. A coding tree
block may be an NxN block of samples. A CTU may also be referred to as a “tree
block” or a “largest coding unit” (LCU). The CTUs of HEVC may be broadly
analogous to the macroblocks of other standards, such as H.264/AVC. However, a CTU

is not necessarily limited to a particular size and may include one or more coding units

CA 02971633 2017-06~18

WO 2016/123068 " PCT/US2016/014857

(CUs). A video frame or picture may be partitioned into one or more slices. A slice
may include an integer number of CTUs ordered consecutively in the raster scan. A
coded slice may comprise a slice header and slice data. The slice header of a slice may
be a syntax structure that includes syntax elements that provide information about the
slice. The slice data may include coded CTUs of the slice.

[0053] In some examples, a CU may include a coding node and one or more prediction
units (PUs) and/or transform units (TUs) associated with the coding node. The size of
the CU may correspond to a size of the coding node and may be square in shape. The
size of the CU may range from, for example, 8x8 pixels up to the size of the tree block
with a maximum of 64x64 pixels or greater. Each CU may contain one or more PUs
and one or more TUs. Syntax data associated with a CU may describe, for example,
partitioning of the CU into one or more PUs. Partitioning modes may differ between
whether the CU is skip or direct mode encoded, intra-prediction mode encoded, or inter-
prediction mode encoded. PUs may be partitioned to be square or non-square in shape.
Syntax data associated with a CU may also describe, for example, partitioning of the
CU into one or more TUs according to a quadtree. A TU can be square or non-square in
shape.

[0054] In general, a PU may include data related to the prediction process. For
example, when a PU is intra-mode encoded, the PU may include data describing an
intra-prediction mode for the PU. As another example, when a PU is inter-mode
encoded, the PU may include data defining a motion vector for the PU. The data
defining the motion vector for a PU may describe, for example, a horizontal component
of the motion vector, a vertical component of the motion vector, a resolution for the
motion vector (e.g., one-quarter pixel precision or one-eighth pixel precision), a
reference picture to which the motion vector points, and/or a reference picture list (e.g.,
List 0, List 1, or List C) for the motion vector.

[0055] In general, a TU may be used for a transform and quantization processes. A
given CU having one or more PUs may also include one or more transform units (TUs).
Following prediction, video encoder 20 may calculate residual values corresponding to
the PU. The residual values may comprise pixel difference values that may be
transformed into transform coefficients, quantized, and scanned using the TUs to

produce serialized transform coefficients for entropy coding.

bR IN1Y b N1

[0056] This disclosure may use the term “video unit,” “video block,” “coding block,” or

“block” to refer to one or more sample blocks and syntax structures used to code

CA 02971633 2017-06~18

WO 2016/123068 . PCT/US2016/014857

samples of the one or more blocks of samples. Example types of video units or blocks
may include coding tree units (CTUs), coding units (CUs), prediction units (PUs), sub-
PUs, transform units (TUs), macroblocks (MBs), macroblock partitions, sub-blocks, and
so on. In some examples, a sub-block may be a sub-block of a CTU, a sub-block of a
CU, a sub-block of a PU, a sub-block of a TU, a sub-block of a macroblock, or a sub-
block of a sub-block. For example, a sub-block may contains contain a group of sub-
PUs. In such examples, a sub-block may be smaller than a CTU, CU, PU, TU, or
macroblock. In some examples, a sub-PU may refer to a block that is smaller than a
PU. In such an example, if a PU is 8x4, then a sub-PU may be 4x4.

[0057] In some examples, a set of motion information may be available for each block
of video data. The set of motion information may include motion information for
forward and backward prediction directions. Forward and backward prediction
directions may be two prediction directions of a bi-directional prediction mode.
Forward and backward prediction directions may be one of two prediction directions of
a uni-directional prediction mode. The terms “forward” and “backward” do not
necessarily have a geometry meaning, instead they correspond to, for example,
reference picture list 0 (RefPicList0) and reference picture list 1 (RefPicListl) of a
current picture. When only one reference picture list is available for a picture or slice,
only RefPicList0 may be available and the motion information of each block of the
picture or slice may be forward.

[0058] For each prediction direction (e.g., forward or backward), the motion
information may contain a prediction direction, a reference index, and a motion vector.
In some examples, for simplicity, a motion vector itself may be referred to in a way that
it is assumed that it has an associated reference index. A reference index is used to
identify a reference picture in the current reference picture list (e.g., RefPicListO or
RefPicList]). A motion vector may have a horizontal and a vertical component.

[0059] Video blocks described herein may have fixed or varying sizes, and may differ
in size according to a specified coding standard. As an example, the size of a particular
CU may be 2Nx2N. In such an example, video encoder 20 may be configured to
perform intra-prediction for PUs having sizes of 2Nx2N or NxN, and may be configured
to perform inter-prediction for PUs having sizes of 2Nx2N, 2NxN, Nx2N, or NxN. In
other examples, the available sizes of a PU may be the same or different.

[0060] In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to

the pixel dimensions of a video block in terms of vertical and horizontal dimensions,

CA 02971633 2017-06~18

WO 2016/123068 3 PCT/US2016/014857

e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a
vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an
NxN block generally has N pixels in a vertical direction and N pixels in a horizontal
direction, where N represents a positive integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not necessarily have the same
number of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is or is not equal to N and where M is a
positive integer value.

[0061] In some examples, the structure of a CU disclosed herein may refer to the
structure of a CU as set forth in a video coding standard, such as H.265/HEVC. In
HEVC, the largest coding unit in a slice is called a coding tree block (CTB). A CTB
contains a quad-tree, the nodes of which are coding units. The size of a CTB ranges
from 16x16 to 64x64 in the HEVC main profile; and, in some examples, 8x8 CTB sizes
are also supported. A CU may be the same size of a CTB and as small as 8x8. Each
CU is coded with one mode. When a CU is inter prediction mode coded, the CU may
be further partitioned into 2 or 4 prediction units (PUs) or become just one PU (e.g.,
PART _2Nx2N shown in FIG. 2) when further partition does not apply. When two PUs
are present in one CU, they can be half size rectangles (e.g., PART 2NxN or PART
Nx2N shown in FIG. 2) or two rectangles with one one-quarter size and the other three-
quarter size (e.g., PART 2NxnU, PART 2NxnD, PART nLx2N, or PART nRx2N
shown in FIG. 2). There are eight partition modes for a CU coded with inter prediction
mode, as shown in FIG. 2: PART 2Nx2N, PART 2NxN, PART Nx2N, PART NxN,
PART 2NxnU, PART 2NxnD, PART nLx2N and PART nRx2N. When the CU is
inter coded, one set of motion information is present for each PU. In addition, each PU
is coded with a unique inter-prediction mode to derive the set of motion information.
[0062] Referring to macroblocks, e.g., in ITU-T H.264/AVC or other standards, each
inter macroblock (MB) may be partitioned four different ways according to one
example: one 16x16 MB partition, two 16x8 MB partitions, two 8x16 MB partitions, or
four 8x8 MB partitions. Different MB partitions in one MB may have different
reference index values for each direction (RefPicListO or RefPicListl). In an example
where an MB is not partitioned into four 8x8 MB partitions, the MB may have only one
motion vector for each MB partition in each direction. In an example where an MB is
partitioned into four 8x8 MB partitions, each 8x8 MB partition may be further

partitioned into sub-blocks, each of which may have a different motion vector in each

CA 02971633 2017-06~18

WO 2016/123068 " PCT/US2016/014857

direction. In such an example, the 8x8 MB partition may be partitioned into one or
more sub-blocks four different ways: one 8x8 sub-block, two 8x4 sub-blocks, two 4x8
sub-blocks, or four 4x4 sub-blocks. Each sub-block may have a different motion vector
in each direction. In such an example, each motion vector may be present in a level
equal to higher than a sub-block.

[0063] In some examples, the structure of an MB disclosed herein may refer to the
structure of an MB as set forth in a video coding standard, such as ITU-T H.264/AVC.
In such examples, video encoder 20 and video decoder 30 may be configured to code
video data using temporal direct mode at the MB or MB partition level for skip or direct
mode in B slices. For each MB partition, the motion vectors of the block co-located
with the current MB partition in the RefPicList1[0] of the current block may be used to
derive the motion vectors. Each motion vector in the co-located block may be scaled
based on POC distances. H.264/AVC also includes a spatial direct mode, which may be
used to predict motion information from the spatial neighbors.

[0064] Referring to FIG. 1, to generate a coded CTU, video encoder 20 may recursively
perform quad-tree partitioning on the coding tree blocks of a CTU to divide the coding
tree blocks into coding blocks, hence the name “coding tree units.” A coding block may
be an NxN (or NxM) block of samples. A CU may be a coding block of luma samples
and two corresponding coding blocks of chroma samples of a picture that has a luma
sample array, a Cb sample array and a Cr sample array, and syntax structures used to
code the samples of the coding blocks. Video encoder 20 may partition a coding block
of a CU into one or more PUs. A PU may be a square or non-square block of samples
on which the same prediction technique is applied. A PU of a CU may be a prediction
block of luma samples, two corresponding prediction blocks of chroma samples of a
picture, and syntax structures used to predict the prediction block samples. Video
encoder 20 may generate predictive luma, Cb, and Cr blocks for luma, Cb, and Cr
prediction blocks of each PU of the CU.

[0065] Video encoder 20 may use intra prediction or inter prediction to generate the
predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the
predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the
PU based on decoded samples of the picture associated with the PU.

[0066] If video encoder 20 uses inter prediction to generate the predictive blocks of a
PU, video encoder 20 may generate the predictive blocks of the PU based on decoded

samples of one or more pictures other than the picture associated with the PU. Video

CA 02971633 2017-06~18

WO 2016/123068 s PCT/US2016/014857

encoder 20 may use uni-prediction or bi-prediction to generate the predictive blocks of a
PU. When video encoder 20 uses uni-prediction to generate the predictive blocks for a
PU, the PU may have a single motion vector (MV). When video encoder 20 uses bi-
prediction to generate the predictive blocks for a PU, the PU may have two MVs.
[0067] After video encoder 20 generates predictive blocks (e.g., predictive luma, Cb
and Cr blocks) for one or more PUs of a CU, video encoder 20 may generate residual
blocks for the CU. Each sample in a residual block of the CU may indicate a difference
between a sample in a predictive block of a PU of the CU and a corresponding sample
in a coding block of the CU. For example, video encoder 20 may generate a luma
residual block for the CU. Each sample in the CU’s luma residual block indicates a
difference between a luma sample in one of the CU’s predictive luma blocks and a
corresponding sample in the CU’s original luma coding block. In addition, video
encoder 20 may generate a Cb residual block for the CU. Each sample in the CU’s Cb
residual block may indicate a difference between a Cb sample in one of the CU’s
predictive Cb blocks and a corresponding sample in the CU’s original Cb coding block.
Video encoder 20 may also generate a Cr residual block for the CU. Each sample in the
CU’s Cr residual block may indicate a difference between a Cr sample in one of the
CU’s predictive Cr blocks and a corresponding sample in the CU’s original Cr coding
block.

[0068] Video encoder 20 may use quad-tree partitioning to decompose the residual
blocks (e.g., luma, Cb and Cr residual blocks) of a CU into one or more transform
blocks (e.g., luma, Cb and Cr transform blocks). A transform block may be a block of
samples on which the same transform is applied. A transform unit (TU) of a CU may be
a transform block of luma samples, two corresponding transform blocks of chroma
samples, and syntax structures used to transform the transform block samples. Thus,
each TU of a CU may be associated with a luma transform block, a Cb transform block,
and a Cr transform block. The luma transform block associated with the TU may be a
sub-block of the CU’s luma residual block. The Cb transform block may be a sub-block
of the CU’s Cb residual block. The Cr transform block may be a sub-block of the CU’s
Cr residual block.

[0069] Video encoder 20 may apply one or more transforms to a transform block to
generate a coefficient block for a TU. A coefficient block may be a two-dimensional
array of transform coefficients. A transform coefficient may be a scalar quantity. For

example, video encoder 20 may apply one or more transforms to a luma transform block

CA 02971633 2017-06~18

WO 2016/123068 6 PCT/US2016/014857

of a TU to generate a luma coefficient block for the TU. Video encoder 20 may apply
one or more transforms to a Cb transform block of a TU to generate a Cb coefficient
block for the TU. Video encoder 20 may apply one or more transforms to a Cr
transform block of a TU to generate a Cr coefficient block for the TU.

[0070] In some examples, following intra-predictive or inter-predictive coding using
PUs of a CU, video encoder 20 may calculate residual data for the TUs of the CU. The
PUs may comprise pixel data in the spatial domain (also referred to as the pixel domain)
and the TUs may comprise coefficients in the transform domain following application of
a transform, e.g., a discrete cosine transform (DCT), an integer transform, a wavelet
transform, or a conceptually similar transform to residual video data. The residual data
may correspond to pixel differences between pixels of the unencoded picture and
prediction values corresponding to the PUs. Video encoder 20 may form the TUs
including the residual data for the CU, and then transform the TUs to produce transform
coefticients for the CU.

[0071] After generating a coefficient block (e.g., a luma coefficient block, a Cb
coefficient block or a Cr coefficient block), video encoder 20 may quantize the
coefficients in the block. Quantization generally refers to a process in which transform
coefficients are quantized to possibly reduce the amount of data used to represent the
transform coefficients, providing further compression. After video encoder 20 quantizes
a coefficient block, video encoder 20 may be configured to entropy encode syntax
elements indicating the quantized transform coefficients. For example, video encoder
20 may perform Context-Adaptive Binary Arithmetic Coding (CABAC) on the syntax
elements indicating the quantized transform coefficients.

[0072] In some examples, video encoder 20 may utilize a predefined scan order (e.g,,
horizontal, vertical, or any other scan order) to scan the quantized transform coefficients
to produce a serialized vector that can be entropy encoded. In other examples, video
encoder 20 may perform an adaptive scan. After scanning the quantized transform
coefficients to form a one-dimensional vector, video encoder 20 may entropy encode the
one-dimensional vector, e.g., according to context adaptive variable length coding
(CAVLC), context adaptive binary arithmetic coding (CABAC), syntax-based context-
adaptive binary arithmetic coding (SBAC), Probability Interval Partitioning Entropy
(PIPE) coding or another entropy encoding methodology. Video encoder 20 may also
entropy encode syntax elements associated with the encoded video data for use by video

decoder 30 in decoding the video data.

CA 02971633 2017-06~18

WO 2016/123068 7 PCT/US2016/014857

[0073] To perform CABAC, video encoder 20 may assign a context within a context
model to a symbol to be transmitted. The context may relate to, for example, whether
neighboring values of the symbol are non-zero or not. To perform CAVLC, video
encoder 20 may select a variable length code for a symbol to be transmitted.
Codewords in VLC may be constructed such that relatively shorter codes correspond to
more probable symbols, while longer codes correspond to less probable symbols. In
this way, the use of VLC may achieve a bit savings over, for example, using equal-
length codewords for each symbol to be transmitted. The probability determination
may be based on a context assigned to the symbol.

[0074] Video decoder 30 may receive a bitstream generated by video encoder 20. In
addition, video decoder 30 may parse the bitstream to decode syntax elements from the
bitstream. Video decoder 30 may reconstruct the pictures of the video data based at
least in part on the syntax elements decoded from the bitstream. The process to
reconstruct the video data may be generally reciprocal to the process performed by
video encoder 20. For instance, video decoder 30 may use MVs of PUs to determine
predictive blocks for the inter-predicted PUs of a current CU. Likewise, video decoder
30 may generate intra-predicted blocks for PU’s of a current CU. In addition, video
decoder 30 may inverse quantize transform coefficient blocks associated with TUs of
the current CU. Video decoder 30 may perform inverse transforms on the transform
coefficient blocks to reconstruct transform blocks associated with the TUs of the current
CU. Video decoder 30 may reconstruct the coding blocks of the current CU by adding
the samples of the predictive blocks for PUs of the current CU to corresponding residual
values obtained from inverse quantization and inverse transformation of the transform
blocks of the TUs of the current CU. By reconstructing the coding blocks for each CU
of a picture, video decoder 30 may reconstruct the picture.

