METHOD AND SYSTEM FOR DETECTING ELECTROPHYSIOLOGICAL CHANGES IN PRE-CANCEROUS AND CANCEROUS TISSUE AND EPITHELIUM

Abstract: Methods and systems are provided for determining a condition of an organ, or epithelial or stromal tissue, for example in the human breast. The methods incorporate sonophoresis, the application of ultrasonic energy, in order to condition tissue for testing and enhance test measurements. A plurality of electrodes are used to measure surface and transepithelial electropotential and impedance of breast tissue at one or more locations and at several frequencies, particularly very low frequencies. An agent may be introduced into the region of tissue to enhance electrophysiological characteristics. Pressure, drugs and other agents can optionally be applied for enhanced diagnosis. Tissue condition is determined based on the electropotential and impedance profile at different depths of the epithelium, stroma, tissue, or organ, together with an estimate of the functional changes in the epithelium due to altered ion transport and electrophysiological properties of the tissue. Devices for practicing the disclosed methods are also provided.
METHOD AND SYSTEM FOR DETECTING ELECTROPHYSIOLOGICAL CHANGES IN PRE-CANCEROUS AND CANCEROUS TISSUE AND EPITHELIUM

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the benefit of the filing date of United States Patent Application No. 11/879,805 filed July 18, 2007, the disclosure of which is hereby-incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] The present invention relates generally to the detection of abnormal or cancerous tissue, and more particularly, to the detection of changes in the electrophysiological characteristics of abnormal or cancerous tissue and to changes in those electrophysiological characteristics related to the functional, structural and topographic (the interaction of shape, position and function) relationships of the tissue during the development of malignancy. These measurements are made in the absence and presence of pharmacological and hormonal agents to reveal and accentuate the electrophysiological characteristics of abnormal or cancerous tissue.

[0003] Cancer is a leading cause of death in both men and women in the United States. Difficulty in detecting abnormal pre-cancerous or cancerous tissue before treatment options become non-viable is one of the reasons for the high mortality rate. Detecting the presence of abnormal or cancerous tissues is difficult, in part, because such tissues are largely located deep within the body, thus requiring expensive, complex, invasive, and/or uncomfortable procedures. For this reason, the use of detection procedures is often restricted until a patient is experiencing symptoms related to the abnormal tissue. Many forms of cancers or tumors, however, require extended periods of time to attain a detectable size (and thus to produce significant symptoms or
signs in the patient). It is often too late for effective treatment by the time the detection is performed with currently available diagnostic modalities.

[0004] Breast cancer is the most common malignancy affecting women in the Western World. The reduction in mortality for this common disease depends on early detection. The mainstay of early detection are X-ray mammography and clinical breast examination. Both are fraught with problems of inaccuracy. For example, mammography has a lower sensitivity in women with dense breasts, and is unable to discriminate between morphologically similar benign or malignant breast lesions.

[0005] Clinical breast examinations are limited because lesions less than one cm are usually undetectable and larger lesions may be obscured by diffuse nodularity, fibrocystic change, or may be too deep in the breast to enable clinical detection. Patients with positive mammographic or equivocal clinical findings often require biopsy to make a definitive diagnosis. Moreover, biopsies may be negative for malignancy in up to 80% of patients.

[0006] Accordingly, mammography and clinical breast examination have relatively poor specificity in diagnosing breast cancer. Therefore many positive mammographic findings or lesions detected on clinical breast examination ultimately prove to be false positives resulting in physical and emotional trauma for patients. Improved methods and technologies to identify patients who need to undergo biopsy would reduce healthcare costs and avoid unnecessary diagnostic biopsies.

[0007] Other technologies have been introduced in an attempt to improve on the diagnostic accuracy attainable with mammography and clinical breast examination alone. Breast ultrasound is helpful in distinguishing between cystic or
solid breast lesions and may be useful in guiding needle or open biopsies. However, such techniques are unable to determine whether a solid mass, or calcifications are benign or malignant. Magnetic resonance imaging has been introduced in an attempt to improve on the accuracy of mammography. Its high cost and low specificity limit its general applicability for diagnosing and screening for breast cancer. Nuclear imaging with Positron Emission Tomography (PET) has a lower sensitivity for small lesions, but is limited by cost.

[0008] It is also desirable to develop improved technology suitable for diagnosing pre-cancerous tissue and cancer in other tissue types and elsewhere in the body, particularly methods and devices suitable for ascertaining the condition of bodily ductal structures, e.g., the prostate, pancreas, etc., as well as the breast.

[0009] One proposed method for early detection of cancerous and pre-cancerous tissue includes measuring of the electrical impedance of biological tissue. For example, U.S. Patent No. 3,949,736 discloses a low-level electric current passed through tissue, with a measurement of the voltage drop across the tissue providing an indirect indication of the overall tissue impedance. This method teaches that a change in impedance of the tissue is associated with an abnormal condition of the cells composing the tissue, indicating a tumor, carcinoma, or other abnormal biological condition. This disclosure, however, does not discuss either an increase or decrease in impedance associated with abnormal cells, nor does it specifically address tumor cells.

[0010] The disadvantage of this and similar systems is that the DC electrical properties of the epithelium are not considered. Most common malignancies develop in an epithelium (the cell layer that lines a hollow organ, such as the bowel, or ductal structures such as the breast or prostate), that
maintains a transepithelial electropotential. Early in the malignant process the epithelium loses its transepithelial potential, particularly when compared to epithelium some distance away from the developing malignancy. The combination of transepithelial electropotential measurements with impedance are more accurate in diagnosing pre-cancerous and cancerous conditions.

[0011] Another disadvantage of the above referenced system is that the frequency range is not defined. Certain information is obtained about cells according to the range of frequencies selected. Different frequency bands may be associated with different structural or functional aspects of the tissue. See, for example, F.A. Duck, Physical Properties of Tissues, London: Academic Press, 2001; K. R. Foster, H.P. Schwan, Dielectric properties of tissues and biological materials: a critical review, Crit. Rev. Biomed. Eng., 1989, 17(1): 25-104. For example at high frequencies such as greater than about 1 GHz molecular structure has a dominating effect on the relaxation characteristics of the impedance profile. Relaxation characteristics include the delay in the response of a tissue to a change in the applied electric field. For example, an applied AC current results in voltage change across the tissue which will be delayed or phase shifted, because of the impedance characteristics of the tissue. Relaxation and dispersion characteristics of the tissue vary according to the frequency of the applied signal.

[0012] At lower frequencies, such as less than about 100 Hz, or the so-called α-dispersion range, alterations in ion transport and charge accumulations at large cell membrane interfaces dominate the relaxation characteristics of the impedance profile. In the frequency range between a few kHz and about 1 MHz, or the so-called β-dispersion range, cell
structure dominates the relaxation characteristics of the epithelial impedance profile. Within this range at low kHz frequencies, most of the applied current passes between the cells through the paracellular pathway and tight junctions. At higher frequencies in the \(\beta \)-dispersion range the current can penetrate the cell membrane and therefore passes both between and through the cells, and the current density will depend on the composition and volume of the cytoplasm and cell nucleus. Characteristic alterations occur in the ion transport of an epithelium during the process of malignant transformation affecting the impedance characteristics of the epithelium measured at frequencies in the \(\alpha \)-dispersion range. Later in the malignant process, structural alterations with opening of the tight junctions and decreasing resistance of the paracellular pathways, together with changes in the composition and volume of the cell cytoplasm and nucleus, affect the impedance measured in the \(\beta \)-dispersion range.

[0013] Another disadvantage with the above referenced system is that the topography of altered impedance is not examined. By spacing the measuring electrodes differently the epithelium can be probed to different depths. The depth that is measured by two surface electrodes is approximately half the distance between the electrodes. Therefore electrodes 1 mm apart will measure the impedance of the underlying epithelium to a depth of approximately 500 microns. It is known, for example, that the thickness of bowel epithelium increases at the edge of a developing tumor to 1356 ± 208\(\mu \) compared with 716 ± 112\(\mu \) in normal bowel. D. Kristt, et al., *Patterns of proliferative changes in crypts bordering colonic tumors: zonal histology and cell cycle marker expression*, Pathol. Oncol. Res 1999; 5(4): 297-303. Thickening of the ductal epithelium of the breast is also observed as ductal carcinoma.
In-situ develops. By comparing the measured impedance between electrodes spaced approximately 2.8 mm apart and compared with the impedance of electrodes spaced approximately 1.4 mm apart, information about the deeper and thickened epithelium may be obtained. See, for example, L. Emtestam, S. Ollmar, *Electrical impedance index in human skin: measurements after occlusion, in 5 anatomical regions and in mild irritant contact dermatitis*, Contact Dermatitis 1993; 28(2): 104-108.

Another disadvantage of the above referenced methods is that they do not probe the specific conductive pathways that are altered during the malignant process. For example, potassium conductance is reduced in the surface epithelium of the colon early in the malignant process. By using electrodes spaced less than 1 mm apart with varying concentrations of potassium chloride the potassium conductance and permeability may be estimated in the surface epithelium at a depth from less than 500 µ to the surface.

A number of non-invasive impedance imaging techniques have been developed in an attempt to diagnose breast cancer. Electrical impedance tomography (EIT) is an impedance imaging technique that employs a large number of electrodes placed on the body surface. The impedance measurements obtained at each electrode are then processed by a computer to generate a 2 dimensional or 3 dimensional reconstructed tomographic image of the impedance and its distribution in 2 or 3 dimensions. This approach relies on the differences in conductivity and impedance between different tissue types and relies on data acquisition and image reconstruction algorithms which are difficult to apply clinically.

The majority of EIT systems employ "current-driving mode," which applies a constant AC current between two or more current-passing electrodes, and measures the voltage drop
between other voltage-sensing electrodes on the body surface. Another approach is to use a "voltage-driving approach," which applies a constant AC voltage between two or more current-passing electrodes, and then measures the current at other current-sensing electrodes. Different systems vary in the electrode configuration, current or voltage excitation mode, the excitation signal pattern, and AC frequency range employed.

[0017] Another disadvantage with using EIT to diagnose breast cancer is the inhomogeneity of breast tissue. The image reconstruction assumes that current passes homogeneously through the breast tissue which is unlikely given the varying electrical properties of different types of tissue comprising the breast. In addition image reconstruction depends upon the calculation of the voltage distribution on the surface of the breast from a known impedance distribution (the so called forward problem), and then estimating the impedance distribution within the breast from the measured voltage distribution measured with surface electrodes (the inverse problem). Reconstruction algorithms are frequently based on finite element modeling using Poisson's equation and with assumptions with regard to quasi-static conditions, because of the low frequencies used in most EIT systems.

[0018] Other patents, such as U.S. Patent Nos. 4,955,383 and 5,099844, disclose that surface electropotential measurements may be used to diagnose cancer. Empirical measurements, however, are difficult to interpret and use in diagnosis. For example, the above referenced inventions diagnose cancer by measuring voltage differences (differentials) between one region of the breast and another and then comparing them with measurements in the opposite breast. Changes in the measured surface potential may be related to differences in the impedance characteristics of the

[0019] Other inventions that use AC measurement, such as U.S. Patent No. 6,308,097, also have a lower accuracy than may be possible with a combination of DC potential measurements and AC impedance measurements, that also measure the transepithelial electrical properties of mammary epithelium. Electrical impedance scanning (EIS) also known as electrical impedance mapping (EIM) avoids the limitations of complex image reconstruction encountered with EIT. The above referenced system diagnoses cancer by only measuring decreased impedance (increased conductance) and changes in capacitance over a cancer. It does not measure the mammary transepithelial impedance characteristics of the breast. There are several other limitations to this approach. Inaccuracies may occur because of air bubbles. Underlying bones, costal cartilages, muscle and skin may result in high conductance regions, which produce false positives. Depth of measurement is limited to 3-3.5 cm, which will result in false negatives for lesions on the chest wall. It is also not possible to localize lesions using this approach.

[0020] Another potential source of information for the detection of abnormal tissue is the measurement of transport alterations in the epithelium. Epithelial cells line the surfaces of the body and act as a barrier to isolate the body
from the outside world. Not only do epithelial cells serve to insulate the body, but they also modify the body's environment by transporting salts, nutrients, and water across the cell barrier while maintaining their own cytoplasmic environment within fairly narrow limits. One mechanism by which the epithelial layer withstands the constant battering is by continuous proliferation and replacement of the barrier. This continued cell proliferation may partly explain why more than 80% of cancers are of epithelial cell origin. Moreover, given their special abilities to vectorially transport solutes from blood to outside and vice versa, it appears that a disease process involving altered growth regulation may have associated changes in transport properties of epithelia.

[0021] It is known that the addition of serum to quiescent fibroblasts results in rapid cell membrane depolarization. Cell membrane depolarization is an early event associated with cell division. Depolarization induced by growth factors appears biphasic in some instances but cell division may be stimulated without depolarization. Cell membrane depolarization is temporally associated with Na⁺ influx, and the influx persists after repolarization has occurred. Although the initial Na⁺ influx may result in depolarization, the increase in sodium transport does not cease once the cell membrane has been repolarized, possibly due to Na /K ATPase pump activation. Other studies also support the notion that Na⁺ transport is altered during cell activation. In addition to altered Na⁺-transport, K⁺-, and Cl⁻-transport is altered during cell proliferation.

[0022] A number of studies have demonstrated that proliferating cells are relatively depolarized when compared to those that are quiescent or non-dividing. Differentiation is associated with the expression of specific ion channels. Additional studies indicate that cell membrane depolarization
occurs because of alterations in ionic fluxes, intracellular ionic composition and transport mechanisms that are associated with cell proliferation.

[0023] Intracellular Ca$^{2+}$ (Ca$^{2+}_{i}$) and pH (pHi) are increased by mitogen activation. Cell proliferation may be initiated following the activation of phosphatidyl inositol which releases two second messengers, 1,2-diacylglycerol and inositol-1, 4,5-triphosphate, which triggers Ca$^{2+}_{i}$ release from internal stores. Ca$^{2+}_{i}$ and pHi may then alter the gating of various ion channels in the cell membrane, which are responsible for maintaining the voltage of the cell membrane. Therefore, there is the potential for interaction between other intracellular messengers, ion transport mechanisms, and cell membrane potential. Most studies have been performed in transformed and cultured cells and not in intact epithelia during the development of cancer.

[0024] It was known for some time that cancer cells are relatively depolarized compared with non-transformed cells. It has been suggested that sustained cell membrane depolarization results in continuous cellular proliferation, and that malignant transformation results as a consequence of sustained depolarization and a failure of the cell to repolarize after cell division. CD. Cone Jr., Unified theory on the basic mechanism of normal mitotic control and oncogenesis, J. Theor. Biol. 1971; 30(1): 151-181; CD. Cone Jr., CM. Cone, Induction of mitosis in mature neurons in central nervous system by sustained depolarization, Science 1976; 192(4235): 155-158; CD. Cone, Jr., The role of the surface electrical transmembrane potential in normal and malignant mitogenesis, Ann. N.Y. Acad. Sci. 1974; 238: 420-435. A number of studies have demonstrated that cell membrane depolarization occurs during transformation and carcinogenesis. Other studies have demonstrated that a single

For example, there is a progressive depolarization of the colonocyte cell membrane during 1,2 dimethylhydrazine (DMH)-induced colon cancer in CFi mice. The V_A (apical membrane voltage) measured with intracellular microelectrodes in histologically "normal" colonic epithelium depolarized from -74.9 mV to -61.4 mV after 6 weeks of DMH treatment and to -34 mV by 20 weeks of treatment. The cell membrane potential in a benign human breast epithelial cell line (MCF-IOA) was observed to be $-50 \pm 4 \text{ mV}$ (mean \pm SEM) and was significantly depolarized at $-35 \pm 1 \text{ mV} \ (p < 0.002)$ in the same cell line after ras-transformation (the MCF-IOAT cell line).

While epithelial cells normally maintain their intracellular sodium concentration within a narrow range, electronmicroprobe analysis suggests that cancer cells exhibit cytoplasmic sodium/potassium ratios that are three to five times greater than those found in their non-transformed counterparts. These observations partly explain the electrical depolarization observed in malignant or premalignant tissues, because of the loss of K$^+$ or Na$^+$ gradients across the cell membrane.

In addition to cell membrane depolarization, and altered intracellular ionic activity, other studies have shown that there may be a decrease in electrogenic sodium transport and activation of non-electrogenic transporters during the development of epithelial malignancies. These changes may affect or occur as a consequence of altered intracellular ionic composition.
[0027] In addition to cell membrane depolarization, and altered intracellular ionic activity, other studies have shown that there may be a decrease in electrogenic sodium transport and activation of non-electrogenic transporters during the development of epithelial malignancies. These changes may occur as a consequence of altered intracellular ionic composition. Other specific ion transport alterations have been described in colon, prostate, breast, uterine cervix, melanoma, urothelium, and pancreas during proliferation, differentiation, apoptosis, and carcinogenesis.

[0029] Loss of cell-to-cell communication occurs during carcinogenesis. This results in defective electrical coupling between cells, which is mediated via ions and small molecules through gap junctions, which in turn influences the electrical properties of epithelia.

[0030] Epithelial cells are bound together by tight junctions, which consist of cell-to-cell adhesion molecules.
These adhesion proteins regulate the paracellular transport of molecules and ions between cells and are dynamic structures that can tighten the epithelium, preventing the movement of substances, or loosen allowing substances to pass between cells. Tight junctions consist of integral membrane proteins, claudins, occludins and JAMs (junctional adhesion molecules). Tight junctions will open and close in response to intra and extracellular stimuli.

[0031] A number of substances will open or close tight junctions. The proinflammatory agent TGF-alpha, cytokines, IGF and VEGF opens tight junctions. Zonula occludens toxin, nitric oxide donors, and phorbol esters also reversibly open tight junctions. Other substances close tight junctions including calcium, H2 antagonists and retinoids. Various hormones such as prolactin and glucocorticoids will also regulate the tight junctions. Other substances added to drug formulations act as non-specific tight junction modulators including chitosan and wheat germ agglutinin.

[0032] The above referenced substances and others may act directly or indirectly on the tight junction proteins, which are altered during carcinogenesis. For example claudin-7 is lost in breast ductal epithelium during the development of breast cancer. The response of the tight junctions varies according to the malignant state of the epithelium and their constituent proteins. As a result the opening or closing of tight junctions is affected by the malignant state of the epithelium.

[0033] Polyps or overtly malignant lesions may develop in a background of disordered proliferation and altered transepithelial ion transport. Experimental animal studies of large bowel cancer have demonstrated that transepithelial depolarization is an early feature of the pre-malignant state. Davies RJ, et al., Sodium transport in a mouse model of
colonic carcinogenesis, Cancer Res. 1987 Sep 1; 47(17):4646-50; R.J. Davies et al., Transmural electrical potential difference as an early marker in colon cancer, Arch. Surg., 1986 Mar; 121(3): 345-50. In nasal polyp studies, the lesions had a higher transepithelial potential, but these lesions were not pre-malignant in the same sense as an adenomatous or pre-malignant colonic polyp, that are usually depolarized. Electrical depolarization has been found in biopsies of malignant breast tissue. Recently alterations in impedance have been found to be associated with the pre-malignant or cancerous state in breast and bowel.

