一种从凤仙花中提取分离山奈酚的方法

一种从凤仙花中提取分离山奈酚的方法。该方法是关于中药有效成分的提取分离方法。具体涉及一种由山奈酚的提取分离方法。该方法是针对目前山奈酚制备过程复杂、成本较高的现状而建立的。该方法具体步骤为首先将凤仙花提取得到的总提取物，然后经过大孔树脂纯化得到山奈酚粗品，最后用柱层析和重结晶方法制备得到山奈酚的纯品。该方法能有效从凤仙花中分离得到山奈酚单体，为山奈酚中成药的质量检测提供对照品，并有利于山奈酚活性的开发。
1. 一种山奈酚的提取分离方法，其特征是：该方法包括如下步骤；

A：取干燥的风仙花花瓣 25 重量份，适当粉碎，加入浓度为 80% 的乙醇 750 体积份，加热回流提取 1 小时，过滤。药渣以同样的方法先后提取 3 次，合并提取液，药渣弃去，提取液回收乙醇，得粗品，即总提取物，6.8 重量份；

B：取上述总提取物 6.8 重量份，加药材量 6 倍体积份的水稀释，上 D101 型大孔吸附树脂柱，树脂量为药材量的 8 倍体积份，径高比为 1 : 6，吸附流速 3BV/h，先用水洗脱 9BV，流速 3BV/h，再用 30% 的乙醇洗脱 9BV，流速 3BV/h，最后用 50% 的乙醇洗脱 4BV，流速 2BV/h，收集 50% 的乙醇洗脱液，浓缩回收溶剂，得 0.55 重量份山奈酚粗品；

C：取山奈酚粗品 0.55 重量份，用药材量 0.2 倍体积份 70% 的乙醇充分溶解，得上样液，另取药材量 0.4 倍重量份的 80 ~ 100 目聚酰胺，用 70% 乙醇湿法装柱，径高比为 1 : 10，将上样液加入柱顶，以 70% 的乙醇水溶液洗脱，收集洗脱液，薄层检识，合并含有山奈酚的流份，回收溶剂得 0.25 重量份山奈酚的精品；

D：取 0.25 重量份山奈酚的精品，于 3 : 7 乙醇 - 水混合溶剂中重结晶，过滤，干燥得 0.15 重量份山奈酚纯品。
一种从凤仙花中提取分离山奈酚的方法

技术领域

本发明是关于中药有效成分的提取分离方法，具体涉及一种由奈酚的提取分离方法。

背景技术

山奈酚为一种黄酮醇类化合物。该化合物具有多种药理活性，如抗氧化作用、抗炎作用等，存在于多种中药及其相关制剂中，如银杏及其提取物和制剂、桑叶、白茂草、石韦、菱丝子、罗汉果、金钱通淋颗粒等。山奈酚的含量是上述中药和制剂质量的重要检测指标，因此，在实际工作中需要提取分离纯度高的山奈酚作为对照品。同时，山奈酚作为一种具有多种药理活性的成分，在对于其活性进行深入研究的过程中，如何简化山奈酚的提取制备工艺、提高分离纯度，是制剂工艺研究过程的关键环节之一。

目前，报道的山奈酚的制备方法有如下方法：

1) 国际专利 WO2006/093368A1 “MANUFACTURING METHOD OF KAEMPFEROL”，公开了从茶叶的种子和叶子中提取山奈酚的方法。该方法主要公开了主要采用酸、碱或酶对茶叶种子和叶子中含量较高的两种山奈酚的苷任，即 camellioid A, camellioid B, 进行水解得到山奈酚的方法。

2) 文献报道以银杏为原料制备山奈酚的方法（苏静、谈锋、谢震等，循环高速逆流色谱从银杏叶提取物中制备异鼠李素和山奈酚，西南大学学报（自然科学版），2009，31（10）：96-100）。该方法的主要过程是银杏叶超声提取，提取液经防净化，树脂富集黄酮成分，总黄酮用甲醇-25％盐酸（4：1）混合液水解，3次 HSCCC（高速逆流色谱）分离，得到山奈酚。