[0075] Video encoder 20 and/or video decoder 30 may be configured to operate
according to the techniques described in this disclosure. In general, video encoder 20
and/or video decoder 30 may be configured to perform one or more techniques
described herein in any combination.

[0076] Certain design aspects concerning block partition and motion prediction with
respect to AVC and HEVC are introduced or otherwise described herein because, as set
forth herein, one or more techniques of this disclosure may be used with or otherwise
enhance a video standard (e.g., AVC and/or HEVC), extension(s) thereof, video

standards under development, or future video standards, and the like.

CA 02971633 2017-06~18

WO 2016/123068 18 PCT/US2016/014857

[0077] Aspects of motion prediction in HEVC will now be discussed. In the HEVC
standard, there are two inter prediction modes available for a PU: merge mode (skip is
considered as a special case of merge) and advanced motion vector prediction (AMVP).
In either AMVP or merge mode, a motion vector (MV) candidate list is maintained for
multiple motion vector predictors. The motion vector(s), as well as reference indices in
merge mode, of the current PU are generated by taking one candidate from the MV
candidate list. The MV candidate list contains up to 5 candidates for the merge mode
and only two candidates for the AMVP mode. A merge candidate may contain a set of
motion information, e.g., motion vectors corresponding to both reference picture lists
(list 0 and list 1) and the reference indices. If a merge candidate is identified by a merge
index, the reference pictures are used for the prediction of the current blocks, as well as
the associated motion vectors are determined. However, under AMVP mode for each
potential prediction direction from either list O or list 1, a reference index needs to be
explicitly signaled, together with an MVP index to the MV candidate list since the
AMVP candidate contains only a motion vector. In AMVP mode, the predicted motion
vectors can be further refined. As has been described above, a merge candidate in
HEVC corresponds to a full set of motion information while an AMVP candidate in
HEVC contains just one motion vector for a specific prediction direction and reference
index. The candidates for both merge mode and AMVP mode are derived similarly
from the same spatial and temporal neighboring blocks.

[0078] FIGS. 3A and 3B show spatial neighboring MV candidates for merge and
AMVP modes, respectively. Spatial MV candidates are derived from the neighboring
blocks shown in FIGS. 3A and 3B for a specific PU (PUj in the example shown). As
will be described in more detail below, generation of the candidates from the
neighboring blocks differs for merge mode and AMVP mode.

[0079] In merge mode, up to four spatial MV candidates can be derived with the order
shown in FIG. 3A: left (0), above (1), above right (2), below left (3), and above left (4).
In AMVP mode, the neighboring blocks are divided into two groups: left group
consisting of blocks 0 and 1, and the above group consisting of blocks 2, 3, and 4 as
shown in FIG. 3B. For each group, the potential candidate in a neighboring block
referring to the same reference picture as that indicated by the signaled reference index
has the highest priority to be chosen to form a final candidate of the group. It is
possible that all neighboring blocks do not contain a motion vector pointing to the same

reference picture. Therefore, if such a candidate cannot be found, the first available

CA 02971633 2017-06~18

WO 2016/123068 19 PCT/US2016/014857

candidate will be scaled to form the final candidate, thus the temporal distance
differences can be compensated.

[0080] A temporal motion vector predictor (TMVP) candidate, if enabled and available,
is added into the MV candidate list after spatial motion vector candidates. The process
of motion vector derivation for TM VP candidate is the same for both merge and AMVP
modes; however, the target reference index for the TMVP candidate in the merge mode
is always setto 0. The primary block location for TMVP candidate derivation is the
bottom right block outside of the collocated PU (shown as block “T” in FIG. 4A) to
compensate the bias to the above and left blocks used to generate spatial neighboring
candidates. However, if that block is located outside of the current CTB row or motion
information is not available, the block 1s substituted with a center block of the PU.
[0081] As shown in FIG. 4B, motion vector for TMVP candidate is derived from the
co-located PU of the co-located picture, indicated in the slice level. Similar to temporal
direct mode in AVC, a motion vector of the TMVP candidate may have motion vector
scaling performed to compensate the distance differences.

[0082] Other aspects of motion prediction in HEVC will now be described. One such
aspect is motion vector scaling. It is assumed that the value of motion vectors is
proportional to the distance of pictures in the presentation time. A motion vector
associates two pictures, the reference picture, and the picture containing the motion
vector (namely the containing picture). When a motion vector is utilized to predict the
other motion vector, the distance of the containing picture and the reference picture is
calculated based on the Picture Order Count (POC) values.

[0083] For a motion vector to be predicted, both its associated containing picture and
reference picture may be different. Therefore a new distance (based on POC) is
calculated. And the motion vector is scaled based on these two POC distances. For a
spatial neighboring candidate, the containing pictures for the two motion vectors are the
same, while the reference pictures are different. In HEVC, motion vector scaling
applies to both TMVP and AMVP for spatial and temporal neighboring candidates.
[0084] Another aspect of motion prediction in HEVC is artificial motion vector
candidate generation. If a motion vector candidate list is not complete, artificial motion
vector candidates are generated and inserted at the end of the list until it will have all
candidates. In merge mode, there are two types of artificial MV candidates: combined
candidate derived only for B-slices and zero candidates used only for AMVP if the first

type does not provide enough artificial candidates. For each pair of candidates that are

CA 02971633 2017-06~18

WO 2016/123068 20 PCT/US2016/014857

already in the candidate list and have necessary motion information, bi-directional
combined motion vector candidates are derived by a combination of the motion vector
of the first candidate referring to a picture in the list O and the motion vector of a second
candidate referring to a picture in the list 1.

[0085] Ancther aspect of motion prediction in HEVC is a pruning process for candidate
insertion. Candidates from different blocks may happen to be the same, which
decreases the efficiency of a merge mode or AMVP mode candidate list. A pruning
process compares one candidate against the others in the current candidate list to avoid
inserting identical candidates.

[0086] The general concept of overlapped block motion compensation (OBMC) will
now be introduced. OBMC was contemplated in earlier video standards. Overlapped
block motion compensation (OBMC) was proposed in the development of H.263 (Video
Coding for Low Bitrate Communication, document Rec. H.263, ITU-T, Apr. 1995).
OBMC may be performed on the current 8x8 block of a current 16x16 macroblock, and
motion vectors of two connected neighboring 8x8 blocks may be used for the current
8x8 block as shown in FIG. 5. For example, for the first 8x8 block (e.g., the block
identified with the numeral “1” in FIG. 5) in a current macroblock, besides a prediction
block generated using its own motion vector, the above and left neighboring motion
vector are also applied to generate two additional prediction blocks. In this way, each
pixel in the current 8x8 block has three prediction values, and a weighted average of
these three prediction values is used as the final prediction value for each pixel in the
current 8x8 block. As another example, for the second 8x8 block (e.g., the block
identified with the numeral “2” in FIG. 5) in a current macroblock, besides a prediction
block generated using its own motion vector, the above and right neighboring motion
vector may also applied to generate two additional prediction blocks. In this way, each
pixel in the current 8x8 block has three prediction values, and a weighted average of
these three prediction is used as the final prediction value for each pixel in the current
8x8 block.

[0087] FIG. 5 shows an example of how OBMC was implemented in H.263. When a
neighboring block is not coded or coded as intra (i.e., the neighboring block does not
have an available motion vector), the motion vector of the current 8x8 block is used as
the neighboring motion vector. Referring now to the third and fourth 8x8 blocks (e.g.,
the blocks respectively identified with the numerals “3” and “4” in FIG. 5) of the

current macroblock, the below neighboring block is always not used (i.e., considered as

CA 02971633 2017-06~18

WO 2016/123068 ’ PCT/US2016/014857

not available). In other words, for the current macroblock, no motion information from
macroblocks below the current macroblock would be used to reconstruct the pixels of
the current macroblock during the OBMC. Rather, for block 3, motion information
from a left neighbor may be used for OBMC, and for block 4, motion information from
a right neighbor may be used for OBMC, but blocks below blocks 3 and 4 are assumed
to be not coded, and are not used for OBMC.

[0088] OBMC was proposed for HEVC. In HEVC, OBMC was also proposed to
smooth the PU boundary. An example of the proposed method of OBMC in HEVC is
shown in FIGS. 6A and 6B. In FIGS. 6A and 6B, PU-based OBMC is illustrated using
a white region to represent a first PU (e.g., PUO), and a hatched region to represent a
second PU (e.g., PU1). As proposed for HEVC, when a CU contains two or more PUs,
rows or columns near the PU boundary are smoothed by OBMC. For pixels marked
with “A” or “B” in the first PU and the second PU, two prediction values are generated
by respectively applying motion vectors of the first PU (PUO) and the second PU (PU1).
As proposed for HEVC, a weighted average of the two prediction values would be used
as the final prediction.

[0089] In HEVC, each PU contains just one set of motion information. However, when
sub-PU based motion prediction /derivation apply, a PU may be divided into sub-PUs,
where each sub-PU contains one set of motion information. When a PU is split into
multiple sub-PUs, each sub-PU can be motion compensated separately. For example, a
sub-PU process can be applicable to temporal motion vector prediction and it is called
Advanced Temporal Motion Vector Prediction (ATMVP).

[0090] Aspects of sub-blocks will now be discussed. In post filtering processes, such as
deblocking, decoding processes can apply in a way that it does not fully follow the
structure of PU, but the sizes of the minimum blocks to be processed. Such minimum
processing blocks are called sub-blocks. A sub-block can be with square or non-square
shape. A sub-block is typically belongs to a PU and therefore the sub-block size is
smaller than or equal to the size of the smallest PU.

[0091] An example is illustrated in FIGS. 7A-7C to show the relationship between sub-
PU and sub-block. As can be seen, sub-block size can be smaller than (FIG. 7A), same
with (FIG. 7B) or larger than (FIG. 7C) sub-PU size.

[0092] Previously proposed and current techniques may have some limitations. As one
example, existing OBMC methods for HEVC are mainly performed on a PU,

macroblock, or sub-macroblock boundary. As another example, it is not clear how to

CA 02971633 2017-06~18

WO 2016/123068 ” PCT/US2016/014857

use the motion information of other CUs to predict the current PU in OBMC. As
another example, when the current PU contains sub-PUs, the PU-based OBMC methods
may not work efficiently. To potentially address the problems and limitations identified
above, this disclosure introduces several techniques. The techniques of this disclosure
may be applied individually, or alternatively, any combination of them may be applied.
As used herein, reference information may be regarded as a part of motion information
in this disclosure.

[0093] The techniques described below are used for overlapped block motion
compensation (OBMC). In some examples, as described herein, OBMC may refer to
any process involving the use of motion information from one or more blocks
neighboring the current block and performing a weighted average to generate the
prediction block of the current block. In such examples, the OBMC may be performed
on a boundary, a portion of a block, a slice of a block, or a whole block. In other
examples, as described herein, OBMC may refer to any process involving the use of a
weighted average of (i) the prediction block(s) based on motion information from one or
more blocks neighboring the current block, and (ii) the prediction block based on
motion information of the current block. In such examples, the OBMC may be
performed on a boundary, a portion of a block, a slice of a block, or a whole block. In
other examples, as described herein, OBMC may refer to generating multiple motion
vectors from the current block and one or more neighboring blocks, and combining
(e.g., averaging) them for the current block.

[0094] A first technique of this disclosure is sub-block based OBMC. Under this first
technique, video encoder 20 and/or video decoder 30 may be configured to perform
OBMC for each sub-block within a PU or CU (e.g., the current PU or CU). For
example, video encoder 20 and/or video decoder 30 may be configured to perform
OBMC for each sub-block within a PU or CU instead of being configured to only
perform OBMC to smooth out a PU boundary. As described above, in some examples,
a sub-block may refer to a sub-block of a PU; and, in such examples, the sub-block size
may be smaller than or equal to the size of the smallest PU. In other examples, a sub-
block may refer to something different than a sub-block of a PU. For example, a sub-
block may refer to a sub-block of a CU. The size of a sub-block is discussed in more
detail below. In accordance with this first technique and according to some examples,

video encoder 20 and/or video decoder 30 may be configured to perform OBMC by

CA 02971633 2017-06~18

WO 2016/123068 - PCT/US2016/014857

using the motion information of sub-blocks that neighbor the current sub-block being
encoded and/or decoded.

[0095] In accordance with this first technique and other examples, video encoder 20
and/or video decoder 30 may be configured to determine that one or more sub-blocks
neighboring the current sub-block belong to a not decoded CU. In some examples, a
“not decoded” CU may refer to a CU that has not yet been decoded by video encoder 20
and/or video decoder 30 when the current sub-block is being decoded by video encoder
20 and/or video decoder 30. In such examples, a CU received by video decoder 30 that
has not yet been decoded by video decoder 30 may be referred to as a “not decoded”
CU. For example, video decoder 30 may be configured to decode a plurality of blocks
according to a scan order, and the not decoded CU may be positioned in the scan order
such that the not-decoded CU will be decoded sometime after the current sub-block.
Based on determining that the one or more neighboring sub-blocks belong to a not
decoded CU, video encoder 20 and/or video decoder 30 may be configured to determine
that the one or more neighboring sub-blocks belonging to the not decoded CU are
unavailable for sub-block based OBMC. In such examples, video encoder 20 and/or
video decoder 30 may be configured to perform OBMC for the current sub-block by not
using (e.g., excluding) motion information of the one or more neighboring sub-blocks
determined to be unavailable.

[0096] In other examples, video encoder 20 and/or video decoder 30 may be configured
to determine that one or more sub-blocks neighboring the current sub-block belong to a
not decoded LCU. In some examples, a “not decoded” LCU may refer to a LCU that
has not yet been decoded by video encoder 20 and/or video decoder 30 when the current
sub-block is being decoded by video encoder 20 and/or video decoder 30. In such
examples, a LCU received by video decoder 30 that has not yet been decoded by video
decoder 30 may be referred to as a “not decoded” LCU. For example, video decoder 30
may be configured to decode a plurality of blocks according to a scan order, and the not
decoded LCU may be positioned in the scan order such that the not-decoded LCU will
be decoded sometime after the current sub-block. Based on determining that the one or
more neighboring sub-blocks belong to a not decoded LCU, video encoder 20 and/or
video decoder 30 may be configured to determine that the one or more neighboring sub-
blocks belonging to the not decoded LCU are unavailable for sub-block based OBMC.

In such examples, video encoder 20 and/or video decoder 30 may be configured to

CA 02971633 2017-06~18

WO 2016/123068 " PCT/US2016/014857

perform OBMC for the current sub-block by not using (e.g., excluding) motion
information of the one or more neighboring sub-blocks determined to be unavailable.
[0097] In other examples, video encoder 20 and/or video decoder 30 may be configured
to determine that one or more sub-blocks neighboring the current sub-block belong to a
not decoded PU. In some examples, a “not decoded” PU may refer to a PU that has not
yet been decoded by video encoder 20 and/or video decoder 30 when the current sub-
block is being decoded by video encoder 20 and/or video decoder 30. In such examples,
a PU received by video decoder 30 that has not yet been decoded by video decoder 30
may be referred to as a “not decoded” PU. For example, video decoder 30 may be
configured to decode a plurality of blocks according to a scan order, and the not
decoded PU may be positioned in the scan order such that the not-decoded PU will be
decoded sometime after the current sub-block. Based on determining that the one or
more neighboring sub-blocks belong to a not decoded PU, video encoder 20 and/or
video decoder 30 may be configured to determine that the one or more neighboring sub-
blocks belonging to the not decoded PU are unavailable for sub-block based OBMC. In
such examples, video encoder 20 and/or video decoder 30 may be configured to perform
OBMC for the current sub-block by not using (e.g., excluding) motion information of
the one or more neighboring sub-blocks determined to be unavailable.

