US 20060112259A1

a2y Patent Application Publication o) Pub. No.: US 2006/0112259 A1

a9y United States

Ganapathy et al.

43) Pub. Date: May 25, 2006

(54) METHOD AND APPARATUS FOR

INSTRUCTION SET ARCHITECTURE WITH

CONTROL INSTRUCTIONS FOR SIGNAL

PROCESSORS

(76) Inventors: Kumar Ganapathy, Mountain View,
CA (US); Ruban Kanapathipillai,
Fremont, CA (US)

Correspondence Address:

BLAKELY SOKOLOFF TAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD

SEVENTH FLOOR

LOS ANGELES, CA 90025-1030 (US)

@
(22)

Appl. No.: 11/323,078

Filed: Dec. 30, 2005

Related U.S. Application Data
(62) Division of application No. 10/211,387, filed on Aug.
2, 2002, now Pat. No. 6,988,184, which is a division

of application No. 09/494,608, filed on Jan. 31, 2000,
now Pat. No. 6,446,195.

Publication Classification

(51) Int. CL

GO6F 9/30 (2006.01)
(52) US. Cle oo 712/213
(57) ABSTRACT

An instruction set architecture (ISA) for application specific
signal processor (ASSP) is tailored to digital signal process-
ing applications. The instruction set architecture imple-
mented with the ASSP, is adapted to DSP algorithmic
structures. The instruction word of the ISA is typically 20
bits but can be expanded to 40-bits to control two instruc-
tions to be executed in series or parallel. All DSP instruc-
tions of the ISA are dyadic DSP instructions performing two
operations with one instruction in one cycle. The DSP
instructions or operations in the preferred embodiment
include a multiply instruction (MULT), an addition instruc-
tion (ADD), a minimize/maximize instruction (MIN/MAX)
also referred to as an extrema instruction, and a no operation
instruction (NOP) each having an associated operation code
(“opcode™). The present invention efficiently executes DSP
instructions by means of the instruction set architecture and
the hardware architecture of the application specific signal
processor.

~150
— External Memory Buffer 210 Memory
212 Interfoce [
64
Multi-channel Multi Channe! Memory Movement Engine ClnktemlFl)t
Serial Interface 4| [T 208 O%‘i er
& | full dupl ™52 — &2
206 ull duplex
channels l,-54
External Host Bus| | Data Memory Data Memory Data Memory Data Memory
214 Interface 202A 2028 202C 202D
T I T . T
/~1 Timers }— 200A 2008 200C 200D
216 Core Core Core Core
pere Clocks & PLL Processor Processor Processor Processor
22’0 l Misc. I L I | L
Program Memory | | Program Memory | | Program Memory | | Program Memory
22/‘|2 JTAG | 204A
Micro
22? Controller

Patent Application Publication May 25, 2006 Sheet 1 of 16 US 2006/0112259 A1

-110
il

[ae]
o~
-—
-—
(lllllll
2
o e © é
o A\ a.
—
[ns]
w
9_. [72]
>
g 2
S 2
(=3
(&5
m
@ g
] -
=
> 2
(=
. (&)
0 .
‘_‘
N
— _g —
2 = -
Q
2 O
L
3
.o-\‘ >
o
3
B 2
O —
<
(=] /
S o (
d—
-—
< «~—
~
P ©
—
[o 0]
o
L

112A

HalTH

US 2006/0112259 A1

Patent Application Publication May 25, 2006 Sheet 2 of 16

‘ _sng o1
g Old e
: HomIeN
/?euojdyoog
(A4 Ovi 9¢l
\) 3C .
Kowspy J0ss320.4 abo
1SOH }SOH abpug
T 1T 1
A sng 3SOH . v
M HH 0061 HH 8061t M YOS
201A9Q 231A9(921Aa(22183 2
dSsv eee dSSy dSSV dSsv £
, 14y e
- _ _ _) o~ + hwsuoyl m
7 o>_m_8m 5
<> L4 ‘vn— = * .m
Q
Wap wap e Wwap R
|D207] i |0207] |0207] 10207} -
_ /
zmi\ : omi\ mmi\. <mi\ 1el

US 2006/0112259 A1

0S1

Patent Application Publication May 25, 2006 Sheet 3 of 16

¢ 9ld

nlonuoy | £6¢
B 01N
p— p— p— p— [44A
40T 02 av0z V02 vir —
fowsp woibosyg | | Lowasy woiboid | | Lowsy woibosd | | Lowspy woiboig
T _ [_ SN |
10ss320)4 J0SS304d 10SS92014 J0ssa20Jd Tid ® SO :W_N
29 9199 2199 99 912
aooe 2002 800¢ ¥00¢ SJawij ~—
I I I I
G202 320C 20z Y20z || ecopayy | VM
fowsp 0)0Q Kowspy pjog Kowsap p)og fowap DIOQ sng JSOoH |owispy
¥9 S|auuDbyo 902
=5 — | | xaidnp |ny
._m__.MWWOO 80¢ Nm § 99DHAU] _o:om{\
ydruajug suibug Juswonop Kiowapy [suudy) BINW [UUDYOI-1}NN
9 A
— | 920 3U] clie
Kiowsap 0iz J8yng Kowsy jpwepg —

Patent Application Publication May 25, 2006 Sheet 4 of 16 US 2006/0112259 A1

202
N
Data Memo
200 i
L
RISC SPO SP1 SP2 SP3
302 300A 3008 300C 300D
Pipe |
Control l J" ¢ J FIG. 3
304
204
N Program Memory
300
I
Data Typer 502
+ >
Aligner 514A
MUX o
7392 Multiplier | S04A
Data Aligner J402 M1 516
+ MUX -
Formater 506
Compressor ~
Memory 404 - 520A
Address Generator ~ MUX -
408A Adder /510A
‘Adder o Al
X 5208
406B
Adder »
. C Adder 5108
Adder - A2 522
MUX ud
408
| Accumulator 512
AL Register ~
AR
410 520C
0 Adder 510C
Barrel ﬁ12 A3
MUX -
Register 413 Multioli 5048
plier
File — M2 .

FIG, 4 FIG. 5A

Patent Application Publication May 25, 2006 Sheet 5 of 16

533
X Y) 2

Data Typer
and Aligner

502

US 2006/0112259 A1

| l A

MUX 514A

Multiplier M1
504A

\——:'__Jl

MUX 516

Compressor
506

M

1

MUX 520A

Adder Al
510A

N\

—

2 vy

MUX 5208

Adder A2
5108

A

FIG. 5B

1 T
| —

=

MUX 522

Accum Reg AR
512

MUX 520C

Adder A3
510C

—

MUX 5148

Multiplier M2
5048

I

Patent Application Publication May 25, 2006 Sheet 6 of 16 US 2006/0112259 A1

Instruction
600 Instruction
...... . 603
Instruction
Instruction

BOlf-—b Outer Loop:

Instruction
602 Instruction 3_\’ 604

Inner Loop

Instruction
...... 605
Instruction

End of Inner Loop

Instruction
...... ' 606
Instruction

— End of OQuter Loop
Instruction
Instruction
...... . 607
Instruction
Instruction

FIG, 6A

610
A
- N

611 612

MAIN OP | SUB 0P

MULT | NOP

ADD | MIN/MAX

MIN/MAX | ADD

NOP | MULT

FIG. 6B

US 2006/0112259 A1

Patent Application Publication May 25, 2006 Sheet 7 of 16

ds old

(Aw'osyw—/+)uw=cp uwN[0T1 1

Aw=-(osxw) —/+=0p qnS{0|0]|1

Aw+({osxw) ~/+=0p ppy|0]1 |0 [valvsk/ AS XS S| sd jofofl
. ozliz|zz|czlve|sz|9z]Lz|szl6z]og]iclzeleclvelae]oc]Lclae|6e

99 9l4

X9] ity YO (0s'ASaxS /4)xoW=0p

) OU[T] w4

9| P10} U (0s'fsexs ~/+)uw=op

Bl 0[{01!1 ans fs-(0s4xs) -/+=0p

1] LT1]o ans Ds—{As,S) —/+=0p

il 0]L]0 pRv fs+(0s4xS) =/ +=0p

il 11040 Y 08+(fsyxs) —/+=0p

_ o[ofo doN Ksyxs —/+=0p
[oToswfvalvs[o].S[.S[.S] Pud] ¥S | XS] Td | P3id || | do—ang Ya|VSS/N AS | XS _.2 Sd Jofo]L] .
A EEEEIRE G R E Y ER A D A (54 4 A A e A A (A S B A S e B ER M ER Y

Patent Application Publication May 25, 2006 Sheet 8 of 16

20-bit ISA

(0]
[{e]
—
[Ze]

alalolo
—~jo|—lo

DSP instructions
[39[38[37]36]35]34]33[32]31]30[29[28]27]26]25]24]23[22] 21]20]