[0034] It has been discovered that transepithelial depolarization was a specific event associated with colonic carcinogenesis in CF mice. The more susceptible site, the distal colon, underwent about a 30% decrease in transepithelial potential (V_T) after only four weeks of carcinogen treatment. This was before histological changes developed. A non-specific cytotoxic agent (5-fluorouracil), administered over the same period did not cause a reduction in V_T in the same model. The reduction in V_T was confirmed in a subsequent study where almost a 60% reduction was observed after carcinogen treatment. It has also been discovered that, although V_T is invariably higher when measured in vivo, the "premalignant" colonic epithelium is usually depolarized when compared to normal colon.

[0035] DC electrical potential alterations have been used to diagnose non-malignant conditions such as cystic fibrosis, cancer in animal models, human cells or tissue and in man. Differences in impedance between normal tissue and cancer have been described in animal models in vitro human tissue in vitro and have been applied to in vivo cancer diagnosis.

[0036] DC potential measurements have not been combined with impedance measurements to diagnose cancer because the
electrophysiological alterations that accompany the development of cancer have not been well understood or fully characterized. Surface measurements of potential or impedance are not the same as measurements performed across the breast epithelium, and described below, where electrical contact is made between the luminal surface of the duct and the overlying skin. Transepithelial depolarization is an early event during carcinogenesis, which may affect a significant region of the epithelium (a "field defect"). This depolarization is accompanied by functional changes in the epithelium including ion transport and impedance alterations. Early on in the process these take the form of increased impedance because of decreased specific electrogenic ion transport processes. As the tumor begins to develop in the pre-malignant epithelium, structural changes occur in the transformed cells such as a breakdown in tight junctions and nuclear atypia. The structural changes result in a marked reduction in the impedance of the tumor. The pattern and gradient of electrical changes in the epithelium permit the diagnosis of cancer from a combination of DC electrical and impedance measurements.

[0037] Another reason that DC electropotential and impedance measurements have not been successfully applied to cancer diagnosis is that transepithelial potential and impedance may be quite variable and are affected by the hydration state, dietary salt intake, diurnal or cyclical variation in hormonal level or non-specific inflammatory changes and other factors. In the absence of knowledge about the physiological variables which influence transepithelial potential and impedance these kind of measurement may not be completely reliable to diagnose pre-malignancy or cancer.

[0038] Furthermore, a detailed understanding of the functional and morphological alterations that occur during
carcinogenesis permits appropriate electrical probing for a specifically identified ion transport change that is altered during cancer development. For example knowledge that electrogenic sodium absorption is altered during cancer development in breast epithelium permits the use of sodium channel blockers (amiloride) or varying sodium concentration in the ECM (electroconductive medium) to examine whether there is an inhibitable component of sodium conductance. By varying the depth of the measurement (by measuring the voltage drop across differently spaced electrodes), it is possible to obtain topographic and depth information about the cancerous changes in the epithelium. Using a combination of low and high frequency sine waves probing at different depths we are able to correlate the functional and morphological (structural) changes at different depths, with the impedance profile of the tissue.

[0039] The diagnostic accuracy of current technology using DC electropotentials or impedance alone have significant limitations. Sensitivity and specificity for DC electrical measurements in the breast have been reported as 90% and 55% respectively and 93% and 65% for impedance measurements. This would result in an overall diagnostic accuracy of between 72-79%, which is probably too low to result in widespread adoption. The measurement of ductal transepithelial DC potential, ductal transepithelial AC impedance spectroscopy alone, or the combination of DC electrical potentials and impedance spectroscopy will result in a diagnostic accuracy of greater than 90%, which will lead to improved clinical utility.

[0040] Breast cancer is thought to originate from epithelial cells in the terminal ductal lobular units (TDLUs) of mammary tissue. These cells proliferate and have a functional role in the absorption and secretion of various
substances when quiescent and may produce milk when lactating. Functional alterations in breast epithelium have largely been ignored as a possible approach to breast cancer diagnosis. Breast epithelium is responsible for milk formation during lactation. Every month pre-menopausal breast epithelium undergoes a "rehearsal" for pregnancy with involution following menstruation. The flattened epithelium becomes more columnar as the epithelium enters the luteal phase from the follicular phase. In addition, duct branching and the number of acini reach a maximum during the latter half of the luteal phase. Just before menstruation apoptosis of the epithelium occurs and the process starts over again unless the woman becomes pregnant.

[0041] Early pregnancy and lactation may be protective against breast cancer because they result in a more differentiated breast epithelium which is less susceptible to carcinogenic influences whether estrogen or other environmental factors. It therefore seems that differentiated breast epithelium is less likely to undergo malignant change. Differentiated epithelium has a distinct apical and basolateral membrane domain to enable it to maintain vectorial transport function (the production of milk). In addition, differentiated cells maintain a higher cell membrane potential to transport various ions, lactulose and other substances in and out of the duct lumen. In contrast, more proliferative epithelial cells have depolarized cell membranes and are less able to maintain vectorial ion transport. Recently the epithelial Na⁺ channel (ENaC) and the cystic fibrosis transmembrane conductance regulator (CFTR) have been identified in mammary epithelium and both localized on the apical, or luminal side, of the epithelium. These two transporters can be probed for by using amiloride, a blocker
of the ENaC, or by opening up Cl\(^-\) channels regulated by CFTR using cAMP.

[0042] For example, 20 µM luminal amiloride depolarized the transepithelial potential from \(-5.9 \pm 0.5\) mV (mean ± SEM) by \(+3.1 \pm 0.5\) mV. Forskolin (10 µM), which raises cAMP and opens Cl\(^-\) channels via the CFTR hyperpolarized the breast epithelium by \(-2.2 \pm 0.1\) mV. These changes were accompanied by an increase (17%) and subsequent decrease (19%) in transepithelial resistance respectively. In transformed breast epithelium the ENaC is down-regulated, whereas Cl\(^-\) secretion may increase, similar to observations reported for carcinoma of the cervix. Non-lactating breast epithelium has relatively leaky tight junctions. This results in a paracellular shunt current, which hyperpolarizes the apical membrane of the epithelial cell. The larger the shunt current the more hyperpolarized the apical membrane and therefore the epithelium depolarizes since:

\[
\text{TEP} = V_{\text{BL}} - V_{\text{A}} \text{ and } i = \frac{\text{TEP}}{R_s}, \text{ where}
\]

\[
\text{TEP} = \text{Transepithelial potential;}
\]

\[
V_{\text{BL}} = \text{voltage of the basolateral membrane;}
\]

\[
V_{\text{A}} = \text{voltage of the apical membrane;}
\]

\[
i = \text{shunt current;} \text{ and}
\]

\[
R_s = \text{paracellular (shunt) resistance.}
\]

[0043] Evidence that breast carcinogenesis may be associated with functional incompetence of breast epithelium also comes from a number of other sources. Some transgenic strains of mice have defective lactation. The transgenic \(\epsilon_{rc}\) mouse which develops hyperplastic alveolar nodules, otherwise develops a normal mammary tree but has defective lactation. The notch4 and TGFβ transgenic mouse also demonstrate defective lactation. Cyclin D1 females have persistent lactation 6-9 months after weaning, and TGF(X mice, which have
a defect in apoptosis and fail to undergo epithelial regression develop hypersecretion. These data suggest that there is a relationship between epithelial function and genetic expression which affects proliferation and tumor development.

[0044] Breast cysts occur in 7% of the female population and are thought to develop in the TDLUs. Apocrine cysts have a higher potassium content than simple cysts. Apocrine cysts may be associated with the subsequent development of breast cancer. There may therefore be a fundamental change in the epithelium at risk for breast cancer development with a redistribution of electrolyte content across the cell membrane resulting in altered cyst electrolyte content and cell membrane depolarization. Although it is commonly known that during lactation the breast transports lactulose, proteins, fatty acids, immunoglobulins, cholesterol, hormones, ions and water across the ductal and lobular epithelium and actively secretes milk, it is less widely appreciated that in the non-pregnant and non-lactating state the breast, throughout life exhibits excretory and absorptive function. The difference between the lactating and the non-lactating breast being of degree and the chemical constitution of the nipple duct fluid. Ductal secretions have been analyzed to diagnose biological conditions of the breast.

[0045] A number of approaches have been used to obtain ductal fluid, including a suction cup to obtain pooled secretions; nipple aspiration fluid (NAF), and more recently, cannulation of one of the 6-12 ducts that open onto the nipple surface. Substances and cells within the duct fluid may therefore be accessed to identify abnormalities that may be associated with the diseased state of the breast. One disadvantage of the above referenced approaches is the difficulty in obtaining adequate NAF or lavage fluid to
perform analysis. Another disadvantage has been the inability to identify or cannulate the ducts where an abnormality in the fluid or cells may be identified.

[0046] Hung (US Patent 6,314,315) has suggested an electrical approach to identify ductal orifices on the nipple surface. In that disclosure it is taught that DC potential or impedance measurement may facilitate the identification of openings or orifices on the surface of the nipple. However, it is not taught that the characteristics of the DC electrical signal or impedance may characterize the condition of the breast. Moreover, it is not taught that breast transepithelial DC measurements, transepithelial AC impedance spectroscopy, alone or in combination may be used to diagnose breast cancer.

[0047] Ionic gradients exist between the fluid secretions within the breast ducts and the plasma. For example, it is known that the nipple aspirate fluid has a sodium concentration [Na$^+$] of 123.6 ± 33.8 mEq/1 (mean ± standard deviation) compared with a serum [Na$^+$] of approximately 150 mEq/1 (Petrakis1). Nulliparous women have NAF [Na$^+$] that are approximately 10 mEq/1 higher than parous women, but still significantly below serum levels. Similarly potassium concentration [K$^+$] is significantly higher at 13.5 ± 7.7 mEq/1 in parous women and 12.9 ± 6.0 mEq/1 in nulliparous women compared with serum levels of [K$^+$] of approximately 5.0 mEq/1. Other investigators have reported lower NAF [Na$^+$] of 53.2 mEq/1 suggesting that significant ionic gradients can be established between the plasma and duct lumen in non-lactating breast. In pregnancy these gradients are even higher for sodium with a [Na$^+$] of 8.5 ± 0.9 mEq/1 reported in milk which is almost 20 fold lower than plasma. Chloride concentration [Cl$^-$] in milk is almost one tenth of the concentration found in plasma with
values of 11.9 ± 0.5 mM reported. Although [Na+] and [Cl−] levels in ductal secretions rise and the [K+] falls following the cessation of lactation, significant ionic gradients are maintained between the duct lumen and plasma.

Furthermore, in women undergoing ovulatory cycles during lactation distinct changes have been observed in the ion and lactulose concentrations of breast milk. The first change occurs 5-6 days before ovulation and the second 6-7 days after ovulation. During these periods [Na+] and [Cl−] increased more than two-fold and [K+] decreased approximately 1.5-fold. It is unclear whether changes in estrogen or progesterone levels before and after ovulation are affecting the ion composition of milk. However, it is known that alterations in the ionic composition of milk influences the transepithelial electrical potential as measured in mammals.

Furthermore, it is known that various hormones affect breast epithelial ion transport. For example, prolactin decreases the permeability of the tight-junctions between breast epithelial cells, stimulates mucosal to serosal Na+ flux, upregulates Na+:K+:2Cl− cotransport and increases the [K+] and decreases the [Na+] in milk. Glucocorticoids control the formation of tight-junctions increasing transepithelial resistance and decreasing epithelial permeability. Administration of Cortisol into breast ducts late in pregnancy has been shown to increase the [K+] and decrease [Na+] of ductal secretions. Progesterone inhibits tight-junction closure during pregnancy and may be responsible for the fluctuations in ductal fluid electrolytes observed during menstrual cycle in non-pregnant women, and discussed above. Estrogen has been observed to increase cell membrane and transepithelial potential and may stimulate the opening of K+-channels in breast epithelial cells. The hormones mentioned above vary diurnally and during menstrual cycle. It is likely
that these variations influence the functional properties of breast epithelium altering the ionic concentrations within the lumen, the transepithelial potential and impedance properties, which are dependent upon the ion transport properties of epithelial cells and the transcellular and paracellular conductance pathways.

Accordingly, these variations can be used as diagnostic indicia of changes to breast tissue, which have to date yet to be exploited. Thus, there remains a need for effective and practical methods for detecting abnormal breast tissue as well as other epithelial and/or ductal tissue.

SUMMARY OF THE INVENTION

One aspect of the invention provides an improved method for measuring transepithelial electrical properties of an organ comprising an epithelium having a luminal surface, comprising the steps of: (A) applying ultrasonic energy via an ultrasonic applicator to at least one tissue site proximate to epithelial tissue present in the organ, said at least one
tissue site including the skin surface, in order to decrease the impedance of at least one tissue site; (A) establishing a connection between a first electrode and the epithelial tissue; (B) placing a second electrode in contact with the skin surface proximate the organ; (C) establishing a signal between the first and second electrodes; (D) measuring at least one electrical property between the first and second electrode. Enhanced electrical signal exceeds the improvement achieved by reduced skin impedance resulting from the application of ultrasonic energy (sonophoresis). For example, in some instances the method permits observation of electrophysiological characteristics not previously observable.

[0053] In another embodiment of the invention for determining a condition of a region of epithelial tissue, for example, epithelial breast tissue, the measured electrical property is selected from the group consisting of: (1) a DC potential; (2) impedance at about 5 different frequencies in the range of about 10 Hz to about 200 Hz; (3) impedance at from about 5 to about 50 different frequencies in the range of about 0.1 Hz to about 10 Hz; (4) impedance at at least one frequency in the range of about 10 KHz to about 100 KHz; and (5) combinations of (1) through (4), inclusive. In a specific embodiment, at least one impedance measurement is made at 60 KHz.

[0054] In a further embodiment the method further comprises the step of measuring an electrical parameter of the tissue site prior to, during or following application of ultrasonic energy. In a specific embodiment, the electrical parameter is selected from the group consisting of: current value, current value change during a specified time period; instantaneous rate of current value change; impedance value at the tissue site; impedance value change at the tissue site during a
specified time period; difference of impedance values between the tissue site and the second electrode; and mixtures thereof.

[0055] In yet another embodiment the method further comprises the steps of: analyzing the electrical parameter, and controlling the ultrasound application based on results of the analysis. In a specific embodiment the step of controlling comprises deriving an impedance value based on the electrical parameter and modifying or discontinuing application of the ultrasound when a control condition is reached, the condition selected from the group consisting of: the derived impedance value is substantially equal to a predetermined value; the rate of change of the derived impedance value is substantially equal to a predetermined value; and the change in the derived impedance value relative to the impedance value prior to application of ultrasonic energy at the tissue site is substantially equal to a predetermined value.

BRIEF DESCRIPTION OF THE DRAWINGS

[0056] The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one embodiment of the invention and together with the description, serve to explain the principles of the invention.

[0057] Figure 1 is a schematic diagram of a DC and AC impedance measuring device, consistent with an embodiment of the present invention;

[0058] Figure 2 illustrates an exemplary embodiment of a device suitable for use with systems and methods consistent with the present invention;

[0059] Figure 3 illustrates an exemplary embodiment of a surface measurement probe suitable for use with systems and methods consistent with the present invention;
[0060] Figure 4 illustrates an exemplary embodiment of a nipple electrode suitable for use with systems and methods consistent with the present invention;
[0061] Figure 5 illustrates an exemplary embodiment of a ductal electrode probe suitable for use with systems and methods consistent with the present invention;
[0062] Figure 6 illustrates varying ionic content and the effect on transepithelial conductance in human breast epithelium;
[0063] Figure 7 illustrates measurements of cell membrane potential in human breast epithelial cells;
[0064] Figure 8 illustrates the effect of increasing estradiol concentrations on the transepithelial potential in benign and malignant breast epithelia;
[0065] Figure 9 illustrates conductance and the electropotential measurements made over the surface of the breast in women with and without breast cancer;
[0066] Figure 10 illustrates the measurement of electropotentials at the surface of the breast, and variation of the measurement during menstrual cycle;
[0067] Figure 11 illustrates electrophysiological changes that occur within the ductal epithelium during the development of breast cancer;
[0068] Figure 12 illustrates changes in the short circuit current of human epithelium exposed to a potassium channel blocker (TEA) or varying concentrations of potassium;
[0069] Figure 13 illustrates how the information obtained in figure 12 may be used to plot the potassium gradient against the change in short circuit current.
[0070] Figure 14 illustrates multiple Nyquist impedance plots from human breasts according to the present invention.
[0071] Figure 15 illustrates the impedance profile for a patient with a hemorrhagic cyst.
[0072] Figure 16 illustrates a Bode plot of impedance data comparing patients with fibrocystic disease (0465) and breast cancer (0099).

[0073] Figure 17 illustrates the same data as in Figure 16 plotted as a Nyquist plot.

[0074] Figure 18 illustrates the impedance spectra data curve for breast cancer tissue added to the curves of Figure 17.

[0075] Figure 19 illustrates the effects of altering the level of suction applied to a nipple cup electrode on a normal breast.

[0076] Figure 20 illustrates the effects of altering the level of suction applied to a nipple cup electrode on a breast in which malignancy is present.

[0077] Figure 21 illustrates the method for estimating impedance for the high suction curve associated with cancer in Figure 20.

[0078] Figure 22 illustrates the impedance profiles of a fibroadenoma and carcinoma.

[0079] Figure 23 illustrates the impedance profile of a normal duct following compression.

[0080] Figure 24 illustrates the same results as in Figure 23 with an expanded range for the X-axis.

[0081] Figure 25 illustrates the impedance profile of a normal duct following compression and release.

[0082] Figure 26 illustrates the impedance profile of a breast cyst following compression.

[0083] Figure 27 illustrates the impedance profile following compression of fibrocystic breast tissue.

[0084] Figure 28 illustrates the impedance profile following compression of fibroadenoma in breast tissue.
Figure 29 illustrates the impedance profile following compression of a more typical fibroadenoma in breast tissue.

Figure 30 illustrates the effect of sonophoresis on the open-circuit potential measured in a patient without evidence of breast disease.

Figure 31 illustrates positioning of electrodes on a patient.

Figure 32 illustrates Nyquist plots using measurements of the upper inner quadrant of the right breast made with and without sonophoresis.

Figure 33 illustrates Nyquist plots using measurements of the lower inner quadrant of the right breast made with and without sonophoresis.

Figure 34 illustrates Nyquist plots using measurements of the lower outer quadrant of the right breast made with and without sonophoresis.

Figure 35 illustrates Nyquist plots using measurements of the upper outer quadrant of the right breast made with and without sonophoresis.

DETAILED DESCRIPTION

Reference will now be made in detail to an embodiment of the invention, an example of which is illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.

In the descriptions that follow, reference is made to an "organ." For purposes of the present invention, an "organ" refers to a relatively independent or differentiated part of the body or collection of tissues that carries out one or more special functions. Organs are generally made up of several tissue types, one of which usually predominates and
determines the principal function of the organ. Major organ systems, particularly of the human body, comprise: circulatory system including the lungs, heart, blood, and blood vessels; digestive system including the salivary glands, esophagus, stomach, liver, gallbladder, pancreas, intestines, rectum, and anus; endocrine system including the hypothalamus, pituitary or pituitary glands, including the anterior and posterior pituitary glands, pineal body or pineal gland, thyroid, parathyroids, and adrenals or adrenal glands; integumentary system including skin, hair and nails; lymphatic system including the lymph nodes and vessels that transport lymph; immune system including tonsils, adenoids, thymus, and spleen; muscular system including the various muscles; nervous system including the brain, spinal cord, peripheral nerves, and nerves; reproductive system including the sex organs, such as ovaries, fallopian tubes, uterus, vagina, breasts, mammary glands, testes, vas deferens, seminal vesicles, prostate, and penis; respiratory system including the organs used for breathing, such as the pharynx, larynx, trachea, bronchi, lungs, and diaphragm; skeletal system including bones, cartilage, ligaments, and tendons; and urinary system including kidneys, ureters, bladder and urethra.