[0098] In other examples, video encoder 20 and/or video decoder 30 may be configured
to determine that one or more sub-blocks neighboring the current sub-block belong to a
not decoded sub-block. In some examples, a “not decoded” sub-block may refer to a
sub-block that has not yet been decoded by video encoder 20 and/or video decoder 30
when the current sub-block is being decoded by video encoder 20 and/or video decoder
30. In such examples, a sub-block received by video decoder 30 that has not yet been
decoded by video decoder 30 may be referred to as a “not decoded” sub-block. For
example, video decoder 30 may be configured to decode a plurality of blocks according
to a scan order, and the not decoded sub-block may be positioned in the scan order such
that the not-decoded sub-block will be decoded sometime after the current sub-block.
Based on determining that the one or more neighboring sub-blocks belong to a not
decoded sub-block, video encoder 20 and/or video decoder 30 may be configured to
determine that the one or more neighboring sub-blocks belonging to the not decoded
sub-block are unavailable for sub-block based OBMC. In such examples, video encoder

20 and/or video decoder 30 may be configured to perform OBMC for the current sub-

CA 02971633 2017-06~18

WO 2016/123068)5 PCT/US2016/014857

block by not using (e.g., excluding) motion information of the one or more neighboring
sub-blocks determined to be unavailable.

[0099] In accordance with this first technique, the size of a sub-block may equal the
smallest PU size for a CU. In other examples, a sub-block may have a size smaller than
the smallest PU size. For example, NxN may represent the smallest motion block size
and the sub-block size (e.g., sub-PU size) may equal NxN, where N is a positive integer.
In such an example, if the smallest PU size is either 8x4 or 4x8, the sub-block size may
equal 4x4. In another example, NxM may represent the smallest motion block size and
the sub-block size (e.g., sub-PU size) may be set to NxM, where M and N are positive
integers and may or may not equal each other. In such an example, if the smallest PU
size 1s 8x8, the sub-block size may equal 4x4, 8x4, or 4x8.

[0100] In another example, the size of the sub-block may also be any pre-defined value.
The pre-defined sub-block size may, for example, be larger than the smallest PU size.
In another example, the size of a sub-block may be signaled in a parameter set. In yet
another example, the size of the sub-block may depend on the current PU or CU size
(i.e., the current PU or CU to which the current sub-block belongs). In yet another
example, the size of the sub-block may depend on the block size on which video
encoder 20 and/or video decoder 30 are configured to perform OBMC. In yet another
example, the size of the sub-block may depend on the current PU or CU size (i.e., the
current PU or CU to which the current sub-block belongs) as well as the size of one or
more neighboring PUs or CUs (i.e., one or more PUs or CUs that neighbor the PU or
CU to which the current sub-block belongs).

[0101] A second technique of this disclosure is sub-PU based OBMC. Under this
second technique, video encoder 20 and/or video decoder 30 may be configured to
perform OBMC for each sub-PU within a PU or CU (e.g., the current PU or CU) that is
coded with a sub-PU. Each sub-PU may contain its own set of motion information, e.g.,
including a motion vector and reference picture list index. In some examples, video
encoder 20 and/or video decoder 30 may be configured to perform OBMC for one or
more sub-PUs within the current PU or CU using motion information of one or more
neighboring sub-PUs within the PU or CU. In other examples, video encoder 20 and/or
video decoder 30 may be configured to perform OBMC for one or more sub-PUs within
the current PU or CU using motion information of one or more neighboring sub-PUs
within the current PU or CU together with motion information of one or more

neighboring blocks outside the current PU or CU.

CA 02971633 2017-06~18

WO 2016/123068 26 PCT/US2016/014857

[0102] In accordance with this second technique and some examples, for each sub-PU,
its neighboring blocks may be the neighboring sub-PUs within the same PU or CU (e.g,,
the current PU or CU) and neighboring blocks outside the current PU or CU (i.e., the
current PU or current CU). In other examples, video encoder 20 and/or video decoder
30 may be configured to use a neighboring block outside the current PU or CU (i.e.,
outside the current PU or outside the current CU) to perform OBMC on the current sub-
PU of the current PU or CU if the neighboring block has the same size as the current
sub-PU. In such examples, even if a neighboring block to the current PU or CU
contains more than one set of motion information, video encoder 20 and/or video
decoder 30 may be configured to utilize only one set of motion information for that
neighboring block. Also in such examples, if a neighboring block outside the current
PU or CU has a size different from the size of the current sub-PU, video encoder 20
and/or video decoder 30 may be configured to perform OBMC for the current sub-PU
by not using (e.g., excluding) motion information of the one or more neighboring blocks
determined to have a size different from the size of the current sub-PU.

[0103] In other examples, video encoder 20 and/or video decoder 30 may be configured
to use a neighboring block outside the current PU or CU to perform OBMC on the
current sub-PU of the current PU or CU if the neighboring block is smaller than the size
of the current sub-PU. In such examples, video encoder 20 and/or video decoder 30
may be configured to perform OBMC for the current sub-PU by using one or more sub-
blocks for the current sub-PU. In some examples, video encoder 20 and/or video
decoder 30 may be configured to divide any boundary sub-PUs of a PU into sub-blocks.
In such examples, video encoder 20 and/or video decoder 30 may be configured to
perform OBMC for each sub-block.

[0104] In other examples, a sub-PU that is not adjacent to any pixel outside the current
PU or CU may be predicted using only neighboring sub-PUs. In such examples, video
encoder 20 and/or video decoder 30 may be configured to determine the current sub-PU
is not adjacent to any pixel outside the current PU or CU, and may be configured to
perform OBMC for the current sub-PU using only neighboring sub-PUs.

[0105] Also in accordance with the second technique of this disclosure and in some
examples, video encoder 20 and/or video decoder 30 may be configured to determine
that one or more neighboring blocks to the current sub-PU belong to a not decoded CU.
Based on determining that the one or more neighboring blocks belong to a not decoded

CU, video encoder 20 and/or video decoder 30 may be configured to determine that the

CA 02971633 2017-06~18

WO 2016/123068 7 PCT/US2016/014857

one or more neighboring blocks belonging to the not decoded CU are unavailable for
sub-PU based OBMC. In such examples, video encoder 20 and/or video decoder 30
may be configured to perform OBMC for the current sub-PU by not using (e.g.,
excluding) motion information of the one or more neighboring blocks determined to be
unavailable.

[0106] Also in accordance with the second technique of this disclosure and in some
examples, video encoder 20 and/or video decoder 30 may be configured to determine
that one or more neighboring blocks to the current sub-PU belong to a not decoded
LCU. Based on determining that the one or more neighboring blocks belong to a not
decoded L.CU, video encoder 20 and/or video decoder 30 may be configured to
determine that the one or more neighboring blocks belonging to the not decoded LCU
are unavailable for sub-PU based OBMC. In such examples, video encoder 20 and/or
video decoder 30 may be configured to perform OBMC for the current sub-PU by not
using (e.g., excluding) motion information of the one or more neighboring blocks
determined to be unavailable.

[0107] Also in accordance with the second technique of this disclosure and in some
examples, video encoder 20 and/or video decoder 30 may be configured to determine
that one or more neighboring blocks to the current sub-PU belong to a not decoded PU
(e.g., an encoded PU). Based on determining that the one or more neighboring blocks
belong to a not decoded PU, video encoder 20 and/or video decoder 30 may be
configured to determine that the one or more neighboring blocks belonging to the not
decoded PU are unavailable for sub-PU based OBMC. In such examples, video encoder
20 and/or video decoder 30 may be configured to perform OBMC for the current sub-
PU by not using (e.g., excluding) motion information of the one or more neighboring
blocks determined to be unavailable.

[0108] A third technique of this disclosure is CU-boundary based OBMC. Under this
third technique, video encoder 20 and/or video decoder 30 may be configured to
perform OBMC for one or more CU boundaries. In such examples, video encoder 20
and/or video decoder 30 may be configured to also perform OBMC for one or more PU
boundaries.

[0109] Referring to the top and left boundaries of a current CU, video encoder 20 and/or
video decoder 30 may be configured to use motion information of one or more
neighboring blocks not belonging to the current CU but bordering the top and/or left

boundary (e.g., edge) of the current CU to generate additional predictors in a way

CA 02971633 2017-06~18

WO 2016/123068 »8 PCT/US2016/014857

similar to that described herein with respect to the first technique. For example, video
encoder 20 and/or video decoder 30 may be configured to perform OBMC for a CU
boundary (e.g., the current CU boundary) by using all or some of the motion
information of the blocks on the CU boundary (e.g., the top and/or left boundary of the
current CU) from the neighboring block(s) (e.g., a neighboring CU) to the left of the
current CU and/or the neighboring block(s) (e.g., a neighboring CU) to the top of the
current CU.

[0110] In such an example, video encoder 20 and/or video decoder 30 may be
configured to perform OBMC for a CU boundary as follows: For each smallest block
of the current CU located on the top CU boundary, video encoder 20 and/or video
decoder 30 may be configured to use motion information of each smallest block’s top
neighboring block for OBMC of the top CU boundary, and the additional predictor(s)
are used to form the final prediction signal of the current block with the CU. For each
smallest block of the current CU located on the left CU boundary, video encoder 20
and/or video decoder 30 may be configured to use motion information of each smallest
block’s left neighboring block for OBMC of the left CU boundary, and the additional
predictor(s) are used to form the final prediction signal of the current block.

[0111] In some examples, video encoder 20 and/or video decoder 30 may be configured
to perform OBMC only on left CU and/or top CU boundaries. In other examples, video
encoder 20 and/or video decoder 30 may be configured to perform OBMC on left CU,
top CU, right CU, and/or bottom CU boundaries. In such examples, video encoder 20
and/or video decoder 30 may be configured to perform OBMC on right CU and/or
bottom CU boundaries in a similar manner as described above with respect to left and
top CU boundaries. For example, for each smallest block of the current CU located on
the right CU boundary, video encoder 20 and/or video decoder 30 may be configured to
use motion information of each smallest block’s top neighboring block for OBMC of
the right CU boundary, and the additional predictor(s) are used to form the final
prediction signal of the current block with the CU. For each smallest block of the
current CU located on the bottom CU boundary, video encoder 20 and/or video decoder
30 may be configured to use motion information of each smallest block’s bottom
neighboring block for OBMC of the bottom CU boundary, and the additional
predictor(s) are used to form the final prediction signal of the current block with the CU.
[0112] In some examples, video encoder 20 and/or video decoder 30 may be configured

to subsample or compress motion information from a neighboring CU. In such

CA 02971633 2017-06~18

WO 2016/123068 - PCT/US2016/014857

examples, video encoder 20 and/or video decoder 30 may be configured to use the
subsampled or compressed motion information of the neighboring CU to generate one
or more additional predictors of the current CU. For example, video encoder 20 and/or
video decoder 30 may be configured to subsample or compress motion information of a
neighboring CU on the basis of sub-block instead of smallest block size, meaning that if
a neighboring CU has multiple sub-blocks (e.g., PU’s) with individual MV’s, video
encoder 20 and/or video decoder 30 may be configured to use a single MV for one
group (e.g., set) of PU’s and another single MV for another group of PU’s.

[0113] In some examples, video encoder 20 and/or video decoder 30 may be configured
to disable OBMC relating to the third technique of this disclosure and/or another
technique of this disclosure. For example, video encoder 20 and/or video decoder 30
may be configured to disable OBMC for PUs within a current CU if (e.g., when) the
size of the current CU is smaller than that of the sub-block size. In such an example,
video encoder 20 and/or video decoder 30 may be configured to determine the size of
the current CU and compare the determined size of the current CU to the size of the sub-
block to determine whether the size of the current CU is smaller than that of the sub-
block size. Based on determining that the size of the current CU is smaller than the sub-
block size, video encoder 20 and/or video decoder 30 may be configured to disable
OBMC for PUs within a current CU.

[0114] As another example, video encoder 20 and/or video decoder 30 may be
configured to disable OBMC for a PU boundary if (e.g., when) the PU boundary is not a
sub-block boundary (e.g., a boundary not containing any sub-blocks). In this example,
the sub-block is larger than the PU and the PU boundary may be located inside a sub-
block. The PU boundary may or may not be a sub-block boundary. Accordingly, video
encoder 20 and/or video decoder 30 may be configured to disable (e.g., skip) OBMC
along that PU boundary to reduce encoding and/or decoding complexity. As another
example, video encoder 20 and/or video decoder 30 may be configured to disable
OBMC for right CU and/or bottom CU boundaries.

[0115] A fourth technique of this disclosure includes common aspects to the above
three described first, second, and third OBMC techniques. In some examples, video
encoder 20 and/or video decoder 30 may be configured to use motion vector of a
neighboring sub-block, neighboring sub-PU, or neighboring block to respectively
generate an additional predictor of the current sub-block, current sub-PU, or current

block. In such examples, video encoder 20 and/or video decoder 30 may be configured

CA 02971633 2017-06~18

WO 2016/123068 30 PCT/US2016/014857

to use the additional predictor to respectively form the final prediction signal of the
current sub-block, current sub-PU, or current block.

[0116] In accordance with this fourth technique and other examples, video encoder 20
and/or video decoder 30 may be configured to use up to a predefined number of
neighbors of a current sub-block, current sub-PU, or current block for OBMC. In such
examples, the predefined number may be eight or a number different than eight.
According to one example, video encoder 20 and/or video decoder 30 may be
configured to use motion information (e.g., motion vectors) of four connected neighbor
blocks (e.g., above, below, left, and right neighboring sub-blocks) for OBMC. As used
herein, referring to “for OBMC” may refer to “to perform OBMC.”

[0117] In some examples, video encoder 20 and/or video decoder 30 may be configured
to select only one set of motion information if (e.g., when) a neighboring sub-block,
neighboring sub-PU, or neighboring block contains multiple sets of motion information.
For example, if a sub-block size is 8x8 and the motion information is stored on a 4x4
basis, video encoder 20 and/or video decoder 30 may be configured to only select one
set of motion information corresponding to the 8x8 sub-block in this particular example.
[0118] Video encoder 20 and/or video decoder 30 may be configured to select a single
set of motion information according to one or more techniques. In one example, video
encoder 20 and/or video decoder 30 may be configured to select the set of motion
information based on the center pixel of the sub-block, sub-PU, or block. For example,
video encoder 20 and/or video decoder 30 may be configured to select the set of motion
information for a sub-block, sub-PU, or block that includes the center pixel of the sub-
block, sub-PU, or block. Hence, if there are multiple sets of motion information for a
PU, the single set of motion information for a block containing a center pixel may be
used for OBMC for the current block. In another example, video encoder 20 and/or
video decoder 30 may be configured to select the set of motion information based on
which set of motion information belongs to the smallest motion blocks adjacent to the
current sub-block, sub-PU, or block. For example, video encoder 20 and/or video
decoder 30 may be configured to select the set of motion information that belongs to the
smallest motion blocks adjacent to the current sub-block, sub-PU, or block. If thereis a
plurality of such motion blocks, video encoder 20 and/or video decoder 30 may be
configured to select the earliest (or first-decoded) motion block of the plurality in, for

example, raster scan order.

CA 02971633 2017-06~18

WO 2016/123068 31 PCT/US2016/014857

[0119] In another example, video encoder 20 and/or video decoder 30 may be
configured to compare all the motion information of the neighboring sub-blocks to the
motion information of the current PU, CU, or block. Based upon this comparison, video
encoder 20 and/or video decoder 30 may be configured to select the motion information
that is most similar to the motion information of the current PU, CU, or block. Based
upon this comparison, video encoder 20 and/or video decoder 30 may be configured to
select the motion information that is most dissimilar to the motion information of the
current PU, CU, or block.