3) 文献报道的另外一种以银杏为原料制备山奈酚的方法（徐涛、潘见、袁传勋等，液相色谱法制备山奈酚单体，安徽化工，2005，（2）：54-55）。该方法是取银杏提取物，正丁醇萃取，正丁醇萃取液浓缩，浓缩物用 3M 的盐酸水解，水解液离心，上清液用树脂富集，得到山奈酚的粗品，粗品再用制备高效液相色谱法进行分离、冷干干燥得到山奈酚。

可见，上述山奈酚的制备方法较为繁琐，具体体现在：1) 需要采用水解方法使山奈酚的苷任转变为山奈酚；2) 山奈酚的制备中对设备的要求严格，使山奈酚的制备成本上升。

因此，需要寻找一种更为方便快捷的制备山奈酚的方法。

凤仙花为凤仙花属植物凤仙花 Impatiens balsamina L. 的干燥花瓣，具有活血通经、利尿止痛的作用，其中含有多种黄酮类化合物，文献显示山奈酚为其中含量较高的黄酮类成分（胡喜兰、韩照祥、刘玉芬等，凤仙花不同提取物中山奈酚的测定，分析实验室，2007，26（5）：33-35）。因此，以凤仙花的干燥花瓣为原料分离制备山奈酚，相对于上述采用水解的方法，方法简便。基于此，文献报道了相应的从风仙花中制备山奈酚的方法（胡喜兰、程青芳、尹福军等，风仙花中山奈酚的提取、分离与纯化，微量元素研究，2010，21（4）：932-933）。
该方法的具体步骤是：
1) 取凤仙花的干燥花瓣，置于索式提取器中，石油醚浸泡过夜，后回流至提取液无色；
2) 再将提取过的花瓣，置于索式提取器中，乙酸乙酯浸泡过夜，后回流至提取液无色；
3) 乙酸乙酯提取液回收溶剂，得山奈酚的粗提物；
4) 采用聚酰胺凝胶（LH-20）进行分离，收集含山奈酚的流分，并浓缩得相应山奈酚精提物；
5) 采用制备高效液相色谱对山奈酚精提物进行分离制备山奈酚。
该方法山奈酚制备成本较高，不适宜大规模工业化生产。原因有：1) 聚酰胺凝胶（LH-20）价格较贵；2) 制备高效液相仪器昂贵，同时制备山奈酚的量有限。另外，该方法步骤较多，过程较为复杂。

发明内容
本发明的目的在于针对现有技术的不足，提供一种以风仙花为原料，提取分离山奈酚的方法。该方法相对于已有方法更为简便，适合工业化生产。
本发明的目的是通过以下技术方案来实现：
A：取干燥的风仙花花瓣，适当粉碎，加入10～100％乙醇或甲醇进行提取，提取液浓缩回收溶剂，得总提取物；
B：总提取物加水适当分散，上大孔树脂吸附柱，先用水溶液洗脱除杂，再用10～40％乙醇洗脱除杂，最后用40～100％的乙醇洗脱并收集该部分洗脱液，浓回收溶剂，得山奈酚粗品；
C：取聚酰胺凝胶装柱，将30～100％乙醇溶解的山奈酚粗品溶液加入柱顶，用30～100％乙醇洗脱，收集洗脱液，薄层检识，合并含有山奈酚的流份，回收溶剂，得山奈酚的精品；
D：取山奈酚的精品，于甲醇或乙醇与水组成的混合溶剂中重结晶，过滤，干燥，得山奈酚纯品。
上述方法中步骤A中的提取方式为煎煮、加热回流、超声提取、微波提取、高压提取中的任意一种。
上述方法中步骤A的方法为，取干燥的风仙花花瓣25重量份，加入浓度为40～100％的乙醇或甲醇400～900体积份，加热回流提取0.5～2小时，过滤，药渣以同样的方法先后提取2～5次，合并提取液，药渣弃去；提取液回收乙醇，得稠膏，即总提取物。
上述方法中步骤A的优选方法为，取干燥的风仙花花瓣25重量份，加入浓度为80％的乙醇750体积份，加热回流提取1小时，过滤，药渣以同样的方法先后提取3次，合并提取液，药渣弃去，提取液回收乙醇，得稠膏，即总提取物，6.8重量份。
上述方法中步骤B中大孔吸附树脂为非极性、弱极性或中等极性中的任意一种。
上述方法中步骤B的方法为，取总提取物，加药材量5～9倍体积份的水稀释，上非极性、弱极性或中等极性中的任意一种大孔吸附树脂柱，树脂量为药材量的6～10倍体积份，径高比为1：5～8，吸附流速2～4BV/h；先用水洗脱5～13BV，流速2～5BV/h，再
用 10 ～ 40% 的乙醇洗脱 5 ～ 10BV，流速 2 ～ 5BV/h；最后用 40 ～ 100% 的乙醇洗脱 2 ～ 5BV，流速 2 ～ 5BV/h，收集 40 ～ 100% 的乙醇洗脱液，回收溶剂，得山奈酚粗品。