[0094] The present invention overcomes problems and inadequacies associated with prior methods used for characterizing abnormal or cancerous epithelial tissue. In summary, various embodiments of the present invention use DC and/or impedance measurements, under ambient and/or variable suction, that pass the current or signal across the breast epithelium and tumor using specially constructed electrodes. For example a nipple electrode may be used to measure the voltage and/or impedance between ductal epithelium, surrounding breast tissue, skin and surface or other electrode. The nipple electrode may also be used to pass the
current along the ductal system of the breast. Another type of electrode may be used to measure the voltage and/or impedance signal, and/or pass a current and measure the signal at the individual ductal orifices at the nipple surface. Another type of electrode may be used to measure the voltage and/or impedance signal, and/or pass a current and measure the signal within individual ducts using a modified ductal probe or ductoscope which may have one or more electrodes attached to it. All of these electrodes may be used individually, in combination with one another, or with a surface probe or electrodes. Additionally DC and impedance measurements will be used in combination to more adequately characterize abnormal or cancerous tissues. DC measurements provide information about the functional state of the epithelium and can detect early pre-malignant changes and an adjacent malignancy. In particular, impedance measurements at several frequencies in specifically defined ranges using differently spaced electrodes provide depth and topographic information to give both structural (high frequency range) and functional (low frequency range) information about the tissue being probed. Abnormal or cancerous tissue can be detected and characterized by detecting and measuring transport alterations in epithelial tissues, using ionic substitutions and/or pharmacological and hormonal manipulations to determine the presence of abnormal pre-cancerous or cancerous cells. A baseline level of transepithelial DC potential, impedance or other electrophysiological property that is sensitive to alterations in transport in epithelia is measured in the tissue to be evaluated. An agent may be introduced to enhance the transport or make it possible to detect the transport alteration. The transepithelial DC potential and/or impedance of the tissue (or other electrophysiological property that may reflect or make it possible to detect alterations in the
transport) are then measured. Based on the agent introduced and the measured electrophysiological parameter, the condition of the tissue is determined.

[0095] A method and system are provided for determining a condition of a selected region of breast epithelial tissue. At least two current-passing electrodes are located in contact with a first surface of the selected region of the tissue. Alternatively, the current passing electrodes may pass current across the tissue or epithelium as for example between the nipple ducts, ductal lumen, epithelium, breast parenchyma and surface of the breast. Alternatively, the ducts may be accessed by a central duct catheter or ductoscope. A plurality of measuring electrodes are located in contact with the first surface of the breast as well. Initially, one or more of the measuring electrodes is used to measure the DC potential referenced to another electrode, or reference point. A signal is established between the current-passing electrodes. Impedance, associated with the established signal, is measured by one or more of the measuring electrodes. Alternatively a three-electrode system may be used for measurements whereby one electrode is used for both current injection and voltage recording. An agent is introduced into the region of tissue. The condition of the tissue is determined based on the effect of the agent on measured DC transepithelial potential, impedance or other electrophysiological characteristic. The electrodes in the described methods and apparatus can be used in contact with, in proximity to, over, or inserted into the tissues being examined. It should be understood that where the method is described in an embodiment as encompassing one of these arrangements, it is contemplated that it can also be used interchangeably with the other. For example, where the method is described as having an electrode in contact with the
tissue, the method can also be used with the electrode inserted into or in proximity to the tissue. Similarly, where the method is described as having an electrode in proximity to the tissue, it is contemplated that the electrode can also be in contact with or inserted into the tissue.

[0096] In order to more accurately detect transport alterations in abnormal pre-cancerous or cancerous epithelial tissue, a pharmacological agent may be introduced to manipulate the tissue. Pharmacological agents may include agonists of specific ion transport and electrical activity, antagonists of specific ion transport and electrical activity, ionic substitutions, and/or hormonal or growth factor stimulation or inhibition of electrical activity.

[0097] Depending on the location of the tissue to be investigated, a number of methods may be used to administer the pharmacological or hormonal agents. One exemplary method includes introducing the agent directly to the tissue being investigated, via ductal infusion, perfusion, direct contact or injection. Another exemplary method includes applying the agent to the skin surface, wherein the agent acts transcutaneously, or through the skin. Yet another exemplary method includes electroporation, wherein the ductal epithelium or surface is made permeable by the passage of alternating current via electrodes in contact or penetrating the organ or epithelium of interest. The agent then passively diffuses into the organ and its constituent cells. The agent may be introduced directly into the breast ductal system using the modified nipple aspirator cup and electrode, or lavaged into a specific duct using a ductal catheter or probe. Additional exemplary methods include via inhalation, oral administration, lavage, gavage, enema, parenteral injection into a vein or artery, sublingually or via the buccal mucosa, or via intraperitoneal administration. One skilled in the art will
appreciate that other methods are possible and that the method chosen is determined by the tissue to be investigated.

[0098] Thus, systems and methods consistent with the present invention use transepithelial electropotential or/and impedance measurements to diagnose pre-malignancy or cancer. Further, systems and methods consistent with the present invention use a defined set of frequencies, in combination, to characterize functional and structural alterations in pre-malignancy and cancer. By using spaced electrodes the present invention may provide topographic and geometrical (depth) information about the epithelium under examination to diagnose pre-malignancy and cancer. In one embodiment, systems and methods of the present invention use electrodes with specially formulated ECMs to provide functional information about the epithelium to diagnose pre-malignancy and cancer.

[0099] In order to measure the transepithelial breast DC potential it is necessary that the lumen of the duct be electrically accessed by a nipple electrode constructed to make an electrical connection between the Ag/AgCl (or similar low offset platinum/hydrogen, titanium, tin-lead alloy, nickel, aluminum, zinc, carbon, or other conductive metal or conductive polymer electrode) pellet recessed within the nipple cup. The cup is filled with an ECM (electro-conductive medium), which enters the ductal system passively, or after aspiration with a syringe or pump, making contact with the ductal lumen. A surface electrode placed at the surface of the breast completes the electrical circuit, so that measurements of transepithelial potential may be made between the ductal epithelium, or center of the tumor and the skin surface. Similar considerations have to be given to measure transepithelial AC impedance whereby the measuring electrodes measure the voltage drop and phase shift across the ductal epithelium or tumor, by utilizing a nipple electrode in
combination with a skin surface electrode. Other configurations of this approach are more invasive, whereby measurement can be made between an electrode inserted via a ductoscope or nipple duct probe electrode referenced to the skin or an IV (intravenous), intradermal, or subcutaneous electrode. In another embodiment, the duct may also be accessed by a needle-electrode inserted through the skin.

[0100] In order to combine DC transepithelial measurement with impedance measurements, it is necessary to obtain baseline measurement of the DC potential using the voltage sensing electrodes, referenced to surface electrode with low-contact impedance, or the blood stream via an IV, or the interstitial body fluid via a needle electrode or electrode that permeabilizes the overlying epidermis or other epithelium, or other body reference point. The electrodes may contain different ionic concentrations, pharmacological agents or hormones in their ECMs. As used in this description, an ECM is a medium that permits transmission of electrical signals between the surface being measured and the electrode. An agent includes any ionic concentration, pharmacological agent, hormone or other compound added to the ECM or otherwise introduced to the tissue under investigation, selected to provide further information about the condition of the tissue. In another embodiment the concentrations of agents may be changed using a flow through system.

[0101] Electroconductive media can include conductive fluids, creams or gels used with external or internal electrodes to reduce the impedance (resistance to alternating current) of the contact between the electrode surface and the skin or epithelial surface. In the case of DC electrodes it is also desirable that the ECM results in the lowest DC offset at the electrode surface, or an offset that can be measured. The ECM will often contain a hydrogel that will draw fluid and
electrolytes from deeper layers of the skin to establish electrical contact with the surface electrode. Electrodes that are used to pass current require ECMs with high conductance. Usually this is accomplished by using ECMs with high electrolyte content. The electrolytes frequently used are KCl (potassium chloride) because of the similar ionic mobility of these two ions in free solution, so that electrode polarization is less of a problem than when ions of different mobility are used. Other ions such as sodium may be used in ECM formulations, and the higher electrolyte concentration result in more rapid electrode equilibration.

[0102] In situations where estimations will be made of the permeability of the epithelium to specific ions, the concentration of K (potassium) in the ECM will be varied so that the conductance of the epithelium to potassium may be measured electrophysiological^\(^.\) An enhancer or permeant may be added to the ECM to increase the conductance of the underlying skin to the electrolyte in the ECM. Other approaches include mild surface abrasion with pumice and alcohol to reduce surface skin resistance, abrasive pads such as Kendall Excel electrode release liner (Tyco Health Care, Mansfield, MA), 3M Red Dot Trace Prep (3M Corporation, St. Paul, MN), cleaning the skin with alcohol, an automated skin abrasion preparation device that spins a disposable electrode to abrade the skin (QuickPrep system, Quinton, Inc., Bothell, WA), ultrasound skin permeation technology (SonoPrep, Sontra Medical Corporation, Franklin, MA; U.S. 6,887,239, Elstrom et al.), or silicon electrodes, which just penetrate the stratum corneum to reduce skin surface resistance. (For a comparison and discussion of several methods see also, Biomedical Instrumentation & Technology, 2006; 39: 72-77. The content of both the patent and journal article are incorporated herein by reference.)
[0103] Transepithelial electrical measurements typically require the positioning of electrodes on either side of an epithelium to make accurate measurements. This can be accomplished with an electrode placed in the lumen of an epithelial lined organ (stomach, colon, prostate, bronchus or breast) and with the reference electrode placed outside the lumen of the organ under study. Alternatively the intra- and extra-luminal electrodes can make indirect contact with the inside and outside surface of the epithelium using an electrolyte solution, gel, hydrogel or other electroconductive media.

[0104] Attempts to measure the transepithelial electrical properties of an epithelium without access to both sides of the epithelium may introduce significant sources of measurement error. For example placing a skin electrode over an epithelial lined organ such as stomach, colon, prostate or breast may result in a surface measurement that does not accurately reflect the transepithelial electrical properties of the underlying epithelium.

[0105] Application of a voltage, for example to a surface, produces an electrostatic field, even if no charge carriers move, that is, no current flows. As the voltage increases between two points separated by a specific distance, the electrostatic field becomes more intense. As the separation increases between two points having a given voltage with respect to each other, the electrostatic flux density diminishes in the region between them. This relationship is described by Coulomb's law, which is an inverse-square relationship indicating the magnitude and direction of electrostatic force that one stationary, electrically charged object of small dimensions (ideally, a point source) exerts on another. Coulomb's law may be stated as follows:
"The magnitude of the electrostatic force between two point charges is directly proportional to the magnitudes of each charge and inversely proportional to the square of the distance between the charges."

[0106] In the case of the voltage across an epithelium the value would be dependent on the charge across the epithelium which is usually due to a negative charge on the luminal side relative to the abluminal side of the epithelium. The greater the distance of a measuring electrode from the source of the charge the lower the measured electrostatic force. Mathematically, Coulomb's law may be stated as follows:

\[F = k \cdot \frac{Q_1 \cdot Q_2}{d^2} \]

[0107] Where \(Q_1 \) represents the quantity of charge on object 1 (in Coulombs), \(Q_2 \) represents the quantity of charge on object 2 (also in Coulombs), and \(d \) represents the distance of separation between the two objects (in meters). Also, \(k \) is the proportionality constant known as Coulomb's law constant, which depends on the medium between the charges and is approximately \(9.0 \times 10^9 \text{ Nm}^2/\text{C}^2 \) for air and two orders of magnitude lower for water or saline.

[0108] It follows from the Lorentz Force Law that the magnitude of the electric field \(E \) created by a single point charge \(q \) is:

\[|E| = \frac{1}{4\pi \epsilon_0} \frac{|q|}{r^2} \]

[0109] For a positive charge \(q \), the direction of \(E \) points along lines directed radially away from the location of the point charge, while the direction is the opposite for a negative charge; \(E \) is expressed in units of volts per meter or Newtons per Coulomb.

[0110] Simply stated this means that the further away from the point charge, the measured voltage falls off as an inverse
function of the square of the distance from the source to the measuring electrode. Even when the impedance of the skin surface is reduced, the measured voltage with surface electrodes falls off significantly with increasing distance away from the epithelium. If a working electrode makes direct or indirect contact with luminal surface of the epithelium then the voltage measured at the skin surface will represent the voltage across the epithelium in series with the voltage drop between the outside (abluminal) surface of the epithelium and the interstitial space, and the voltage drop across the skin.

[0111] When contact is established with the luminal surface of the epithelium, directly or indirectly, with a measuring electrode and the skin surface impedance is reduced, the measurement between the luminal electrode and the skin surface more accurately represents the true transepithelial potential. This is because the voltage drop and electrical potential across the skin is partially eliminated. The voltage drop due to the interstitium, or interstitial tissue beneath the skin surface and the abluminal surface of the epithelium, is generally considered negligible. In other words, once high skin impedance is substantially eliminated, the underlying tissue has a minimal influence on the measured transepithelial DC potential and epithelial impedance, which are measurements of particular interest.

[0112] US Patent No. 6,887,239 (Elstrom, et al.) proposes use of sonophoresis to reduce the impedance of the skin to non-invasively prepare cells, tissues, and organs for transmission and reception of electrical signals. The term "sonophoresis" typically refers to ultrasonically enhanced transdermal drug delivery. For purposes of the present invention, sonophoresis refers not only to transdermal delivery of one or more compounds (for example, generally any
pharmacological agent, including a drug, a hormonal agent, a solution of defined ionic composition, and the like), but more broadly to the application of ultrasonic energy to the skin surface in order to obtain a beneficial effect, including in particular, the improved measurement of electrophysiological characteristics, preferably in connection with diagnosis of the condition of an individual, especially the tissue or organ of such an individual. As stated above, reduction or even elimination of surface skin impedance by itself will not correct for the effect of Coulomb's Inverse Square Law or the Lorentz Force Law. Without an intraluminal measurement electrode or an indirect connection with the lumen of the organ under test, a surface electrical measurement will not accurately reflect the true transepithelial electrophysiological measurement.

[0113] Whereas transepithelial electrical measurements have been described in the colon, stomach, uterine cervix and other hollow organs, measurement of transepithelial electrical characteristics in the ductal epithelium of the breast (and other less "accessible" organs) are more challenging. While access to the ductal lumen may be obtained using ductal probes, catheters or ductoscopes, these approaches are invasive which can limit their utility. In contrast, the present invention provides a non-invasive approach, which uses a modified Sartorius nipple aspirator cup, described herein (also see, e.g., U.S. Patent No. 3,786,801, Sartorius, and Fig. 4 herein) . In a preferred method, the nipple is prepped with a dekeratinizing agent to remove keratin plugs that may be present, which can block the duct ostia. The cup is filled with an electroconductive medium such as physiological saline and placed over the nipple. The cup is aspirated several (e.g., about 4-5) times to remove air and/or air bubbles and to establish electrical contact between two Ag-AgCl electrodes.
within the nipple cup and the ductal epithelium via the physiological saline electroconductive medium. One of the two electrodes is used to measure the voltage between the ductal lumen and a skin surface electrode and the other nipple electrode is used to pass a current between the ductal lumen and a different skin surface electrode. Using this approach one can measure the transepithelial electropotential and the impedance spectrum (e.g., as a function of frequency) of the ductal epithelium and the breast parenchyma.

[0114] A combination of transepithelial measurements and reduction of skin and series resistance along the lumen of epithelial lined hollow organs permits more accurate and more effective measurement of the transepithelial electrical properties of an organ than using either approach alone. For example, where small differences in electrophysiological characteristics are present, application of the combined technology described herein may provide the sole opportunity to observe the desired response in order to diagnose the condition of the tissue. In various embodiments, this can be accomplished by the use of one or more of the following elements or features in combination:

(A) high conductance electrolytes in the nipple cup sensor (of particular value for establishing electrical contact with the ductal epithelium);
(B) dekeratinizing agents to reduce the impedance across the nipple;
(C) high conductance electrolytes within the ductal lumen;
(D) ductal catheters or probes to directly establish contact with the ductal epithelium;
(E) sonophoresis to reduce overlying skin impedance;
(F) skin permeants or "wetting agents" to reduce skin impedance (e.g. sodium lauryl sulfate);

(G) adhesive tape to strip away the stratum corneum;

(H) skin abrasion to reduce skin impedance (e.g., Kendall Excel electrode release liner, Tyco Health Care, Mansfield, MA; 3M Red Dot Trace Prep, 3M Corporation, St. Paul, MN, or QuikPrep System, Quinton Inc, Bothell, WA);

(I) Hydrogel or hypertonic gel electrodes to hydrate the skin and reduce skin impedance;

(J) surface micoinvasive electrodes to reduce skin impedance as described by Griss et al., in "Characterization of micromachined spiked biopotential electrodes," IEEE Trans Biomed Eng. 2002 Jun;49(6):597-604; and/or

(K) needle electrodes to penetrate the skin.

[0115] Sonophoresis as used in the present invention applies ultrasonic energy via a coupling medium in order to modify the properties of skin, preferably to reduce the skin's electrical impedance and improve the diagnostic methods of the present invention. However, it is also appreciated that overexposure to ultrasonic energy may result in damage to the skin from localized pressure, temperature increases, and shear stresses. Therefore, in one embodiment, at least one parameter or characteristic of the skin or underlying tissue is monitored and when the parameter being monitored reaches a predetermined value or exhibits a predetermined response, the ultrasound-producing device is turned off. If the parameter being monitored hasn't reached a predetermined or control value, the measurement is continued or repeated until the predetermined or control value is reached.
[0116] In one embodiment, the invention comprises the use of at least one skin electrode or handgrip applicator electrode, as a reference electrode, and an electrical sensor to measure periodically or continuously at least one electrical property of the skin, for example, electrical impedance, conductance, resistance, and the like, or a combination thereof, at the site of application of ultrasonic energy. Dynamic change in the at least one electrical property through the skin is measured while the ultrasound is applied. Signal processing is performed on the measurement and the level of skin impedance or impedance change is controlled by performing a mathematical analysis and using the results of such analysis to control the application of ultrasonic energy. Alternative methods are available for controlling the level of ultrasonic energy application. For example, in one embodiment, a desired level of skin impedance can be set at a predetermined value or based on a chosen level of skin integrity, a subject's sensation of discomfort, duration of the ultrasound application, a change in the level or rate of change of an electrical property, e.g., impedance can also be used to control the application of ultrasonic energy to the area of skin being treated.

[0117] For example, in one alternative sonophoresis can be applied for a fixed period of time, varying from about 2 seconds to about 30 seconds or more; alternatively, about 5 seconds to about 25 seconds; or about 5 seconds to about 40 seconds; such as about 3 seconds to about 60 seconds; for example about 10 to about 20 seconds or about 15 seconds. In still another embodiment, sonophoresis is continued until the impedance between a hand held probe (held by the patient) and the ultrasound applicator reaches a predetermined threshold, typically about 1000 to about 4000 ohms; alternatively about 1500 to about 3500 ohms; for example about 2000 to about 3000
ohms. In a further alternative embodiment, sonophoresis can be applied for a period of time such that an impedance spectra subsequently measured according to the methods of the present invention differentiates into separately discernible curves, for example at least two curves, typically identified as Nyquist curves. The achievement of separately discernible curves would be an indication that the obscuring overlying skin impedance has been sufficiently reduced to obtain useful electrical measurements. In still another embodiment, sonophoresis can be manually or automatically switched off when the measured transepithelial electropotential drops to a physiological level over the region of the breast under test, thereby facilitating measurement of the impedance profile in the breast quadrant of interest, as further described below.