Multiply

Add

Extremum

type—match
Permute

Reserved

20-bit paratlel
20-bit serial
40-bit extended
20-bit serial

US 2006/0112259 A1

Contro! () Control
Control # Control

DSP extensions/Shadow
DSP # DSP

JofJo] Ps [ST Sx [SY I/SSAIDA| Sub—o
da=sx"sy 0]0/0]Nop
da=(sx"sy)+s0 00| 1]|Add
da=(sx*sa)+sy 0[1]0]Add
do=(sx*sy)+sa 0}1]1[Sub
da=(sx"sa)+sy 110[0]|Sub
da=min(sx*sy,sa) 110 1] Min
da=min(sx *sa,sy) 1[1[0]Min
da=max(sx*sy,sq) 11111 Max
MTol17ps /4 SX_ [SY [v/SSA[DA[Sub—op
da=sx+sy 0]0/0]Nop
da=sx+sy+s0 0]0]1]|Add
do=sxtsy: so=sx+sy: 0{1/[0]|AddSub
do=(sx+sy)'so 0]1] 1] Mul
do=—(sx+sy)"s0 1100 MulN
da=min(sx+sy,sa) 1101 1] Min
da=max(sx+sy,sa) 111]0][Max
da=ssum(sa) (sx,sy unused) 111] 1] CombAdd
[fTAJo[PS f/l SX [SY [v/9SA[DA| Sub—o
da=exi(sx,sy) 0[0]0}Nop
do=ext(sx,sy,s0) {0]0] 1]Ext
da=ext(sx,sa)" sy 01 1[0 Myl
do=-ext(sx,sa)" sy 0[1]1]MuN
da=ext(sx,s0)+sy 11010 Add
da=ext(sx,sa)—sy 110] 1{Sub
ext(sa,da) ?1=sxtr=sylcs=lc 11110] amax
1{1[0} PS - SX SY x|x[1[1]1
111{0] PS |1 | S|X | Iﬂ el x |ereg | 1| 1] 1]|Permute
1{1{1] PS |x SX SY SA|DANV/Y Sub—op

G. 6E-

Patent Application Publication May 25, 2006 Sheet 9 of 16 US 2006/0112259 A1

Contro! and specifier Extensions
Mofie[17[iei5[14[13[12[11Ji0[9[8]7[65[4[3[2[1]0]

Mul [0]Pred] PL | Sxt | Syt JRnd_[S'[S'1S'] O [SA[DAJabs[0] 0]
It Add/Sub
Gx min/max

Add (0] Pred | PL [Sxt | Syt [Lt] Sub—ext |O[SA[DAJabs| O[O]
/- x Nop (uadd)
x V/SRnd|F Mul/MuIN
tr/ctl |Gx|Fp Min/Max

Ext [O]Pred] PL] Sxt | Syt [tr—cti]Gx]sw-en] O [SA[DAJabs| 0] O]
Lt{Fp Add/sub
RndlV/S Mul
[oTPred] PL | Sxt | Syt | Petli [oTereq [Pal 0] 0]

Type/offset/permute extensions

frof18f17[16[15141312]11]10[9817] 64[574]3]2]1]0]

O[Pred | PL [x] Type:SX | Type:SY {0 |SA[DA| x |0 [1| Type override
0] Pred | PL |Psx|Permute:SX | Permute:SY| O [SA|DA[Psy| 110 permute override
0| Pred [1/R[i/Rlprx| Offset:SX | Offset:SY [0 [SAIDA[prv] 1] 1] Offset override

Shadow DSP

 [shis[i7lielrsfiafi3fi2[11f10[8] 8] 7] 6] 5[4 3[2[1[0]

{0] Op [PL Jop] ereq | ereq | 1[SAJDA] Sub—op |

FIG. oE-2

Control instructions

add,sub
max,min
Shift
Logic
Mux
mov
addi
mov2erg
l.dm
Set4bits
Set2bits
Setbit
Movi
Jm

Cal
Loop
Jmpi
Calli

. Loopi
Test
Testbit
Andp, orp
Load .
Store
eload
eStore
Extended
Lagic2
mov—erg
Crb
Panty
Stm
Abs
Neg
Div—step
Test&Set
Reserved
Return
Zero—-ac
eSync
Swi

Patent Application Publication May 25, 2006 Sheet 10 of 16 US 2006/0112259 A1
wsli7615[141312[11[10}9[8j71[6 51413121110
L | Pred |010]0 RX RY RZ +/-| 0
L[Pred |O]O0]0 RX RY RZ X/N[1
| [Pred 101011 RX ul4 RZ U [R/L|<Bit1,Bits9-6>
L | Pred |011]0 RX R¥ RZ & [&1] ==yI5 (Shift
L | Pred [O] 1] 1 RX R RZ Pd[0
[T Pred [0 1 RX 07 Rxt[Dzl] 0 [0 [0 [1 Amount)
L | Pred 10| 1 SK4 DZ x I xi 11010} 1
.| Pred {0} 11 RX unit [ereq |adl type 1 11011
Ll Pred]OF 111 RX DZ1 D72 1]1
L | Pred [1]01]0 Ui4:P0OS RZ Rzt Ul4 0
L | Pred 0|0 Ul4:POS RZ Rzt] U2 JOJ0O11
L | Pred 010 Ul4:POS RZ RztfUIT[U] 11 O <Bit3,Bits13~
L | Pred 010 Sig RZ 1 10>==U!5 POS
L | Pred |1]0]1 SI9 O/PRED|O]O)
L { Pred |110]1 SIg 1{PRED{O]O
L1 Pred 11011 Ul5:Lcount Ul5:Lsize Ui2:Lst[0 11
L { Pred | 110 RX x [x I x[x| x]|O[PRED [1]0
L { Pred | 1 {01 RX x [x x| x!x|1fPRED 0
L { Pred 011 RX X Ul5:Lsize Ul2:Lst 1
L | Pred 0 RX RY Pz =<>10
L-| Pred 0 RX uis [PZ {BlO]1
L | Pred | 1 0 Po | Pb | Pc PZ &1 1
L [Pred MX RZ Ext 0/0}0
L | Pred 1 MZ RZ Ext 1{0]0
L | Pred MX RY 1 1{0]0]0
| | Pred |1 1 MZ RY 1111117010
L { Pred Bits 27:16 110
L | Pred 1 RX RY/RZ (Rxt|Ryti& 1, &1,)i 0 [1
L | Pred unit | ereq RZ gd| Sft |0 1
L | Pred | 1 1 RX RZ s/ml 0 {01 1
L | Pred 1 RX PZ 10/E] O 01
L | Pred 1 MZ RX 111101(1
. | Pred RX RZ 0f0 111
L | Pred 1 RX RZ 011
L | Pred 1 RX RZ 0
. | Pred 1 RX PZ 0
. | Pred 0l0]1
L | Pred 1] Pred | I-ctl | O 0 111
L | Pred ac # 111107
L | Pred 1 RZ 0 1
L | Pred U3 [01]1
L | Pred Ui3 111 111 1111

Nop

FIG. 6F

US 2006/0112259 A1

Patent Application Publication May 25, 2006 Sheet 11 of 16

09 Ol

9| Wy o[xIxTol/HlelL L 7y X¥ uo'ipun
9| Wuwj ol x[xJol L INXOTL 7N Xy IXDW'IuIW
, 9] Wwwj olr/slnnfoloF/HolL ¥ XN 19ns /1ppy
(rd dojas | S adf] Lyt ol x[xJo[rltLti1io Xy IN - Jalo)s
(Ad dojes TS °dhl JopayjLlofx{xjofi|i}L]0 2y XY 1poo
xd)=2d W tJojolx]xTofolil1]oO Xy adA| 1810}S
d ylww| olofolxTxJotiltilt1lo 7 adA] 1poo|
cpunio 9w olxIxlololtltlo 7y EERA 1AO
dzopup g | wuwj o ><=10f1lol110 Zd a Xy nsay
‘duo'dpuo [T X7 Ad Ad [T BALARAT ol x[xfofololtl]o d 14 Xy daibo
0 xxxx—oxxooo—o ParIasay
L x I x Tyl n 2 /A0l dyojg o xIxfolofoft]o A Xy qns/ppo
91 Jaull SO 7sin/s] 1 [yzi| 3/t 7y =/=F/Huklpwlyol o [o [X [*[ol0f0]4 |0 A X4 Jnw
UonENURUOd ™| TTH0)S] Jaull $iA[$1-3 ain]szis] Jauul yinfazis] o yin[x o e xTo {1 1[0 0 I XY 1doojp
st g1 ¥g[0 [U01s] Jsuul $injs1-0 zin[3zis] Jsuul yin|azis] Jeino vin(unt 0 [xef x Jo J 1 {1 |0 | 0| 37 4euu 4in | 37 49400 iN doo|p
GLin xTolpad fOofoltTolola/r Zn oo ‘dwf
Y)
TNETVEEEN Gln_1s L{xIxIxTxJolxIxTofofolojlol] 7 [Xy] ajojoy
0J37 A [ukl o) _
Jubis iy Tidl o AN DA SHETS i Is/ml g N2fyzjoefywiofolofofo 7Y Xy WS
0lwuwy ~wnsodgn ylofx[xJolijolofo 2y yibus| ¥in 1pasu]
x| AY A X .

0 GIn-yjbus] GIN-38sH0 Zal7a 3/ e[0 [X [X [0J0l0[0[0 Y e 10D13X3/pasu]

ol vlzlelslctolelslslotltilzilciiwiistioizreilerizictslclolzszialelotlitfziiel

{0z:6F) Jiby seddn jo Z:gy syg.