[0120] In some examples, video encoder 20 and/or video decoder 30 may be configured
to use motion information of a subset of any connnected neighboring sub-blocks, sub-
PUs, or blocks for OBMC. In example, video encoder 20 and/or video decoder 30 may
be configured to use only the left and right neighbors of a current block to perform
OBMC. In another example, video encoder 20 and/or video decoder 30 may be
configured to use only the above and below neighbors of a current block to perform
OBMC. In another example, video encoder 20 and/or video decoder 30 may be
configured to use only one of the above or below neighbors and one of the left or right
neighbors of a current block to perform OBMC. In another example, video encoder 20
and/or video decoder 30 may be configured to use only one of the four connected
neighbors of a current block to perform OBMC. In yet another example, video encoder
20 and/or video decoder 30 may be configured to select the subset of the neighboring
blocks based on the relative position of the sub-block within the current PU or CU.
[0121] Video encoder 20 and/or video decoder 30 may be configured to determine that
a neighboring sub-block, sub-PU, or block is unavailable according to one or more
techniques described herien. For example, an Intra block may be considered as
unavailable, a block outside (or partially outside) the current slice or tile may be
considered as unavailable, a block that is considered unavailable when wavefront is
used may be considered as unavailable, a block that is not decoded yet (e.g., at least its
motion vectors are not decoded yet) may be considered unavailable, and/or a
neighboring block or sub-block may be considered unavailable when the neighboring
block or sub-block does not belong to the current CTU.

[0122] According to a fifth technique of this disclosure, video encoder 20 and/or video
decoder 30 may be configured to perform OBMC for the current sub-block using
motion information (e.g., motion vectors) of each available neighboring sub-block to

generate a prediction block. In some examples, the prediction block may be denoted by

CA 02971633 2017-06~18

WO 2016/123068 3 PCT/US2016/014857

Py with N indicating an index/denotation (e.g., equal to above, below, left or right) to a
neighboring block that neighbors the current sub-block. Video encoder 20 and/or video
decoder 30 may be configured to use the prediction block(s) of one or more neighboring
blocks to update the prediction block of the current sub-block, which may be denoted by
Pc. For example, video encoder 20 and/or video decoder 30 may be configured to
generate the final prediction block of the current block (i.e., the updated prediction
block of the current sub-block), which may be a weighted average of (i) the prediction
block(s) based on motion information from one or more blocks neighboring the current
block, and (ii) the prediction block based on motion information of the current sub-
block.

[0123] In some examples, video encoder 20 and/or video decoder 30 may be configured
to determine if (e.g., when) one or more neighboring sub-blocks to the current block
contain more than one sub-PU, which may be indicative of multiple sets of motion
information. In such examples, based on determining that one or more neighboring sub-
blocks to the current sub-block contain more than one sub-PUs, video encoder 20 and/or
video decoder 30 may be configured to use motion information of one or more of such
sub-PUs that neighbor the current sub-block to perform OBMC on the current sub-
block. For example, video encoder 20 and/or video decoder 30 may be configured to
not use or otherwise exclude motion information from a sub-PU that does not neighbor
the current sub-block. In other examples, video encoder 20 and/or video decoder 30
may be configured to use motion information of any sub-PU of a neighboring block to
the current sub-block to perform OBMC on the current sub-block, whether or not any
sub-PU of the neighboring block neighbors the current sub-block.

[0124] According to a sixth technique of this disclosure, video encoder 20 and/or video
decoder 30 may be configured to perform OBMC on any block (e.g., a PU or CU) with
a square or non-square size (e.g., a rectangle). In other examples, video encoder 20
and/or video decoder 30 may be configured to perform OBMC on a block (e.g., a CU or
PU) with special types or sizes (e.g., predefined types or sizes, PUs coded with merge
mode in HEVC, PUs coded with with a mode similar to merge mode in a coding
standard different from HEVC, or PUs larger than 32x32).

[0125] According to a seventh technique of this disclosure, video encoder 20 and/or
video decoder 30 may be configured to perform OBMC for the current sub-block, sub-
PU, or block using motion information (e.g., motion vectors) of each available

neighboring sub-block, sub-PU, or block to generate a prediction block. In some

CA 02971633 2017-06~18

WO 2016/123068 3 PCT/US2016/014857

examples, the prediction block may be denoted by Py with N indicating an
index/denotation (e.g., equal to above, below, left or right) to a neighboring block that
neighbors the current sub-block, sub-PU, or block. Video encoder 20 and/or video
decoder 30 may be configured to use the prediction block(s) of one or more neighboring
blocks to update the prediction block of the current block (e.g., sub-block, sub-PU, or
block), which may be denoted by Pc.

[0126] In some examples, video encoder 20 and/or video decoder 30 may be configured
to perform a weighted average to update P In such examples, video encoder 20 and/or
video decoder 30 may be configured to perform a weighted average of (i) one or more K
row(s) or column(s) of the prediction block Py from the motion information (e.g.,
motion vector(s)) of the neighboring block, and (ii) the corresponding row(s) or
column(s) of the current prediction block P to update Pc. In some examples, video
encoder 20 and/or video decoder 30 may be configured to assign different weights to
different positions (e.g., different row(s) or column(s)). In some examples, K may be
set equal to a value of 1, 2, 3, or 4. The one or more K row(s) or column(s) are those
closest to the neighboring block as indicated by N. For example, if the neighboring
block is a left-neighboring block or a right-neighboring block to the current block, then
video encoder 20 and/or video decoder 30 may be configured to perform a weighted
average of (i) one or more K column(s) of the prediction block Py from the motion
information (e.g., motion vector(s)) of the neighboring block, and (ii) the corresponding
column(s) of the current prediction block P to update Pc. As another example, if the
neighboring block is a top-neighboring block or a bottom-neighboring block to the
current block, then video encoder 20 and/or video decoder 30 may be configured to
perform a weighted average of (i) one or more K row(s) of the prediction block Py from
the motion information (e.g., motion vector(s)) of the neighboring block, and (ii) the
corresponding row(s) of the current prediction block P¢ to update Pc.

[0127] Referring to Table 1 below, x and y may denote the vertical and horizonal
cooridnates relative to the top-left pixel of the current sub-block, sub-PU, or block. The
weight of of P(x, y) and Pp(x, y) is respectively denoted as wil(x, y) and w2(x, y). In
some examples, video encoder 20 and/or video decoder 30 may be configured to
perform a weighted average to update Pc such that the updated Pc(x,y) equals wil(x,
V)*Pc(x, y) + w2(X, y)*PnmX, y). The width and height of the current sub-block, sub-
PU, or block may be respectively denoted by W and H. For example, W-1 may refer to
the last column (e.g., the column furthest to the right) of the current sub-block, sub-PU,

CA 02971633 2017-06~18

WO 2016/123068 2 PCT/US2016/014857

or block. As another example, H-1 may refer to the last row (e.g., the bottom most row)
of the current sub-block, sub-PU, or block. As another example, H-2 may refer to the
second-to-last row (e.g., the second bottom most row, which may be described as the
first row above the last row) of the current sub-block, sub-PU, or block. The values of
N may refer to the N of the prediction block Py described herein. One example of
weights w1 and w2 is specified in Table 1 below.

[0128] Table 1 (Example Weights Used In OBMC):

Superimposed positions wl w2

N = above [(0, y)] [3/4] [1/4]
y=0.W-1 () 78 i

2y 15/16 1/16

3,y) 31/32 1/32

N = below [(H-1, y)] [3/4] [1/4]
y=0.W-1 (H-2. v) 3 18

(H-3,v) 15/16 1/16

(H-4,y) 31/32 1/32

N = left [(x, 0)] [3/4] [1/4]
x=0.H-1 x 1) 7/8 1/8

x.2) 15/16 116

(x,3) 31/32 1/32

N =right [(x, W-1)] [374] [1/4]
x=0.H-1 x, W-2 7/8 1/8

x, W-3 15/16 1116

(x, W-4) 31/32 1/32

[0129] In some examples, when N is equal to above, video encoder 20 and/or video
decoder 30 may be configured to perform a weighted average such that the top four
rows of P are updated by Py. Similarly, when N is equal to below, video encoder 20
and/or video decoder 30 may be configured to perform a weighted average such that the
bottom four rows of P are updated by Pn. As another example, when N is equal to left,
video encoder 20 and/or video decoder 30 may be configured to perform a weighted
average such that the left four columns of P¢ are updated by Py. Similarly, when N is
equal to right, video encoder 20 and/or video decoder 30 may be configured to perform

a weighted average such that the right four columns of P¢ are updated by Py.

CA 02971633 2017-06~18

WO 2016/123068 35 PCT/US2016/014857

[0130] In other examples, video encoder 20 and/or video decoder 30 may be configured
to update one row or column of Pc by Py. Positions and weights according to such
examples are [bracketed] in Table 1 above.

[0131] In other examples, video encoder 20 and/or video decoder 30 may be configured
to update two rows or columns of Pc by Py. Positions and weights of the two rows or

columns according to such examples are [bracketed] and single underlined in Table 1

above (e.g., the first/top two rows for each N value).

[0132] In other examples, video encoder 20 and/or video decoder 30 may be configured
to update three rows or columns of Pc by Py. Positions and weights of the three rows or
columns according to such examples are [bracketed], single underlined, and double
underlined in Table 1 above (e.g., the first/top three rows for each N value).

[0133] In other examples, video encoder 20 and/or video decoder 30 may be configured
to select the number of rows (e.g., one or more rows) or the number columns (e.g., one
or more columns) based on the size of the current sub-block, sub-PU, or block. For
example, video encoder 20 and/or video decoder 30 may be configured to select more
rows or columns if the current sub-block, sub-PU, or block has a first size, and select
less rows or columns if the current sub-block, sub-PU, or block has a second size. For
example, when the current PU size is equal to 8x4 or 4x8 and/or the current PU is coded
with sub-PU modes (e.g., meaning that the current PU includes one or more sub-PUs),
video encoder 20 and/or video decoder 30 may be configured to update only only two
rows or columns of Pc by Py. As another example, when the current PU size is greater
than 8x4 or 4x8, video encoder 20 and/or video decoder 30 may be configured to update
four rows or columns of Pc by Py.

[0134] In yet other examples, video encoder 20 and/or video decoder 30 may be
configured to update every pixel of P¢ by the corresponding pixel of Py,.

[0135] In some examples, video encoder 20 and/or video decoder 30 may be configured
to implement weights used in any weighted average by using one or more addition and
shift operations. In such examples or other examples, video encoder 20 and/or video
decoder 30 may be configured to implement the weights (e.g., the weights shown in
Table 1 or weights different from the weights shown in Table 1) such that wi(x, y) +
w2(x,y)is equal to 1.

[0136] In some examples, the row or column number of P updated by Py may depend
on (e.g., be based on) the size of the current prediction block. In such examples, the

size of the current prediction block may correspond to the size of the sub-block, sub-PU,

CA 02971633 2017-06~18

WO 2016/123068 36 PCT/US2016/014857

PU, or CU. In some examples, the row number of Pc updated by Pymay depend on W.
For example, video encoder 20 and/or video decoder 30 may be configured to update
more rows when H is larger (e.g., having a first value). As another example, video
encoder 20 and/or video decoder 30 may be configured to update less rows when H is
smaller (e.g., having a second value that is smaller than the first value). As another
example, video encoder 20 and/or video decoder 30 may be configured to update
columns rows when W is larger (e.g., having a first value). As another example, video
encoder 20 and/or video decoder 30 may be configured to update less columns when W
is smaller (e.g., having a second value that is smaller than the first value).

[0137] According to an eigth technique of this disclosure, when multiple neighbors
provide multiple predictors with each being denoted as Py, the composition of the
predictors Py and the current predictor P may be done one by one in an order. Here, a
predictor may mean a prediction block that may consist of a block of pixel values
determined by inter-prediction using motion information of the neighboring block. For
example, after each composition, the current predictor Pcmay be updated and kept as
the same bit depth as that of the current predictor before composition, which may be the
internal processing bit depth of each color component. During each composition, the
weighting process for each pixel may include a rounding value r, so that the weighting
process is changed to (al(x, y)*Pc(x, y) + a2(x, y)* Pa(x, y)+1)/S, wherein al/S and
a2/S are equal to wl and w2 repectively. In some examples, r may be set to 0 or $/2. In
this example, al is a quantized value of wl, a2 is a quantized value of w2, and S is the
normalized factor.

[0138] In some examples, the order when four predictors are available may be Above,
Left, Bottom, Right. In other examples, the order when four predictors are available
may be Lefi, Above, Bottom, Right. In other examples, the order when four predictors
are available may be any order different from the two examples above.

[0139] In some examples, video encoder 20 and/or video decoder 30 may be configured
to skip the composition process if (e.g., when) a neighbor block does not contain motion
information because this may indicate that Pyis unavailable. In other examples, video
encoder 20 and/or video decoder 30 may be configured to collect all predictors (e.g., all
Py) and perform a joint weighted prediction process using all predictors. In such
examples, video encoder 20 and/or video decoder 30 may be configured to determine
that one or more Py are unavailable, and may be configured to set the one or more Py

determined to be unavailable equal to Pc.

CA 02971633 2017-06~18

WO 2016/123068 37 PCT/US2016/014857

[0140] In some examples, during each composition (e.g., while performing the
weighted average process for each composition of prediction block(s) Py), video
encoder 20 and/or video decoder 30 may be configured to update the current predictor
P with the bit depth increasing. For example, video encoder 20 and/or video decoder
30 may be configured to update the current predictor P¢ without performing a de-
scaling operation before the next composition is processed. Video encoder 20 and/or
video decoder 30 may be configured to perform a de-scaling operation after all
compositions have been processed. The descaling refers to the division by the
normalization factor S set forth above, which may bring the weighted composition value
to the same lvel of each input prediction. By de-scaling after all compositions have
been processed, video decoder 30 may be configured to attain the same final prediction
results by processing compositions sequentially and and using a joint weighted
prediction process. Such design may provide flexibility in the implemenation when
multiple boundary OBMC is applied to the same prediction block.

[0141] Accordingly to a ninth technique of this disclosure, video encoder 20 and/or
video decoder 30 may be configured to adaptively enable or disable (e.g., switch on or
off) OBMC at the CU, PU, or any other block level. For example, when OBMC is
enabled for a particular block level, video encoder 20 and/or video decoder 30 may be
configured to perform OBMC using one or more techniques described herein for that
particular block level. As another example, when OBMC is disabled for a particular
block level, video encoder 20 and/or video decoder 30 may be configured to not
perform OBMC using one or more techniques described herein for that particular block
level.

[0142] In some examples, video encoder 20 may be configured to adaptively enable or
disable (e.g., switch on or off) OBMC at the CU, PU, or any other block level by
signaling an OBMC flag. In some examples, video encoder 20 may be configured to
signal, and video decoder 30 may be configured to receive, an OBMC syntax element
such as an OBMC flag having a value that indicates whether OBMC is enabled or
disabled for a particular block. For example, video encoder 20 may be configured to
signal an OBMC flag for each inter-coded CU, PU, or block. In some examples, the
OBMC flag may be binary and have one of two values. A first value of the OBMC flag
may indicate that OBMC is enabled, and a second value of the OBMC flag may indicate
that OBMC is disabled. For example, when the OBMC flag is true (e.g., has a value
corresponding to a first value), OBMC applies (e.g., is enabled) for the current CU, PU,

CA 02971633 2017-06~18

WO 2016/123068 38 PCT/US2016/014857

or block. As another example, when the OBMC flag is false (e.g., has a value
corresponding to a second value, OBMC does not apply (e.g., is disabled) for the
current CU, PU, or block.

[0143] Similarly, video decoder 30 may be configured to receive the OBMC flag and
determine the value of the OBMC flag. For example, video decoder 30 may be
configured to receive OBMC flag from video encoder 20 in a bitstream generated by
video encoder 20. In some examples, the value corresponding to OBMC flag indicates
whether OBMC for a block of video data being decoded (e.g., a CU, PU, or other block)
is enabled or disabled. In such examples, video decoder 30 may be configured to
receive an OBMC flag having a value that indicates whether OBMC is enabled or
disabled for a particular block. For example, video decoder 30 may be configured to
receive an OBMC flag for each inter-coded CU, PU, or block. A first value of the
OBMC flag may indicate that OBMC is enabled, and a second value of the OBMC flag
may indicate that OBMC is disabled. For example, when the OBMC flag is true (e.g.,
has a value corresponding to a first value), video decoder 30 may be configured to
determine that OBMC applies (e.g., is enabled) for the current CU, PU, or block. As
another example, when the OBMC flag is false (e.g., has a value corresponding to a
second value, video decoder 30 may be configured to determine that OBMC does not
apply (e.g., is disabled) for the current CU, PU, or block.