[0118] Whichever electrical value or values, time or other conditions, individually or in combination, are selected as the control or reference for application and termination of ultrasonic energy, it is appreciated that such values can vary from person to person depending on skin type and condition. Additionally, the behavior of the skin also changes in response to different excitation frequencies, i.e., the frequency response. In one embodiment, a baseline impedance is measured for the area of skin to which the skin sonophoresis or ultrasonic applicator device is to be applied. In other embodiments, a baseline conductance, a baseline capacitance, a baseline inductance, or a baseline capacitance can be measured, or combinations of such measurements can also be used.

[0119] A predetermined electrical value may depend upon a number of factors including the skin characteristics of the individual and the frequency of the excitation source. As is apparent to one of ordinary skill in the art, a predetermined value may be determined on a subject-by-subject basis, taking
into account appropriate factors and the empirical data. According to another embodiment, the intensity of the skin sonophoresis device may be gradually scaled back as the desired level of electrical parameter is approached. In one embodiment, if the parameter being monitored reaches about 50% of a predetermined value, either the intensity or the length of application may be reduced by a predetermined amount, such as about 50%. This has the advantage of not exceeding the predetermined value, thereby avoiding the risk of skin damage. Additional and/or alternative controls are also possible. For example, in another embodiment, the intensity may be scaled back a proportionate or selected amount when the parameter being monitored reaches, for example, about 25%, about 50% and about 75% of the predetermined value.

[0120] In still another embodiment, an electrical parameter is measured at multiple, e.g., two frequencies. In one embodiment, the impedance of the skin is measured at frequencies of about 10 Hz and about 1 kHz and these measurements at the different frequencies are compared and are then used to control the skin sonophoresis device. For example, the parameter measurement at a first frequency is compared with the parameter measurement at a second frequency to determine whether the two measurements are within a predetermined differential. If the two values are within a predetermined differential, it provides an indication that the frequency response of the skin has flattened and, therefore, as suggested by Elstrom, et al. cited above, it is an indication that the skin has reached a desired condition wherein the deleterious effect of the stratum corneum has been reduced. At this point, the sonophoresis device can be turned off. In one particular embodiment, an impedance of the skin is measured at 10 Hz and at 1 kHz, and, if the two impedance
measurements are within, for example, about 20% of each other, the sonophoresis device may be turned off.

[0121] In still another embodiment, the rate of change in an electrical parameter measurement may also be used to determine a point at which the skin sonophoresis device is scaled back or discontinued. A rate of change of one or more parameters may be used. In another embodiment, the rate of change of the difference between the two parameters may also be used. As the rate of change reaches a predetermined value, the intensity of the sonophoresis device may be gradually scaled back or discontinued. In a modification of this embodiment, the intensity of ultrasonic energy may be gradually scaled back as the point of the desired electrical value is approached. For example, as the differential between the two parameter measurements approaches about 50% of a predetermined differential value, either the intensity or the cycle may be reduced by a predetermined amount, such as about 50%. Additional or alternative controls are also possible. For example, in another embodiment, the intensity of the ultrasonic energy applied is scaled back when the differential between the two parameters being monitored reaches about 25%, about 50% and about 75% of the predetermined differential value.

[0122] In the various alternative sonophoresis control or feedback methods, the invention includes appropriate monitoring circuitry designed to measure an electrical parameter of the skin and interface with control circuitry for the ultrasonic energy applicator. For example, circuitry can be designed to measure the current flow through the area of skin and to convert that measurement into a form suitable for use by a microcontroller; for example, a monitoring circuit can comprise a current sensor that is operable to measure the impedance of an area of skin.
A particularly useful sonophoresis device is commercially available from Sontra Medical Corporation, Franklin MA, under the brand name, SonoPrep® System. In this system the sonopheresis voltage is 12 V AC at 55,000 Hz and the sensor signal is 100mV AC at 100 Hz. Although it is marketed primarily for transdermal drug delivery it can be used in its current form or modified to accomplish treatment of the skin according to the descriptions herein.

The following describes one embodiment for carrying out the methods of the present invention as related to making electrophysiological measurements of the human breast using the SonoPrep® System referred to above for carrying out sonophoresis. Typically, four sites on the breast are prepared for measurements; one in the quadrant of interest and three others in quadrants at an equal distance from the nipple. This is illustrated in Figure 31 with the inner electrodes illustrated as open circles. These are the V-Lo or low voltage sensing electrodes. Typically, sonophoresis is not applied to the outer current passing electrode skin attachment sites. The steps that have been found useful in a clinical setting are as follows:

(a) The test protocol is explained to the individual, and in each instance where required, the individual is asked to sign an Institutional Review Board (IRB) consent form before continuing;

(b) The region, or quadrant, of interest (ROI or QOI) is selected. The ROI may be determined as the result of a palpable mass or a mammographic finding such as calcifications. If the latter, it is preferred to estimate the distance from the nipple and the radial location, usually described with reference to the face of a clock, e.g., 1:00 o'clock, 2:00 o'clock, etc.;
(c) An alcohol wipe is used to clean the skin surface at the site of electrode placement;

(d) A dekeratinizing agent (for example, NuPrep®) is applied to the nipple;

(e) A second wipe containing a permeabilizing agent (for example, a preferred agent is sodium lauryl sulfate) is applied to the skin of the breast and palm of the individual's hand in which the SonoPrep sensing electrode is placed.

(f) A marking pen is used to mark the site at which sonopheresis will be applied at the electrode attachment sites on the breast. If, for example, the ROI is at 10:30 o'clock and 4 cm from the nipple, the other three control quadrants will be at 1:30, 4:30 and 7:30 o'clock, all 4 cm from the nipple, and all preferably exactly 90° from one another.

(g) The fully charged SonoPrep device is primed with a disposable cartridge of sodium lauryl sulfate coupling medium and applied for several seconds to the ROI and the three control areas of the breast that were previously identified with a marking pen. The SonoPrep device typically makes a hissing noise during sonopheresis and issues an audible signal (ring) that sonopheresis is complete, in other words, that skin impedance at the site has been significantly reduced (or according to another feedback or control method such as discussed above). This usually takes 2-15 seconds per sonopheresis site and depends on the initial impedance of the skin. During sonopheresis the patient holds the sensing probe in the palm of her hand, which sends a 100 Hz, 100 mV AC signal to the ultrasonic horn that is being applied to the skin of the breast in the selected ROI and control areas. When the received signal measures, for example, a predetermined skin impedance, such as about 2000-3000 ohms, the ultrasonic horn switches off and sonopheresis at that site is complete. (In contrast, normal skin can have an impedance
of 150,000 ohms, but this can vary significantly, especially from one individual to another);

(h) Once sonopheresis has been completed sodium lauryl sulfate residue is wiped off the skin, and the NuPrep is wiped off the nipple;

(i) The skin electrodes are then placed in contact with the four sites that have been subjected to sonopheresis. These electrodes typically are the V-Lo (Voltage Low) measurement sites; the Gen-Lo (low current passing) electrodes are placed outside the V-Lo electrodes radially around the nipple. The current passing electrode attachment sites are generally not treated with sonopheresis;

(j) The sterile nipple cup sensor is then applied to the nipple. The cup is typically filled with physiological saline, or other electroconductive medium (ECM) as described herein. Bubbles that may be present in the ECM are aspirated out of the cup to ensure good electrical contact. Preferably, negative suction is applied to hold the nipple sensor cup in place and to open up the nipple duct ostia, for example, approximately 100 mm Hg can be applied at least once, although the pressure can be cycled several times between ambient pressure and negative pressure to facilitate opening of the ostia;

(k) The cables from the frequency response analyzer (FRA), multiplexer, or biological impedance isolator are attached to the patient. In one embodiment the cables from the biological impedance isolator are manually rotated between electrodes, in another embodiment the electrodes are electronically switched using a computer controlled multiplexer;

(l) Current is passed at selected frequencies, "frequency sweeps," between the Gen-Hi (nipple cup sensor) and Gen-Lo current passing electrodes (on the periphery of the
breast (outside V-Lo) and selected measurements are made, for example, voltage drop, phase shift, impedance, open circuit potential etc., between the V-Hi (nipple cup sensor) and V-Lo (electrode placed at the sonopheresis site) voltage measuring electrodes;

It should be noted that measurements including voltage drop, phase shift, impedance etc., can be measured along the ductal system of the underlying breast using voltage sensing electrodes placed at the edge of the nipple areola and then radially over the ROI, for example, V-Hi at 2 cm from the nipple and V-Lo over the ROI at 4 cm from the nipple at 10:30 o'clock. Under these circumstances it is preferable to apply sonopheresis to both skin sites so that the measured impedance would be principally along the ductal system and across the epithelium, and would not be contaminated or negatively impacted by significant skin impedance. Also under those circumstances it would be preferable to measure the open circuit potential between the nipple sensor V-Hi and breast surface V-Lo so that a more accurate measurement of the transepithelial open-circuit potential is obtained.

(m) After the impedance curves are measured for each quadrant of the breast, the open circuit potential is measured between V-Hi and each of the four V-Lo electrodes. This can be done between each of the frequency sweeps or at the end of all of the impedance measurements.

(n) At the completion of the test the electrodes are removed and the breast gently cleaned and dried.

Although the above description outlines one embodiment for performing the test, other alternative embodiments can conveniently be employed, including, for example using an electrode array, or harness instead of individual electrodes. Such an arrangement can incorporate all the electrodes in a "petal" configuration with a separate nipple cup sensor, or
combined with the surface electrode array. Such an arrangement can simplify or ease application and electrode attachment.

[0125] Alternatively, nipple impedance could be reduced by using sonopheresis rather than or in addition to a dekeratinizing agent. For example, the SonoPrep device or the nipple cup sensor can be adapted to apply sonopheresis to the nipple to loosen or remove keratin plugs. The nipple sensor can initially be filled with a dilute coupling agent such as sodium lauryl sulfate solution and low energy ultrasound can be applied. The coupling fluid and keratin plugs can be evacuated from the nipple cup and the coupling fluid replaced with physiological saline and suction applied before beginning electrophysiological testing as described herein.

[0126] In a further alternative embodiment, the ultrasonic transducer and horn that apply the ultrasound can also function as a source electrode through which electrical parameters of the area of skin may be measured. In such a method the electrode is coupled to the skin through a conductive solution, such as saline, which can also be used as an ultrasound conductive medium. For example, an amount, such as five (5) cc, of a coupling medium can be introduced between the end of the ultrasound applicator and the skin surface to wet the skin site and to immerse the tip of resonator. In one embodiment of the invention the coupling medium comprises a fluid mixture comprising, for example, phosphate buffered saline at a suitable pH for the skin, e.g., about 7, about 1 wt% sodium laurel sulfate, and natural, soft silica particles (such as commercially available Tamsil 10). As is desirable for applying ultrasonic energy for the purpose of sonopheresis, the fluid mixture should provide suitably rapid initiation and formation of cavitation upon the application of
ultrasonic energy. Other suitable fluid mixtures can be substituted for the above-described coupling medium.

[0127] A particularly preferred embodiment employs a working electrode that makes direct or indirect contact with the luminal epithelium referenced to a skin surface electrode combined with one or more of the techniques described above will give a more accurate transepithelial measurement than a surface electrode that is not referenced to an electrode that is in direct or indirect contact with the luminal epithelium. The improved measurement methods of the present invention, utilizing in particular the transepithelial electrical properties of an epithelial lined organ, may be used to diagnose epithelial disease states such as cancer, pre-cancerous conditions including, for example, polyps, papillomas, hyperplasia, dysplasia, aberrant colonic crypts, intraepithelial neoplasia, leukoplakia, erythroplakia and the like, as well as benign neoplastic processes of epithelial origin, inflammation, infection, ulceration and the like. Furthermore, the methods described herein may be used to assess treatment response of an epithelium to hormones, drug treatment, or treatment of epithelial disease states using other therapeutic modalities, including radiation, electroporation, gene therapy and the like. These and other advantages of the combination of transepithelial electrophysiological measurements and reduction in skin impedance, particularly for the measurement of transepithelial electrical properties of the breast in the diagnosis of breast disease, are illustrated in the examples that follow the heading hereinbelow, "Impact of Reduced Surface Impedance."

[0128] In order to measure the depth of the impedance alteration, the voltage drop will be made between surface electrodes with different spacing. Spacing will be determined by knowledge of the depth to be probed. Similarly two
different frequency ranges will be used to measure functional and structural changes at different depths.

[0129] In order to more accurately detect the functional transport alterations at different depths in abnormal precancerous or cancerous epithelial tissue, a pharmacological agent is introduced to manipulate the tissue, while electrically probing the tissue at different frequencies and monitoring the voltage drop between differently spaced electrodes. Pharmacological agents include agonists of specific ion transport and electrical activity, antagonists of specific ion transport and electrical activity, ionic substitutions, and/or hormonal or growth factor stimulation or inhibition of electrical activity.

[0130] Depending on the location of the tissue to be investigated, a number of methods are used to administer the pharmacological or hormonal agents. One exemplary method includes introducing the agent directly to the tissue being investigated, via ductal perfusion, infusion, direct contact or injection. Another exemplary method includes applying the agent to the skin surface, wherein the agent acts transcutaneous Iy, or through the skin. Yet another exemplary method includes electroporation, wherein the epithelium or surface is made permeable by the passage of alternating current via electrodes in contact or penetrating the surface of the breast or ductal epithelium of interest. The agent then passively diffuses into the breast and its constituent cells. Additional exemplary methods include via inhalation, oral administration, lavage, gavage, enema, parenteral injection into a vein or artery, sublingually or via the buccal mucosa, or via intraperitoneal administration. One skilled in the art will appreciate that other methods are possible and that the method chosen is determined by the tissue to be investigated.
Based on the agent introduced and the tissue being investigated, measurements of electrophysiological properties, such as impedance, are performed. Other properties that can be measured includes, transepithelial potential, changes in spontaneous oscillations in transepithelial potential or impedance associated with the malignant state, time delay in a propagation signal between electrodes, which indicates a loss of gap-junction function. If adjacent cells are electrically coupled, one can examine the loss of coupling by pharmacologically eliciting an electrical signal and measuring the signal propagation up and down-stream through surface epithelial cells. This is a functional measurement of the gap-junctions, whereas simple electrical stimulation will measure shunting of a current between the cells (a structural measurement, at least in the high frequency range).

The results of these measurements are then used to determine the condition of the investigated tissue. For example, research has indicated that specific ion transport processes are altered during the development of cancer. For example, a loss of electrogenic Na\(^+\) transport, an up-regulation in Na/H exchange, a down-regulation in K\(^+\) conductance, a decrease in basal Cl\(^-\) absorption, and a down-regulation in c-AMP (cyclic adenosine-3',5'-cyclic monophosphate) stimulated Cl\(^-\) secretion have been observed.

Thus, by administering agents appropriate to the particular epithelial tissue and measuring the associated electrophysiological characteristics, it is possible to detect abnormal pre-cancerous or cancerous tissue while the development of such tissue is at an early stage. It should be understood that the method and system of the present invention is applicable to any epithelial derived cancer, such as, but not limited to, prostate, colon, breast, esophageal, and nasopharyngeal cancers, as well as other epithelial
malignancies, such as lung, gastric, uterine cervix, endometrial, skin and bladder.

[0134] Specifically, in cancers affecting mucosal or epithelial tissues, transport alterations may be sufficiently large to suggest that they are a consequence of an early mutation, affecting a large number of cells (i.e., a field defect). In this case, they may be exploited as potential biomarkers for determining which patients should be either more frequently monitored, or conversely, may be used to identify particular regions of epithelium that require biopsy. The latter is especially helpful in the case of atypical ductal hyperplasia or ductal carcinoma in situ (DCIS), which are more difficult to detect mammographically, or by clinical breast examination without having to resort to an invasive biopsy.

[0135] Applying the methods of the present invention, several observations have been made:

1. Differences in the total impedance are observed when comparing malignant breasts with benign or normal breasts. The total impedance is higher comparing malignant to benign breasts with the total impedance exceeding 50,000 ohms, or even higher, for the malignant breasts.

2. Total capacitance was lower overall, comparing malignant with benign or normal breasts.

3. The impedance curves for normal and malignant breasts separate at lower frequencies.

4. The shape of the curves differs depending on the pathological condition of the breast.

5. Electrical resistance of the tumor may be lower at lower frequencies, for example, in the range of about 1 to about 0.1 hertz. This also depends on the type and size of the tumor.
(6) Capacitance of the tumor may be higher at the lower frequencies. This also depends on the pathological type and size of the tumor.

(7) Differences exist between phase angle, characteristic capacitance and the suppression of the center of the impedance arc depending on the pathological status of the breast.

(8) When current is passed across a malignant tumor from another site on the breast or body, rather than from the nipple to the surface of the breast, the impedance may be lower when the voltage drop is measured across the tumor rather than between the nipple and the tumor i.e., across ductal epithelium. The capacitance is usually higher when the measurement is made across a malignant tumor, rather than across the ductal epithelium. Therefore a combination of measurements; nipple to breast surface (transepithelial impedance spectroscopy), body surface to breast surface (transtumor impedance), and transepithelial potential (ductal epithelium in series with skin provides the optimum diagnostic information.

[0136] The methods of the present invention are particularly useful when use is made of the entire frequency range of about 0.1 Hertz and about 100,000 Hertz; for example to about 90,000 Hertz; or to about 80,000 Hertz; or to about 70,000 Hertz; or to about 60,000 Hertz. Although a significant amount of discriminatory information can be observed at frequencies below about 200Hz, other useful information can be obtained at frequencies between about 10 KHz and about 100 KHz, including, for example measurements at at least one frequency selected from the group consisting of about 10 KHz, about 20 KHz, about 30 KHz, about 40 KHz, about 50 KHz, about 60 KHz, about 70 KHz, about 80 KHz, about 90 KHz, and about 100 KHz. Particularly useful observations
in this regard can be made at, for example, about 60 KHz. Alternatively, useful information can be obtained at frequencies in the elevated range of about 10 KHz to about 100 KHz; such as about 20 KHz to about 90 KHz; or about 30 KHz to about 80 KHz; for example about 50 KHz to about 70 KHz. Furthermore, when obtaining measurements at such higher frequencies the use of sonophoresis is optional and measurements can be made with or without the use of sonophoresis as a prelude to obtaining electrophysiological properties.

[0137] A preferred protocol is to take 5-10 electrical measurements (impedance, reactance, phase angle, resistance, etc.) between about 100,000 Hz, for example about 60,000 Hz and about 200 Hz and then take as many measurements as possible (taking into consideration, for example, the comfort of the patient, response time of the equipment, etc.) between about 200 Hz and about 0.1 Hz; preferably between about 150 Hz and about 0.1 Hz; more preferably about 100 Hz and about 0.1 Hz. In practice, this can mean taking about 20 to about 40 measurements in one or more of the lower frequencies ranges.