03U0) PapUIP]

US 2006/0112259 A1

Patent Application Publication May 25, 2006 Sheet 12 of 16

I=HO

Old

_ 70 AS XS apoado pald dnolg
TINFMBEBEEEINEE NN AN R EN R A A RA N A A A A A A N A S A E N RS
sbasa |S/APX9[saviX/Ni-/=I¥SIVaHSs S| P N L | 01
Basa| X9 [X/N[S/A[XOisav[X/N 3 0 1
BasafW|=/HS/A|*9[Sqv| X/N Ny 1 0
S/AX9[sav{ X/N dON 0 0
20 AS XS apoado paid [dnosg
LoV eTeTvISToTZT8I6OITIITCI e [¥L[STIOV[ZI BV 6V[0Ci]| ¢ ST ¢ Ge[9¢]L¢[8C|6¢ [OL[VE[CE (R [¥E]GE 95 L€ | 8 6F
S5 /NN /=S YOR Sk STy oN | | X
Basa [*9 X/NS/NWNsav-/+ . 30 1
basa __S/NVISTv-/¥ Yy | 0
-/ /A= /3 /45 /N puy dON 0 0
|03u0) 20 AS XS apoado paid [dnoig
Ol eI TyTISTOTZI 86O IS FLISI[OVZI]8I[BT]0¢[IZ|CC]EC]¥¢[G928 62 [0S [LE]Cs J&¢ [¥E [Ge]9S € | 85 6%
NN /=] VS [+S [+ S /=] N[S/A[VA[VS [Puy] Bass Jsd [d HLIY
DX3-INN basa Ix/N[+S H/= T1[S/A[VA[VS |Puy| +ST*9 | Sd [1d
aav-1nn sbaia +S H/4H NIS/Ava s STpuy] sd d -y
dON-TNAN [#S|+S]S Y1iS/A Y0 [+ S [Pud] Sd 1d uod (77
EX:
/[VS [VA S [+SIS/A[TT [Py 01—
[01u0) dogng | Sd 1d AS XS 3poado pald _ |dnoig
oJvlelelv[sSsTotcisle]orriTet el wYSIHOTZIRI[61[0CIZ|cc[ce[velGe]9e] L2]8T 62 OLTElZs s v GSlos IL& |BE[6S
VN

US 2006/0112259 A1

sjiq1es
190.)%9 /Hasu]
HS

Patent Application Publication May 25, 2006 Sheet 13 of 16

¢ H9 Ol

:9SIN
- Qwwi apoado paid dnosg
O[VIZ] Sl ¥[GOl LB 6Ot L[EIvLIIGIISL]ZIT8I[61{0cic [ececve]Selac]e]8e]6zioelLe|es [EEIve]SEI9¢]L€E] 8BS 6E
yaunug
dogng 2dQ AS . XS apoado pald dnos
foTvTZlcTvIcTolZ 8] 6TotltiTeiciTvi[SIIOI[Z] 8I[BL[OC]i [ec]ccivelse]az]e]8eez]oclic]ze [eeive SEIae]LE] 8] 6€
40 : . 1158)

NV

XYW

NIN

ans

aav

AOW
9l ww] | dogng | 70 [XS [apoado [dnoiq
FA Z4a do|dnoig
0T TTCICI v IGTOTZT Bl 6O LICIIEt[PIIGIIOL[ZL]BL[6L]0Z]IC] ¢C]EC]¥2]Ge[9¢[LC]8C 6210CT 1L 2e [EC[+E[SE[IE[LS 8] 6%
:9j0Ipaw]
0 uonisod | Yybua| Flwuwy | ZQ apoado | ZWWI | pald [dnosg
1[0 3/1 uonisod junowy 2Q XS apoado pald |dnosg
L] L /v{ndpodi N isdl 1d junowy 24 XS apoado paid [dnoig
0 ¢l elv SOl ZI 8 6JOLNITIEITw]SOt ZT] 8610 CTIECI¥C] SCIIC] L 8CI6C| O] LE[CE [SEIPE[SE[IELE 18E] 6
WS

d (s10391-) GiS :oayx|(z-0) e xp| 8D onuued adhy

US 2006/0112259 A1

Patent Application Publication May 25, 2006 Sheet 14 of 16

oltfJelelv]sfolcis]eforfrifzilciivt]si]otfzi]ail6t]oz]izize]cz]vz]cz]oz]c]az]lee]oc]ic "
suoRonujsul dsq Mopoys 19—07 baso
suogonisul 4sq ¥4-0Z 30 |(£1—01) d
“SUOIONUISUI DSTY Gld—gs udb
(ofvjefe]
Jayioads Jg-y
Gii—os udb | |
GlS-0s uds | O
oftfelse]r]

suoRanisul HS1Y JayIoads UG-G

=19 Ol

ajopdnjsod shomjy Hol(sus) o (o) ad] 1
Gli—p adb |1 10
sswou-20 0|0
4/
(ofviefefvfs]|
suononisul 4sQ Jaiivads 19—g

#O| ¥in Jesyjo L]l

Ho|[(5y) o (o2) pdf o | 1

Gla—gs udb | LI LD

S3WDU—20 0[1]0

aopdnysod sfomy G| d*y)duyd [xp1 + ndwep paAJ9SaL 11010
aj0pdnysod sAomy . xpi=+ 1d]|| [ndJwep GIs—0s ¥4S [0} 0|0
, ¥/W

lofvfefefv[s]g]
SUOIIONIISUl dS@ Ul POOT [3loIDg ‘9J0)S |9)|0J0d Jaipdads Yq-/

Patent Application Publication May 25, 2006 Sheet 15 of 16

gc—names
J[2]11]0
0/0]010
0]0]O0 {1
o0lof140
0j0] 111
0{11010
0[t1]0]1
0(1]110
A RERER
1/]0{01]0
110[0]1
1101110
110111
1117010
1{11011
1111110
111111
ereq names
3{2]111]0
0104010
ojojof1
0|0[1]0
0joj1|t
0l1]010
of{1]0]*"
01110
01|11
110j010
1101011
1lof1]0}
110111
1111010
111011
111110
IIEERER

AQ
Al

I

TR
A0O
A10
T0
TRO
SX1
SX1s
SX2
SX2s
SY1
SYls
SY2
SY2s

A0
Al

TR
PPO
Aout
PP1
Dout
SX1
SX1s
SX2
SX2s
SY1
SYls
SY2
SY2s

US 2006/0112259 A1

SPR:
(use type, SIMD) gpr—type
ereg type
fu—ctl
pls—ctf
(unit 0) cb—ctl
loop—cti
per
status

FIG. 6I-2

US 2006/0112259 A1

Patent Application Publication May 25, 2006 Sheet 16 of 16

L

Ol

XN
~_J
J0¢L
®
®
®
XNN
N/
802L
XNA
~_
YOZL

3p029(]
jout 4
~NvoL
[]
[J
[]
3p0o23(L
joul4 ¢0L
~gvos Buiposapaiy
ap02a(
joul4
~vhot
uonaNASyJ
dsa
2I0v1a

US 2006/0112259 Al

METHOD AND APPARATUS FOR INSTRUCTION
SET ARCHITECTURE WITH CONTROL
INSTRUCTIONS FOR SIGNAL PROCESSORS

FIELD OF THE INVENTION

[0001] This invention relates generally to the instruction
set architectures (ISA) of processors. More particularly, the
invention relates to instruction set architectures for the
execution of operations within a signal processing integrated
circuit.

BACKGROUND OF THE INVENTION

[0002] Single chip digital signal processing devices (DSP)
are relatively well known. DSPs generally are distinguished
from general purpose microprocessors in that DSPs typically
support accelerated arithmetic operations by including a
dedicated multiplier and accumulator (MAC) for performing
multiplication of digital numbers. The instruction set for a
typical DSP device usually includes a MAC instruction for
performing multiplication of new operands and addition
with a prior accumulated value stored within an accumulator
register. A MAC instruction is typically the only instruction
provided in prior art digital signal processors where two
DSP operations, multiply followed by add, are performed by
the execution of one instruction. However, when performing
signal processing functions on data it is often desirable to
perform other DSP operations in varying combinations.

[0003] An area where DSPs may be utilized is in telecom-
munication systems. One use of DSPs in telecommunication
systems is digital filtering. In this case a DSP is typically
programmed with instructions to implement some filter
function in the digital or time domain. The mathematical
algorithm for a typical finite impulse response (FIR) filter
may look like the equation Y, =h,X,+h X, +h, X+ . . .
+h X, where h, are fixed filter coeflicients numbering from
1 to N and X, are the data samples. The equation Y, may be
evaluated by using a software program. However in some
applications, it is necessary that the equation be evaluated as
fast as possible. One way to do this is to perform the
computations using hardware components such as a DSP
device programmed to compute the equation Y,. In order to
further speed the process, it is desirable to vectorize the
equation and distribute the computation amongst multiple
DSPs such that the final result is obtained more quickly. The
multiple DSPs operate in parallel to speed the computation
process. In this case, the multiplication of terms is spread
across the multipliers of the DSPs equally for simultaneous
computations of terms. The adding of terms is similarly
spread equally across the adders of the DSPs for simulta-
neous computations. In vectorized processing, the order of
processing terms is unimportant since the combination is
associative. If the processing order of the terms is altered, it
has no effect on the final result expected in a vectorized
processing of a function.

[0004] In typical micro processors, a MAC operation
would require a multiply instruction and an add instruction
to perform both multiplication and addition. To perform
these two instructions would require two processing cycles.
Additionally, a program written for the typical micro pro-
cessor would require a larger program memory in order to
store the extra instructions necessary to perform the MAC
operation. In prior art DSP devices, if a DSP operation other

May 25, 2006

than a MAC DSP instruction need be performed, the opera-
tion requires separate arithmetic instructions programmed
into program memory. These separate arithmetic instruc-
tions in prior art DSPs similarly require increased program
memory space and processing cycles to perform the opera-
tion when compared to a single MAC instruction. It is
desirable to reduce the number of processing cycles when
performing DSP operations. It is desirable to reduce pro-
gram memory requirements as well.