[0144] In some examples, video encoder 20 may be configured to signal an OBMC flag
only for a CU, PU, or block based on the partition type(s) used for the CU, PU, or
block, the prediction mode (e.g., merge mode or AMVP mode) used for the CU, PU, or
block, or size of the CU, PU, or block. In such examples, video encoder 20 may be
configured to determine the partition type(s), prediction mode, and/or size
corresponding to the CU, PU, or block, and signal an OBMC flag based on the
determination of one or more of: the partition type(s), prediction mode, and/or size
corresponding to the CU, PU, or block.

[0145] In one example, video encoder 20 may be configured to signal an OBMC flag
for a CU, PU, or block only if the CU, PU, or block is not coded with 2Nx2N merge
mode and the size of the CU, PU, or block is smaller than or equal to 16x16. In such an
example, video encoder 20 may be configured to determine whether the CU, PU, or
block is coded with 2Nx2N merge mode and the size of the CU, PU, or block, and
signal an OBMC flag based on the determination(s) thereof.

CA 02971633 2017-06~18

WO 2016/123068 3 PCT/US2016/014857

[0146] In some examples, video encoder 20 may be configured to not signal an OBMC
flag for a CU, PU, or block. In such examples, video decoder 30 may be configured to
implicitly derive, based on other signaled information (e.g., as described in the next four
paragraphs as just one example of disclosure containing multiple examples), a value
corresponding to the OBMC flag. For example, video decoder 30 may be configured to
implicitly derive a value of the OBMC flag indicating that OBMC applies (e.g., is
enabled) for the CU, PU, or block. As another example, video decoder 30 may be
configured to implicitly derive a value of the OBMC flag indicating that OBMC does
not apply (e.g., is disabled) for the CU, PU, or block.

[0147] According to a tenth technique of this disclosure, video encoder 20 and/or video
decoder 30 may be configured to adaptively enable or disable (e.g., switch on or off)
OBMC at the CU, PU, sub-block, or block boundary. For example, video encoder 20
and/or video decoder 30 may be configured to adaptively enable or disable (e.g., switch
on or off) OBMC at the CU, PU, sub-block, or block boundary implicitly based on the
characteristic of motion information (e.g., motion vectors) of one or more (e.g., two)
neighboring blocks, and/or the characteristic of predicted sample values based on the
motion information (e.g., motion vectors) of the one or more (e.g., two) neighboring
blocks.

[0148] In some examples, whether to apply (e.g., enable) OBMC for a block boundary
(e.g., a CU, PU, sub-block, or block boundary) may be based on the motion vector
difference between the motion vectors of one or more (e.g., two) neighboring blocks
that share a boundary with the current block. In such examples, video encoder 20
and/or video decoder 30 may be configured to determine the motion vector difference
between the motion vectors of one or more (e.g., two) neighboring blocks that share a
boundary with the current block. When the motion vector difference is above a
threshold (e.g., 16 pixels or any other threshhold), OBMC may not be applied (e.g., may
be disabled) for the boundary(ies); otherwise, OBMC may be applied (e.g., enabled) for
the boundary(ies). In such examples, video encoder 20 and/or video decoder 30 may be
configured to compare the determined motion vector difference to the predefined
threshold, and enable or disable OBMC for one or more boundaries based on the
comparison. In some examples, the threshold may be a predefined value, and may or
may not be signaled in an encoded video bitstream.

[0149] In an example where video encoder 20 and/or video decoder 30 may be

configured to determine the motion vector difference between the motion vectors of two

CA 02971633 2017-06~18

WO 2016/123068 10 PCT/US2016/014857

neighboring blocks, video encoder 20 and/or video decoder 30 may be configured to not
apply (e.g., disable) OBMC if (e.g., when) two motion vectors each point to a different
reference frame, or if (e.g., when) at least one motion vector is not available. In another
example where video encoder 20 and/or video decoder 30 may be configured to
determine the motion vector difference between the motion vectors of two or more
neighboring blocks, video encoder 20 and/or video decoder 30 may be configured to not
apply (e.g., disable) OBMC if (e.g., when) two or more motion vectors each point to a
different reference frame, or if (e.g., when) at least one motion vector is not available.
[0150] In other examples, whether to apply (e.g., enable) OBMC for a block boundary
(e.g., a CU, PU, sub-block, or block boundary) may be based on whether two motion
vectors of two neighboring blocks (e.g., one motion vector for each of the two
neighboring blocks) that share a boundary with the current block both point to integer
pixel positions. In such examples, video encoder 20 and/or video decoder 30 may be
configured to determine whether two motion vectors of two neighboring blocks (e.g.,
one motion vector for each of the two neighboring blocks) that share a boundary with
the current block both point to integer pixel positions. In some examples, if both
motion vectors point to integer pixel positions, video encoder 20 and/or video decoder
30 may be configured to not apply (e.g., disable) OBMC for the boundary(ies). In other
examples, if both motion vectors do not point to integer pixel positions, video encoder
20 and/or video decoder 30 may be configured to apply (e.g., enable) OBMC for the
boundary(ies).

[0151] In other examples, whether to apply (e.g., enable) OBMC for a block boundary
(e.g., a CU, PU, sub-block, or block boundary) may be based on the sample value
difference of two predicted blocks derived from two motion vectors of two neighboring
blocks that share a boundary with the current block. For example, when the average
absolute difference of the two predicted blocks is above a certain threshold (e.g., such as
80), video encoder 20 and/or video decoder 30 may be configured to not apply (e.g.,
disable) the OBMC for the boundary. As another example, when the maximal absolute
difference between the samples of the two predicted block is above a certain threshold
(e.g., such as 80, 88, or 96), video encoder 20 and/or video decoder 30 may be
configured to not apply (e.g., disable) OBMC for the boundary. As another example,
when the maximal absolute difference between the samples of the two predicted block is
less than or equal to a certain threshold (e.g., such as 80, 88, or 96), video encoder 20

and/or video decoder 30 may be configured to apply (e.g., enable) OBMC for the

CA 02971633 2017-06~18

WO 2016/123068 il PCT/US2016/014857

boundary. In some examples, the threshold may be a predefined value, and may or may
not be signaled in an encoded video bitstream. In these examples, the size of the
predicted blocks may be (i) the same size as the sub-block size described in the fourth
technique of this disclosure above, (ii), predefined, or (iii) signaled in a bitstream.
[0152] As used herein, disabling or not applying OBMC for a boundary may refer to
not performing OBMC to the boundary, and vice versa. Similarly, as used herein,
enabling or applying OBMC for a boundary may refer to performing OBMC to the
boundary, and vice versa. Asused herein, any reference concerning “for X” may refer
to “to X” or “on X.” For example, reference to “for a block” may refer to “to a block”

29 ¢

or “on a block.” Tt is understood that any reference concerning “for X,” “to X,” or “on
X” may refer to any of “for X,” “to X,” and “on X.” For example, reference to “on the
sub-block” may likewise refer to “for the sub-block” or “to the sub-block.”

[0153] According to an eleventh technique of this disclosure, video encoder 20 and/or
video decoder 30 may be configured to adaptively enable or disable (e.g., switch on or
off) OBMC at the CU, PU, sub-block, any other block level. For example, video
encoder 20 and/or video decoder 30 may be configured to adaptively enable or disable
(e.g., switch on or off) OBMC for each inter-coded CU, PU, sub-block, or block. In
some examples, video encoder 20 and/or video decoder 30 may be configured to
adaptively enable or disable (e.g., switch on or off) OBMC implementing one or more
techniques described with respect to the ninth technique of this disclosure and one or
more techniques described with respect to the tenth technique of this disclosure. For
example, when the OBMC flag is signaled for a CUor PU, video decoder 30 may be
configured to perform (e.g., enable or apply) or not perform (e.g., disable or not apply)
OBMC based on the value of the OBMC flag. As another exmaple, when the OBMC
flag is not signaled for a CU or PU, video decoder 30 may be configured to perform
(e.g., enable or apply) or not perform (e.g., disable or not apply) OBMC using one or
more methods described above with respect to the tenth technique of this disclosure.
[0154] According to an twelfth technique of this disclosure, video encoder 20 and/or
video decoder 30 may be configured to perform OBMC on all motion compensated
(MC) block boundaries. In some examples video encoder 20 and/or video decoder 30
may be configured to perform OBMC on all motion compensated (MC) block
boundaries except the right and bottom boundaries of a block (e.g., a CU). In some
examples, video encoder 20 and/or video decoder 30 may be configured to perform

OBMC on luma and/or chroma components.

CA 02971633 2017-06~18

WO 2016/123068 " PCT/US2016/014857

[0155] In HEVC, a MC block corresponds to a PU. When a PU is coded with ATMVP
mode in HEVC, each sub-PU (4x4) is a MC block. To process CU, PU, or sub-PU
boundaries in a uniform fashion, video encoder 20 and/or video decoder 30 may be
configured to perform OBMC according to one or more techniques described herein at
the sub-block level for all MC block boundaries of the current block. In some
examples, video encoder 20 and/or video decoder 30 may be configured to set the sub-
block size equal to 4x4, as illustrated in FIG. 8.

[0156] In some examples, video encoder 20 and/or video decoder 30 may be configured
to perform OBMC on the current sub-block. In such examples, video encoder 20 and/or
video decoder 30 may be configured to derive one or more prediction blocks for the
current sub-block. For example, video encoder 20 and/or video decoder 30 may be
configured to derive four prediction blocks for the current sub-block using motion
vectors of four connected neighboring sub-blocks (e.g., four sub-blocks that share a
border with the current sub-block) if available. As another example, video encoder 20
and/or video decoder 30 may be configured to derive four prediction blocks for the
current sub-block using motion vectors of four connected neighboring sub-blocks (e.g.,
four sub-blocks that share a border with the current sub-block) if they are available and
are not identical to the current motion vector for the current block. Video encoder 20
and/or video decoder 30 may be configured to perform a weighted average on these
multiple prediction blocks (e.g., the four prediction blocks based on the four connected
neighboring sub-blocks) based on multiple motion vectors (e.g., one motion vector
associated with each of the four prediction blocks, or two motion vectors associated
with each of the four prediction blocks as described below). In some examples, video
encoder 20 and/or video decoder 30 may be configured to perform a weighted average
to generate the final prediction block of the current sub-block. For example, video
encoder 20 and/or video decoder 30 may be configured to use multiple motion vectors
to obtain multiple prediction samples, then apply a weighted average to the samples.
The final prediction block may refer to a block of predicted pixels for pixels in the
current sub-block. Note that the examples above in this paragraph apply to uni-
directional prediction, but in examples involving bi-directional prediction, the prediction
block in the examples above may be generated by using two motion vectors from each
of the four neighboring blocks.

[0157] In some examples, the prediction block based on one or more motion vectors of

a neighboring sub-block may be denoted as Pn, where N is an index to the neighboring

CA 02971633 2017-06~18

WO 2016/123068 3 PCT/US2016/014857

sub-block. Otherwise stated, N identifies whether the prediction block is the above,
below, left, or right neighboring sub-block. The prediction block based on one or more
motion vectors of the current sub-block may be denoted as P¢. In some examples, every
pixel of Py is added to the same pixel in P¢ (e.g., four rows and/or columns of Py are
added to Pc). In such examples, video encoder 20 and/or video decoder 30 may be
configured to use the weighting factors of {1/4, 1/8, 1/16, 1/32} for Py, and the
weighting factors of {3/4, 7/8, 15/16, 31/32} for Pc. To keep computational cost low
for small MC blocks (e.g., where the PU size is equal to 8x4, 4x8, or a PU is coded with
ATMVP mode), video encoder 20 and/or video decoder 30 may be configured to only
add two rows and/or columns of Py to Pc. In such examples, video encoder 20 and/or
video decoder 30 may be configured to apply weighting factors of {1/4, 1/8} for Py and
weighting factor {3/4, 7/8} for Pc. For each Py generated based on one or more motion
vectors of a vertical neighboring sub-block (e.g., top or bottom), video encoder 20
and/or video decoder 30 may be configured to add pixels in the same row of Py to P¢
with a same weighting factor. For each Py generated based on one or more motion
vectors of a horizontal neighboring sub-block (e.g., left or right), video encoder 20
and/or video decoder 30 may be configured to add pixels in the same column of Py to
Pc with a same weighting factor.

[0158] FIG. 9 is a block diagram illustrating an example video encoder 20 that may
implement the techniques described in this disclosure. Video encoder 20 may perform
intra- and inter-coding of video blocks within video slices. Intra-coding relies on spatial
prediction to reduce or remove spatial redundancy in video within a given video frame
or picture. Inter-coding relies on temporal prediction to reduce or remove temporal
redundancy in video within adjacent frames or pictures of a video sequence. Intra-mode
(I mode) may refer to any of several spatial based compression modes. Inter-modes,
such as uni-directional prediction (P mode) or bi-prediction (B mode), may refer to any
of several temporal-based compression modes.

[0159] In the example of FIG. 9, video encoder 20 includes a video data memory 33,
partitioning unit 35, prediction processing unit 41, summer 50, transform processing
unit 52, quantization unit 54, entropy encoding unit 56. Prediction processing unit 41
includes motion estimation unit (MEU) 42, motion compensation unit (MCU) 44, and
intra prediction unit 46. For video block reconstruction, video encoder 20 also includes

inverse quantization unit 58, inverse transform processing unit 60, summer 62, filter

CA 02971633 2017-06~18

WO 2016/123068 " PCT/US2016/014857

unit 64, and decoded picture buffer (DPB) 66. One or more components of FIG. 9 may
perform one or more techniques described in this disclosure.

[0160] As shown in FIG. 9, video encoder 20 receives video data and stores the
received video data in video data memory 33. Video data memory 33 may store video
data to be encoded by the components of video encoder 20. The video data stored in
video data memory 33 may be obtained, for example, from video source 18. DPB 66
may be a reference picture memory that stores reference video data for use in encoding
video data by video encoder 20, e.g., in intra- or inter-coding modes. Video data
memory 33 and DPB 66 may be formed by any of a variety of memory devices, such as
dynamic random access memory (DRAM), including synchronous DRAM (SDRAM),
magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory
devices. Video data memory 33 and DPB 66 may be provided by the same memory
device or separate memory devices. In various examples, video data memory 33 may
be on-chip with other components of video encoder 20, or off-chip relative to those
components.

[0161] Partitioning unit 35 retrieves the video data from video data memory 33 and
partitions the video data into video blocks. This partitioning may also include
partitioning into slices, tiles, or other larger units, as wells as video block partitioning,
e.g., according to a quadtree structure of LCUs and CUs. Video encoder 20 generally
illustrates the components that encode video blocks within a video slice to be encoded.
The slice may be divided into multiple video blocks (and possibly into sets of video
blocks referred to as tiles). Prediction processing unit 41 may select one of a plurality
of possible coding modes, such as one of a plurality of intra coding modes or one of a
plurality of inter coding modes, for the current video block based on error results (e.g.,
coding rate and the level of distortion). Prediction processing unit 41 may provide the
resulting intra- or inter-coded block to summer 50 to generate residual block data and to
summer 62 to reconstruct the encoded block for use as a reference picture.

[0162] Intra prediction unit 46 within prediction processing unit 41 may perform intra-
predictive coding of the current video block relative to one or more neighboring blocks
in the same frame or slice as the current block to be coded to provide spatial
compression. Motion estimation unit 42 and motion compensation unit 44 within
prediction processing unit 41 perform inter-predictive coding of the current video block
relative to one or more predictive blocks in one or more reference pictures to provide

temporal compression.