[0138] It has also been observed that the application of alternating suction and release opens up the nipple ducts so that impedances are generally lower if this protocol is followed. This will typically lower the impedance in the high frequency range. This reduces measurement noise and enhances current passage along the ducts to the tumor site. Further improvement can be made in lowering the impedance of the nipple and larger collecting ducts by using alcohol or a dekeratinizing agent including Nuprep® (manufactured by D.O. Weaver and Co., Aurora, CO), or other dekeratinizing agents known in the art, e.g., acetic acid at a dekeratinizing strength, Empigen® (detergents or surfactants available from
various manufacturers), Cerumenex® (triethanolamine polypeptide oleate-condensate, available from The Purdue Frederick Co., Stamford, CT; typically used in connection with earwax removal; the manufacturer states that it may cause dermatologic allergic reactions), and other preparative agents containing alcohol, in order to remove keratin plugs in the surface duct openings on the nipple surface. Methods for opening up the ductal system are known for ductoscopy (e.g., Acueity), obtaining nipple aspirate fluid (NAF) or ductal lavage (e.g., CYTYC), but this technology has not previously been applied to the field of the present invention. A particularly improved device will employ an automated suction pump connected to a manometer to suction rhythmically, analogous to a breast pump, then employ a holding suction pressure at a predetermined level and then change the holding pressure to another level so that the effect of altered suction on the impedance spectra can be used as a diagnostic test. Without wishing to be bound by theory, it is believed that a difference in electrical response, for example a different impedance curve, arises due ductal collapse with the application of suction in a normal breast whereas the presence of malignancy in a duct inhibits such collapse.

[0139] Mechanical pressure can also be used to provide additional diagnostic information during DC and AC impedance measurement to characterize breast tissue. In this manner, positive pressure is applied to the skin surface and negative pressure, or vacuum is applied to the nipple. In this manner an additional approach can be used to obtain further diagnostic information that can be independently used or can be used in combination with the technique relating to nipple aspiration.

[0140] Two patterns of impedance and open circuit potential have been observed from transepithelial impedance spectroscopy
and DC measurements in patients with benign or malignant breast lesions. Figure 22 demonstrates one source of false positives that can occur with a low impedance fibroadenoma (a benign lesion). Two patterns exist in the impedance spectral profile of breast cancer. The first change is an increase in impedance, particularly at low frequency. Without wishing to be bound by theory, this is believed due to the ducts becoming packed with tumor cells (ductal-carcinoma in-situ, DCIS) which increases the resistance of the ductal epithelium. Once an invasive carcinoma and mass lesion develops within a duct system, the tight-junctions between cells break down, resulting in a decrease in impedance, particularly at low frequencies. In Figure 22 the open circles demonstrate the impedance spectra of a control ductal system in a patient with a carcinoma of the breast in a quadrant of the breast that is uninvolved by tumor. It can be seen that the open circles on the right side of the graph form a second circular arc (Cole plot) that extends beyond the right side vertical Y-axis. This indicates that a high impedance ductal system exists in the control quadrant of this patient's breast. In the opposite quadrant of the same patient's breast a mass has developed. The impedance spectrum of that breast quadrant is depicted by the open squares. The second semicircular arc has now been replaced by a low impedance Cole plot that passes below the X-axis. Since we have previously observed that the low frequency impedance arc appears to be dominated by the terminal ducts, it is likely that the terminal ducts have become less electrically resistant in the region of the developing cancer. This suggests a lower electrical impedance at this stage in the development of the cancer.

In another patient the impedance spectra over a suspicious mass appears similar to the developing cancer. This lesion had an impedance spectra depicted by filled
squares. The impedance curve has lost its low impedance curve similar to the developing cancer. The patient underwent a biopsy, the results of which demonstrated that the mass was a benign fibroadenoma. Several features do however distinguish the developing cancer from the fibroadenoma:

1. The middle part of the impedance arc is flattened in the fibroadenoma (filled squares) compared with the carcinoma (open squares);

2. The notch frequency occurs at about 30 Hz for cancer (this may occur as low as 1 Hz in cancer) and about 100 Hz for the fibroadenoma. Notch frequency is the frequency at which there appear two separate RC time-constants in the impedance spectra resulting in two incompletely fused arcs. It is the frequency at which the two arcs or double humps appear to partly separate. (See Jossinet et al., Ann. NY Acad. Sci. 1999; 873: 30-41, incorporated herein by reference.) The acronym RC stands for Resistor-Capacitor. The product RC is referred to in the art as the time constant, and is a characteristic quantity of an RC circuit. For example, when $t=RC$, the capacitor has charged to a fraction equal to $1-1/e$, or about 63% of its final value. Typically the units of RC are seconds or milliseconds. When the time constant of the high frequency RC components of the circuit have a significantly different time constant compared to the low frequency RC components, the resulting figure exhibits two separate semi-circles on a Nyquist plot. If the time constants are close to one another, the semi-circles will appear to be fused. With better separation, in other words time constants that differ more, the information obtained is more diagnostically useful. As described above, a greater degree of diagnostic information in the present invention is obtained in the low frequency range; and
(3) The subepithelial resistance (the intercept of the high-frequency impedance curve with the x-axis on the left side of the curve) is much lower in the fibroadenoma (140 ohms) than in the cancer (420 ohms).

[0142] As noted above, an alternative approach that can be used to identify abnormalities in the breast and distinguish benign from malignant disease involves the application of mechanical pressure or compression to occlude the ductal pathway and thereby increase the impedance pathway for the passage of electrical current through the breast. The application of mechanical pressure or compression, in other words positive pressure (in contrast with the application of vacuum to, e.g., nipple ducts as described elsewhere herein), can be accomplished by various means well-known to the skilled practitioner. For example, one or more fingers or the hand can be used to palpate an area of the breast, including a suspicious area or an adjoining area thereto. Alternatively, a mechanical device, such as a pressure transducer, can be used to apply a finite or defined degree of pressure to a specific area. Additionally, the use of mechanical pressure can be combined with the use of suction or vacuum as described above. For convenience, the use of mechanical pressure can be referred to as the mechanical pressure protocol and it can be accomplished by one or more of the following steps in the suggested order or in other sequences:

(1) Measurement of an impedance spectrum over a region of tissue where an abnormality is suspected (suspicious region).

(2) Measurement of an impedance spectrum over a region of tissue where no abnormality is suspected (control region).

(3) The application of mechanical pressure or compression over the suspicious region.
(4) The measurement of the impedance spectrum in the suspicious region following the application of mechanical pressure.

(5) The application of mechanical pressure or compression over the control region.

(6) The comparison of the impedance profile before and after compression in the suspicious region.

(7) The comparison of the impedance profile before and after compression in the control region.

(8) The comparison of the impedance profile of the suspicious region to the control region.

(9) Using 6, 7 and 8 alone or in combination to diagnose the normal or diseased state of the tissue.

(10) Measurement of the kinetics of the change in impedance when pressure is applied or released over a region of tissue.

(11) Using the kinetics of the change in impedance to diagnose the normal or diseased state of the tissue.

(12) Using a combination of a single or multiple pressure transducer with steps 3-11 to obtain both a pressure profile, and an impedance profile.

(13) Using a combination of the applied pressure profile with the changes in the impedance profile to diagnose the normal or diseased state of the tissue.

(14) Using a combination of 1-13 with changes in the suction pressure applied to the nipple-sensor aspirator-cup.

(15) Using a combination of the altered impedance profile following changes in the applied suction pressure to the nipple-sensor aspirator-cup with steps 1-13 to diagnose the normal or diseased state of the tissue.

[0143] Ducts containing tumor cells will generally be less compliant, and therefore less compressible than normal ducts not including tumor cells. This is depicted in Figure 23.
The open squares depict the impedance spectra of a normal duct which appears to have at least two time constants. The notch frequency (the point at which the two impedance curves incompletely fuse) in this normal duct is at about 4 Hz. When a pressure of up to 1 kg cm⁻² was applied over the breast surface electrode a new impedance spectrum was measured at 59 frequencies logarithmically spaced between 60,000 Hz and 0.1 Hz (filled squares). The impedance of the low frequency curve (below 4 Hz) is markedly increased due to occlusion of the more compliant duct. In contrast, there is virtually no effect on the impedance curve above 4 Hz. Figure 24 demonstrates the effect on a large scale of the X-axis. Note that the impedance increases from approximately 7850 ohms to almost 42,000 ohms. The open squares (no compression) are obscured by the closed squares (compression).

[0144] Figure 25 depicts the release of compression on the duct (open circles) with the return of the impedance profile almost to control (pre-compression) levels. Note that the kinetics and shape of the release curve has specific characteristics in normal as opposed to abnormal tissue. For example, the return of the impedance curve takes several minutes due to the compliance properties of the ductal and surrounding parenchymal tissue. These properties can be used to characterize the pathological state of the tissue.

[0145] Figure 26 demonstrates the same protocol applied to a cyst. The open square "QOI 2:00" (quadrant of interest at the 2:00 o'clock position) depicts the impedance spectrum over a cyst. When pressure is applied (closed square) the impedance decreases, as may be expected as the current pathway is decreased because of a decrease in the anterior-posterior diameter of the cyst with compression. The control quadrant is depicted by open circles, which pass off the scale. A
large cyst is expected to have a lower impedance than the surrounding tissue because it conducts electricity better.

[0146] Figure 27 demonstrates the same protocol applied to a region of fibrocystic disease. Since the cystic component is minimal i.e., there is a more non-compliant fibrous element in this example, there is a minimal effect observed with compression.

[0147] Figure 28 demonstrates the same fibroadenoma shown in Figure 22. This fibroadenoma has a significantly lower impedance than is usually observed and the lesion can be confused with a carcinoma. The same pressure protocol was applied and an increase of impedance was identified although less than that observed in a normal duct (Figure 24 and Figure 25). It should be noted that the surrounding ductal structure is less disrupted in a fibroadenoma than in carcinoma and therefore some compression of the ductal structure was possible. The same compression protocol applied to the carcinoma in Figure 22 results in no appreciable change in the impedance profile, apparently because the ducts have already been disrupted by the tumor and are less compressible.

[0148] Figure 29 depicts a more typical fibroadenoma where the impedance is higher. The control quadrant (open circles) has a somewhat noisy impedance curve, but shows two partially fused RC curves because of normal ductal structure. In this case the pressure protocol results in minimal change in the impedance spectrum. As has been demonstrated, the application of pressure in combination with the electrical measurements described in detail above to selected regions of the breast exhibiting suspicious tissue can be used effectively to distinguish between malignant and other types of abnormal tissue.

[0149] A number of variations are possible for devices to be used with the present invention. Further, within a device
design, there are a number of aspects that may be varied. These variations, and others, are described below.

[0150] One probe or other device includes a plurality of miniaturized electrodes in recessed wells. Disposable commercially available silicon chips processing functions, such as filtering, may perform surface recording and initial electronic processing. Each ECM solution or agent may be specific to the individual electrode and reservoir on the chip. Thus, for one measurement, a particular set of electrodes is used. For another measurement, for example, at a different ionic concentration, a different set of electrodes is used. While this produces some variations, as the electrodes for one measurement are not located at the same points as for another, this system provides generally reliable results.

[0151] An alternative approach is to use fewer electrodes and use a flow-through or microfluidic system to change solutions and agents. Specifically, solutions or agents are changed by passing small amounts of electrical current to move solution or agent through channels and out through pores in the surface of the probe. In this embodiment, the electrode remains in contact with the same region of the skin or ductal epithelium, thus eliminating region-to-region variation in measurement. This approach requires time for equilibration between different solutions.

[0152] In detecting the presence of abnormal pre-cancerous or cancerous breast tissue, a hand-held probe is provided for obtaining surface measurements at the skin. The probe may include electrodes for passing current as well as for measuring. An impedance measurement may be taken between the nipple cup electrode and the hand-held probe, or may be taken between electrodes on the hand-held probe. Alternatively, a ductoscopic or non-optical ductal probe may be interfaced with
one or more miniaturized electrodes. After taking initial DC measurements, a wetting/permeabilizing agent may be introduced to reduce skin impedance or one of the methods described hereinabove may be used. The agent may be introduced using a microfluidic approach, as described above, to move fluid to the surface of the electrodes. Alternatively, surface electrodes that just penetrate the stratum corneum may be used to decrease impedance.

[0153] Regardless of the configuration of the device, Figure 1 is a schematic of a DC and AC impedance measurement system 100 used in cancer diagnosis, consistent with the present invention. The system 100 interfaces with a probe device 105 including multiple electrodes, wherein the actual implementation of the probe device 105 depends on the organ and condition under test. The probe device 105 may incorporate the electrodes attached to a needle, body cavity, ductoscopic, non-optical ductal or surface probe. A reference probe 110 may take the form of an intravenous probe, skin surface probe, nipple-cup or ductal epithelial surface reference probe depending on the test situation and region of breast under investigation.

[0154] To avoid stray capacitances, the electrodes may be connected via shielded wires to a selection switch 120 which may select a specific probe 105 following a command from the Digital Signal Processor (DSP) 130. The selection switch 120 also selects the appropriate filter interfaced to the probe 105, such that a low pass filter is used during DC measurements and/or an intermediate or high pass filter is used during the AC impedance measurements. The selection switch 120 passes the current to an amplifier array 140 which may be comprised of multiple amplifiers or switch the signals from different electrodes through the same amplifiers when multiple electrodes are employed. In a preferred embodiment
digital or analogue lock-in amplifiers are used to detect minute signals buried in noise. This enables the measurement of the signal of interest as an amplitude modulation on a reference frequency. The switching element may average, sample, or select the signal of interest depending on the context of the measurement. This processing of the signal will be controlled by the DSP following commands from the CPU. The signals then pass to a multiplexer 150, and are serialized before conversion from an analogue to a digital signal by the ADC. A programmable gain amplifier 160 matches the input signal to the range of the ADC 170. The output of the ADC 170 passes to the DSP 130. The DSP 130 processes the information to calculate the DC potential and its pattern on the ductal-epithelial or skin surface as well as over the region of suspicion. In addition the impedance at varying depth and response of the DC potential and impedance to different ECM concentrations of ions, drug, hormones, or other agent are used to estimate the probability of cancer. The results are then sent to the CPU 180 to give a test result 185.

[0155] Alternatively the signal interpretation may partly or completely take place in the CPU 180. An arbitrary waveform generator 190 or sine wave frequency generator will be used to send a composite waveform signal to the probe electrodes and tissue under test. The measured signal response (in the case of the composite wave form stimulus) may be deconvolved using FFT (Fast Fourier Transforms) in the DSP 130 or CPU 180 from which the impedance profile is measured under the different test conditions. An internal calibration reference 195 is used for internal calibration of the system for impedance measurements. DC calibration may be performed externally, calibrating the probe being utilized against an external reference electrolyte solution.
[0156] Figure 2 includes a handheld probe 400, consistent with the present invention, which may be applied to the surface of the breast. The probe may include a handle 410. The probe 400 may be attached, either directly or indirectly using, for example, wireless technology, to a measurement device 420. The probe 400 may be referenced to an intravenous electrode, a skin surface electrode, other ground, nipple electrode, or ductal probe electrode within the duct or at the nipple orifice. In one embodiment, illustrated in Figure 2, the reference is a nipple electrode or ductal probe 430, illustrated in greater detail at close-up 440. One advantage of this configuration is that DC electropotential and impedance can be measured between the nipple electrode 430 and the probe 400. The measurement is thus a combination of the DC potentials or/and impedance of the breast ductal epithelium, non-ductal breast parenchyma, and the skin.

[0157] Referring to close-up 440, the ductal probe is inserted into one of several ductal orifices that open onto the surface of the nipple. Ductal probe 443 is shown within a ductal sinus 444, which drains a larger collecting duct 445.

[0158] Another advantage of using a nipple electrode is that a solution for irrigating the ductal system may be exchanged through the probe, permitting introduction of pharmacological and/or hormonal agents. As shown in magnified nipple probe 443, 443' fluid can be exchanged through a side port. Fluid may be infused into the duct and aspirated at the proximal end (away from the nipple) of the nipple probe. Different electrolyte solutions may be infused into the duct to measure altered permeability of the ductal epithelium to specific ions or the epithelium may be probed with different drugs to identify regions of abnormality. Estradiol, or other hormonal agents, may be infused into a breast duct to measure
the abnormal electrical response associated with pre-malignant or malignant changes in the epithelium.

[0159] It should be understood that different configurations may also be used, such as a modified Sartorius cup that applies suction to the nipple. With this configuration, gentle suction is applied to a cup placed over the nipple. Small amounts of fluid within the large ducts and duct sinuses make contact with the electrolyte solution within the Sartorius cup, establishing electrical contact with the fluid filling the breast ducts. DC or AC measurements may then be made between the cup and a surface breast probe.

[0160] Figure 3 illustrates the probe 400 of Figure 2 in greater detail. The skin contact of the surface 450 is placed in contact with the breast. The surface electrodes 451 measure DC or AC voltages. The current passing electrodes 452 are used for impedance measurements. Probe 400 may also include one or more recessed wells containing one or more ECMs. Multiple sensor electrode arrays may be attached to the surface probe together with current passing electrodes. The individual electrodes may be recessed and ECMs with different composition may be used to pharmacologically, electrophysiologically^, or hormonally probe the deeper tissues or epithelium under test. Spacing of the electrodes may be greater for the breast configuration than for other organ systems so that deeper tissue may be electrically probed and the impedance of the deeper tissue evaluated. This probe may either be placed passively in contact with the surface of the breast or held in place by pneumatic suction over the region of interest. Ports may be placed for the exchange of solutions or for fluid exchange and suction (not shown). Guard rings (not shown) may be incorporated to prevent cross-talk between electrodes and to force current from the contact surface into the breast. In this configuration there are four
current passing electrodes [453] each positioned radially 90° apart. This permits current to be passed and the voltage response to be measured in perpendicular fields. The electrodes will be interfaced via electrical wire, or wireless technology, with the device described in Figure 1 above.

[0161] Further embodiments of this technique may involve the use of spaced electrodes to probe different depths of the breast, and the use of hormones, drugs, and other agents to differentially alter the impedance and transepithelial potential from benign and malignant breast tissue, measured at the skin surface. This enables further improvements in diagnostic accuracy.

[0162] Figure 4 illustrates a nipple cup electrode [500] that may be used as a reference, current passing, voltage measuring or combination electrode [502]. In this configuration suction and fluid exchange is applied to the electrode housing [501] through a side port [510] connected by a flexible hose [515] to a suction device, aspirator or syringe (not shown). The flange [503] at the base of the cup is applied to the areola of the breast [520]. Pneumatic suction is applied through the side port and communicated to the housing by passage [512] so as to obtain a seal between the breast [520] and the nipple electrode [501]. Electrolyte solution is used to fill the cup and make electrical contact with the underlying ductal system. Fluid may be exchanged, or pharmacological and hormonal agents introduced, by applying alternating suction and injecting fluid or drugs into the cup through the side port. The pneumatic suction will open up the duct openings [505] either by itself or after preparation with alcohol or de-keratinizing agents to remove keratin plugs at the duct openings at the surface of the nipple. The nipple cup electrode [502] may be interfaced by means of an electrical connection [530] or by a wireless connection (not
shown) with the devices illustrated in Figures 1-3 to obtain DC potential, AC impedance or combination measurements.

[0163] Figure 5 illustrates an alternative approach where an individual duct is probed with a flexible catheter electrode [550] attached to a syringe [555]. This may be used when a specific duct produces fluid and diagnosis is to be performed on the specific ductal system producing the fluid. In this configuration a saline filled syringe is connected to a flexible electrode [550], which is inserted into the duct [551]. Fluid may be exchanged, or drugs and hormones may be infused into the duct, through the catheter. An electrode within, or attached to the syringe makes electrical contact with the individual ductal system, and the surface probe electrodes [552] complete the circuit so that the DC potential, AC impedance or a combination of both may be measured across the ductal epithelium, skin and intervening breast parenchyma in combination with the systems described in Figures 1-3. Another approach would be to use a ductoscope in combination with a surface probe with the electrode (s) interfaced with the ductoscope.