[0005] DSPs are often programmed in a loop to continu-
ously perform accelerated arithmetic functions including a
MAC instruction using different operands. Often times,
multiple arithmetic instructions are programmed in a loop to
operate on the same data set. The same arithmetic instruction
is often executed over and over in a loop using different
operands. Additionally, each time one instruction is com-
pleted, another instruction is fetched from the program
stored in memory during a fetch cycle. Fetch cycles require
one or more cycle times to access a memory before instruc-
tion execution occurs. Because circuits change state during
a fetch cycle, power is consumed and thus it is desirable to
reduce the number of fetch cycles. Typically, approximately
twenty percent of power consumption may be utilized in the
set up and clean up operations of a loop in order to execute
DSP instructions. Typically, the loop execution where signal
processing of data is performed consumes approximately
eighty percent of power consumption with a significant
portion being due to instruction fetching. Additionally,
because data sets that a DSP device process are usually
large, it is also desirable to speed instruction execution by
avoiding frequent fetch cycles to memory.

[0006] Additionally, the quality of service over a tele-
phone system often relates to the processing speed of
signals. That is particularly the case when a DSP is to
provide voice processing, such as voice compression, voice
decompression, and echo cancellation for multiple channels.
More recently, processing speed has become even more
important because of the desire to transmit voice aggregated
with data in a packetized form for communication over
packetized networks. Delays in processing the packetized
voice signal tend to result in the degradation of signal quality
on receiving ends.

[0007] Tt is desirable to provide improved processing of
voice and data signals to enhance the quality of voice and
data communication over packetized networks. It is desir-
able to improve the efficiency of using computing resources
when performing signal processing functions.

BRIEF SUMMARY OF THE INVENTION

[0008] Briefly, the present invention includes a method,
apparatus and system as described in the claims. Multiple
application specific signal processor (ASSP) having the
instruction set architecture of the present invention, includ-
ing the dyadic DSP instructions, are provided within gate-
ways in communication systems to provide improved voice
and data communication over a packetized network. Each
ASSP includes a serial interface, a buffer memory, and four
core processors for each to simultaneously process multiple
channels of voice or data. Each core processor preferably
includes a reduced instruction set computer (RISC) proces-
sor and four signal processing units (SPs). Each SP includes
multiple arithmetic blocks to simultaneously process mul-

US 2006/0112259 Al

tiple voice and data communication signal samples for
communication over IP, ATM, Frame Relay or other pack-
etized network. The four signal processing units can execute
the digital signal processing algorithms in parallel. Each
ASSP is flexible and can be programmed to perform many
network functions or data/voice processing functions,
including voice and data compression/decompression in
telecommunications systems (such as CODECs) particularly
packetized telecommunication networks, simply by altering
the software program controlling the commands executed by
the ASSP.

[0009] An instruction set architecture for the ASSP is
tailored to digital signal processing applications including
audio and speech processing such as compression/decom-
pression and echo cancellation. The instruction set architec-
ture implemented with the ASSP, is adapted to DSP algo-
rithmic structures. This adaptation of the ISA of the present
invention to DSP algorithmic structures balances the ease of
implementation, processing efficiency, and programmability
of DSP algorithms. The instruction set architecture may be
viewed as being two component parts, one (RISC ISA)
corresponding to the RISC control unit and another (DSP
ISA) to the DSP datapaths of the signal processing units 300.
The RISC ISA is a register based architecture including
16-registers within the register file 413, while the DSP ISA
is a memory based architecture with efficient digital signal
processing instructions. The instruction word for the ASSP
is typically 20 bits but can be expanded to 40-bits to control
two instructions to be executed in series or parallel, such as
two RISC control instructions and extended DSP instruc-
tions. The instruction set architecture of the ASSP has four
distinct types of instructions to optimize the DSP operational
mix. These are (1) a 20-bit DSP instruction that uses mode
bits in control registers (i.e. mode registers), (2) a 40-bit DSP
instruction having control extensions that can override mode
registers, (3) a 20-bit dyadic DSP instruction, and (4) a 40
bit dyadic DSP instruction. These instructions are for accel-
erating calculations within the core processor of the type
where D=[(A opl B) op2 C] and each of “op1” and “op2”
can be a multiply, add, extremum (min/max) or other primi-
tive DSP class of operation on the three operands A, B, and
C. The ISA of the ASSP which accelerates these calculations
allows efficient chaining of different combinations of opera-
tions.

[0010] All DSP instructions of the instruction set archi-
tecture of the ASSP are dyadic DSP instructions to execute
two operations in one instruction with one cycle throughput.
A dyadic DSP instruction is a combination of two basic DSP
operations in one instruction and includes a main DSP
operation (MAIN OP) and a sub DSP operation (SUB OP).
Generally, the instruction set architecture of the present
invention can be generalized to combining any pair of basic
DSP operations to provide very powerful dyadic instruction
combinations. The DSP arithmetic instructions or operations
in the preferred embodiment include a multiply instruction
(MULT), an addition instruction (ADD), a minimize/maxi-
mize instruction (MIN/MAX) also referred to as an extrema
instruction, and a no operation instruction (NOP) each
having an associated operation code (“opcode™). The present
invention efficiently executes these dyadic DSP instructions
by means of the instruction set architecture and the hardware
architecture of the application specific signal processor. For
example, the DSP instructions can process vector data or

May 25, 2006

scalar data automatically using a single instruction and
provide the appropriate vector or scalar output results.

BRIEF DESCRIPTIONS OF THE DRAWINGS

[0011] FIG. 1A is a block diagram of a system utilizing
the present invention.

[0012] FIG. 1B is a block diagram of a printed circuit
board utilizing the present invention within the gateways of
the system in FIG. 1A.

[0013] FIG. 2 is a block diagram of the Application
Specific Signal Processor (ASSP) of the present invention.

[0014] FIG. 3 is a block diagram of an instance of the core
processors within the ASSP of the present invention.

[0015] FIG. 4 is a block diagram of the RISC processing
unit within the core processors of FIG. 3.

[0016] FIG. 5A is a block diagram of an instance of the
signal processing units within the core processors of FIG. 3.

[0017] FIG. 5B is a more detailed block diagram of FIG.
5A illustrating the bus structure of the signal processing unit.

[0018] FIG. 6A is an exemplary instruction sequence
illustrating a program model for DSP algorithms employing
the instruction set architecture of the present invention.

[0019] FIG. 6B is a chart illustrating the permutations of
the dyadic DSP instructions.

[0020] FIG. 6C is an exemplary bitmap for a control
extended dyadic DSP instruction.

[0021] FIG. 6D is an exemplary bitmap for a non-ex-
tended dyadic DSP instruction.

[0022] FIGS. 6E and 6F list the set of 20-bit instructions
for the ISA of the present invention.

[0023] FIG. 6G lists the set of extended control instruc-
tions for the ISA of the present invention.

[0024] FIG. 6H lists the set of 40-bit DSP instructions for
the ISA of the present invention.

[0025] FIG. 6I lists the set of addressing instructions for
the ISA of the present invention.

[0026] FIG. 7 is a block diagram illustrating the instruc-
tion decoding and configuration of the functional blocks of
the signal processing units.

[0027] Like reference numbers and designations in the
drawings indicate like elements providing similar function-
ality. A letter after a reference designator number represents
an instance of an element having the reference designator
number.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

[0028] In the following detailed description of the present
invention, numerous specific details are set forth in order to
provide a thorough understanding of the present invention.
However, it will be obvious to one skilled in the art that the
present invention may be practiced without these specific
details. In other instances well known methods, procedures,
components, and circuits have not been described in detail
s0 as not to unnecessarily obscure aspects of the present

US 2006/0112259 Al

invention. Furthermore, the present invention will be
described in particular embodiments but may be imple-
mented in hardware, software, firmware or a combination
thereof.

[0029] Multiple application specific signal processors
(ASSPs) having the instruction set architecture of the
present invention, including dyadic DSP instructions, are
provided within gateways in communication systems to
provide improved voice and data communication over a
packetized network. Each ASSP includes a serial interface,
a buffer memory and four core processors in order to
simultaneously process multiple channels of voice or data.
Each core processor preferably includes a reduced instruc-
tion set computer (RISC) processor and four signal process-
ing units (SPs). Each SP includes multiple arithmetic blocks
to simultaneously process multiple voice and data commu-
nication signal samples for communication over IP, ATM,
Frame Relay, or other packetized network. The four signal
processing units can execute digital signal processing algo-
rithms in parallel. Each ASSP is flexible and can be pro-
grammed to perform many network functions or data/voice
processing functions, including voice and data compression/
decompression in telecommunication systems (such as
CODECs), particularly packetized telecommunication net-
works, simply by altering the software program controlling
the commands executed by the ASSP.

