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A multi-core processor providing heterogeneous processor 
cores and a shared cache is presented. 
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CACHING FOR HETEROGENEOUS 
PROCESSORS 

0001. This U.S. Patent application is a continuation of 
U.S. patent application Ser. No. 14/977,929 filed Dec. 22, 
2015 which is a continuation of U.S. patent application Ser. 
No. 14/319,616 filed Jun. 30, 2014 which is a continuation 
of U.S. patent application Ser. No. 13/766,074 filed Feb. 13, 
2013 which is a continuation of U.S. patent application Ser. 
No. 13/405,798 filed Feb. 27, 2012 which is a continuation 
of U.S. patent application Ser. No. 12/459,683 filed Jul. 6, 
2009 which is a continuation of U.S. patent application Ser. 
No. 1 1/270,932 filed Nov. 10, 2005 which is a continuation 
of U.S. patent application Ser. No. 10/993,757 filed Nov. 19, 
2004. Each of the above identified applications is incorpo 
rated by reference in its entirety herein. 

BACKGROUND 

0002 Modern general purpose processors often access 
main memory (typically implemented as dynamic random 
access memory, or “DRAM) through a hierarchy of one or 
more caches (e.g., L1 and L2 caches). Relative to main 
memory, caches (typically static random access memory, or 
“SRAM, based) return data more quickly, but use more area 
and power. Memory accesses by general purpose processors 
usually display high temporal and spatial locality. Caches 
capitalize on this locality by fetching data from main 
memory in larger chunks than requested (spatial locality) 
and holding onto the data for a period of time even after the 
processor has used that data (temporal locality). This behav 
ior often allows requests to be served very rapidly from 
cache, rather than more slowly from DRAM. Caches also 
generally can satisfy a much higher read/write load (for 
higher throughput) than main memory so previous accesses 
are less likely to be queued and slow current accesses. 
0003 Computational workloads like networking and 
graphics are often performed better on special purpose 
processors designed specifically for the given workload. 
Examples of Such special purpose processors include net 
work processors and graphics accelerators. In general these 
special purpose processors are placed outside of the general 
purpose processor's caching hierarchy, often on a Peripheral 
Component Interconnect (PCI) or Accelerated Graphics Port 
(AGP). 
0004 Memory accesses by the special purpose processor 
therefore involve only main memory, not the cache of the 
general purpose processor. Moving data between the general 
purpose processor and the special purpose processor often 
requires both a main memory write and a main memory 
read, so such a transfer can proceed at only DRAM speeds. 

DESCRIPTION OF DRAWINGS 

0005 FIGS. 1A-1C show an exemplary heterogeneous 
multi-core processor having a bus-based shared cache archi 
tecture. 

0006 FIG. 2 shows an exemplary heterogeneous multi 
core processor having a multi-ported shared cache architec 
ture. 

0007 FIG. 3 shows an exemplary heterogeneous multi 
core processor having a Switch-based shared cache archi 
tecture. 

Apr. 6, 2017 

0008 FIG. 4 shows an exemplary heterogeneous multi 
core processor (with a shared cache) connected to a main 
memory of a multi-core general purpose processor by a 
bridge. 
0009 FIG. 5 shows an exemplary networking application 
in which a heterogeneous multi-core processing system Such 
as those illustrated in FIGS. 1-4 is employed. 