[0028] 上述方法中步骤 B 的优选方法为：取上述总提取物 6.8 重量份，加药材量 6 倍体积份的水稀释，上 D101 型大孔吸附树脂柱，树脂量为药材量的 8 倍体积份，径高比为 1：6，吸附流速 3BV/h，先用水洗脱 9BV，流速 3BV/h，再用 30% 的乙醇洗脱 9BV，流速 3BV/h，最后用 50% 的乙醇洗脱 4BV，流速 2BV/h，收集 50% 的乙醇洗脱液，回收溶剂，得 0.55 重量份山奈酚粗品。

[0029] 上述方法中步骤 C 的方法为：取山奈酚粗品，用药材量 0.1 ～ 1 倍体积份 50 ～ 90% 的乙醇充分溶解，得上样液，另取聚酰胺湿法装柱，将上样液加入柱顶，径高比为 1：8 ～ 15，以 50 ～ 100% 的乙醇水溶液洗脱，收集洗脱液，薄层检识，合并含有山奈酚的流份，回收溶剂得山奈酚的精品。

[0030] 上述方法中步骤 C 优选的方法为：取山奈酚粗品 0.55 重量份，用药材量 0.2 倍体积份 70% 的乙醇充分溶解，得上样液，另取药材量 0.4 倍重量份的 80 ～ 100 目聚酰胺，用 70% 乙醇湿法装柱，径高比为 1：10，将上样液加入柱顶，以 70% 的乙醇水溶液洗脱，收集洗脱液，薄层检识，合并含有山奈酚的流份，回收溶剂得 0.25 重量份山奈酚的精品。

[0031] 上述方法中步骤 D 的方法为：取山奈酚的精品，于 2 ～ 8：4 ～ 9 甲醇 - 水或 2 ～ 8：4 ～ 9 乙醇 - 水的混合溶剂中进行重结晶，过滤，干燥得山奈酚纯品。

[0032] 上述方法中步骤 D 优选的方法为：取 0.25 重量份山奈酚的精品，于 3：7 乙醇 - 水混合溶剂中重结晶，过滤，干燥得 0.15 重量份山奈酚纯品。

[0033] 采用本方法提取制备山奈酚，提取工艺路线简单，适合于工业化大规模生产。

具体实施方式

[0034] 下面实验例用于进一步说明但不限于本发明。

[0035] 实验例 1：山奈酚的纯度检查

[0036] 用高效液相色谱法检查纯度。仪器：Waters 600 高效液相色谱仪。色谱柱：YMC- C18 色谱柱，250mm × 4.6mm，5 μm。流动相：甲醇 - 0.1% 磷酸水溶液 (50 ～ 70：50 ～ 30)；流速：0.8 ～ 1.2mL/min；柱温：室温；检测波长：367nm；进样量：10μl；保留时间 (RT)：山奈酚为 5 ～ 30min；色谱图记录时间：60min。面积归一化法测纯度，山奈酚的纯度为 98.8%。