[0030] An instruction set architecture for the ASSP is
tailored to digital signal processing applications including
audio and speech processing such as compression/decom-
pression and echo cancellation. The instruction set architec-
ture implemented with the ASSP, is adapted to DSP algo-
rithmic structures. This adaptation of the ISA of the present
invention to DSP algorithmic structures balances the ease of
implementation, processing efficiency, and programmability
of DSP algorithms. The instruction set architecture may be
viewed as being two component parts, one (RISC ISA)
corresponding to the RISC control unit and another (DSP
ISA) to the DSP datapaths of the signal processing units 300.
The RISC ISA is a register based architecture including
16-registers within the register file 413, while the DSP ISA
is a memory based architecture with efficient digital signal
processing instructions. The instruction word for the ASSP
is typically 20 bits but can be expanded to 40-bits to control
two instructions to the executed in series or parallel, such as
two RISC control instruction and extended DSP instructions.
The instruction set architecture of the ASSP has four distinct
types of instructions to optimize the DSP operational mix.
These are (1) a 20-bit DSP instruction that uses mode bits in
control registers (i.e. mode registers), (2) a 40-bit DSP
instruction having control extensions that can override mode
registers, (3) a 20-bit dyadic DSP instruction, and (4) a 40
bit dyadic DSP instruction. These instructions are for accel-
erating calculations within the core processor of the type
where D=[(A opl B) op2 C] and each of “op1” and “op2”
can be a multiply, add or extremum (min/max) class of
operation on the three operands A, B, and C. The ISA of the
ASSP which accelerates these calculations allows efficient
chaining of different combinations of operations.

[0031] All DSP instructions of the instruction set archi-
tecture of the ASSP are dyadic DSP instructions to execute
two operations in one instruction with one cycle throughput.
A dyadic DSP instruction is a combination of two DSP
instructions or operations in one instruction and includes a

May 25, 2006

main DSP operation (MAIN OP) and a sub DSP operation
(SUB OP). Generally, the instruction set architecture of the
present invention can be generalized to combining any pair
of basic DSP operations to provide very powerful dyadic
instruction combinations. The DSP arithmetic operations in
the preferred embodiment include a multiply instruction
(MULT), an addition instruction (ADD), a minimize/maxi-
mize instruction (MIN/MAX) also referred to as an extrema
instruction, and a no operation instruction (NOP) each
having an associated operation code (“opcode”™).

[0032] The present invention efficiently executes these
dyadic DSP instructions by means of the instruction set
architecture and the hardware architecture of the application
specific signal processor.

[0033] Referring now to FIG. 1A, a voice and data
communication system 100 is illustrated. The system 100
includes a network 101 which is a packetized or packet-
switched network, such as IP, ATM, or frame relay. The
network 101 allows the communication of voice/speech and
data between endpoints in the system 100, using packets.
Data may be of any type including audio, video, email, and
other generic forms of data. At each end of the system 100,
the voice or data requires packetization when transceived
across the network 101. The system 100 includes gateways
104 A, 104B, and 104C in order to packetize the information
received for transmission across the network 101. A gateway
is a device for connecting multiple networks and devices
that use different protocols. Voice and data information may
be provided to a gateway 104 from a number of different
sources in a variety of digital formats. In system 100, analog
voice signals are transceived by a telephone 108. In system
100, digital voice signals are transceived at public branch
exchanges (PBX) 112A and 112B which are coupled to
multiple telephones, fax machines, or data modems. Digital
voice signals are transceived between PBX 112A and PBX
112B with gateways 104A and 104C, respectively. Digital
data signals may also be transceived directly between a
digital modem 114 and a gateway 104A. Digital modem 114
may be a Digital Subscriber Line (DSL) modem or a cable
modem. Data signals may also be coupled into system 100
by a wireless communication system by means of a mobile
unit 118 transceiving digital signals or analog signals wire-
lessly to a base station 116. Base station 116 converts analog
signals into digital signals or directly passes the digital
signals to gateway 104B. Data may be transceived by means
of modem signals over the plain old telephone system
(POTS) 107B using a modem 110. Modem signals commu-
nicated over POTS 107B are traditionally analog in nature
and are coupled into a switch 106B of the public switched
telephone network (PSTN). At the switch 106B, analog
signals from the POTS 107B are digitized and transceived to
the gateway 104B by time division multiplexing (TDM)
with each time slot representing a channel and one DSO
input to gateway 104B. At each of the gateways 104A, 104B
and 104C, incoming signals are packetized for transmission
across the network 101. Signals received by the gateways
104A, 104B and 104C from the network 101 are depack-
etized and transcoded for distribution to the appropriate
destination.

[0034] Referring now to FIG. 1B, a network interface card
(NIC) 130 of a gateway 104 is illustrated. The NIC 130
includes one or more application-specific signal processors
(ASSPs) 150A-150N. The number of ASSPs within a gate-

US 2006/0112259 Al

way is expandable to handle additional channels. Line
interface devices 131 of NIC 130 provide interfaces to
various devices connected to the gateway, including the
network 101. In interfacing to the network 101, the line
interface devices packetize data for transmission out on the
network 101 and depacketize data which is to be received by
the ASSP devices. Line interface devices 131 process infor-
mation received by the gateway on the receive bus 134 and
provides it to the ASSP devices. Information from the ASSP
devices 150 is communicated on the transmit bus 132 for
transmission out of the gateway. A traditional line interface
device is a multi-channel serial interface or a UTOPIA
device. The NIC 130 couples to a gateway backplane/
network interface bus 136 within the gateway 104. Bridge
logic 138 transceives information between bus 136 and NIC
130. Bridge logic 138 transceives signals between the NIC
130 and the backplane/network interface bus 136 onto the
host bus 139 for communication to either one or more of the
ASSP devices 150A-150N, a host processor 140, or a host
memory 142. Optionally coupled to each of the one or more
ASSP devices 150A through 150N (generally referred to as
ASSP 150) are optional local memory 145A through 145N
(generally referred to as optional local memory 145), respec-
tively. Digital data on the receive bus 134 and transmit bus
132 is preferably communicated in bit wide fashion. While
internal memory within each ASSP may be sufficiently large
to be used as a scratchpad memory, optional local memory
145 may be used by each of the ASSPs 150 if additional
memory space is necessary.

[0035] Each of the ASSPs 150 provide signal processing
capability for the gateway. The type of signal processing
provided is flexible because each ASSP may execute differ-
ing signal processing programs. Typical signal processing
and related voice packetization functions for an ASSP
include (a) echo cancellation; (b) video, audio, and voice/
speech compression/decompression (voice/speech coding
and decoding); (c) delay handling (packets, frames); (d) loss
handling; (e) connectivity (LAN and WAN); (f) security
(encryption/decryption); (g) telephone connectivity; (h) pro-
tocol processing (reservation and transport protocols, RSVP,
TCP/IP, RTP, UDP for IP, and AAL2, AAL1, AALS for
ATM); (i) filtering; (j) Silence suppression; (k) length han-
dling (frames, packets); and other digital signal processing
functions associated with the communication of voice and
data over a communication system. Each ASSP 150 can
perform other functions in order to transmit voice and data
to the various endpoints of the system 100 within a packet
data stream over a packetized network.

[0036] Referring now to FIG. 2, a block diagram of the
ASSP 150 is illustrated. At the heart of the ASSP 150 are
four core processors 200A-200D. Each of the core proces-
sors 200A-200D is respectively coupled to a data memory
202A-202D and a program memory 204A-204D. Each of
the core processors 200A-200D communicates with outside
channels through the multi-channel serial interface 206, the
multi-channel memory movement engine 208, buffer
memory 210, and data memory 202A-202D. The ASSP 150
further includes an external memory interface 212 to couple
to the external optional local memory 145. The ASSP 150
includes an external host interface 214 for interfacing to the
external host processor 140 of FIG. 1B.—Further included
within the ASSP 150 are timers 216, clock generators and a
phase-lock loop 218, miscellaneous control logic 220, and a
Joint Test Action Group (JTAG) test access port 222 for

May 25, 2006

boundary scan testing. The multi-channel serial interface
206 may be replaced with a UTOPIA parallel interface for
some applications such as ATM. The ASSP 150 further
includes a microcontroller 223 to perform process schedul-
ing for the core processors 200A-200D and the coordination
of'the data movement within the ASSP as well as an interrupt
controller 224 to assist in interrupt handling and the control
of the ASSP 150.

[0037] Referring now to FIG. 3, a block diagram of the
core processor 200 is illustrated coupled to its respective
data memory 202 and program memory 204. Core processor
200 is the block diagram for each of the core processors
200A-200D. Data memory 202 and program memory 204
refers to a respective instance of data memory 202A-202D
and program memory 204A-204D, respectively. The core
processor 200 includes four signal processing units
SP0300A, SP1300B, SP2300C and SP3300D. The core
processor 200 further includes a reduced instruction set
computer (RISC) control unit 302 and a pipeline control unit
304. The signal processing units 300A-300D perform the
signal processing tasks on data while the RISC control unit
302 and the pipeline control unit 304 perform control tasks
related to the signal processing function performed by the
SPs 300A-300D. The control provided by the RISC control
unit 302 is coupled with the SPs 300A-300D at the pipeline
level to yield a tightly integrated core processor 200 that
keeps the utilization of the signal processing units 300 at a
very high level.