CA 02971633 2017-06~18

WO 2016/123068 45 PCT/US2016/014857

[0163] Motion estimation unit 42 may be configured to determine the inter-prediction
mode for a video slice according to a predetermined pattern for a video sequence. The
predetermined pattern may designate video slices in the sequence as P slices or B slices.
Motion estimation unit 42 and motion compensation unit 44 may be highly integrated,
but are illustrated separately for conceptual purposes. Motion estimation, performed by
motion estimation unit 42, is the process of generating motion vectors, which estimate
motion for video blocks. A motion vector, for example, may indicate the displacement
of a PU of a video block within a current video frame or picture relative to a predictive
block within a reference picture.

[0164] A predictive block is a block that is found to closely match the PU of the video
block to be coded in terms of pixel difference, which may be determined by sum of
absolute difference (SAD), sum of square difference (SSD), or other difference metrics.
In some examples, video encoder 20 may calculate values for sub-integer pixel positions
of reference pictures stored in DPB 66. For example, video encoder 20 may interpolate
values of one-quarter pixel positions, one-eighth pixel positions, or other fractional
pixel positions of the reference picture. Therefore, motion estimation unit 42 may
perform a motion search relative to the full pixel positions and fractional pixel positions
and output a motion vector with fractional pixel precision.

[0165] Motion estimation unit 42 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in DPB 66. Motion estimation unit
42 sends the calculated motion vector to entropy encoding unit 56 and motion
compensation unit 44.

[0166] Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation, possibly performing interpolations to sub-pixel precision. Upon
receiving the motion vector for the PU of the current video block, motion compensation
unit 44 may locate the predictive block to which the motion vector points in one of the
reference picture lists. Video encoder 20 forms a residual video block by subtracting
pixel values of the predictive block from the pixel values of the current video block
being coded, forming pixel difference values. The pixel difference values form residual

data for the block, and may include both luma and chroma difference components.

CA 02971633 2017-06~18

WO 2016/123068 46 PCT/US2016/014857

Summer 50 represents the component or components that perform this subtraction
operation. Motion compensation unit 44 may also generate syntax elements associated
with the video blocks and the video slice for use by video decoder 30 in decoding the
video blocks of the video slice.

[0167] After prediction processing unit 41 generates the predictive block for the current
video block, either via intra prediction or inter prediction, video encoder 20 forms a
residual video block by subtracting the predictive block from the current video block.
The residual video data in the residual block may be included in one or more TUs and
applied to transform processing unit 52. Transform processing unit 52 transforms the
residual video data into residual transform coefficients using a transform, such as a
discrete cosine transform (DCT) or a conceptually similar transform. Transform
processing unit 52 may convert the residual video data from a pixel domain to a
transform domain, such as a frequency domain.

[0168] Transform processing unit 52 may send the resulting transform coefficients to
quantization unit 54. Quantization unit 54 quantizes the transform coefYicients to
further reduce bit rate. The quantization process may reduce the bit depth associated
with some or all of the coefficients. The degree of quantization may be modified by
adjusting a quantization parameter. In some examples, quantization unit 54 may then
perform a scan of the matrix including the quantized transform coefficients.
Alternatively, entropy encoding unit 56 may perform the scan.

[0169] Following quantization, entropy encoding unit 56 entropy encodes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
interval partitioning entropy (PIPE) coding or another entropy encoding methodology or
technique. Following the entropy encoding by entropy encoding unit 56, the encoded
bitstream may be transmitted to video decoder 30, or archived for later transmission or
retrieval by video decoder 30. Entropy encoding unit 56 may also entropy encode the
motion vectors and the other syntax elements for the current video slice being coded.
[0170] Inverse quantization unit 58 and inverse transform processing unit 60 apply
inverse quantization and inverse transformation, respectively, to reconstruct the residual
block in the pixel domain for later use as a reference block of a reference picture.
Motion compensation unit 44 may calculate a reference block by adding the residual

block to a predictive block of one of the reference pictures within one of the reference

CA 02971633 2017-06~18

WO 2016/123068 " PCT/US2016/014857

picture lists. Motion compensation unit 44 may also apply one or more interpolation
filters to the reconstructed residual block to calculate sub-integer pixel values for use in
motion estimation. Summer 62 adds the reconstructed residual block to the motion
compensated prediction block produced by motion compensation unit 44 to produce a
reconstructed block.

[0171] Filter unit 64 filters the reconstructed block (e.g. the output of summer 62) and
stores the filtered reconstructed block in DPB 66 for uses as a reference block. The
reference block may be used by motion estimation unit 42 and motion compensation
unit 44 as a reference block to inter-predict a block in a subsequent video frame or
picture. Filter unit 64 may apply one or more of deblocking filtering, sample adaptive
offset (SAO) filtering, adaptive loop filtering (ALF), or other types of loop filtering.
Filter unit 64 may apply deblocking filtering to filter block boundaries to remove
blockiness artifacts from reconstructed video and may apply other types of filtering to
improve overall coding quality. Additional loop filters (in loop or post loop) may also
be used.

[0172] Video encoder 20 represents an example of a video encoder configured to
perform sub-block based OBMC, sub-PU based OBMC, CU-boundary based OBMC, or
any combination thereof.

[0173] FIG. 10 is a block diagram illustrating an example video decoder 30 that may
implement the techniques described in this disclosure. In the example of FIG. 10, video
decoder 30 includes video data memory 78, entropy decoding unit 80, prediction
processing unit 81, inverse quantization unit 86, inverse transform processing unit 88,
summer 90, and DPB 94. Prediction processing unit 81 includes motion compensation
unit 82 and intra prediction unit 84. Video decoder 30 may, in some examples, perform
a decoding pass generally reciprocal to the encoding pass described with respect to
video encoder 20 from FIG. 9. One or more components of FIG. 10 may perform one
or more techniques described in this disclosure.

[0174] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Video decoder 30 stores the received encoded video
bitstream in video data memory 78. Video data memory 78 may store video data, such
as an encoded video bitstream, to be decoded by the components of video decoder 30.
The video data stored in video data memory 78 may be obtained, for example, via link

16, from storage device 26, or from a local video source, such as a camera, or by

CA 02971633 2017-06~18

WO 2016/123068 18 PCT/US2016/014857

accessing physical data storage media. Video data memory 78 may form a coded
picture buffer (CPB) that stores encoded video data from an encoded video bitstream.
DPB 94 may be a reference picture memory that stores reference video data for use in
decoding video data by video decoder 30, e.g., in intra- or inter-coding modes. Video
data memory 78 and DPB 94 may be formed by any of a variety of memory devices,
such as DRAM, SDRAM, MRAM, RRAM, or other types of memory devices. Video
data memory 78 and DPB 94 may be provided by the same memory device or separate
memory devices. In various examples, video data memory 78 may be on-chip with
other components of video decoder 30, or off-chip relative to those components.

[0175] Entropy decoding unit 80 of video decoder 30 entropy decodes the video data
stored in video data memory 78 to generate quantized coefficients, motion vectors, and
other syntax elements. Entropy decoding unit 80 forwards the motion vectors and other
syntax elements to prediction processing unit 81. Video decoder 30 may receive the
syntax elements at the video slice level and/or the video block level.

[0176] When the video slice is coded as an intra-coded (I) slice, intra prediction unit 84
of prediction processing unit 81 may generate prediction data for a video block of the
current video slice based on a signaled intra prediction mode and data from previously
decoded blocks of the current frame or picture. When the video frame is coded as an
inter-coded (i.e., B or P) slice, motion compensation unit 82 of prediction processing
unit 81 produces predictive blocks for a video block of the current video slice based on
the motion vectors and other syntax elements received from entropy decoding unit 80.
The predictive blocks may be produced from one of the reference pictures within one of
the reference picture lists. Video decoder 30 may construct the reference frame lists,
List 0 and List 1, using default construction techniques based on reference pictures
stored in DPB 94.

[0177] Motion compensation unit 82 determines prediction information for a video
block of the current video slice by parsing the motion vectors and other syntax elements,
and uses the prediction information to produce the predictive blocks for the current
video block being decoded. For example, motion compensation unit 82 uses some of
the received syntax elements to determine a prediction mode (e.g., intra- or inter-
prediction) used to code the video blocks of the video slice, an inter-prediction slice
type (e.g., B slice or P slice), construction information for one or more of the reference

picture lists for the slice, motion vectors for each inter-encoded video block of the slice,

CA 02971633 2017-06~18

WO 2016/123068 49 PCT/US2016/014857

inter-prediction status for each inter-coded video block of the slice, and other
information to decode the video blocks in the current video slice.

[0178] Motion compensation unit 82 may also perform interpolation based on
interpolation filters. Motion compensation unit 82 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values
for sub-integer pixels of reference blocks. In this case, motion compensation unit 82
may determine the interpolation filters used by video encoder 20 from the received
syntax elements and use the interpolation filters to produce predictive blocks.

[0179] Inverse quantization unit 86 inverse quantizes, i.e., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
80. The inverse quantization process may include use of a quantization parameter
calculated by video encoder 20 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be
applied. Inverse transform processing unit 88 applies an inverse transform, e.g., an
inverse DCT, an inverse integer transform, or a conceptually similar inverse transform
process, to the transform coefficients in order to produce residual blocks in the pixel
domain.

[0180] After prediction processing unit generates the predictive block for the current
video block using, for example, intra or inter prediction, video decoder 30 forms a
reconstructed video block by summing the residual blocks from inverse transform
processing unit 88 with the corresponding predictive blocks generated by motion
compensation unit 82. Summer 90 represents the component or components that
perform this summation operation. Filter unit 92 filters the reconstructed video block
using, for example, one or more of deblocking filtering, SAO filtering, ALF filtering, or
other types of filtering. Other loop filters (either in the coding loop or after the coding
loop) may also be used to smooth pixel transitions or otherwise improve the video
quality. The decoded video blocks in a given frame or picture are then stored in DPB
94, which stores reference pictures used for subsequent motion compensation. DPB 94
may be part of or separate from additional memory that stores decoded video for later
presentation on a display device, such as display device 32 of FIG. 1.

[0181] Video decoder 30 represents an example of a video decoder configured to
perform Sub-block based OBMC, Sub-PU based OBMC, CU-boundary based OBMC,
or any combination thereof. For example, video decoder 30 may be configured to

receiving a first block of video data that is, in this example, a sub-block of a prediction

CA 02971633 2017-06~18

WO 2016/123068 s PCT/US2016/014857
unit. Video decoder 30 may be configured to receive one or more blocks of video data
that neighbor the first block of video data, determine at least one motion vector of at
least one of the one or more blocks of video data that neighbor the first block of video
data, and decode, using overlapped block motion compensation, the first block of video
data based at least in part on the at least one motion vector of the at least one of the one
or more blocks that neighbor the first block of video data.

[0182] FIG. 11 is a flowchart illustrating an example process for decoding video data
consistent with techniques of this disclosure. The process of FIG. 11 is generally
described as being performed by video decoder 30 for purposes of illustration, although
a variety of other processors may also carry out the process shown in FIG. 11. In some
examples, video data memory 78, entropy decoding unit 80, and/or prediction
processing unit 81 may perform one or more processes shown in FIG. 11.

[0183] In the example of FIG. 11, video decoder 30 may be configured to receive a first
block of video data (200). In some examples, the first block of video data is a sub-block
of a prediction unit. In some examples, the first block of video data is a square sub-
block or a non-square sub-block of a prediction unit.

[0184] Video decoder 30 may be configured to receive one or more blocks of video data
that neighbor the first block of video data (202). In some examples, the one or more
blocks of video data that neighbor the first block of video are square sub-blocks, non-
square sub-blocks, or a combination of at least one square sub-block and at least one
non-square sub-block.

[0185] Video decoder 30 may be configured to determine motion information of at least
one of the one or more blocks of video data that neighbor the first block of video data
(204). In some examples, video decoder 30 may be configured to determine the at least
one motion vector of the at least one of the one or more blocks of video data that
neighbor the first block of video data by decoding the at least one block of the one or
more blocks of video data that neighbor the first block of video data. Video decoder 30
may be configured to decode, using overlapped block motion compensation, the first
block of video data based at least in part on the motion information of the at least one of
the one or more blocks that neighbor the first block of video data (2006).

[0186] In some examples, video decoder 30 may be configured to determine whether at
least one of the one or more blocks of video data that neighbor the first block of video

data is not decoded. In such examples, video decoder 30 may be configured to decode

CA 02971633 2017-06~18

WO 2016/123068 s1 PCT/US2016/014857
the first block of video data without using motion information corresponding to the at
least one block of the one or more blocks determined to be not decoded.

[0187] In some examples, video decoder 30 may be configured to generate a first
prediction block for the first block of video data. The first prediction block may include
a value for each pixel position for the first block of video data. Video decoder 30 may
be configured to generate a neighbor prediction block for at least one of the one or more
blocks of video data that neighbor the first block of video. The neighbor prediction
block may include a value for each pixel position for the at least one of the one or more
blocks of video data that neighbor the first block of video. Video decoder 30 may be
configured to modify one or more values of the first prediction block based on one or
more values of the neighbor prediction block to generate a modified first prediction
block. Video decoder 30 may be configured to decode the first block of video data
using the modified first prediction block.

[0188] In some examples, video decoder 30 may be configured to assign a first
weighted value to one or more values of the first prediction block. Video decoder 30
may be configured to assign a second weighted value to one or more values of the
neighbor prediction block. Video decoder 30 may be configured to modify the one or
more values of the first prediction block based on the first weighted value and the
second weighted value to generate the modified first prediction block.

[0189] In some examples, video decoder 30 may be configured to generate a first
prediction block for the first block of video data. The first prediction block may include
a value for each pixel position for the first block of video data. Video decoder 30 may
be configured to assign, based on a size of the first block of video data, one or more
weighted values to one or more values of the first prediction block. Video decoder 30
may be configured to decode the first block of video data using the one or more
weighted values assigned to the one or more values of the first prediction block. In such
examples, video decoder 30 may be configured to generate a first neighbor prediction
block based on the motion information of at least one of the one or more blocks of video
data that neighbor the first block of video data. Video decoder 30 may be configured to
assign, based on a size of the first neighbor block, one or more weighted values to one
or more values of the first neighbor prediction block. Video decoder 30 may be
configured to decode the first block of video data using the one or more weighted values

assigned to the one or more values of the first neighbor prediction block.

CA 02971633 2017-06~18

WO 2016/123068 5 PCT/US2016/014857
[0190] In some examples, video decoder 30 may be configured to modify one or more
values of the first prediction block based on the one or more weighted values assigned
to the one or more values of the first neighbor prediction block to generate a modified
first prediction block, and decode the first block of video data using the modified first
prediction block. In some examples, video decoder 30 may be configured to generate a
second neighbor prediction block based on the motion information of at least one of the
one or more blocks of video data that neighbor the first block of video data. In such
examples, video decoder 30 may be configured to assign, based on a size of the second
neighbor block, one or more weighted values to one or more values of the second
neighbor prediction block. Video decoder 30 may be configured to modify one or more
values of the first and prediction blocks based on the one or more weighted values
assigned to the one or more values of the first and second neighbor prediction blocks to
generate the modified first prediction block.

[0191] In some examples, video decoder 30 may be configured to receive a syntax
element having a value representative of whether the first block of video data is encoded
according to an overlapped block motion compensation mode. For example, the syntax
element may be received in a bitstream generated by a video encoder (e.g., video
encoder 20). Video decoder 30 may be configured to determine that the first block of
video data is encoded according to the overlapped block motion compensation mode
based on the value of the syntax element.

[0192] FIG. 12 is a flowchart illustrating an example process for encoding video data
consistent with techniques of this disclosure. The process of FIG. 12 is generally
described as being performed by a video coder for purposes of illustration, although a
variety of other processors may also carry out the process shown in FIG. 12. As used
herein, a video coder may refer to a video encoder and/or a video decoder (e.g., video
encoder 20 and/or a video decoder 30) In some examples, video data memory 33,
partitioning unit 35, prediction processing unit 41, and/or entropy encoding unit 56 may
perform one or more processes shown in FIG. 12. In some examples, video data
memory 78, entropy decoding unit 80, and/or prediction processing unit 81 may
perform one or more processes shown in FIG. 12.