[0037] 实验例 2：山奈酚的结构测定

[0038] 熔点用 X-4 型数字显示显微熔点测定仪；紫外 (UV) 光谱用日本岛津 UV-260 型紫外可见分光光度计；红外 (IR) 光谱用 Perkin-Elmer 983G 型仪器测定，KBr 压片；核磁共振氢谱和碳谱 (1H NMR 和 13C NMR) 用 MERCURY-400 核磁共振仪测定；质谱 (MS) 用 Finnigan–LCQ Advantage 型质谱仪测定。

[0039] 上述精制方法所得的山奈酚纯品为：黄色颗粒状结晶，熔点 276 ～ 278℃。UV λ max (nm)：226, 267, 349。IR ν max (KBr, cm⁻¹)：3324 (OH)，1662 (C = O)。MS (m/z)：309 (M+Na)。¹H NMR (δ，DMSO-d₆)：1.24 (5-0H)，10.85 (7-0H)，10.12 (3-0H)，9.43 (4′-0H)，8.03 (2H，d，J = 9.0Hz，C₆，-H，C₆，-H)；6.91 (2H，d，J = 9.0Hz，C₃，-H，C₃，-H)；6.43 (1H，d，J = 1.8Hz，C₆-Η)；6.18 (1H，d，J = 1.8Hz，C₆-Η)。¹³C NMR (δ，DMSO-d₆)：175.9 (C-4)；163.9 (C-7)；160.7 (C-5)；159.2 (C-4′)；156.2 (C-9)；146.8 (C-2)，
135.6 (C-3'), 129.5 (C-2'), 129.5 (C-6'), 121.7 (C-1'), 115.4 (C-3'), 115.4 (C-5'), 103.1 (C-10), 98.2 (C-6), 93.5 (C-8)。

[0040] 以上波谱数据与文献报道一致，结构如下：

![结构式](image)

[0041]

[0042] 实验例 3 大孔吸附树脂富集山奈酚粗品的实验

[0043] 取干燥的风仙花花瓣 2.5kg，加入浓度为 80% 的乙醇 75L，加热回流提取 1 小时，过滤，药煮以同样的方法先后提取 3 次，合并提取液，药煮弃去，提取液回收乙醇，得稠膏即总提取物 0.68kg。

[0044] 取上述总提取物 0.68kg，加 15L 水稀释，用 D101 型大孔吸附树脂柱，树脂量为 20L（水中体积），径高比为 1 : 6，吸附流速 3BV/h；先用水洗脱 9BV，流速 3BV/h；再用 30% 的乙醇洗脱 9BV，流速 3BV/h；最后用 50% 的乙醇洗脱 4BV，流速 2BV/h，收集该部分洗脱液，回收溶剂，得 0.055kg 山奈酚粗品。

[0045] 实验例 4 聚酰胺柱层析方法与重结晶方法联用制备山奈酚纯晶的实验

[0046] 山奈酚纯晶的制备采用聚酰胺柱层析和重结晶联用的方法制备。柱层析时使用的吸附剂为聚酰胺 80 ~ 100 目（台州市路桥四甲生化塑料厂生产，1kg）。取上述山奈酚粗品 0.055kg，用 0.5L 70% 的乙醇充分溶解，得上样液，湿法上样（聚酰胺层析柱用 70% 乙醇水溶液湿润法装柱，层析柱的直径高比为 1 : 10）。以 70% 乙醇水溶液为洗脱剂洗脱，收集洗脱液，每份 400ml，共收集 60 份，每份浓度浓熔至小体积后，用聚酰胺薄膜检测。薄膜条件：聚酰胺薄膜制备；展开剂：氯仿 - 甲醇 - 甲酸 (10 : 2 : 0.05)；显色条件：1% AICl3 乙醇溶液显色，紫外灯 365nm 波长下观察。其中第 25 ~ 40 份中山奈酚的含量较高，将其合并，浓缩抽干得黄色山奈酚纯晶 0.025kg。[0047] 取山奈酚纯晶 0.025kg，于 5 : 7 乙醇 - 水混合溶剂中重结晶，过滤，干燥，得 0.015kg 的山奈酚纯晶，为黄色颗粒状结晶。