[0038] The signal processing tasks are performed on the
datapaths within the signal processing units 300A-300D.
The nature of the DSP algorithms are such that they are
inherently vector operations on streams of data, that have
minimal temporal locality (data reuse). Hence, a data cache
with demand paging is not used because it would not
function well and would degrade operational performance.
Therefore, the signal processing units 300A-300D are
allowed to access vector elements (the operands) directly
from data memory 202 without the overhead of issuing a
number of load and store instructions into memory resulting,
in very efficient data processing. Thus, the instruction set
architecture of the present invention having a 20 bit instruc-
tion word which can be expanded to a 40 bit instruction
word, achieves better efficiencies than VLIW architectures
using 256-bits or higher instruction widths by adapting the
ISA to DSP algorithmic structures. The adapted ISA leads to
very compact and low-power hardware that can scale to
higher computational requirements. The operands that the
ASSP can accommodate are varied in data type and data
size. The data type may be real or complex, an integer value
or a fractional value, with vectors having multiple elements
of different sizes. The data size in the preferred embodiment
is 64 bits but larger data sizes can be accommodated with
proper instruction coding.

[0039] Referring now to FIG. 4, a detailed block diagram
of the RISC control unit 302 is illustrated. RISC control unit
302 includes a data aligner and formatter 402, a memory
address generator 404, three adders 406A-406C, an arith-
metic logic unit (ALU) 408, a multiplier 410, a barrel shifter
412, and a register file 413. The register file 413 points to a
starting memory location from which memory address gen-
erator 404 can generate addresses into data memory 202.
The RISC control unit 302 is responsible for supplying
addresses to data memory so that the proper data stream is

US 2006/0112259 Al

fed to the signal processing units 300A-300D. The RISC
control unit 302 is a register to register organization with
load and store instructions to move data to and from data
memory 202. Data memory addressing is performed by
RISC control unit using a 32-bit register as a pointer that
specifies the address, post-modification offset, and type and
permute fields. The type field allows a variety of natural DSP
data to be supported as a “first class citizen” in the archi-
tecture. For instance, the complex type allows direct opera-
tions on complex data stored in memory removing a number
of bookkeeping instructions. This is useful in supporting
QAM demodulators in data modems very efficiently.

[0040] Referring now to FIG. 5A, a block diagram of a
signal processing unit 300 is illustrated which represents an
instance of the SPs 300A-300D. Each of the signal process-
ing units 300 includes a data typer and aligner 502, a first
multiplier M1504A, a compressor 506, a first adder
A1510A, a second adder A2510B, an accumulator register
512, a third adder A3510C, and a second multiplier
M2504B. Adders 510A-510C are similar in structure and are
generally referred to as adder 510. Multipliers 504A and
504B are similar in structure and generally referred to as
multiplier 504. Each of the multipliers 504A and 504B have
a multiplexer 514A and 514B respectively at its input stage
to multiplex different inputs from different busses into the
multipliers. Each of the adders 510A, 510B, 510C also have
a multiplexer 520A, 520B, and 520C respectively at its input
stage to multiplex different inputs from different busses into
the adders. These multiplexers and other control logic allow
the adders, multipliers and other components within the
signal processing units 300A-300C to be flexibly intercon-
nected by proper selection of multiplexers. In the preferred
embodiment, multiplier M1504A, compressor 506, adder
A1510A, adder A2510B and accumulator 512 can receive
inputs directly from external data buses through the data
typer and aligner 502. In the preferred embodiment, adder
510C and multiplier M2504B receive inputs from the accu-
mulator 512 or the outputs from the execution units multi-
plier M1504A, compressor 506, adder A1510A, and adder
A2510B.

[0041] Program memory 204 couples to the pipe control
304 which includes an instruction buffer that acts as a local
loop cache. The instruction buffer in the preferred embodi-
ment has the capability of holding four instructions. The
instruction buffer of the pipe control 304 reduces the power
consumed in accessing the main memories to fetch instruc-
tions during the execution of program loops.

[0042] Referring now to FIG. 5B, a more detailed block
diagram of the functional blocks and the bus structure of the
signal processing unit is illustrated. Dyadic DSP instructions
are possible because of the structure and functionality pro-
vided in each signal processing unit. Output signals are
coupled out of the signal processor 300 on the Z output bus
532 through the data typer and aligner 502. Input signals are
coupled into the signal processor 300 on the X input bus 531
and Y input bus 533 through the data typer and aligner 502.
Internally, the data typer and aligner 502 has a different data
bus to couple to each of multiplier M1504A, compressor
506, adder A1510A, adder A2510B, and accumulator reg-
ister AR 512. While the data typer and aligner 502 could
have data busses coupling to the adder A3510C and the
multiplier M2504B, in the preferred embodiment it does not
in order to avoid extra data lines and conserve area usage of

May 25, 2006

an integrated circuit. Output data is coupled from the accu-
mulator register AR 512 into the data typer and aligner 502.

[0043] Multiplier M1504A has buses to couple its output
into the inputs of the compressor 506, adder A1510A, adder
A2510B, and the accumulator registers AR 512. Compressor
506 has buses to couple its output into the inputs of adder
A1510A and adder A2510B. Adder A1510A has a bus to
couple its output into the accumulator registers 512. Adder
A2510B has buses to couple its output into the accumulator
registers 512. Accumulator registers 512 has buses to couple
its output into multiplier M2504B, adder A3510C, and data
typer and aligner 502. Adder A3510C has buses to couple its
output into the multiplier M2504B and the accumulator
registers 512. Multiplier M2504B has buses to couple its
output into the inputs of the adder A3510C and the accu-
mulator registers AR 512.

Instruction Set Architecture

[0044] The instruction set architecture of the ASSP 150 is
tailored to digital signal processing applications including
audio and speech processing such as compression/decom-
pression and echo cancellation. In essence, the instruction
set architecture implemented with the ASSP 150, is adapted
to DSP algorithmic structures. The adaptation of the ISA of
the present invention to DSP algorithmic structures is a
balance between ease of implementation, processing effi-
ciency, and programmability of DSP algorithms. The ISA of
the present invention provides for data movement opera-
tions, DSP/arithmetic/logical operations, program control
operations (such as function calls/returns, unconditional/
conditional jumps and branches), and system operations
(such as privilege, interrupt/trap/hazard handling and
memory management control).

[0045] Referring now to FIG. 6A, an exemplary instruc-
tion sequence 600 is illustrated for a DSP algorithm program
model employing the instruction set architecture of the
present invention. The instruction sequence 600 has an outer
loop 601 and an inner loop 602. Because DSP algorithms
tend to perform repetitive computations, instructions 605
within the inner loop 602 are executed more often than
others. Instructions 603 are typically parameter setup code
to set the memory pointers, provide for the setup of the outer
loop 601, and other 2x20 control instructions. Instructions
607 are typically context save and function return instruc-
tions or other 2x20 control instructions.

[0046] Instructions 603 and 607 are often considered
overhead instructions which are typically infrequently
executed. Instructions 604 are typically to provide the setup
for the inner loop 602, other control through 2x20 control
instructions, or offset extensions for pointer backup. Instruc-
tions 606 typically provide tear down of the inner loop 602,
other control through 2x20 control instructions, and com-
bining of datapath results within the signal processing units.
Instructions 605 within the inner loop 602 typically provide
inner loop execution of DSP operations, control of the four
signal processing units 300 in a single instruction multiple
data execution mode, memory access for operands, dyadic
DSP operations, and other DSP functionality through the
20/40 bit DSP instructions of the ISA of the present inven-
tion. Because instructions 605 are so often repeated, signifi-
cant improvement in operational efficiency may be had by
providing the DSP instructions, including general dyadic
instructions and dyadic DSP instructions, within the ISA of
the present invention.

US 2006/0112259 Al

[0047] The instruction set architecture of the ASSP 150
can be viewed as being two component parts, one (RISC
ISA) corresponding to the RISC control unit and another
(DSP ISA) to the DSP datapaths of the signal processing
units 300. The RISC ISA is a register based architecture
including sixteen registers within the register file 413, while
the DSP ISA is a memory based architecture with efficient
digital signal processing instructions. The instruction word
for the ASSP is typically 20 bits but can be expanded to
40-bits to control two RISC or DSP instructions to be
executed in series or parallel, such as a RISC control
instruction executed in parallel with a DSP instruction, or a
40 bit extended RISC or DSP instruction.

[0048] The instruction set architecture of the ASSP 150
has 4 distinct types of instructions to optimize the DSP
operational mix. These are (1) a 20-bit DSP instruction that
uses mode bits in control registers (i.e. mode registers), (2)
a 40-bit DSP instruction having control extensions that can
override mode registers, (3) a 20-bit dyadic DSP instruction,
and (4) a 40 bit dyadic DSP instruction. These instructions
are for accelerating calculations within the core processor
200 of the type where D=[(A opl B) op2 C] and each of
“opl” and “op2” can be a multiply, add or extremum
(min/max) class of operation on the three operands A, B, and
C. The ISA of the ASSP 150 which accelerates these
calculations allows efficient chaining of different combina-
tions of operations. Because these type of operations require
three operands, they must be available to the processor.
However, because the device size places limits on the bus
structure, bandwidth is limited to two vector reads and one
vector write each cycle into and out of data memory 202.
Thus one of the operands, such as B or C, needs to come
from another source within the core processor 200. The third
operand can be placed into one of the registers of the
accumulator 512 or the RISC register file 413. In order to
accomplish this within the core processor 200 there are two
subclasses of the 20-bit DSP instructions which are (1) Aand
B specified by a 4-bit specifier, and C and D by a 1-bit
specifier and (2) A and C specified by a 4-bit specifier, and
B and D by a 1 bit specifier.