[0193] In the example of FIG. 12, a video coder may be configured to store a first block
of video data in a memory (220). In some examples, the one or more blocks of video
data that neighbor the first block of video are square sub-blocks, non-square sub-blocks,

or a combination of at least one square sub-block and at least one non-square sub-block.

CA 02971633 2017-06~18

WO 2016/123068 53 PCT/US2016/014857
[0194] The video coder may be configured to store one or more blocks of video data
that neighbor the first block of video data in the memory (222). In some examples, the
one or more blocks of video data that neighbor the first block of video are square sub-
blocks, non-square sub-blocks, or a combination of at least one square sub-block and at
least one non-square sub-block.

[0195] The video coder may be configured to determine motion information of at least
one of the one or more blocks of video data that neighbor the first block of video data
(224). In some examples, the video coder may be configured to determine the at least
one motion vector of the at least one of the one or more blocks of video data that
neighbor the first block of video data by coding the at least one block of the one or more
blocks of video data that neighbor the first block of video data. In some examples, the
video coder may be configured to code, using overlapped block motion compensation,
the first block of video data based at least in part on the motion information of the at
least one of the one or more blocks that neighbor the first block of video data (226).
[0196] In some examples, the video coder may be configured to determine whether at
least one of the one or more blocks of video data that neighbor the first block of video
data is not coded. In such examples, the video coder may be configured to code the first
block of video data without using motion information corresponding to the at least one
block of the one or more blocks determined to be not coded.

[0197] In some examples, the video coder may be configured to generate a first
prediction block for the first block of video data. The first prediction block may include
a value for each pixel position for the first block of video data. The video coder may be
configured to generate a neighbor prediction block for at least one of the one or more
blocks of video data that neighbor the first block of video. The neighbor prediction
block may include a value for each pixel position for the at least one of the one or more
blocks of video data that neighbor the first block of video. The video coder may be
configured to modify one or more values of the first prediction block based on one or
more values of the neighbor prediction block to generate a modified first prediction
block. The video coder may be configured to code the first block of video data using
the modified first prediction block.

[0198] In some examples, the video coder may be configured to assign a first weighted
value to one or more values of the first prediction block. The video coder may be
configured to assign a second weighted value to one or more values of the neighbor

prediction block. The video coder may be configured to modify the one or more values

CA 02971633 2017-06~18

WO 2016/123068 s PCT/US2016/014857
of the first prediction block based on the first weighted value and the second weighted
value to generate the modified first prediction block.

[0199] In some examples, the video coder may be configured to generate a first
prediction block for the first block of video data. The first prediction block may include
a value for each pixel position for the first block of video data. The video coder may be
configured to assign, based on a size of the first block of video data, one or more
weighted values to one or more values of the first prediction block. The video coder
may be configured to code the first block of video data using the one or more weighted
values assigned to the one or more values of the first prediction block. In such
examples, the video coder may be configured to generate a first neighbor prediction
block based on the motion information of at least one of the one or more blocks of video
data that neighbor the first block of video data. The video coder may be configured to
assign, based on a size of the first neighbor block, one or more weighted values to one
or more values of the first neighbor prediction block. The video coder may be
configured to code the first block of video data using the one or more weighted values
assigned to the one or more values of the first neighbor prediction block.

[0200] In some examples, the video coder may be configured to modify one or more
values of the first prediction block based on the one or more weighted values assigned
to the one or more values of the first neighbor prediction block to generate a modified
first prediction block, and code the first block of video data using the modified first
prediction block. In some examples, the video coder may be configured to generate a
second neighbor prediction block based on the motion information of at least one of the
one or more blocks of video data that neighbor the first block of video data. In such
examples, the video coder may be configured to assign, based on a size of the second
neighbor block, one or more weighted values to one or more values of the second
neighbor prediction block. The video coder may be configured to modify one or more
values of the first and prediction blocks based on the one or more weighted values
assigned to the one or more values of the first and second neighbor prediction blocks to
generate the modified first prediction block.

[0201] In some examples, the video coder may be configured to receive a syntax
element having a value representative of whether the first block of video data is encoded
according to an overlapped block motion compensation mode. For example, the syntax
element may be received in a bitstream generated by a video encoder (e.g., video

encoder 20). The video coder may be configured to determine that the first block of

CA 02971633 2017-06~18

WO 2016/123068 s PCT/US2016/014857
video data is encoded according to the overlapped block motion compensation mode
based on the value of the syntax element.

[0202] In some examples, the video coder may be configured to generate a syntax
element having a value representative of whether the first block of video data is encoded
according to an overlapped block motion compensation mode. In such examples, the
video coder may be configured to transmit the syntax element in a bitstream, which may
be received by a video decoder (e.g., video decoder 30).

[0203] It should be understood that all of the techniques described herein may be used
individually or in combination. For example, video encoder 20 and/or one or more
components thereof and video decoder 30 and/or one or more components thereof may
perform the techniques described in this disclosure in any combination. As another
example, the techniques described herein may be performed by video encoder 20 (FIGS.
1 and 9) and/or video decoder 30 (FIGS. 1 and 10), both of which may be generally
referred to as a video coder. Likewise, video coding may refer to video encoding or
video decoding, as applicable.

[0204] It is to be recognized that depending on the example, certain acts or events of
any of the techniques described herein can be performed in a different sequence, may be
added, merged, or left out altogether (e.g., not all described acts or events are necessary
for the practice of the techniques). Moreover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded processing, interrupt
processing, or multiple processors, rather than sequentially. In addition, while certain
aspects of this disclosure are described as being performed by a single module or unit
for purposes of clarity, it should be understood that the techniques of this disclosure may
be performed by a combination of units or modules associated with a video coder.
[0205] Certain aspects of this disclosure have been described with respect to one or
more video coding standards—whether released, under development, or the like—for
purposes of illustration. However, the techniques described in this disclosure may be
useful for other video coding processes, including other standard or proprietary video
coding processes not yet developed.

[0206] In accordance with this disclosure, the term “or” may be interrupted as “and/or”
where context does not dictate otherwise. Additionally, while phrases such as “one or
more” or “at least one” or the like may have been used for some features disclosed
herein but not others; the features for which such language was not used may be

interpreted to have such a meaning implied where context does not dictate otherwise.

84019466
56

[0207] While particular combinations of various aspects of the techniques are described above, these
combinations are provided merely to illustrate examples of the techniques described in this disclosure.
Accordingly, the techniques of this disclosure should not be limited to these example combinations
and may encompass any conceivable combination of the various aspects of the techniques described in
this disclosure.

[0208] In one or more examples, the functions described may be implemented in hardware, software,
firmware, or any combination thereof. If implemented in software, the functions may be stored on or
transmitted over, as one or more instructions or code, a computer-readable medium and executed by a
hardware-based processing unit. Computer-readable media may include computer-readable storage
media, which corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to another, e.g.,
according to a communication protocol. In this manner, computer-readable media generally may
correspond to (1) tangible computer-readable storage media which is non-transitory or (2) a
communication medium such as a signal or carrier wave. Data storage media may be any available
media that can be accessed by one or more computers or one or more processors to retrieve
instructions, code and/or data structures for implementation of the techniques described in this
disclosure. A computer program product may include a computer-readable medium.

[0209] By way of example, and not limitation, such computer-readable storage media can comprise
RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage, or other
magnetic storage devices, flash memory, or any other medium that can be used to store desired
program code in the form of instructions or data structures and that can be accessed by a

computer. Also, any connection is properly termed a computer-readable medium. For example, if
nstructions are transmitted from a website, server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio,
and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies
such as infrared, radio, and microwave are included in the definition of medium. It should be
understood, however, that computer-readable storage media and data storage media do not include
connections, carrier waves, signals, or other transient media, but are instead directed to non-transient,
tangible storage media. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical
disc, digital versatile disc (DVD), floppy disk and Blu-ray™ disc, where disks usually reproduce data
magnetically,

Date Regue/Date Received 2023-03-09

CA 02971633 2017-06~18

WO 2016/123068 57 PCT/US2016/014857
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0210] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programnmable gate arrays (FPGAS), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0211] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0212] Various examples have been described herein. Any combination of the
described systems, operations, functions, or examples is contemplated. These and other

examples are within the scope of the following claims.

84019466
58

CLAIMS:

L. A method of decoding video data, the method comprising:

receiving a first coding unit of video data, wherein the first coding unity of video data
comprises a plurality of sub-blocks including a first sub-block;

receiving one or more sub-blocks of a second coding unit of video data that neighbor
the first sub-block of video data;

receiving a syntax element having a value representative of whether the first sub-block
of video data is encoded according to an overlapped block motion compensation mode,
wherein the value of the syntax element is a first value or a second value, wherein the first
value indicates that the first sub-block of video data is encoded according to the overlapped
block motion compensation mode, and wherein the second value indicates that the first sub-
block of video data is not encoded according to the overlapped block motion compensation
mode;

determining that the first sub-block of video data is encoded according to the
overlapped block motion compensation mode based on the value of the syntax element being
equal to the first value;

determining motion information of at least one of the one or more sub-blocks of video
data that neighbor the first sub-block of video data; and

decoding, using overlapped block motion compensation, the sub-first block of video
data based at least in part on the motion information of the at least one of the one or more sub-
blocks that neighbor the first sub-block of video data.

2. The method of claim 1, further comprising:

determining whether at least one of the one or more sub-blocks of video data that
neighbor the first sub-block of video data is not decoded; and

decoding the first sub-block of video data without using motion information
corresponding to the at least one sub-block of the one or more blocks determined to be not
decoded.

Date Regue/Date Received 2023-03-09

84019466
59

3. The method of claim 1, further comprising:

determining the motion information of the at least one of the one or more sub-blocks
of video data that neighbor the first sub-block of video data by decoding the at least one sub-
block of the one or more sub-blocks of video data that neighbor the first sub-block of video
data.

4. The method of claim 1, further comprising:

generating a first prediction block for the first sub-block of video data, wherein the
first prediction block includes a value for each pixel position for the first sub-block of video
data;

assigning, based on a size of the first block of video data, one or more weighted values
to one or more values of the first prediction block; and

decoding the first sub-block of video data using the one or more weighted values

assigned to the one or more values of the first prediction block.

5. The method of claim 4, further comprising:
generating a first neighbor prediction block based on the motion information of at least
one of the one or more sub-blocks of video data that neighbor the first sub-block of video
data;
assigning, based on a size of the first neighbor sub-block, one or more weighted values
to one or more values of the first neighbor prediction block; and
decoding the first sub-block of video data using the one or more weighted values

assigned to the one or more values of the first neighbor prediction block.

6. The method of claim 5, further comprising:

modifying, to generate a modified first prediction block, one or more values of the first
prediction block based on the one or more weighted values assigned to the one or more values
of the first neighbor prediction block; and

decoding the first sub-block of video data using the modified first prediction block.

Date Regue/Date Received 2023-03-09

84019466
60

7. The method of claim 5, further comprising:

generating a second neighbor prediction block based on the motion information of at
least one of the one or more sub-blocks of video data that neighbor the first sub-block of video
data;

assigning, based on a size of the second neighbor sub-block, one or more weighted

values to one or more values of the second neighbor prediction block; and

modifying, to generate the modified first prediction block, one or more values of the
first and prediction blocks based on the one or more weighted values assigned to the one or

more values of the first and second neighbor prediction sub-blocks.

8. A device for coding video data, the device comprising:
amemory configured to store the video data; and
a video coder in communication with the memory, wherein the video coder is
configured to:
store a first coding unit of video data in the memory, wherein the first coding
unit of video data comprises a plurality of sub-blocks including a first sub-block;
store one or more sub-blocks of a second coding unit of video data that
neighbor the first block of video data in the memory;
receive a syntax element having a value representative of whether the first sub-
block of video data is coded according to an overlapped block motion compensation
mode, wherein the value of the syntax element is a first value or a second value,
wherein the first value indicates that the first sub-block of video data is coded
according to the overlapped block motion compensation mode, and wherein the
second value indicates that the first sub-block of video data is not coded according to
the overlapped block motion compensation mode;
determine that the sub-first block of video data is coded according to the
overlapped block motion compensation mode based on the value of the syntax element
being equal to the first value;
determine motion information of at least one of the one or more sub-blocks of

video data that neighbor the first sub-block of video data; and

Date Regue/Date Received 2023-03-09

84019466
61

code, using overlapped block motion compensation, the first sub-block of
video data based at least in part on the motion information of the at least one of the

one or more sub-blocks that neighbor the first sub-block of video data.

9. The device of claim 8, wherein the video coder is further configured to:

determine whether at least one of the one or more sub-blocks of video data that
neighbor the first sub-block of video data is not coded; and

code the first sub-block of video data without using motion information corresponding

to the at least one sub-block of the one or more blocks determined to be not coded.

10. The device of claim 8, wherein the video coder is further configured to:

determine the motion information of the at least one of the one or more sub-blocks of
video data that neighbor the first sub-block of video data by coding the at least one sub-block
of the one or more sub-blocks of video data that neighbor the first sub-block of video data.

11. The device of claim 8, wherein the video coder is further configured to:

generate a first prediction block for the first sub-block of video data, wherein the first
prediction block includes a value for each pixel position for the first sub-block of video data;

assign, based on a size of the first block of video data, one or more weighted values to
one or more values of the first prediction block; and

code the first sub-block of video data using the one or more weighted values assigned

to the one or more values of the first prediction block.

12. The device of claim 11, wherein the video coder is further configured to:

generate a first neighbor prediction block based on the motion information of at least
one of the one or more sub-blocks of video data that neighbor the first block of video data;

assign, based on a size of the first neighbor sub-block, one or more weighted values to
one or more values of the first neighbor prediction block; and

code the first sub-block of video data using the one or more weighted values assigned

to the one or more values of the first neighbor prediction block.

Date Regue/Date Received 2023-03-09

84019466

62

13. The device of claim 12, wherein the video coder is further configured to:

modify, to generate a modified first prediction block, one or more values of the first
prediction block based on the one or more weighted values assigned to the one or more values
of the first neighbor prediction block; and

code the first sub-block of video data using the modified first prediction block.

14. The device of claim 12, wherein the video coder is further configured to:

generate a second neighbor prediction block based on the motion information of at
least one of the one or more sub-blocks of video data that neighbor the first sub-block of
video;

assign, based on a size of the second neighbor sub-block, one or more weighted values
to one or more values of the second neighbor prediction block; and

modify, to generate the modified first prediction block, one or more values of the first
and prediction blocks based on the one or more weighted values assigned to the one or more

values of the first and second neighbor prediction sub-blocks.

15. An apparatus for coding video data, the apparatus comprising:

means for receiving a first coding unit of video data, wherein the first coding unit of
video data comprises a plurality of sub-blocks including a first sub-block;

means for receiving one or more sub-blocks of a second coding unit video data that
neighbor the first sub-block of video data;

means for receiving a syntax element having a value representative of whether the first
sub-block of video data is coded according to an overlapped block motion compensation
mode, wherein the value of the syntax element is a first value or a second value, wherein the
first value indicates that the first sub-block of video data is coded according to the overlapped
block motion compensation mode, and wherein the second value indicates that the first sub-
block of video data is not coded according to the overlapped block motion compensation

mode;

Date Regue/Date Received 2023-03-09

84019466
63

means for determining that the first sub-block of video data is coded according to the
overlapped block motion compensation mode based on the value of the syntax element being
equal to the first value;

means for determining motion information of at least one of the one or more sub-
blocks of video data that neighbor the first sub-block of video data; and

means for coding, using overlapped block motion compensation, the first sub-block of
video data based at least in part on the motion information of the at least one of the one or

more sub-blocks that neighbor the first sub-block of video data.