[0164] Devices to measure the electrophysiological characteristics of tissue and the differences between normal and abnormal tissue may include those known in the art such as electrical meters, digital signal processors, volt meters, oscillators, signal processors, potentiometers, or any other device used to measure voltage, conductance, resistance or impedance.

[0165] DC potential is usually measured using a voltmeter, consisting of a galvanometer in series with a high resistance, and two electrodes (one working and one reference). Voltmeters may be analog or digital. Ideally these should have an extremely high input resistance to avoid current-draw. DC potential may also be measured with an oscilloscope.
Impedance may be measured using a number of approaches. Without limitation, examples include phase-lock amplifiers, which may be either digital or analog lock-in amplifiers. Pre-amplifiers may be used in conjunction with the lock-in amplifier to minimize stray currents to ground improving accuracy. Digital lock-in amplifiers are based on the multiplication of two sine waves, one being the signal carrying the amplitude-modulated information of interest, and the other being a reference signal with a specific frequency and phase. A signal generator can be used to produce the sine waves or composite signal to stimulate the tissue. Analog lock-in amplifiers contain a synchronous rectifier that includes a phase-sensitive detector (PSD) and a low-pass filter. Other approaches include the use of an impedance bridge with an oscillator to produce an AC sine wave. These devices when automated are referred to as LCR-meters and use an auto-balancing bridge technique. Constant current or constant voltage current sources may be used. In one preferred embodiment, a constant current source is used. Rather than an oscillator with a fixed frequency signal a signal generator, which produces, superimposed sine waves may be used.

The tissue response is deconvolved using fast Fourier transforms or other techniques. Bipolar, tripolar or tetrapolar current and voltage electrodes may be used to make measurements. In one preferred embodiment tetrapolar electrode configurations are employed to avoid inaccuracies that are introduced due to electrode polarization and electrode-tissue impedance errors. Rather than impedance, current density may be measured using an array of electrodes at the epithelial or skin surface. Impedance may also be measured using electromagnetic induction without the need for electrode contact with the skin or epithelium.
In order to process large amounts of data, the methods of the present invention can be implemented by software on computer readable medium and executed by computerized equipment or central processor units.

EXAMPLE 1. BREAST CANCER

As mentioned above, impedance and DC electrical potential have been used separately at the skin's surface to diagnose breast cancer. Neither of these methods measures the ductal transepithelial DC or AC electrical properties of the breast. This significantly reduces the accuracy of the approach, because the origins of breast cancer are within the ductal epithelium, and not the surrounding breast stroma. Accuracy is further improved when the transepithelial measurements of impedance and DC potential are combined. The use of pharmacological and/or hormonal agents in combination with impedance or DC electrical potential measurements, provide a more effective method for detecting abnormal precancerous or cancerous breast tissue.

Breast cancer develops within a background of disordered proliferation, which primarily affects the terminal ductal lobular units (TDLUs). The TDLUs are lined by epithelial cells, which maintain a TEP (transepithelial potential). In regions of up-regulated proliferation, the ducts are depolarized. The depolarization of ducts under the skin surface results in skin depolarization. The depolarization is significantly attenuated compared to that which is observed using a transepithelial ductal approach, as opposed to a non-transepithelial skin surface approach such as disclosed in Patents 6,351,666; 5,678,547; 4,955,383. When a tumor develops in a region of up-regulated proliferation, the overlying breast skin becomes further depolarized compared with other regions of the breast and the impedance of the cancerous breast tissue decreases. The changes in ductal
epithelial impedance are not measured using existing technologies resulting in a diminution in accuracy. Alterations in TEP and impedance occur under the influence of hormones and menstrual cycle.

[0172] For example, the electrophysiological response of breast tissue to 17-β-estradiol has been observed to be different in pre-cancerous or cancerous epithelium than in normal breast epithelium. In one method of the present invention, estradiol is introduced directly into the duct or systemically following sublingual administration of 17-β-estradiol (4 mg). This agent produces a rapid response, which peaks at approximately 20 minutes. The electrophysiological response depends, in part, on the stage of the patient's menstrual cycle, as well as the condition of the breast tissue. Specifically, in normal breast tissue, a rise in TEP will occur during the follicular (or early) phase. In pre-cancerous or cancerous tissue, this response is abrogated. Post-menopausal women at risk for breast cancer may have an exaggerated TEP response to estradiol because of up-regulated estrogen receptors on epithelial cell surfaces.

[0173] Furthermore, estrogen, progesterone, prolactin, corticosteroids, tamoxifen or metabolites, (all of which alter the ion transport characteristics of ductal epithelium depending on its premalignant, malignant and functional state), thereof may be introduced either orally, intravenously, transcutaneously, or by intraductal installation.

[0174] In one embodiment of the present invention, breast or other cancers may be diagnosed by examining the basal conductance state of the paracellular pathway of the epithelium. For example, in the breast, a substance known to affect the conductance of the tight junctions may be infused into the duct, or administered by other mean, and the
transepithelial impedance and/or the DC potential of the breast is measured, before and after the administration of the agent, using a combination of surface, nipple, ductal or other electrodes. The difference in the transepithelial electrical response of the tight junctions to the agent in normal compared to pre-malignant or malignant breast epithelium is then is used to diagnose the presence or absence of malignancy.

[0175] In another embodiment, the electrodes are placed over the suspicious region and the passive DC potential is measured. Then AC impedance measurements are made as discussed below. The variable impedance properties of the overlying skin may attenuate or increase the measured DC surface electropotentials. Alternatively, impedance measurements at different frequencies may initially include a superimposed continuous sine wave on top of an applied DC voltage. Phase, DC voltage and AC voltage will be measured. The resistance of the skin or other epithelium at AC and a different resistance at DC are measured. Under DC conditions since there is no phase shift, it is possible to measure the transepithelial potential at the surface. The capacitive properties of the skin may allow the underlying breast epithelial and tumor potential to be measured at the skin surface.

[0176] Once the ECM results in "wetting" of the skin surface there is pseudo-exponential decay in the skin surface potential using the above referenced approach. Ions in the ECM diffuse through the skin and make it more conductive, particularly because of changes in the skin parallel resistance. The time constant for this decay is inversely proportional to the concentration and ionic strength of the gel. Once the skin is rendered more conductive by the ECM the capacitive coupling of the surface to the underlying potential
of the tumor or the surrounding epithelium is lost so that the measured potential now reflects an offset and diffusion potential at the electrode-ECM-skin interfaces.

[0177] Figure 6 demonstrates the effect of varying the ionic content of the bathing Ringers solution on transepithelial conductance. The human breast epithelial cells were grown as monolayers on Millipore filters and grew to confluence in 7 to 10 days. The epithelia were then mounted in modified Ussing chambers and the DC conductances were measured using a voltage clamp. The conductance was measured by passing a 2 μA current pulse for 200 milliseconds and measuring the DC voltage response and calculating the transepithelial conductance (y-axis), and plotting it against time (x-axis). The conductance was measured first in standard Ringer solution, then in a sodium-free Ringer, then returned to standard Ringer, then in a potassium-free Ringer and finally returning to standard Ringer solution while maintaining normal osmolality during the studies.

[0178] The upper plot (filled squares and solid line) demonstrates the conductance of benign human breast epithelia grown as a monolayer. The conductance is higher in the benign epithelial cells. The Na⁺ and K⁺ components of conductance are approximately, 10 and 5 mS.cm² respectively.

[0179] The lower plot (filled circles and dotted line) demonstrates the conductance of malignant human breast epithelia grown as a monolayer. The conductance is significantly lower in the malignant epithelial cells. The Na⁺ and K⁺ components of conductance are approximately, 4 and 1 mS.cm² respectively.

[0180] In malignant tumors as opposed to monolayers of malignant epithelial cells, the tight junction between cells break down and the tumor becomes more conductive than either benign or malignant epithelial monolayers. This observation
may be exploited in the diagnosis of breast cancer. The lower
countance of the epithelium around a developing tumor,
together with a region of high conductance at the site of the
malignancy, may be used to more accurately diagnose breast
cancer. Using electrodes with ECMs with different ionic
composition will permit the specific ionic conductances to be
used in cancer diagnosis. For example a high conductance
region with a surrounding area of low K-conductance is
indicative of breast cancer; a high conductance area with a
surrounding region of normal conductance may be more
indicative of fibrocystic disease (a benign process).

Figure 7 demonstrates measurements of cell membrane
potential (ψ) in human breast epithelial cells. Measurements
were made using a potentiometric fluorescent probe, and
ratiometric measurements, which are calibrated using
valinomycin and $[K^+]$-gradients. ψs were measured in the
presence (closed circles) and absence (open circles) of
estradiol (the active metabolite of estrogen). Each symbol is
the mean measurement. The upper error bar is the standard
error of the mean, and the lower error bar is the 95%
confidence level for the observations. The addition of
estrogen to cultured breast epithelial cells results in an
instantaneous increase in ψ (data not shown) as well as the
transepithelial potential see figure 8. Transepithelial
potential (V_t) of an epithelium is the sum of the apical
(luminal) cell membrane potential (V_A) and the basolateral
(abluminal) cell membrane potential (V_{BL}). Therefore $V_t= V_A +V_{BL}$ (changes in V_A and/or V_{BL} will therefore alter V_t or transepithelial potential).

Figure 7 demonstrates that benign breast epithelial
cells have a ψ of approximately -50 mV in the absence of
estradiol and -70 mV when estradiol is added to the culture
media. Malignant and transformed cells have a ψ of between -31 and -35 mV in the absence of estradiol and approximately 50 mV when estradiol is present in the culture medium.

[0183] The difference in the electrical properties may be exploited to diagnose breast cancer in vivo. Surface electropotential measurements are a combination of the transepithelial potential, tumor potential and overlying skin potential. Physiological doses of estradiol may be administered to the patient to increase ψ and the sustained effect of estradiol results in an increase in transepithelial potential and tumor potential measured as an increase in surface electropotential. The increase following sustained exposure (as opposed to the instantaneous response) is less in malignant than benign breast tissue.

[0184] It should be noted that the instantaneous response, illustrated in Figure 8, is greater in malignant epithelia, whereas the chronic or sustained exposure to estradiol results in a lower increase in TEP (transepithelial electropotential) in malignant cells. Concurrent measurement of surface electropotential and impedance allow the more accurate diagnosis of cancer. Figure 8 demonstrates the instantaneous effect of increasing doses of estradiol on the transepithelial potential (TEP) of benign and malignant human breast epithelial cells. The cells were grown as monolayers on Millipore filters and grew to confluence in 7 to 10 days. The epithelia were then mounted in modified Ussing chambers and the TEP was measured using a voltage clamp. Increasing doses of estradiol between 0 and 0.8 μM were added (x-axis). The transepithelial potential was measured after each addition and the TEP was measured (y-axis).

[0185] The different dose response is apparent for benign and malignant epithelia. Malignant epithelia have a lower TEP
but undergo an instantaneous increase in TEP of approximately 9 mV (becomes more electronegative and reaches a level of < -6 mV) after exposure to only 0.1 μM estradiol and then depolarize to approximately -2 mV with increasing doses of estradiol up to about 0.5 μM. Benign epithelia have a lesser response to increasing doses of estradiol and do not peak until almost 0.3 μM and then remain persistently elevated (higher electro negativity), unlike the malignant epithelia, with increasing doses of estradiol.

[0186] This difference in dose response may be exploited to diagnose breast cancer. Estradiol, or other estrogens, at a low dose will be administered systemically, transcutaneously, intraductally, or by other route. The instantaneous response of the surface electropotential and/or impedance may then be used to diagnose breast cancer with improved accuracy over existing diagnostic modalities using impedance or DC measurement alone.

[0187] Figure 9 shows conductance measurements made at 2000 Hz at the surface of the breast. At this frequency the influence of the overlying skin impedance is less. There is still however some variable component of skin impedance, which results in significant variability of the measurement as evidenced by the overlapping error bars. Each symbol represents the median measurement with error bars the standard deviation of the mean.

[0188] Open symbols represent measurements made in patients with a biopsy proven malignancy, while closed symbols represent measurements made in patients whose subsequent biopsy proved to be a benign process such as fibrocystic disease. Malignant lesions are often associated with surrounding breast epithelium that demonstrates up-regulated proliferation. These regions ("adjacent region") are
depolarized and may have a lower conductance than either over the region of malignancy. This decreased conductance may be because of decreased K+-conductance of the adjacent and pre-malignant epithelium as I have observed in human colon. [0189] Each of the three groups of symbols represents measurements from over a suspicious lesion or region, then the adjacent region, and then over normal breast in an uninvolved quadrant of the breast. The first two symbols (circles) in each of the three groups are impedance measurements where the median value is plotted against the left y-axis as conductance in mS.crrf². The second two symbols (squares) is the surface electrical potential measured in mV and plotted against the right y-axis, each division equals 5 mV. The third two symbols (triangles) are the electrical index for benign and malignant lesions and are in arbitrary units and are derived from the conductance and surface potential measurement. It is immediately apparent that there is less overlap in the error bars (standard deviation of the mean). Therefore breast cancer can be more accurately diagnosed using a combination of surface potential measurement and AC-impedance measurements. Further enhancements of this technique will involve the use of spaced electrodes to probe different depths of the breast, and the use of the hormones, drugs and other agents to differentially alter the impedance and transepithelial potential from benign and malignant breast tissue, and measured at the skin or duct surface. This will enable further improvements in diagnostic accuracy. [0190] It should be understood that the surface potential measurement of breast tissue varies based on the position of the woman in her menstrual cycle. Figure 10 illustrates this variance. This figure demonstrates electropotential measurements taken over the surface of each breast at 8 different locations with an array of 8 electrodes on each
breast referenced to an electrode on the skin of the upper abdomen. Measurements are taken with error bars equal to the standard error of the mean. Filled circles and filled squares represent the median value from the left and right breast respectively. The vertical dotted line is the first day of each menstrual cycle.

[0191] It can be seen that the median values for each breast tend to track one another with lower values in the first half of menstrual cycle (follicular phase) and higher values in the latter part of cycle (luteal phase). Although the measured electrical values are not completely superimposed, because of other factors affecting the electropotential of the breast, it can be seen that the lowest levels of electropotential are observed 8-10 days before menstruation and the rise to the highest levels around the time of menstruation. This may be because estradiol levels are higher in the second part of menstrual cycle and directly affect breast surface electropotential.

[0192] The cyclical pattern of electropotential activity when a breast cancer or proliferative lesion is present is quite different. Similarly higher levels of surface electropotential are observed when measurements were made in the afternoon compared with the morning. This information can be exploited in a number of different ways. Measurement of the surface potential and impedance at different times during cycle enables a more accurate diagnosis because of a different cyclical change in surface electropotential (i.e., the peak to peak change in potential is less over a malignant region, relative to normal areas of the breast). Secondly, estradiol or another agent that changes the electropotential of the breast may be administered systemically, topically (transdermal), intraductally or by other means, and the drug
or hormone-induced change in surface potential may be used as a provocative test to diagnose breast cancer.

[0193] Figure 11 is a diagram illustrating the histological and electrophysiological changes that occur during the development of breast cancer. The continuum from normal ductal epithelium, through hyperplasia, atypical hyperplasia, ductal carcinoma in situ (DCIS), to invasive breast cancer is thought to take 10 to 15 years. Some of the steps may be skipped although usually a breast cancer develops within a background of disordered ductal proliferation. The normal duct maintains a transepithelial potential (inside of duct negatively charged), which depolarizes and impedance, which increases during the development of cancer. Once an invasive breast cancer develops the impedance decreases with loss of tight junction integrity, and conductance through the tumor is enhanced. The disordered ducts have altered electrophysiogical and ion transport properties. These properties are illustrated in the lower aspect of figure 11. These electrophysiological and transport alterations will be exploited to diagnose cancer and premalignant changes in the breast.

[0194] In these ways breast cancer can be more accurately diagnosed using transepithelial measurements of potential, or impedance, or a combination of transepithelial surface potential measurement, AC-impedance measurements and pharmacological manipulations.

[0195] EXAMPLE 2. CHEMOPREVENTATIVE AND THERAPEUTIC USE

[0196] In addition to the ionic, pharmacologic, and hormonal agents described above, the system and method of the present invention may be used with cancer preventative and therapeutic agents and treatments. Specifically, electrical measurement of altered structure and function provides a method for evaluating a patient's response to the drugs
without requiring a biopsy and without waiting for the cancer to further develop. Patients who respond to a given chemopreventative or therapeutic agent would likely show restoration of epithelial function to a more normal state. Patients who do not respond would show minimal change or may even demonstrate progression to a more advanced stage of the disease. This system and method, thus, may be used by either clinicians or drug companies in assessing drug response or by clinicians in monitoring the progress of a patient's disease and treatment, or monitoring the process of carcinogenesis (cancer development), before an overt malignancy has fully developed.

[0197] EXAMPLE 3. ELECTROPHYSIOLOGICAL CHANGES IN OTHER EPITHELIA

[0198] The examples illustrated by Figures 12 and 13 were performed in human colon specimen removed at the time of surgery. Based on in vitro studies in breast epithelial tissues, similar changes in human ductal epithelium that can be measured in vivo are expected.

[0199] Figure 12 demonstrates the short circuit current (Isc) of human colonic epithelium ex-vivo. The figure demonstrates the time course along the x-axis while varying the potassium gradient across the tissue. The potassium permeability of the apical membrane of human colonic mucosa (P*K*a) was determined in surgical specimens of controls and grossly normal-appearing mucosa obtained 10–30 cm proximal to colorectal adenocarcinomas. The mucosa was mounted in Ussing chambers and the basolateral membrane resistance and voltage were nullified by elevating the K+ in the serosal bathing solution. The apical sodium (Na+) conductance was blocked with 0.1 mM amiloride. This protocol reduces the equivalent circuit model of the epithelium to an apical membrane conductance and electromotive force in parallel with the
The paracellular pathway as has been verified by microelectrode studies. Increasing serosal K+ caused the I\textsubscript{sc} to become negative (-140 uA/cm2) in normal colon after which 30 mM mucosal TEA caused an abrupt increase in I\textsubscript{sc} corresponding to block of apical K+ channels. In cancer-bearing colon the reduction in I\textsubscript{sc} is to -65 uA/cm2. The serosal bath was remained constant at 125 mM [K].

Figure 13 demonstrates that ΔI\textsubscript{sc}, determined with respect to the I\textsubscript{sc} at 125 mM mucosal K, is a linear function of the concentration gradient, Δ[K]. Because the voltage across the apical membrane is zero under these conditions and the paracellular pathway is nonselective, the P\textsubscript{K\textsubscript{a}} (apical potassium permeability) can be calculated using the Fick equation i.e., I\textsubscript{sc} = F P\textsubscript{K\textsubscript{a}} Δ[K] where F is the Faraday constant and Δ[K] is the concentration difference for K+ across the epithelium. Figure 13 demonstrates mean ± sem values for I\textsubscript{sc} in both normal and premalignant human distal colon. The apical K+ permeability of controls was 9.34 x 10-6 cm/sec and this was significantly reduced by 50% in premalignant human mucosa to 4.45 x 10-6 cm/sec. P\textsubscript{K\textsubscript{a}} could also be calculated for the change in I\textsubscript{sc} when the K+ channels were blocked with TEA, assuming complete block. This resulted in somewhat lower values of 6.4 x 10-6 cm/sec and 3.8 x 10-6 cm/sec corresponding to a 40% reduction in P\textsubscript{K\textsubscript{a}}.