[0049] Instructions for the ASSP are always fetched
40-bits at a time from program memory with bit 39 and 19
indicating the type of instruction. After fetching, the instruc-
tion is grouped into two sections of 20 bits each for
execution of operations. In the case of 20-bit control instruc-
tions with parallel execution (bit 39=0, bit 19=0), the two
20-bit sections are control instructions that are executed
simultaneously. In the case of 20-bit control instructions for
serial execution (bit 39=0, bit 19=1), the two 20-bit sections
are control instructions that are executed serially. In the case
of 20-bit DSP instructions for serial execution (bit 39=1, bit
19=1), the two 20-bit sections are DSP instructions that are
executed serially. In the case of 40-bit DSP instructions (bit
39=1, bit 19=0), the two 20 bit sections form one extended
DSP instruction which are executed simultaneously.

[0050] The ISA of the ASSP 150 is fully predicated
providing for execution prediction. Within the 20-bit RISC
control instruction word and the 40-bit extended DSP
instruction word there are 2 bits of each instruction speci-
fying one of four predicate registers within the RISC control
unit 302. Depending upon the condition of the predicate
register, instruction execution can conditionally change base
on its contents.

May 25, 2006

[0051] Inorderto access operands within the data memory
202 or registers within the accumulator 512 or register file
413, a 6-bit specifier is used in the DSP extended instruc-
tions to access operands in memory and registers. Of the six
bit specifier used in the extended DSP instructions, the MSB
(Bit 5) indicates whether the access is a memory access or
register access. In the preferred embodiment, if Bit 5 is set
to logical one, it denotes a memory access for an operand.
If Bit 5 is set to a logical zero, it denotes a register access
for an operand. If Bit 5 is set to 1, the contents of a specified
register (rX where X: 0-7) are used to obtain the effective
memory address and post-modify the pointer field by one of
two possible offsets specified in one of the specified rX
registers. If Bit 5 is set to 0, Bit 4 determines what register
set has the contents of the desired operand. If Bit-4 is set to
0, then the remaining specified bits 3:0 control access to the
registers within the register file 413 or to registers within the
signal processing units 300.

DSP Instructions

[0052] There are four major classes of DSP instructions
for the ASSP 150 these are

1) Multiply (MULT): Controls the execution of the main
multiplier connected to data buses from memory.

Controls: Rounding, sign of multiply

Operates on vector data specified through type field in
address register

Second operation: Add, Sub, Min, Max in vector or scalar
mode

2) Add (ADD): Controls the execution of the main-adder

Controls: absolute value control of the inputs, limiting the
result

Second operation: Add, add-sub, mult, mac, min, max

3) Extremum (MIN/MAX): Controls the execution of the
main-adder

Controls: absolute value control of the inputs, Global or
running max/min with T register, TR register recording
control Second operation: add, sub, mult, mac, min, max

4) Misc: type-match and permute operations.

[0053] The ASSP 150 can execute these DSP arithmetic
operations in vector or scalar fashion. In scalar execution, a
reduction or combining operation is performed on the vector
results to yield a scalar result. It is common in DSP appli-
cations to perform scalar operations, which are efficiently
performed by the ASSP 150.

[0054] The 20-bit DSP instruction words have 4-bit oper-
and specifiers that can directly access data memory using 8
address registers (r0-r7) within the register file 413 of the
RISC control unit 302. The method of addressing by the 20
bit DSP instruction word is regular indirect with the address
register specifying the pointer into memory, post-modifica-
tion value, type of data accessed and permutation of the data
needed to execute the algorithm efficiently. All of the DSP
instructions control the multipliers 504A-504B, adders
510A-510C, compressor 506 and the accumulator 512, the
functional units of each signal processing unit 300A-300D.

US 2006/0112259 Al

[0055] Inthe 40 bit instruction word, the type of extension
from the 20 bit instruction word falls into five categories:

1) Control and Specifier extensions that override the control
bits in mode registers

2) Type extensions that override the type specifier in address
registers

3) Permute extensions that override the permute specifier for
vector data in address registers

4) Offset extensions that can replace or extend the offsets
specified in the address registers

5) DSP extensions that control the lower rows of functional
units within a signal processing unit 300 to accelerate block
processing.

[0056] The 40-bit control instructions with the 20 bit
extensions further allow a large immediate value (16 to 20
bits) to be specified in the instruction and powerful bit
manipulation instructions.

[0057] Efficient DSP execution is provided with 2x20-bit
DSP instructions with the first 20-bits controlling the top
functional units (adders 501A and 510B, multiplier 504A,
compressor 506) that interface to data buses from memory
and the second 20 bits controlling the bottom functional
units (adder 510C and multiplier 504B) that use internal or
local data as operands. The top functional units, also referred
to as main units, reduce the inner loop cycles in the inner
loop 602 by parallelizing across consecutive taps or sec-
tions. The bottom functional units cut the outer loop cycles
in the outer loop 601 in half by parallelizing block DSP
algorithms across consecutive samples.

[0058] Efficient DSP execution is also improved by the
hardware architecture of the present invention. In this case,
efficiency is improved in the manner that data is supplied to
and from data memory 202 to feed the four signal processing
units 300 and the DSP functional units therein. The data
highway is comprised of two buses, X bus 531 and Y bus
533, for X and Y source operands, and one Z bus 532 for a
result write. All buses, including X bus 531, Y bus 533, and
Z bus 532, are preferably 64 bits wide. The buses are
uni-directional to simplify the physical design and reduce
transit times of data. In the preferred embodiment when in
a 20 bit DSP mode, if the X and Y buses are both carrying
operands read from memory for parallel execution in a
signal processing unit 300, the parallel load field can only
access registers within the register file 413 of the RISC
control unit 302. Additionally, the four signal processing
units 300A-300D in parallel provide four parallel MAC
units (multiplier 504A, adder 510A, and accumulator 512)
that can make simultaneous computations. This reduces the
cycle count from 4 cycles ordinarily required to perform
four MACs to only one cycle.

Dyadic DSP Instructions

[0059] All DSP instructions of the instruction set archi-
tecture of the ASSP 150 are dyadic DSP instructions within
the 20 bit or 40 bit instruction word. A dyadic DSP instruc-
tion informs the ASSP in one instruction and one cycle to
perform two operations. Referring now to FIG. 6B is a chart
illustrating the permutations of the dyadic DSP instructions.
The dyadic DSP instruction 610 includes a main DSP
operation 611 (MAIN OP) and a sub DSP operation 612

May 25, 2006

(SUB OP), a combination of two DSP instructions or opera-
tions in one dyadic instruction. Generally, the instruction set
architecture of the present invention can be generalized to
combining any pair of basic DSP operations to provide very
powerful dyadic instruction combinations. Compound DSP
operational instructions can provide uniform acceleration
for a wide variety of DSP algorithms not just multiply-
accumulate intensive filters. The DSP instructions or opera-
tions in the preferred embodiment include a multiply
instruction (MULT), an addition instruction (ADD), a mini-
mize/maximize instruction (MIN/MAX) also referred to as
an extrema instruction, and a no operation instruction (NOP)
each having an associated operation code (“opcode”). Any
two DSP instructions can be combined together to form a
dyadic DSP instruction. The NOP instruction is used for the
MAIN OP or SUB OP when a single DSP operation is
desired to be executed by the dyadic DSP instruction. There
are variations of the general DSP instructions such as vector
and scalar operations of multiplication or addition, positive
or negative multiplication, and positive or negative addition
(i.e. subtraction).

[0060] Referring now to FIG. 6C and FIG. 6D, bitmap
syntax for an exemplary dyadic DSP instruction is illus-
trated. FIG. 6C illustrates bitmap syntax for a control
extended dyadic DSP instruction while FIG. 6D illustrates
bitmap syntax for a non-extended dyadic DSP instruction. In
the non-extended bitmap syntax the instruction word is the
twenty most significant bits of a forty bit word while the
extended bitmap syntax has an instruction word of forty bits.
The three most significant bits (MSBs), bits numbered 37
through 39, in each indicate the MAIN OP instruction type
while the SUB OP is located near the middle or end of the
instruction bits at bits numbered 20 through 22. In the
preferred embodiment, the MAIN OP instruction codes are
000 for NOP, 101 for ADD, 110 for MIN/MAX, and 100 for
MULT. The SUB OP code for the given DSP instruction
varies according to what MAIN OP code is selected. In the
case of MULT as the MAIN OP, the SUB OPs are 000 for
NOP, 001 or 010 for ADD, 100 or 011 for a negative ADD
or subtraction, 101 or 110 for MIN, and 111 for MAX. In the
preferred embodiment, the MAIN OP and the SUB OP are
not the same DSP instruction although alterations to the
hardware functional blocks could accommodate it. The
lower twenty bits of the control extended dyadic DSP
instruction, the extended bits, control the signal processing
unit to perform rounding, limiting, absolute value of inputs
for SUB OP, or a global MIN/MAX operation with a register
value.

