发明名称 生产印刷模板的方法和装置

摘要

为了生产印刷模板，细网筛具有不曝光的照相乳胶层。在这种网筛上，根据特定图像，不曝光的那些地方用不透明的薄层遮盖。在没有被遮盖的地方涂敷之后，清除掉该薄层。利用蜡作为不透明薄层的材料。在管状网筛的情况下，为了避免显而易见的起始线，图像起点根据任何规律变化，以避免出现明显的分隔线。作为按照任何规律的变化，可遵循正弦线。这样，可以保证，利用蜡薄层可以获得不透明和均匀的遮盖。
权利要求书

1. 一种利用细网筛生产印刷模板的方法，在该细网筛上具有不曝光的照相乳胶层，并且在该乳胶层上，根据特定图像，不曝光的那些地方用不透明的薄层遮盖，在曝光后，所述薄层被清除掉，其特征是，利用蜡作为不透明薄层的材料。

2. 根据权利要求1的方法，其特征是在管状网筛的情况下，为了避免出现明显的分隔线，图像的起始位置可以按照任何规律变化。

3. 根据权利要求2的方法，其特征是，按照任何规律的变化都遵循一条正弦线。

4. 根据权利要求1至3的一条的方法，其特征是，在涂敷之后，被涂敷的网筛要曝光。

5. 根据权利要求1的实现这种方法的装置，其特征是，该装置具有许多撑脚，每一撑脚具有一个扇形的凹部，使管状网筛与装置的尾座排列在一直线上，用以使网筛围绕其纵轴回转。

6. 根据权利要求1的实现这种方法的装置，其特征是，当使用平网筛时，网筛放置在许多撑脚上，撑脚排列成行和列，还可使网筛的框架，在两个主要方向上得到校直。

7. 根据权利要求5的装置，其特征是，至少一个尾座设计成具有压缩空气供给至管状网筛的圆筒形空腔中。
说明书

生产印刷模板的方法和装置

本发明涉及利用细的网筛生产印刷模板的方法，在该细网筛上设有没有曝光的照相乳胶层，并且在该乳胶层上，根据特定图像，不要曝光的那些地方用不透明的薄层遮盖，在曝光之后，所述薄层被除掉。

EP-A-0,558,098描述了一种尾座的设计，该尾座带有台阶，使得具有不同直径的管状网筛可以定心。生产这种尾座比较复杂，因此比较昂贵，因为与已知的简单尾座比较，仅仅更换这些尾座就会明显地使额外开支成为主要的因素。

最后，EP-A-0,590,164显示了一种方法，其中遮盖层由高粘度的薄膜构成。提出了合成树脂漆的乳胶作为这种高粘度薄膜的材料。然而，这种材料在网筛上具有很强的粘附力，而且没有考虑曝光后的清洗问题，因为遮盖液是耐磨耗和耐印刷化学品的化学作用的。

因此，本发明的目的是提出一种方法，利用这种方法可以根据特定的图像，将容易清除的遮盖层加到网筛上，并且网筛，作为一根管子或平面可以被涂层覆盖。

在本发明中，这个目的可通过权利要求1和权利要求5，6的特点达到。这个方法的特点是利用蜡作为不透明薄膜的材料，在管状结构的情况下，实现这个方法的装置的特点是该装置有许多支撑，每一支撑具有扇形的凹部，使管状的网筛与结构的尾座在一直线上，用于使网筛围绕其纵轴回转。
另外，对于平坦布置的网筛，实现这个方法的装置的特点是，当采用平网筛时，网筛放在许多撑脚上，撑脚排列成行和列，并且在两个主要方向上使网筛框架得以校直。

以下，通过附图来说明本发明的实施例。附图中:

图1 表示用于涂敷圆筒形网筛的装置的正视图，它带有夹紧圆筒形网筛的装置；
图2 为从图1右侧看的侧视图；
图3 表示带有喷嘴装置和相应的控制装置的滑块的顶视图；
图4 表示用于涂敷平网筛的装置的侧视图；
图5 表示网筛夹紧框架安装的正视图。

根据图1，2和3的涂敷圆筒形网筛的装置表示支架1在撑脚2上，图1中可以看见二条撑脚。尾座3，4用于以已知的方式夹紧圆筒形网筛5和利用马达33及在尾座3的主轴35上的齿形皮带34驱动圆筒形网筛5。正如尾座4的位置用尾座4'表示一样，这个尾座4是可沿轴线移动的。这样，网筛可以毫无阻碍地从上面或从前面插入，图中，尾座4'的所述位置用虚线表示。例如，三个垂直可调撑脚6，7，8用作辅助衬垫，每一辅助衬垫有一支承平板9，平板9具有扇形凹部，其半径即为网筛5的半径。这些撑脚6，7，8可用机械或气动的方法升高，使得支承平板达到位置9a，从而形成网筛5的支座。在尾座4移动到夹持位置后，网筛5定心，空气通过喷嘴10吹入网筛，使网筛具有正确的圆筒形形状。

在图2和图3中可以看到涂敷器20，在当前情况下，涂敷器由喷头21组成，喷头可有多于96个直线排列的喷嘴，喷嘴与涂敷器基座成锐角。另外，控制装置22，与数据传输装置一起安放在涂敷器20上，利用这个数据传输装置可以控制喷头21的单个喷嘴，即该单个喷嘴关闭或打开。当然，在涂敷器20上还安放着涂敷液存储容器24，在当前情况下，涂敷液为与粘结剂混合的蜡，涂敷液被加热，并通过热绝缘导管23输送至喷头21。
例如，在宽度近似为8毫米的带材上可利用带有96个喷嘴的喷头21进行涂敷。在每一种情况下，当网筛转动一转后，带有步进机构的驱动装置可以前进8毫米。转动的起点由位置传感器32决定。

在涂敷器20上还安装着发光装置25，结果，从原理上说，在同一操作中，没有被遮住的地方会曝光。

涂敷器的前进是由主轴30和滚珠丝杠螺母31，非常平稳地实现的。

很容易看出，起点总是处在圆筒形网筛圆周同一位置上的涂敷操作，可在图像上产生一条线。为了消除这点，使用了控制所必需的角度传感器32，用以用任何方式调整涂敷器20相对于图像起点的设定情况。最好，利用对于起点的正弦函数来进行这个调整。结果，网筛每转动的相应起点向前或向后移动，在图像上不会产生明显的间断。

涂敷器40也用同样的方式在平网筛上运动。唯一的不同是，涂敷器40在两个垂直方向上运动。这可使夹紧在框架41的支承头43上的平网筛42得以正确安装，框架41在两个垂直方向上支承在支承头43上，因此，平网筛42具有精确的固定位置。网筛42还在许多位置上支承在支承头43上，因此，它可以承受涂敷器40的微小压力。马达44用于在Y-方向（见图5）驱动，它通过传动带46，步进式地移动滑块47和涂敷器40，该传动带由夹紧件45张紧。涂敷器40由已熟知的驱动装置驱动，平稳地在X-方向往复运动。假如记住，在下一个涂敷操作之前必需先进行利用96个喷嘴对8毫米的宽度进行相应的涂敷操作，而且通过快速回程，可以容易地在框架的同一边缘位置涂敷，那么，涂敷器到底是在移动的两个方向上或只在一个方向上喷洒网筛就不重要了。
图1