[0048] 实施例 1

[0049] 取干燥的风仙花花瓣 2.5kg，加入浓度为 90% 的甲醇 60L，加热回流提取 1 小时，过滤，药煮以同样的方法先后提取 2 次，合并提取液，药煮弃去，提取液回收乙醇，得稠膏即总提取物 0.55kg。

[0050] 取上述总提取物 0.55kg，加 12.5L 水稀释，用 AB-8 型大孔吸附树脂柱，树脂量为 15L（水中体积），径高比为 1 : 5，吸附流速 2BV/h；先用水洗脱 5BV，流速 2BV/h；再用 20% 的乙醇洗脱 6BV，流速 2BV/h；最后用 50% 的乙醇洗脱 5BV，流速 2BV/h，收集该部分洗脱液，回收溶剂，得 0.043kg 山奈酚粗品。

[0051] 山奈酚纯晶的制备采用聚酰胺柱层析和重结晶联用的方法制备。柱层析时使用的
吸附剂为聚酰胺 80 ～ 100 目（台州市路桥四甲生化塑料厂生产，1kg）。取上述山奈酚粗品 0.043kg，用 0.5L 70%的乙醇充分溶解，得上样液，湿法上样（聚酰胺层析柱用 80%乙醇水溶液湿法装柱，层析柱的直径高比为 1：10）。以 80%乙醇水溶液为洗脱剂洗脱，收集洗脱液，每份 200ml，共收集 80 份，每份减压浓缩至小体积后，用聚酰胺薄层检测。薄层条件：聚酰胺薄膜预制；展开剂：氯仿-甲醇-甲酸（10：2：0.05）；显色条件：1% AlCl₃ 乙醇溶液显色，紫外灯 365nm 波长观察。其中第 20 ～ 30 份中山奈酚的含量较高，将其合并，减压抽干溶剂得黄色山奈酚精品 0.015kg。

[0052] 取山奈酚精品 0.015kg，于 5：5 甲醇-水混合溶剂中重结晶，过滤，干燥，得 0.008kg 的山奈酚纯品，为黄色颗粒状结晶。

[0053] 实施例 2

[0054] 取干燥的风仙花花瓣 2.5kg，加入浓度为 80%的乙醇 70L，加热回流提取 1.5 小时，过滤，药渣以同样的方法先后提取 3 次，合并提取液，药渣弃去；提取液回收乙醇，得稠膏即总提取物 0.65kg。

[0055] 取上述总提取物 0.65kg，加 15L 水稀释，用 D101 型大孔吸附树脂柱，树脂量为 20L（水体体积），径高比为 1：7，吸附流速 3BV/h；先用水洗脱 9BV，流速 3BV/h，再用 30%的乙醇洗脱 7BV，流速 2BV/h；最后用 70%的乙醇洗脱 4BV，流速 2BV/h，收集该部分洗脱液，回收溶剂，得 0.05kg 山奈酚粗品。

[0056] 山奈酚纯品的制备采用聚酰胺柱层析和重结晶联用的方法制备。柱层析时使用的吸附剂为聚酰胺 120 ～ 200 目（台州市路桥四甲生化塑料厂生产，1kg）。取上述山奈酚粗品 0.05kg，用 0.7L 70%的乙醇充分溶解，得上样液，湿法上样（聚酰胺层析柱用 70%乙醇水溶液湿法装柱，层析柱的直径高比为 1：12）。以 70%乙醇水溶液为洗脱剂洗脱，收集洗脱液，每份 400ml，共收集 60 份，每份减压浓缩至小体积后，用硅胶薄膜检测，展开剂：氯仿-甲醇-甲酸（10：1：0.05）；显色条件：1% AlCl₃ 乙醇溶液显色，紫外灯 365nm 波长观察。其中第 25 ～ 40 份中山奈酚的含量较高，将其合并，减压抽干溶剂得黄色山奈酚精品 0.023kg。