[0061] The bitmap syntax of the dyadic DSP instruction
can be converted into text syntax for program coding. Using
the multiplication or MULT non-extended instruction as an
example, its text syntax for multiplication or MULT is

[0062] (vmullvmuln).(vadd|vsublvmax|sadd|ssub|smax)
da, sx, sa, sy [,(psO)|ps1)]

[0063] The “vmullvmuln” field refers to either positive
vector multiplication or negative vector multiplication being
selected as the MAIN OP. The next field,
“vadd|vsublvmax|sadd|ssub|smax”, refers to either vector
add, vector subtract, vector maximum, scalar add, scalar
subtraction, or scalar maximum being selected as the SUB
OP. The next field, “da”, refers to selecting one of the
registers within the accumulator for storage of results. The

US 2006/0112259 Al

field “sx” refers to selecting a register within the RISC
register file 413 which points to a memory location in
memory as one of the sources of operands. The field “sa”
refers to selecting the contents of a register within the
accumulator as one of the sources of operands. The field
“sy” refers to selecting a register within the RISC register
file 413 which points to a memory location in memory as
another one of the sources of operands. The field of [,
(psO)|ps1)]” refers to pair selection of keyword PSO or PS1
specifying which are the source-destination pairs of a par-
allel-store control register. Referring now to FIGS. 6E and
6F, lists of the set of 20-bit DSP and control instructions for
the ISA of the present invention is illustrated. FIG. 6G lists
the set of extended control instructions for the ISA of the
present invention. FIG. 6H lists the set of 40-bit DSP
instructions for the ISA of the present invention. FIG. 61
lists the set of addressing instructions for the ISA of the
present invention.

[0064] Referring now to FIG. 7, a block diagram illus-
trates the instruction decoding for configuring the blocks of
the signal processing unit 300. The signal processor 300
includes the final decoders 704 A through 704N, and multi-
plexers 720 A through 720N. The multiplexers 720A through
720N are representative of the multiplexers 514, 516, 520,
and 522 in FIG. 5B. The predecoding 702 is provided by the
RISC control unit 302 and the pipe control 304. An instruc-
tion is provided to the predecoding 702 such as a dyadic DSP
instruction 600. The predecoding 702 provides preliminary
signals to the appropriate final decoders 704 A through 704N
on how the multiplexers 720A through 720N are to be
selected for the given instruction. Referring back to FIG.
5B, in a dyadic DSP instruction the MAIN OP generally, if
not a NOP, is performed by the blocks of the multiplier
M1504A, compressor 506, adder A1510A, and adder
A2510B. The result is stored in one of the registers within
the accumulator register AR 512. In the dyadic DSP instruc-
tion the SUB OP generally, if not a NOP, is performed by the
blocks of the adder A3510C and the multiplier M2504B. For
example, if the dyadic DSP instruction is to perform is an
ADD and MULT, then the ADD operation of the MAIN OP
is performed by the adder A1510A and the SUB OP is
performed by the multiplier M1504A. The predecoding 720
and the final decoders 704A through 704N appropriately
select the respective multiplexers 720A through 720B to
select the MAIN OP to be performed by the adder A1510A
and the SUB OP to be performed by the multiplier M2504B.
In the exemplary case, multiplexer 520A selects inputs from
the data typer and aligner 502 in order for adder A1510A to
perform the ADD operation, multiplexer 522 selects the
output from adder 510A for accumulation in the accumulator
512, and multiplexer 514B selects outputs from the accu-
mulator 512 as its inputs to perform the MULT SUB OP. The
MAIN OP and SUB OP can be either executed sequentially
(i.e. serial execution on parallel words) or in parallel (i.e.
parallel execution on parallel words). If implemented
sequentially, the result of the MAIN OP may be an operand
of'the SUB OP. The final decoders 704 A through 704N have
their own control logic to properly time the sequence of
multiplexer selection for each element of the signal proces-
sor 300 to match the pipeline execution of how the MAIN
OP and SUB OP are executed, including sequential or
parallel execution. The RISC control unit 302 and the pipe
control 304 in conjunction with the final decoders 704A
through 704N pipelines instruction execution by pipelining

May 25, 2006

the instruction itself and by providing pipelined control
signals. This allows for the data path to be reconfigured by
the software instructions each cycle.

[0065] As those of ordinary skill will recognize, the
present invention has many advantages. One advantage of
the present invention is that the ISA is adapted to DSP
algorithmic structures providing compact hardware to con-
sume low-power which can be scaled to higher computa-
tional requirements. Another advantage of the present inven-
tion is that the signal processing units have direct access to
operands in memory to reduce processing overhead associ-
ated with load and store instructions.

[0066] Another advantage of the present invention is that
pipelined instruction execution is provided so that instruc-
tions may be issued every cycle. Another advantage of the
present invention is that the signal processing units can be
configured cycle by cycle.

[0067] The preferred embodiments of the present inven-
tion are thus described. While the present invention has been
described in particular embodiments, it may be implemented
in hardware, software, firmware or a combination thereof
and utilized in systems, subsystems, components or sub-
components thereof. When implemented in software, the
elements of the present invention are essentially the code
segments to perform the necessary tasks. The program or
code segments can be stored in a processor readable medium
or transmitted by a computer data signal embodied in a
carrier wave over a transmission medium or communication
link. The “processor readable medium” may include any
medium that can store or transfer information. Examples of
the processor readable medium include an electronic circuit,
a semiconductor memory device, a ROM, a flash memory,
an erasable ROM (EROM), a floppy diskette, a CD-ROM,
an optical disk, a hard disk, a fiber optic medium, a radio
frequency (RF) link, etc. The computer data signal may
include any signal that can propagate over a transmission
medium such as electronic network channels, optical fibers,
air, electromagnetic, RF links, etc. The code segments may
be downloaded via computer networks such as the Internet,
Intranet, etc. In any case, the present invention should not be
construed as limited by such embodiments, but rather con-
strued according to the claims that follow below.

1-13. (canceled)

14. An instruction set architecture (ISA) for execution of
operations within a digital signal processor, the instruction
set architecture comprising:

a set of instructions for operation within a digital signal
processor wherein each instruction includes a first
operand accessed directly from memory, a second
operand accessed directly from memory of a local
register, and a destination register to store results, the
set of instructions including,

a 20-bit DSP instruction, and
a 40-bit DSP instruction,

the set of instructions to accelerate calculations within
the digital signal processor of the type where D=[(A
operation one B) operation two C] where operation
one and operation two are separate signal processing
operations.

US 2006/0112259 Al

15. The instruction set architecture (ISA) of claim 14 for
execution of operations within a digital signal processor,
wherein,

the twenty bit instruction uses mode bits in control
registers and the forty bit instruction has a control
extension to override the mode bits.
16. The instruction set architecture (ISA) of claim 14 for
execution of operations within a digital signal processor,
wherein,

the set of instructions further includes a dyadic instruction
to execute two operations in one instruction.
17. The instruction set architecture (ISA) of claim 16 for
execution of operations within a digital signal processor,
wherein

the two operations of the dyadic instruction for execution
in one instruction are DSP operations.
18. The instruction set architecture (ISA) of claim 17 for
execution of operations within a digital signal processor,
wherein

the DSP operations are of the set of operations of multi-
plication, addition, extremum, and no operation.
19-20. (canceled)
21. The instruction set architecture (ISA) of claim 15 for
execution of operations within a digital signal processor,
wherein,

the control registers are mode registers.

22. An instruction set architecture to perform digital
signal processing functions for the communication of voice
and data over a communication system the instruction set
architecture comprising:

a plurality of digital signal processing (DSP) instructions
for performing DSP operations within a processor, the
plurality of DSP instructions accessing at least a first
operand and a second operand to perform the instruc-
tion and writing a result upon completion, the plurality
of DSP instructions to perform DSP operations within
a plurality of core digital signal processors of the
processor; and

a plurality of control instructions for controlling the
execution of the plurality of DSP instructions, the
plurality of control instructions executed by a RISC
processor of the processor to control the DSP opera-
tions within the plurality of core digital signal proces-
SOIS.

23. The instruction set architecture of claim 22, wherein

at least one of the plurality of DSP instructions is a dyadic
DSP instruction including a main digital signal pro-
cessing operation and a sub digital signal processing
operation.

24. The instruction set architecture of claim 22, wherein,

the plurality of DSP instructions include bits to access
operands in memory and registers.

May 25, 2006

25. The instruction set architecture of claim 22, wherein,

the plurality of DSP instructions and the plurality of
control instructions include bits to perform execution
prediction of branches and jumps of a program.

26. The instruction set architecture of claim 22, wherein

the digital signal processing operations are of the set of
operations of multiplication, addition, extremum, and
no operation.

27. The instruction set architecture of claim 22, wherein

the plurality of DSP instructions to accelerate calculations
within the digital signal processor of the type where
D=[(A operation one B) operation two C] where opera-
tion one and operation two are separate signal process-
ing operations.

28. An instruction set architecture to convert voice and
data samples into packets for transmission over a network
and to convert packets received from the network into voice
and data samples, the instruction set architecture compris-
ing:

a plurality of digital signal processing (DSP) instructions
for performing DSP operations within a processor, the
plurality of DSP instructions accessing at least a first
operand and a second operand to perform the instruc-
tion and writing a result upon completion, the plurality
of DSP instructions to perform DSP operations within
a plurality of core digital signal processors, the plural-
ity of DSP instructions including,

a 20-bit DSP instruction, and
a 40-bit DSP instruction; and

a plurality of control instructions for controlling the
execution of the plurality of DSP instructions, the
plurality of control instructions executed by a RISC
processor to control the DSP operations within the
plurality of core digital signal processors, the plurality
of control instructions including,

a 20-bit control instruction, and

a 40-bit control instruction.
29. The instruction set architecture of claim 28, wherein,

the 40-bit DSP instruction and the 20-bit control instruc-
tion include bits to perform execution prediction of
branches and jumps of a program.

30. The instruction set architecture of claim 28, wherein,

the execution prediction depends upon a condition to
change instruction execution.
31. The instruction set architecture of claim 30, wherein,

the 40-bit DSP instruction include bits to access operands
in memory and registers.