These observations show that there is a field change in the K+ permeability and conductance of human colon, during the development of cancer. Similar results are expected in breast ductal epithelium. Impedance measurements, and/or DC measurement using electrodes with different potassium gradients together with specific drugs, such as amiloride to block the contributions of electrogenic Na+ transport; to the electrical properties of the breast may be useful to diagnose breast cancer cancer. Amiloride may be introduced through the
breast duct and then the K+-concentration varied in the ECM used in the nipple electrode or irrigated into the duct to measure the reduced potassium permeability observed in the surrounding breast ductal epithelium (with atypical ductal hyperplasia or early DCIS), or increased permeability in the region of the developing invasive breast cancer.

[0202] Figure 14 illustrates multiple Nyquist impedance plots from human breasts. Current was passed between a nipple cup electrode containing a physiological saline solution under suction to open up the breast ducts on the surface of the nipple, and an electrode placed on the surface of the breast. Voltage was then measured between the nipple and the region of interest using a separate set of voltage measuring electrodes. All measurements were made at 59 frequencies logarithmically spaced between 60,000 hertz and 1 hertz except for the fibrocystic with atypia case (filled squares), which was measured at 59 frequencies between 60,000 hertz and 0.1 hertz. The impedance curves demonstrate the lowest impedance at highest frequencies. As the frequency of the applied sine wave decreases the curves shift from left to right along the x-axis.

[0203] Fig 15 illustrates the impedance profile for a patient with a hemorrhagic cyst. These studies were performed at frequencies from 60,000 hertz to 0.1 hertz. Measurements were made over the mass (lesion) in the 4 o'clock location of the breast and control measurements were made in the 10 o'clock location of the same breast. The high frequency measurement demonstrates that the curves were superimposable. Separation begins at a frequency below 5 Hz. The resistance of the mass was higher than the control quadrant of the breast at low frequencies. Surface open circuit potential measurements showed depolarization of only 2 mV over the mass.
and therefore enabled discrimination from cancer despite the high impedance.

[0204] Figure 16 illustrates a Bode plot of impedance plots comparing a patient with fibrocystic disease (0465) and a patient with breast cancer ((0099). It can be seen that the impedance $|Z|$ and theta (phase angle) separate at the lowest frequencies (open and closed symbols). The data for the suspicious mass, which was identified as fibrocystic disease on pathology, the control region and the control region from the breast cancer are almost superimposable. At the low frequency end of the spectrum the cancer (0099D-filled circles) separates from the control quadrant measurement (0099C-open circles) at approximately 20 Hz.

[0205] Figure 17 illustrates the same data as in figure 16 plotted as a Nyquist plot. The mass (a region of fibrocystic disease 0465A-open squares) has a 5000 ohms lower impedance at the low frequency end of the curve to the right side of the x-axis, compared with the control region (0465B filled squares). Plot 0099C (open circles) has a similar total impedance to the breast with fibrocystic changes but the curve shows a "double hump" indicating two different time constants (τ) for the low and high frequency ends of the impedance spectra in the malignant breast. This characteristic appearance can also be utilized as a diagnostic tool.

[0206] Figure 18 demonstrates the impedance spectra when the curve (0099D-filled circles) is added for the breast cancer to Figure 17. The total impedance is significantly higher at 76397Ω compared to 45447Ω for the control quadrant, and the lower (high frequency) curves begin to separate below about 200 Hz. The cancer was depolarized by 26 mV compared with the control quadrant, and the fibrocystic disease was depolarized by 5.5 mV. The combination of higher impedance
and greater depolarization enabled diagnosis of breast cancer in one patient and fibrocystic disease in the other despite the fibrocystic patient having impedances close to 50,000 ohms, a high value typically, but not necessarily suggesting the presence of cancer.

[0207] Figure 19 illustrates the effects of altering the level of suction applied to the nipple cup electrode. Holding suction was established where 3 ml of saline was aspirated from the nipple cup and is illustrated as the impedance curve with open squares. The impedance is approximately 26,000 ohms. When an additional 2-3 ml of saline is aspirated from the nipple cup electrode the impedance curve collapses to an impedance of approximately 3000 ohms-filled squares. The addition of 1-2 ml of saline resulted in an increase in impedance (open circles), which increased to approximately 15000 ohms after 5 minutes (closed circles).

[0208] Figure 20 illustrates similar suction pressure experiments on a malignant breast: aspirating 3 ml of physiological saline from the nipple electrode, after holding suction is obtained, results in a decrease in total impedance from 45,447Ω to 29,029Ω in the control quadrant whereas impedance decreases from 76,937 ohms to 62,568 ohms over the cancer. The greatest decrease in impedance is seen at the high frequency end of the impedance spectra (curves on the left side of the X-axis). For example, the impedance decreases from 29216 to 1550Ω in the control quadrant, and from 35824 ohms to 10106 ohms over the cancer. On the other hand, the changes in impedance are much less in the lower frequency spectra (curves on the right-side of the X-axis). A higher suction results in a decrease in impedance from 19985 ohms to 16593 ohms in the control quadrant whereas the change is even less over the cancer decreasing from 72674 ohms
to 71229 ohms. Capacitance increases in the control quadrant, in the low frequency range when suction is increased from 1.50E-5 to 1.76E-5F (farads), decreased from 1.17E-5 to 9.32E-6F over the cancer. It can be seen that altering the suction on the nipple cup electrode manually or with an automated suction pump can be used to distinguish malignant from benign breast epithelium by observing different responses of the impedance spectra to this maneuver.

[0209] Figure 21 illustrates the method used for estimating the impedance for the cancer high suction curve in Figure 20, where an arc is fitted to the impedance data and extrapolated to the x-axis at each end of the curve. The difference between the low and high intercepts is the estimated resistance of 12S14 ohms. The Capacitance (C) is estimated from the reactance at the maximum height of the arc, and is 1.1652E-5. The Depression Angle (15.932) is the angle between the x-axis and a line drawn from the origin of the x-axis to the center of the plotted arc.

[0210] DEVICES FOR USE WITH THE PRESENT INVENTION

[0211] A number of variations are possible for devices to be used with the present invention. Further, as noted above, within a device design, there are a number of aspects that may be varied. These variations, and others, are described below.

[0212] One embodiment of a probe or other device for use in the present invention includes a plurality of miniaturized electrodes in recessed wells. Surface recording and initial electronic processing, such as filtering, may be performed by disposable commercially-available silicon chips. Each ECM solution or agent may be specific to the individual electrode and reservoir on the chip. Thus, for one measurement, a particular set of electrodes would be used. For another measurement, for example, at a different ionic concentration, a different set of electrodes would be used. While this
produces some variations, as the electrodes for one measurement are not located at the same points as for another, this system provides generally reliable results.

[0213] An alternative approach is to use fewer electrodes and use a flow-through or microfluidic system to change solutions and drugs. Specifically, solutions or agents are changed by passing small amounts of electrical current to move solution or agent through channels and out through pores in the surface of the device. In this embodiment, the electrode remains in contact with the same region of the surface of the breast, thus eliminating region-to-region variation in measurement. This approach requires time for equilibration between different solutions. In detecting the presence of abnormal pre-cancerous or cancerous breast tissue, a hand-held probe is provided for obtaining surface measurements at the skin. The probe may include electrodes for passing current as well as for measuring. An impedance measurement may be taken between the nipple cup electrode and the hand-held probe, between a nipple cup electrode and adhesive skin electrodes, between electrodes on a miniature ductoscope, between electrodes on a ductoscope and the skin surface electrodes, or may be taken between electrodes on the hand-held probe. After taking initial DC measurements, a wetting/permeabilizing agent may be introduced to reduce skin impedance. The agent may be introduced using a microfluidic approach, as described above, to move fluid to the surface of the electrodes. Alternatively, surface electrodes that just penetrate the stratum corneum may be used to decrease impedance.

[0214] Fluids for use with the present inventions could include various electrolyte solutions such as physiologic saline (e.g. Ringers) with or without pharmacological agents. One preferable electrolyte solution to infuse into the ductal system will represent a physiological Ringer solution.
Typically this consists of NaCl 6 g, KCl 0.075 g, CaCl$_2$ 0.1 g, NaHCO$_3$ 0.1 g, and smaller concentrations of sodium hyper and hypophosphate at a physiological pH of 7.4. Other electrolyte solution may be used were the electrolyte comprises approximately 1% of the volume of the solute. Hypertonic or hypotonic solutions that are greater or less than 1% may be used in provocative testing of the epithelium and/or tumor. The concentration of Na, K and Cl will be adjusted under different conditions to evaluate the conductance and permeability of the epithelium. Different pharmacological agents such as amiloride (to block electrogentic sodium absorption), Forskolin (or similar drugs to raise cyclic-AMP) and hormones such as prolactin or estradiol can also be infused with the Ringer solution to examine the electrophysiological response of the epithelium and tumor to these agents. Similarly, the calcium concentration of the infusate will be varied to alter the tight junction permeability and measure the electrophysiological response of the epithelium to this manipulation. Dexamethasone may be infused to decrease the permeability of the tight junctions, and the electrophysiological response will be measured.

[0215] Although specific examples have been given of drugs and hormones that may be used in "challenge" testing of the epithelium and tumor, any agonist or antagonist of specific ionic transport, or tight-junctional integrity, known to be affected during carcinogenesis may be used, particularly when it is known to influence the electrophysiological properties of the epithelium or tumor.

[0216] Regardless of the configuration of the device, a signal is used to measure either the ductal transepithelial potential by itself, or the transepithelial impedance. These two measurements may then be combined to characterize the electrical properties of the epithelium associated with a
developing abnormality of the breast, and are then compared with uninvolved areas of the same or opposite breast. Surface electropotential measurements and impedance measurements are then made to characterize the non-transepithelial electrical properties of the breast. These measurements involve DC potential measurements where the surface potential is referenced to an electrode that is not in contact directly or indirectly through an ECM, with the duct lumen. Impedance measurements are similarly made between surface electrodes or a surface electrode and a reference electrode not in contact directly or indirectly (through an ECM) with the ductal lumen. These measurements are then compared and combined with the transepithelial electrical measurements to further characterize the breast tissue.

[0217] Furthermore, an understanding of the electrophysiological basis of the altered impedance or DC potential permits more accurate diagnosis. For example, impedance or DC potential may increase or decrease because of several factors. Increased stromal density of the breast may alter its impedance. This is a non-specific change, which may not have bearing on the probability of malignancy. On the other hand, a decrease in the potassium permeability of the epithelia around a developing malignancy would increase impedance and would be more likely associated with a developing cancer than a non-specific impedance change. Additional information is obtained from the methods of the present invention by probing the tissue to different depths using spaced voltage-sensing electrodes. The use of electrophysiological, pharmacological, and hormonal manipulations to alter DC potential and/or DC potential differentially in normal compared to cancer-prone, pre-malignant or malignant tissue is another significant
difference, which enhances the diagnostic accuracy of the present invention over the above referenced ones.

[0218] Although the use of a nipple cup electrode has been described in this application for use in breast cancer diagnosis, a cup electrode may be used in other organs where the epithelium may be difficult to access endoscopically, or an endoscopic approach is not desired. An example would be the pancreatic and bile ducts, which join and open at the ampulla of Vater within the second part of the duodenum. Bile duct tumors develop from the endothelial lining of the bile duct, (i.e., cholangiocarcinomas, or the epithelial lining of the pancreatic duct, i.e., pancreatic carcinomas). The ampulla may be accessed endoscopically and a cup electrode applied by suction to the ampulla. Physiological saline can be infused into the ducts and then a transepithelial potential and impedance could be measured intraoperatively to identify the region of tumor in the pancreatic, or bile duct using a second electrode placed on the peritoneal surface of the pancreas or bile duct. Alternatively, the peritoneal surface electrode may be replaced by a skin surface, or intravenous electrode when used in a minimally or non-invasive manner.

[0219] Drugs may be infused though the cup electrode as a provocative test and described for breast. Secretin for example, stimulates bicarbonate secretion by the pancreatic ducts. This response may be abrogated by changes in the epithelium associated with pancreatic carcinoma. The distribution of muscarinic receptors, particularly M1 and M3, may be altered in the epithelium during pancreatic carcinogenesis. Therefore specific muscarinic agonists (cholinomimetic choline esters and natural alkaloids) and antagonists (atropine, Pirenzepine (M1), Darifenacin (M3)) may be used to elicit a particular electrophysiological response due to chloride secretion in ductal epithelium associated with
pancreatic cancer. Similar approaches may be used in the intra and extrahepatic bile ducts to diagnose liver cancer.

[0220] Prostatic cancer may be diagnosed using a urethral cup electrode applied to the external urethral meatus. Physiological saline is infused into the urethra. Direct electrical connection is established with the prostatic ductal and acinar epithelium via prostatic ducts that open into the prostatic urethra. A surface electrode may then be placed per rectum onto the surface of the prostate and electrophysiological measurements may be made in a transepithelial fashion as described in the breast. Similarly, provocative tests may be performed with drugs and hormones that differentially affect the electrophysiological characteristics of abnormal prostatic epithelium when compared to normal prostatic tissue.

[0221] Endometrial cancer may be diagnosed with an electrode cup placed on the uterine cervix. Physiological saline may be infused through the cervical canal to make electrical contact with the endometrium. Electrophysiological measurements may be made with a reference electrode, placed on the skin, intravenously or at a suitable reference point. Alternatively, this approach may be used during surgery where the cervical cup electrode is used in conjunction with a reference electrode used on the peritoneal or outside surface of the uterus.

[0222] Salivary gland tumors open through small ducts into the oral cavity. For example in the parotid gland, Stensen's duct opens inside the mouth opposite the second upper molar tooth. A cup electrode may be used over the opening of the duct inside the mouth. Physiological saline is infused into the duct and electrical contact is thus established with the ductal epithelium of the salivary gland. A surface electrode
is then used over the skin surface of the gland and electrical measurements are used to establish the diagnosis of cancer.

[0223] Although specific examples have been given above, this technique may be used to diagnose any tumor, where endoscopic access to the epithelium is not possible or desired. The application of physiological saline via a cup or short catheter may be used for example in the bowel or other organ system where electrical contact with the epithelium permits a transepithelial electrophysiological measurement to be made without resorting to endoscopic electrode placement. The second electrode is then used to externally scan the organ for the presence of a tumor or abnormal epithelium. Since the physiological saline acts as an electrode in direct contact with the epithelium this approach simplifies the approach to electrophysiological measurements. Depolarization and the impedance characteristics of the epithelium will be more accurate when the surface-scanning electrode is in close proximity to the underlying abnormal epithelium or tumor.

[0224] IMPACT OF REDUCED SKIN IMPEDANCE

[0225] Figure 30 illustrates the effect of sonophoresis on the open-circuit potential measured in a patient without evidence of breast disease. Each data point represents the mean and standard error of the mean (SEM) of 4 electrode readings taken from the surface of the breast. The closed circles represent readings from the outer electrodes (4 placed on the outer quadrants of the breast about 7 cm from the nipple). The open squares represent readings from inner electrodes (4 placed on the inner quadrants of the breast approximately 3 cm from the nipple).

[0226] As can be seen in the Figure, after about 15 minutes the electrode potential readings stabilize. Between 30 and 40 minutes the inner electrodes were removed, sonophoresis applied to the skin surface where they had been positioned and
electrodes were reapplied to the inner quadrants of the breast (sonophoresis using SonoPrep® System, Sontra Medical, Franklin, MA, as described hereinabove). By 55 minutes the open-circuit potential has changed from approximately -63 mV to -39 mV. The reduction is due to the significant reduction in impedance and voltage across the stratum corneum by the application of sonophoresis. The open-circuit potential is effectively the voltage offset and diffusion potential due to the surface electrode and the nipple sensor electrode in series with the transepithelial voltage, voltage across the nipple duct opening, voltage along the duct, voltage across the skin, and the interstitium between the duct and the skin. The largest voltage drop is across the duct epithelium and this cannot be measured by using surface electrodes alone, because the measured voltage falls off as a function of the inverse square of the distance between the electropotential on the luminal surface of the ductal epithelium and the skin surface (see discussion of Lorentz Force Law, above). The transepithelial voltage, as opposed to the surface voltage measurement, requires reference to the charge on the luminal surface of the ductal epithelium and this requires an electrode that is in direct or indirect electrical contact with the ductal epithelium and it cannot be measured by reducing skin impedance alone.

[0227] Figure 31 illustrates positioning of electrodes on a patient in another study (the same patient, a control subject without evidence of breast disease, was used in the previous experiment and in this and the experiments reported below). Electrodes were placed on each of four breast quadrants (upper outer, upper inner, lower outer and lower inner quadrants) in order to make measurements. The outer electrode marked by a dashed line is the current passing electrode (Gen-Lo). The inner electrode marked by the solid circle is the voltage
sensing electrode (V-Lo). A nipple sensor incorporated in the modified Sartorius cup described above and of the type illustrated in Fig. 4, was placed over the nipple and filled with saline. Aspiration using the cup electrode opened the ducts and established electrical contact between the nipple electrodes and the ductal epithelium via the saline electroconductive medium. The nipple sensor contained both a current passing (Gen-Hi) and voltage measuring (V-Hi) electrode. A sub-xiphoid reference electrode was placed below the sternum.

[0228] In the first series of experiments AC impedance spectra were obtained by passing a sinusoidal current between the current passing electrode in the nipple sensor and the current passing electrode in the outer aspect of each quadrant of the breast in sequence. The voltage drop, phase shift and impedance were then measured in each of the four breast quadrants for each of 59 frequencies tested between 60 KHz and 0.1 Hz. At the completion of measuring the impedance in all four quadrants, the open-circuit potential was measured between the voltage sensing electrode in the nipple sensor (V-Hi) and the voltage sensing electrode (V-Lo) placed on the skin in the inner aspect of each of the four breast quadrants.

[0229] This set of measurements provides impedance spectra for the electrodes, nipple, underlying ductal system, ductal epithelium, interstitial space between the duct and the skin and the skin in series between the electrodes, as well as the open-circuit voltage between the electrodes. A second set of open-circuit voltage measurements were made between the sub-xiphoid reference electrodes and each of the four voltage-sensing electrodes (V-Lo) in each quadrant of the breast. The first set of voltage measurements include the transepithelial contribution (i.e., measurement across the duct); whereas the second set reference the skin surface
breast voltage measurements to the sub-xiphoid surface electrode.

[0230] At the completion of the above set of measurements, the skin surfaces under each of the four voltage sensing surface electrodes and the sub-xiphoid reference electrode was treated with ultrasonic energy (sonophoresis) using the same commercially available device, SonoPrep® System, as above. Concurrently, impedance curves were collected before and after sonophoresis. The treatment effectively reduced the impedance of the surface skin so that its influence on the transepithelial and non-transepithelial impedance and open-circuit voltage can be assessed. Figures 32-35, discussed in the following paragraphs, illustrate the results of these experiments.