16. The apparatus of claim 15, further comprising:

means for determining whether at least one of the one or more sub-blocks of video
data that neighbor the first sub-block of video data is not coded; and

means for coding the first sub-block of video data without using motion information
corresponding to the at least one block of the one or more sub-blocks determined to be not

coded.

17. The apparatus of claim 15, further comprising:

means for determining the motion information of the at least one of the one or more
sub-blocks of video data that neighbor the first sub-block of video data by coding the at least
one sub-block of the one or more blocks of video data that neighbor the first sub-block of
video data.

18. The apparatus of claim 15, further comprising:

means for generating a first prediction block for the first sub-block of video data,
wherein the first prediction block includes a value for each pixel position for the first sub-
block of video data;

means for assigning, based on a size of the first block of video data, one or more
weighted values to one or more values of the first prediction block; and

means for coding the first sub-block of video data using the one or more weighted

values assigned to the one or more values of the first prediction block.

Date Regue/Date Received 2023-03-09

84019466

64

19. The apparatus of claim 18, further comprising:

means for generating a first neighbor prediction block based on the motion
information of at least one of the one or more sub-blocks of video data that neighbor the first
sub-block of video;

means for assigning, based on a size of the first neighbor sub-block, one or more
weighted values to one or more values of the first neighbor prediction block; and

means for coding the first sub-block of video data using the one or more weighted

values assigned to the one or more values of the first neighbor prediction block.

20. The apparatus of claim 19, further comprising:

means for modifying, to generate a modified first prediction block, one or more values
of the first prediction block based on the one or more weighted values assigned to the one or
more values of the first neighbor prediction block; and

means for coding the first sub-block of video data using the modified first prediction
block.

21. A non-transitory computer-readable storage medium having instructions stored that,
when executed, cause one or more processors to:

store a first coding unit of video data in a memory, wherein the first coding unit of
video data comprises a plurality of sub-blocks including a first sub-block;

store one or more sub-blocks of a second coding unit of video data that neighbor the
first sub-block of video data in the memory;

receive a syntax element having a value representative of whether the first sub-block
of video data is coded according to an overlapped block motion compensation mode, wherein
the value of the syntax element is a first value or a second value, wherein the first value
indicates that the first sub-block of video data is coded according to the overlapped block
motion compensation mode, and wherein the second value indicates that the first sub-block of

video data is not coded according to the overlapped block motion compensation mode;

Date Regue/Date Received 2023-03-09

84019466
65

determine that the first sub-block of video data is coded according to the overlapped
block motion compensation mode based on the value of the syntax element being equal to the
first value;

determine motion information of at least one of the one or more sub-blocks of video
data that neighbor the first sub-block of video data; and

code, using overlapped block motion compensation, the first sub-block of video data
based at least in part on the motion information of the at least one of the one or more blocks

that neighbor the first sub-block of video data.

22. The non-transitory computer-readable storage medium of claim 21, wherein the
instructions stored thereon, when executed, cause the one or more processors to:

determine whether at least one of the one or more sub-blocks of video data that
neighbor the first sub-block of video data is not coded; and

code the first sub-block of video data without using motion information corresponding

to the at least one sub-block of the one or more blocks determined to be not coded.

23. The non-transitory computer-readable storage medium of claim 21, wherein the
instructions stored thereon, when executed, cause the one or more processors to:

determine the motion information of the at least one of the one or more sub-blocks of
video data that neighbor the first sub-block of video data by coding the at least one sub-block
of the one or more sub-blocks of video data that neighbor the first sub-block of video data.

24. The non-transitory computer-readable storage medium of claim 21, wherein the
instructions stored thereon, when executed, cause the one or more processors to:

generate a first prediction block for the first sub-block of video data, wherein the first
prediction block includes a value for each pixel position for the first sub-block of video data;

assign, based on a size of the first block of video data, one or more weighted values to
one or more values of the first prediction block; and

code the first sub-block of video data using the one or more weighted values assigned

to the one or more values of the first prediction block.

Date Regue/Date Received 2023-03-09

84019466

66

25. The non-transitory computer-readable storage medium of claim 24, wherein the
instructions stored thereon, when executed, cause the one or more processors to:

generate a first neighbor prediction block based on the motion information of at least
one of the one or more sub-blocks of video data that neighbor the first sub-block of video;

assign, based on a size of the first neighbor sub-block, one or more weighted values to
one or more values of the first neighbor prediction block; and

code the first sub-block of video data using the one or more weighted values assigned

to the one or more values of the first neighbor prediction block.

26. The non-transitory computer-readable storage medium of claim 25, wherein the
instructions stored thereon, when executed, cause the one or more processors to:

modify, to generate a modified first prediction block, one or more values of the first
prediction block based on the one or more weighted values assigned to the one or more values
of the first neighbor prediction block; and

code the first sub-block of video data using the modified first prediction block.

27. The method of claim 1, the method being executable on a wireless communication
device, wherein the wireless communication device comprises:

areceiver configured to receive the first sub-block of video data and the syntax
element;

a memory configured to store the first sub-block of video data; and

a processor configured to execute instructions to process the first sub-block of video

data stored in the memory.
28. The method of claim 27, wherein the wireless communication device is a telephone,

and the first sub-block of video data and the syntax element are received by the receiver and

demodulated according to a communication standard.

Date Regue/Date Received 2023-03-09

84019466
67
29. The device of claim 8 wherein the device is a wireless communication device, further
comprising:
areceiver configured to receive the first sub-block of video data and the syntax

element.
30. The device of claim 29, wherein the wireless communication device is a telephone,

and the first sub-block of video data and the syntax element are received by the receiver and

demodulated according to a communication standard.

Date Regue/Date Received 2023-03-09

WO 2016/123068

SOURCE DEVICE
12

VIDEO SOURCE
18

l

VIDEO
ENCODER
20

l

OUTPUT
INTERFACE
22

CA 02971633 2017-06-19

Page 1/12

— e — — —

r
| STORAGE |
- DEVICE L
| 2 |

— ——— |

PCT/US2016/014857

DESTINATION DEVICE
14

DISPLAY DEVICE
32

T

VIDEO
DECODER
30

T

INPUT INTERFACE

vy

FIG. 1

28

CA 02971633 2017-06-19

PCT/US2016/014857

WO 2016/123068

Page 2/12

NZXyU 14Vvd

nd

ond

NZXIU 1YVd

¢ Old

NXN 1¥Vd

ind

end nd

NZXN LdVvd

ind ond

lNnd ond

QUXNZ L¥vd

ind

NUXNZ 1yVd

ond

ind

NXNZ 1dvd

ond

NZXNZ 1yvd

ind

ond

ond

CA 02971633 2017-06-19

WO 2016/123068 PCT/US2016/014857
Page 3/12
-
s
o
~ =
°° 0]
o LL
D
o
< - o
-
s
o
1 ™
|
il ©
A T~a T
K= AN LL
T = S
|| o AN
| ~<
| S~
| ~
|
<t - o|m

CA 02971633 2017-06-19

WO 2016/123068 PCT/US2016/014857

Page 4/12
|
PUO PU1
i
|
]
T [#-~-_
) T
i | \\
\‘ \
unavailable] T \
LCu |
FIG. 4A
collocated temporal current temporal
distance distance

Collocated MV

colocated colocated current current
reference picture picture reference
picture picture

FIG. 4B

CA 02971633 2017-06-19

PCT/US2016/014857

WO 2016/123068

Page 5/12

(¢ se pajesawnud
%20|q ““2'1) ¥20|q gxg
yinoj ayj 1o} pasn
s.AIN BunioqybiaN

(¢ se pajesawnud
%20|q ““2'1) ¥20|q gxg
P41y} 8y) Joj pasn
s.AIN BunioqybiaN

(z se pajesawnud
%20|q ““2'1) ¥20|q gxg
puodas 9y} 10} pasn

s.AIN BunioqybiaN

(1L se pajesawnud
¥20iq “a°1) ¥20|q
§Xg }sli} 3y} Joj pasn
s.AIN BunioqybiaN

N

G 'Old

€9¢'H Ul DING0

a|qe|ieAe jou

se paJjapisuon—>

a|qe|ieAe jou
se palapisuo)

7

%

9l

)o0|qoioew \

juaLIng

\\"‘%
N

PCT/US2016/014857

WO 2016/123068

Page 6 /12

e o
%@NM %M@M@
g7 7
wr vy
%%%%%% %%%%%&
4%, %%%%@
viviviv|v|v|v|v
glalalalalalalsg

g9 'Ol
W@WW 7v|a
%%%\&% V|8
\M\%\x 7|V |9
. 7|V |4

%%M%,‘ €
%@%ﬁ%%%%G« d
ﬁ%k%%%\%e. g
7 KIE

CA 02971633 2017-06-19

WO 2016/123068 PCT/US2016/014857

Page 7/12

Sub-PU

Sub-block

Current PU

Sub-block size is smaller
than sub-PU size

FIG. 7A

Sub-PU

Sub-block

Current PU

Sub-block size is equal to
sub-PU size

FIG. 7B

Sub-PU

Sub-block

Current PU

Sub-block size is larger
than sub-PU size

FIG. 7C

CA 02971633 2017-06-19

PCT/US2016/014857

WO 2016/123068

Page 8/12

g8 'Old

Spow JANLY Ul sNd-qng

Nd %2019-qng

N

\

no juauny
Nd Jo DINGO ul pasn ale
(wonoq pue ybu Ya| ‘@roqe)
s)20|g-qns Buoqybiau
AN0J} JO SI10JO9A UONOA

salldde NGO
alaym)yoo|g-qns

v8 'Ol
INJ 10
Arepunoq Nd/ND e s¥20[9-ans :.n__owmm Weo
s1 ¥00|q-qns
Buuoqybiau
19 JO 10}J09A
Znd UoROW
N g yoog-qng
1nd

~

No jua.uINg

NN\

INg v_oo_o_-o_sm\l

Nd Jo QINgO Ul

pasn si }20|q-qns Buuoqybiau

9A0(e JO J0JO9A UOIJON

r

tNd 390]9-gng

ENg JO HINFO Ul pash aJe

s)20|g-qns buuoqybilau anoqe

pue }J9] JO 10}29A UONO

CA 02971633 2017-06-19

PCT/US2016/014857

WO 2016/123068

Page 9/12

> .
WVIY1SLig 6 "Old
O3AIA d3A0oN3
el
_ 0¢
_ ¥3A0ON3 03AIA
29
_ 95 85 09 SY00719 O3AIA -
LINN LINN LINN a3LoNyLSNOOIY
_ ONIQOONT [A® | NOILYZILNYND HNISSIO0Ud + > LINN
| _AJO¥LN3 ASUIANI "SNVYL "ANI 4314
l A 3% LINN
_ SY00719 1vNaIs3y ONISSIO0Nd Y
_ a3LoNyLSNOOIY "a3dd VHLNI .
_ 99
_ — gdda
_ 17472
_ NON
-
I
! i
_) J w
_] SLNINTTI XVLNAS] N3N
| B 5
_ _ AHOW3N
_ SLN3I014430D P LINN viva
| WHOASNVL ONISS300dd O3aiIn
| Ivnaisay NOILDId3¥d
| a3zILNVNO — 0S /
_ ONISS3D0ud + S)2079 03AIA
SMO01
_ NOILVZILNVYND WMoASNYuL | SO0t ONIINOILILYVd

CA 02971633 2017-06-19

PCT/US2016/014857

WO 2016/123068

Page 10/12

-t

Z6
-
03dIA m_hm__”_.ﬂ"_
a3aoo3d
¥6
add

¥33a003d O3dIA

||||||||||||||||||||||||||||||||||||| J
%8 98 _
1INN 1INN _
ONISSID0ud NOLLVZILNVND _
06 s¥2018 | 'SNVAL ‘ANI 3ISYIANI _
Tvnais3y 7y I
|
|
— |
— 8z
78 LINN . _
ONISSID0Nd .Nﬂ_h"__w%%o <ww%wwm,__> ~ I WvauLsua
‘d34dd VH.LNI | O3adiIN
| @3aooN3
|
75 08 “
Now < LINN _
SINIWNIT3 ONId023d _
XVLNAS AdO¥YLIN3T _
T8 LINN _
'00¥d "a3yd oF “

CA 02971633 2017-06-19

WO 2016/123068 PCT/US2016/014857

Page 11/12

200
RECEIVE A FIRST BLOCK OF VIDEO DATA

'

RECEIVE ONE OR MORE BLOCKS OF VIDEO | 202
DATA THAT NEIGHBOR THE FIRST BLOCK OF
VIDEO DATA

l

204
DETERMINE MOTION INFORMATION OF AT -~
LEAST ONE OF THE ONE OR MORE BLOCKS OF
VIDEO DATA THAT NEIGHBOR THE FIRST
BLOCK OF VIDEO DATA
206

DECODE, USING OVERLAPPED BLOCK MOTION |~
COMPENSATION, THE FIRST BLOCK OF VIDEO
DATA BASED AT LEAST IN PART ON THE
MOTION INFORMATION OF THE AT LEAST ONE
OF THE ONE OR MORE BLOCKS THAT
NEIGHBOR THE FIRST BLOCK OF VIDEO DATA

FIG. 11

CA 02971633 2017-06-19

WO 2016/123068 PCT/US2016/014857

Page 12/12

220
STORE A FIRST BLOCK OF VIDEO DATAIN A —
MEMORY

'

STORE ONE OR MORE BLOCKS OF VIDEO DATA | 222
THAT NEIGHBOR THE FIRST BLOCK OF VIDEO
DATA IN THE MEMORY

l

224
DETERMINE MOTION INFORMATION OF AT —
LEAST ONE OF THE ONE OR MORE BLOCKS OF
VIDEO DATA THAT NEIGHBOR THE FIRST
BLOCK OF VIDEO DATA
226

CODE, USING OVERLAPPED BLOCK MOTION |}~
COMPENSATION, THE FIRST BLOCK OF VIDEO
DATA BASED AT LEAST IN PART ON THE
MOTION INFORMATION OF THE AT LEAST ONE
OF THE ONE OR MORE BLOCKS THAT
NEIGHBOR THE FIRST BLOCK OF VIDEO DATA

FIG. 12

RECEIVE A FIRST BLOCK OF VIDEQ DATA

|

RECEIVE ONE OR MORE BLOCKS OF VIDEQ
DATA THAT NEIGHBOR THE FIRST BLOCK OF
VIDEO DATA

!

DETERMINE MOTION INFORMATION OF AT
LEAST ONE OF THE ONE OR MORE BLOCKS OF
VIDEQ DATA THAT NEIGHBOR THE FIRST
BLOCK OF VIDEQ DATA

I

DECOQDE, USING OVERLAPPED BLOCK MOTION
COMPENSATION, THE FIRST BLOCK OF VIDEQ
DATA BASED AT LEAST IN PART ON THE
MOTION INFORMATION OF THE AT LEAST ONE
OF THE ONE OR MORE ELOCKS THAT
NEIGHBOR THE FIRST BLOCK OF VIDEO DATA

L~

200

202

204

206

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - DESCRIPTION
	Page 59 - DESCRIPTION
	Page 60 - DESCRIPTION
	Page 61 - DESCRIPTION
	Page 62 - DESCRIPTION
	Page 63 - CLAIMS
	Page 64 - CLAIMS
	Page 65 - CLAIMS
	Page 66 - CLAIMS
	Page 67 - CLAIMS
	Page 68 - CLAIMS
	Page 69 - CLAIMS
	Page 70 - CLAIMS
	Page 71 - CLAIMS
	Page 72 - CLAIMS
	Page 73 - DRAWINGS
	Page 74 - DRAWINGS
	Page 75 - DRAWINGS
	Page 76 - DRAWINGS
	Page 77 - DRAWINGS
	Page 78 - DRAWINGS
	Page 79 - DRAWINGS
	Page 80 - DRAWINGS
	Page 81 - DRAWINGS
	Page 82 - DRAWINGS
	Page 83 - DRAWINGS
	Page 84 - DRAWINGS
	Page 85 - REPRESENTATIVE_DRAWING