[0057] 取山奈酚精品 0.023kg，于 3：7 乙醇-水混合溶剂中重结晶，过滤，干燥，得 0.014kg 的山奈酚纯品，为黄色颗粒状结晶。

[0058] 实施例 3

[0059] 取干燥的风仙花花瓣 2.5kg，加入浓度为 70%的乙醇 80L，加热回流提取 1 小时，过滤，药渣以同样的方法先后提取 3 次，合并提取液，药渣弃去；提取液回收乙醇，得稠膏即总提取物 0.70kg。

[0060] 取上述总提取物 0.70kg，加 20L 水稀释，用 HPD100 型大孔吸附树脂柱，树脂量为 22L（水体体积），径高比为 1：7，吸附流速 3BV/h；先用水洗脱 12BV，流速 3BV/h，再用 30%的乙醇洗脱 10BV，流速 4BV/h；最后用 80%的乙醇洗脱 4BV，流速 2BV/h，收集该部分洗脱液，回收溶剂，得 0.074kg 山奈酚粗品。

[0061] 山奈酚纯品的制备采用聚酰胺柱层析和重结晶联用的方法制备。柱层析时使用的吸附剂为聚酰胺 80 ～ 100 目（台州市路桥四甲生化塑料厂生产，1.3kg）。取上述山奈酚粗品 0.074kg，用 1L 75%的乙醇充分溶解，得上样液，湿法上样（聚酰胺层析柱用 75%乙醇水溶液湿法装柱，层析柱的直径高比为 1：10）。以 75%乙醇水溶液为洗脱剂洗脱，收
集洗脱液，每份 400ml，共收集 70 份，每份减压浓缩至小体积后，用硅胶薄层检测，展开剂：氨仿 - 甲醇 (7 : 3)；显色条件：1% AlCl₃ 乙醇溶液显色，紫外灯 365nm 波长观察。其中第 20～35 份山奈酚的含量较高，将其合并，减压抽干溶剂得黄色山奈酚精品 0.022kg。

[0062] 取山奈酚精品 0.022kg，于 4：6 乙醇 - 水混合溶剂中重结晶，过滤，干燥，得 0.013kg 的山奈酚纯品，为黄色颗粒状结晶。

[0063] 实施例 4

[0064] 取干燥的风仙花花瓣 2.5kg，加入浓盐酸为 10% 的甲醇 80L，加热回流提取 2 小时，过滤，药渣以同样的方法先后提取 4 次，合并提取液，药渣弃去，提取液回收乙醇，得膏膏即总提取物 0.75kg。

[0065] 取上述总提取物 0.75kg，加 20L 水稀释，用 D4020 型大孔吸附树脂柱，树脂量为 25L（水中体积），径高比为 1：8，吸附流速 4BV/h，先用水洗脱 13BV，流速 4BV/h，再用 30% 的乙醇洗脱 10BV，流速 5BV/h，最后用 90% 的乙醇洗脱 3BV，流速 2BV/h，收集该部分洗脱液，回收溶剂，得 0.087kg 山奈酚粗品。

[0066] 山奈酚纯品的制备采用聚酰胺柱层析和重结晶联用的方法制备。柱层析时使用的吸附剂为聚酰胺 80～100 目 (台州市路桥区甲生化塑料厂生产，1.3kg)。取上述山奈酚粗品 0.087kg，用 1.5L 60% 的乙醇充分溶解，得上样液，湿法上样 (聚酰胺层析柱用 60% 乙醇水溶液湿法装柱，层析柱的直径高比为 1：13)。以 60% 乙醇水溶液为洗脱剂洗脱，收集洗脱液，每份 400ml，共收集 120 份，每份减压浓缩至小体积后，用聚酰胺薄层检测。薄层条件：聚酰胺薄膜预制，展开剂：氨仿 - 甲醇 - 甲酸 (10：2：0.05)；显色条件：1% AlCl₃ 乙醇溶液显色，紫外灯 365nm 波长观察。其中第 55～73 份山奈酚的含量较高，将其合并，减压抽干溶剂得黄色山奈酚精品 0.02kg。

[0067] 取山奈酚精品 0.02kg，于 3：7 甲醇 - 水混合溶剂中重结晶，过滤，干燥，得 0.011kg 的山奈酚纯品，为黄色颗粒状结晶。