[0231] Figure 32 illustrates Nyquist plots using the protocol outlined above. Measurements were made with and without sonophoresis to reduce overlying skin impedance. Before sonophoresis treatment, the total impedance across the breast and ductal epithelium was 37,418 ohms at a frequency of 0.1 Hz (approaching DC) compared with 36,036 ohms after sonophoresis. This suggests that the skin impedance for this individual was insignificant under the voltage sensing electrode in the upper inner quadrant of the breast, and reduction of the skin impedance had a minimal effect on the measured impedance curves. The changes are small when compared to the changes observed in Figures 33-35 where the skin impedance was very much higher before sonophoresis. It should be noted that the open-circuit voltage measured across the breast epithelium changed from -70 mV to -49.5 mV (+20.5 mV) after sonophoresis. When the open-circuit voltage was measured and referenced to the sub-xiphoid electrode the measured voltage changed from 8 mV to 4.6 mV (i.e., by -3.4 mV) after sonophoresis. Reducing the skin impedance did
not change the surface voltage measurement by 20.5 mV when referenced to the sub-xiphoid electrode as it did when a transepithelial measurement was made. In fact even a scaling factor can't be used to derive or estimate this value since the measured voltage change (surface measurement referenced to sub-xiphoid electrode) decreased by -3.4 mV and did not increase as in the transepithelial measurement (+20.5 mV). These data suggest that by reducing the skin impedance, the transepithelial voltage cannot be accurately estimated and that the transepithelial measurement requires reference to the inside of the ductal epithelium when making surface measurements.

It should be noted that skin impedance is a particularly significant factor if it is so high that it obscures the underlying impedance signature of the ductal epithelium and breast parenchyma. In this specific example it was low enough that it had a minimal effect. Examining the shape of the curves it is possible to estimate the various impedance parameters before and after sonopheresis. Sonopheresis only lowers the skin impedance slightly, because it was already low. Open-circuit potential was however significantly influenced by the skin impedance even when such impedance is low because it has the effect of two "batteries" in series. Sonopheresis effectively removes one of the two batteries so the measured open circuit potential after sonopheresis is the ductal epithelial battery less the skin battery. Both the open-circuit potential and the impedance profile are used to diagnose breast cancer. If open-circuit voltage measurements are significant, then the significant change caused by sonophoresis is significant. However, it isn't possible to know beforehand whether or not there will be a significant change when the skin is treated with sonophoresis and therefore it is necessary to establish a "uniform" or standard
condition in order to interpret test results. Sonophoresis removes noise from the diagnostic measurements, both open-circuit potential noise and skin impedance noise.

[0232] Figure 33 illustrates Nyquist plots using the protocol outlined above. Measurements were made with and without sonophoresis to reduce overlying skin impedance. The total impedance across the breast and ductal epithelium was 266,040 ohms at a frequency of 0.1 Hz (approaching DC) compared with 34,965 ohms after sonophoresis. This suggests that the skin impedance was significant under the voltage sensing electrode in the lower inner quadrant of the breast, and reduction of the skin impedance had a significant effect on the measured impedance curves. As can be seen in Figure 33 the pre-sonophoresis curve is in the form of a single dispersion compared with the three dispersions that are observed after sonophoresis (curve in the upper left hand corner of the figure). Note that the first dispersion curve is obscured by the pre-sonophoresis curve in the upper left corner of the figure and the form of the three dispersions is better illustrated in Figure 32 on a smaller scale. Additionally, the open-circuit voltage measured across the breast epithelium changed from -70.2 mV to -40.4 mV (+29.8 mV) after sonophoresis. When the open-circuit voltage was measured and referenced to the sub-xiphoid electrode the measured voltage changed from 7.3 mV to 3.4 mV (i.e., by -3.9 mV).

[0233] Three dispersions can be seen in Fig. 32 (before and after sonophoresis) and in the other Figs. 33-35 (after sonophoresis) on a smaller scale. The term "dispersions" refers to the impedance spectra -forming partially fused or separate curves when resistance and reactance are plotted in the complex plane and denote different RC time constants (τ) for the different resistor/capacitor components of the breast.
and ductal epithelium. The first dispersion is observed between 60 Hz and approximately 40 Hz. The second dispersion is observed between approximately 35 Hz and 5 Hz, and the third between approximately 3.5 and 0.1 Hz. The first and second dispersion tend to fuse more than the low frequency third dispersion. The various circuit components of the epithelium and breast can be derived from these different curves to diagnose disease states in the breast or other epithelia.

These data suggest that high skin impedance may obscure the "true" transepithelial impedance profile. Reduction of skin impedance results in measurements that reveal the multiple impedance dispersions of the epithelium and breast parenchyma under the skin. Furthermore, the transepithelial voltage cannot be accurately estimated by reducing skin impedance alone, and an estimation of the transepithelial electrical signal (impedance or voltage) requires reference to the inside of the ductal epithelium when making surface measurements.

Figure 34 illustrates Nyquist plots using the protocol outlined above in the same patient. Measurements were made without sonophoresis and with it in order to reduce overlying skin impedance. The total impedance across the breast and ductal epithelium was 245,900 ohms at a frequency of 0.1 Hz (approaching DC) compared with 33,529 ohms after sonophoresis. This again suggests that the skin impedance was significant under the voltage sensing electrode in the lower inner quadrant of the breast, and reduction of the skin impedance had a significant effect on the impedance curves measured. As can be seen in Figure 34, the pre-sonophoresis curve is in the form of a single dispersion compared with the three dispersions seen after sonophoresis (curve in the upper left hand corner of the figure). It should be noted that the
open-circuit voltage measured across the breast epithelium changed from -72.5 mV to -38.9 mV (+33.6 mV) after sonophoresis. When the open-circuit voltage was measured and referenced to the sub-xiphoid electrode the measured voltage changed from only 3.5 mV to 4.5 mV (i.e., by +1.0 mV). The increase by 1 mV is in an opposite direction to the decrease seen in Figure 32 when using the sub-xiphoid reference. Therefore the change observed with surface measurements is somewhat haphazard as opposed to an increase in open-circuit potential (becomes less negative), which is always observed when the surface measurements are referenced to the inside of the duct following sonopheresis.

[0236] These data also suggest that high skin impedance may obscure the transepithelial impedance profile. Reduction of skin impedance results in measurements that reveal the multiple impedance dispersions of the epithelium and breast parenchyma under the skin. Furthermore, the transepithelial voltage cannot be accurately estimated by reducing skin impedance alone, and an estimation of the transepithelial electrical signal (impedance or voltage) requires reference to the inside of the ductal epithelium when making surface measurements.

[0237] Figure 35 illustrates Nyquist plots using the protocol outlined above in the same patient. Measurements were made with and without sonophoresis to reduce overlying skin impedance. The total impedance across the breast and ductal epithelium was 231,450 ohms at a frequency of 0.1 Hz (approaching DC) compared with 71,657 ohms after sonophoresis. The total impedance across the ductal epithelium and breast parenchyma is more than double that seen in the other three quadrants of the breast. From previous studies this may suggest hyperplastic changes in the ductal system under test (U.S. Patent Application 11/409,144, filed on behalf of the
inventor herein April 21, 2006, the content of which is incorporated herein by reference).

[0238] The fact that the transepithelial open-circuit potential measures -62.4 mV after sonophoresis and is approximately 13-25 mV greater than the measured open-circuit potential for each of the other three quadrants following sonophoresis suggests that there is no depolarization of the ductal epithelium in the quadrant of the breast under test. The increased ductal impedance and transepithelial voltage suggest a normal duct rather than a hyperplastic duct with associated depolarization. This diagnostic conclusion cannot be made from measurements un-referenced to the lumen of the ductal epithelium, where the observed sub-xiphoid referenced measurement show a change of more than -25 mV (+7.3 to -18.1 mV) following sonophoresis.

[0239] The embodiments described herein are described in reference to humans. However, cancers in non-humans may be also diagnosed with this approach and the present invention is also intended to have veterinary applications.

[0240] Any range of numbers recited in the specification hereinabove or in the paragraphs and claims hereinafter, referring to various aspects of the invention, such as that representing a particular set of properties, units of measure, conditions, physical states or percentages, is intended to literally incorporate expressly herein by reference or otherwise, any number falling within such range, including any subset of numbers or ranges subsumed within any range so recited. Furthermore, the term "about" when used as a modifier for, or in conjunction with, a variable, characteristic or condition is intended to convey that the numbers, ranges, characteristics and conditions disclosed herein are flexible and that practice of the present invention by those skilled in the art using temperatures, frequencies,
times, concentrations, amounts, contents, properties such as size, surface area, etc., that are outside of the range or different from a single value, will achieve the desired results as described in the application, namely, detecting electrophysiological changes in pre-cancerous and cancerous tissue and epithelium, for example, breast tissue.

[0241] All documents described herein are incorporated by reference herein, including any patent applications and/or testing procedures. The principles, preferred embodiments, and modes of operation of the present invention have been described in the foregoing specification.

[0242] Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the various aspects or embodiments of the present invention as set forth in the application and the appended claims.
CLAIMS:

1. A method for measuring transepithelial electrical properties of an organ comprising an epithelium having a luminal surface, comprising the steps of:

 (A) applying ultrasonic energy via an ultrasonic applicator to at least one tissue site proximate epithelial tissue present in the organ, said at least one tissue site including the skin surface, in order to decrease an impedance of the at least one tissue site;

 (B) establishing a connection between a first electrode and the epithelial tissue;

 (C) placing a second electrode in contact with the skin surface proximate the organ;

 (D) establishing a signal between the first and second electrodes;

 (E) measuring at least one electrical property between the first and second electrode.

2. The method of claim 1, wherein the measured electrical property is selected from the group consisting of:

 (1) a DC potential;

 (2) impedance at about 5 different frequencies in the range of about 10 Hz to about 200 Hz;

 (3) impedance at from about 5 to about 50 different frequencies in the range of about 0.1 Hz to about 10 Hz;

 (4) impedance at at least one frequency in the range of about 10 KHz to about 100 KHz; and

 (5) combinations of (1) through (4), inclusive.

3. The method of claim 1, wherein the transepithelial tissue is present in the breast; the first electrode connection is made with epithelial tissue of the nipple of a breast using a ductal probe, electroconductive medium or both; the second electrode is in contact with skin on the surface of

...
the breast; and ultrasonic energy is applied to the skin on the surface of the breast, the nipple or both.

4. The method of claim 1, further comprising the step of measuring an electrical parameter of the tissue site prior to, during or following application of ultrasonic energy.

5. The method of claim 4, wherein the electrical parameter is selected from the group consisting of: current value, current value change during a specified time period; instantaneous rate of current value change; impedance value at the tissue site; impedance value change at the tissue site during a specified time period; difference of impedance values between the tissue site and the second electrode; and mixtures thereof.

6. The method of claim 5, further comprising the steps of: analyzing the electrical parameter, and controlling the ultrasound application based on results of the analysis.

7. The method of claim 6, wherein the step of controlling comprises deriving an impedance value based on the electrical parameter and modifying or discontinuing application of the ultrasound when a control condition is reached, the condition selected from the group consisting of: the derived impedance value is substantially equal to a predetermined value; the rate of change of the derived impedance value is substantially equal to a predetermined value; and the change in the derived impedance value relative to the impedance value prior to application of ultrasonic energy at the tissue site is substantially equal to a predetermined value.

8. The method of claim 1 wherein the connection between the first electrode and the epithelial tissue is made with a working electrode or via an electroconductive medium that makes direct or indirect electrical contact with the luminal surface of the epithelium.
9. The method of claim 1 for assessing the treatment response of an epithelium comprising the steps of measuring the transepithelial electrical properties of the epithelium prior to treatment and at least once during or after the treatment.

10. The method of claim 9, wherein the treatment is selected from the group consisting of the introduction of hormones, drugs, radiation, electroporation, gene therapy and combinations thereof.

11. The method of claim 1, wherein the organ is a breast having a nipple and ultrasonic energy is applied at least to the nipple.

12. The method of claim 11, wherein a fluid is applied to the nipple prior to or with the application of ultrasonic energy or both, the fluid selected from the group consisting of: an ultrasonic fluid coupling medium, electroconductive medium, alcohol, dekeratinizing agent, and mixtures thereof.

13. The method of claim 1, wherein the ultrasonic applicator is also an electrode capable of delivering or measuring an electrical signal.

14. The method of claim 2, wherein at least one impedance value is measured at a frequency of 60 KHz.

15. The method of claim 2, wherein the DC potential and impedance measurements between the first and second electrode are used for determining the condition of the organ.

16. The method of claim 15, wherein the measured electrical properties are used to diagnose epithelial disease states selected from the group consisting of cancer; pre-cancerous conditions selected from the group consisting of polyps, papillomas, hyperplasia, dysplasia, aberrant colonic crypts, intraepithelial neoplasia, leukoplakia and erythroplakia,- benign neoplastic processes of epithelial origin; inflammation; infection; and ulceration.
17. A computer-readable medium having computer-executable instructions for performing a method for determining the presence of a tumor in the human breast comprising:

(A) applying ultrasonic energy via an ultrasonic applicator to at least one tissue site on the surface of the breast or proximate epithelial tissue within the duct of a breast;

(B) establishing a connection between a first electrode and a region of the epithelial tissue within the duct;

(C) establishing a connection between a second electrode on the surface of the breast to which ultrasonic energy has been applied;

(D) establishing a signal between the first and second electrodes;

(E) measuring an electrical property between the first and second electrode;

(F) applying a treatment: (1) to the epithelium, at least one selected from the group consisting of: a drug, hormone, radiation, electroporation, and gene therapy; or (2) to the breast, at least one form of pressure to at least one region of the breast, the form pressure selected from the group consisting of positive pressure, negative pressure and a combination of positive and negative pressure; or (3) a treatment to both the epithelium and the breast;

(G) measuring an electrical property between the first and second electrode in response to the treatment, pressure or both; and

(H) determining the presence of a tumor based on the signal, or the change in the signal in response to the treatment, pressure, or both between the first and second electrode.
FIG. 12

![Graph showing ISC (μA/cm²) and table]

- CONTROL
- CANCER BEARING

<table>
<thead>
<tr>
<th>[K]₀ [mM]</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>[F]_{5-8} (mM)</td>
<td>520</td>
<td>105</td>
<td>85</td>
<td>45</td>
<td>0</td>
</tr>
</tbody>
</table>

(AHLORIDE)₈
FIG. 13

\[\Delta I_{SC} \text{ (\text{mA/cm}^2)} \]

-20
-40
-60
-80
-100
-120

\[\Delta V_{I-0} \text{ (mV)} \]

120 100 80 60 40 20 0

\[P \times 10^{-6} \text{cm/sec} \]

- CANCER-BEARING 4.4
- CONTROL 9.3
- RATIO 0.5

SUBSTITUTE SHEET (RULE 26)
FIG. 14
Impedance Profiles Normal, Benign, & Malignant Breast

FIG. 15

SUBSTITUTE SHEET (RULE 26)
FIG. 16

BODE PLOT

\[|Z| \]

Frequency (Hz)

\[\theta \]

Frequency (Hz)
Comparision of Benign and Control Quadrant Malignant Breast Disease

- 0465A z
- 0465B z
- 0090C z
Comparison of Benign and Malignant Breast Disease
FIG. 19

Effects of Suction Pressures on Normal Breast

FIG. 20

Effects of Suction Pressures on Malignant Breast
FIG. 21

Impedance Estimation Method
Applied to Data of Figure 20

- CONTROL-Low Suction
- CA-Low Suction
- CONTROL-High Suction
- CA-High Suction

Real Center: 70535
Imag. Center: 10373
Diameter: 75577
Deviation: 256.85
Low Intercep: 34198
High Intercept: 1.0687E5
Depression Angle: 15.932
w_max: 1.1355
Estimated R(ohms): 72674
Estimated C(farads): 1.1652E-5
Figure 22

IMPEDEANCE PROFILE FIBROADENOMA AND CARCINOMA

- **Cancer 10:00 O'Clock**
- **10:00 Repeat**
- **Control 5:00 O'Clock**

Notch Frequency

Sub-Epithelial Resistance
Figure 23

IMPEDELACE PROFILE NORMAL DUCT FOLLOWING COMPRESSION

- O Control 1:30 Repeat
- Control 1:30 Compression

Resistance (Ohms)

Reactance (Ohms)
Figure 24

IMPEDEANCE PROFILE NORMAL DUCT FOLLOWING COMPRESSION

- Control 1:30 Repeal
- Control 1:30 Compression

Reactance (Ohms)

Resistance (Ohms)
Figure 25

IMPEDANCE PROFILE NORMAL DUCT FOLLOWING COMPRESSION/RELEASE

-○- Control 1:30 Repeat
-■- Control 1:30 Compression
-△- Control 1:30 Repeat after Release

Reactance (Ohms)

Resistance (Ohms)
Figure 26:
IMPEDEANCE PROFILE BREAST CYST FOLLOWING COMPRESSION

- OQI Repeat 2:00
- QOI Repeat 2:00 with pressure
- Control 2:00

Resistance (Ohms)

Reactance (Ohms)
Figure 27

IMPEDANCE PROFILE FIBROCYSTIC CHANGE FOLLOWING COMPRESSION

-250000

-200000

-150000

-100000

-50000

0

50000

100000

150000

200000

Resistance (Ohms)

Reactive (Ohms)

-ACI Repeat 11:30

- AOI Pressure 11:30

- AOI Control 2:30
Figure 28
IMPEDEANCE PROFILE FIBROADENOMA FOLLOWING COMPRESSION

-○- QC1:00 Repeat
-■- QC1:00 Repeat with pressure

Reactance (Ohms)

Resistance (Ohms)
Figure 29

IMPEDEANCE PROFILE FIBROADENOMA FOLLOWING COMPRESSION

- ○ O06:30 Repeat
- ● O06:30 Repeat with pressure
- □ Control 12:30

Reactance (Ohms)

Resistance (Ohms)
Figure 30

Effect of Sonopheresis on Measured Transepithelial Potential

![Graph showing the effect of sonopheresis on transepithelial potential over time. The graph plots open circuit potential (mV) against time (minutes). Two lines represent inner and outer electrodes, with inner electrodes showing a slight increase in potential over time, while outer electrodes show a significant decrease.]
Figure 32

Upper Inner Quadrant Right Breast

Transepithelial open circuit potential
Vs Sub-Xiphoid referenced Potential

-49.5/+4.6 mV

-70.0/+8.0 mV
Figure 33

Lower Inner Quadrant Right Breast

Transepithelial open circuit potential vs Sub-Xiphoid referenced Potential

-40.4/+3.4 mV

-70.2/+7.3 mV

Reactance (Ohms)

Resistance (Ohms)
Figure 34
Lower Outer Quadrant Right Breast

Transepithelial open circuit potential Vs Sub-Xiphoid referenced Potential

-38.9/+4.5 mV
-72.5/+3.5 mV

Reactance (Ohms)

Resistance (Ohms)
Figure 35

Upper Outer Quadrant Right Breast

Transepithelial open circuit potential vs Sub-Xiphoid referenced Potential

-62.4/-18.1 mV
-71/+7.3 mV

Reactance (Ohms)

Resistance (Ohms)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC: A61B 5/053 (2006.01)

USPC: 600/547
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
U.S.: 600/547

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2003/02 16661 AI (DAVIES) 20 November 2003, see entire document</td>
<td>1-17</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C

See patent family annex.

Date of the actual completion of the international search
29 September 2008 (29.09.2008)

Date of mailing of the international search report
02 OCT 2008

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450
Facsimile No. (571) 273-3201

Authorized officer
William Krynski
Telephone No. 571-272-1700

Form PCT/ISA/2 10 (second sheet) (April 2007)