DETAILED DESCRIPTION 

0010 FIGS. 1A-1C show a multi-processor system 10 
that includes a multi-processor 12 coupled to a main 
memory 14 by a memory bus 16. The multi-processor 12 
includes a cache (“shared cache') 18 and multiple processor 
“cores” (collectively, processor cores 20) that are connected 
to and share the cache 18. The shared cache 18 in this figure 
is intended to represent a unit that includes both cache 
memory and associated control logic. The cache control 
logic includes logic to map memory addresses (“cache 
tags') currently cached with their associated cache lines. 
0011. The processor cores 20 include heterogeneous 
cores, that is, architecturally different processor cores (or 
types of processor cores). For example, the processor cores 
20 may include one or more special purpose processor cores 
and/or at least one central processing unit (CPU) core. 
0012. The special purpose processor cores may include, 
for example, at least one network processor unit (NPU) core 
and/or a graphics engine core. In the illustrated embodiment, 
the processor cores 20 include multiple NPU cores, shown 
as NPU cores 22a, 22b, ..., 22k, as well as a CPU core 24. 
The NPU cores 22 may be programmble Reduced Instruc 
tion Set Computing (RISC) cores that feature hardware 
support for multi-threaded operation. The NPU cores 22 
may lack instructions typically found in other processors 
Such as integer multiplication or division or floating point 
operations since these operation occur relatively infre 
quently in processing network packets. The CPU core 24 
may be based on the architecture of any type of general 
purpose processors, e.g., an Intel R Architecture processor 
(“IA processor) such as the Intel(R) XeonTM processor, or the 
Intel Pentium(R) 4 processor or XscaleTM processor. 
0013 Although not shown, it may be appreciated that the 
CPU core 24 may use a private cache (e.g., the private cache 
may be an L1 cache and the shared cache may be an L2 
cache) as well. 
0014. The processor cores 20 are connected to the shared 
cache 18 via Some type of interconnect mechanism, e.g., a 
shared bus 26, as shown. Accesses by both the CPU core 24 
and the NPU core 22 may be serviced from the cache 18 (if 
the data is present there) very rapidly. Such an access is 
called a cache hit, meaning the data is returned more quickly. 
A cache hit also decreases the number of accesses to main 
memory 14, increasing the rate with which other accesses 
(cache misses or access from I/O agents) can be serviced. 
Data used by both types of processor cores 22, 24 can be 
accessed very rapidly from the shared cachel 8, without the 
need for DRAM or even cache-to-cache transfers. Data can 
be passed from one processor core (say, the NPU core 22) to 
another processor core (say, the CPU core 24) through cache 
reads and writes, enabling Such processor cores to proceed 
at a faster rate and without loading the main memory 14. 
00.15 Passing of data between the two processor core 
types can be accomplished with the shared cache in the 
following way. The processor core with the data writes it to 
cache. This same processor core informs the other processor 
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core that the data is ready (e.g., through an interrupt or flag 
update). The second processor core may then read the data, 
pulling it directly from the shared cache 18. The data passed 
between the processor cores need not be written to or read 
from the main memory 14. The two types of processor cores 
can, therefore, pass data in Such a manner at the data rate of 
the shared cache, which is often much higher than that 
allowed by main memory, and without loading the main 
memory with avoidable DRAM reads and writes. 
0016. The close coupling of the NPU core 22 and the 
CPU core 24 allows these cores to collaborate on specific 
networking algorithms (like Intrusion Detection, Firewall 
ing, Secure Sockets Layer (SSL) acceleration, for example) 
in a more fine-grained manner. The shared cache allows 
migration of related work (and State) from one core to 
another without the use of DRAM. 
0017 Although not shown, it will be appreciated that one 
or more of the NPU cores 22 could be coupled to other 
resources, in particular, an interface (or interfaces) to exter 
nal network devices. Such external media devices may be 
any media interface capable of transmitting and/or receiving 
network traffic data, such as framing/media access control 
(MAC) devices, e.g., for connecting to 10/100BaseT Ether 
net, Gigabit Ethernet, Asynchronous Transfer Mode (ATM) 
or other types of networks, or interfaces for connecting to a 
Switch fabric. For example, in one arrangement, one net 
work device could be an Ethernet MAC device (connected 
to an Ethernet network) that transmits data to or receives 
data from the processor 12, and a second network device 
could be a Switch fabric interface to Support communica 
tions to and from a switch fabric. Other NPU resources may 
include, for example, control status registers (CSRS), inter 
faces to other external memories, such as packet buffer and 
control memories, and scratch memory. 
0018. In contrast with conventional systems, in which the 
special purpose processors are on separate silicon and are 
placed on the I/O connectors of a general purpose processor 
(e.g., host) system, the core(s) of the multi-processor 12 are 
integrated onto the same die as the CPU core 24 and, 
potentially, cache 18. Such integration allows the heteroge 
neous cores the opportunity to more efficiently share data as 
they are placed behind a common cache. Thus, in one 
embodiment, as illustrated in the figures, the processor 
cores, cache and interconnect reside on a single chip. 
Alternatively, the processor cores 20, cache 18 and inter 
connect 26 may be implemented as separate chips in a 
multi-chip package. In yet another alternative embodiment, 
the processor cores 20, cache 18, and interconnect 26 may 
be implemented as a combination of chip and board design. 
0019 FIGS. 1 B-1C show further details of the bus-based 
cache architecture, according to exemplary embodiments. In 
FIG. 1B, each of the NPU cores 22 includes NPU core 
translation logic (NPU-TL)30 and the CPU core 24 includes 
CPU core translation logic (CPU-TL) 32. The translation 
logic 30, 32 translates core-specific memory transactions 
(such as reads and writes) into core-independent memory 
transactions that will appear on the bus 26 and that are 
comprehended by the shared cache 18 without regard for the 
type of core that initiated them. In FIG. 1C, much or all of 
the burden of dealing with characteristics of core-specific 
transactions shifts to the shared cache 18. Thus, the shared 
cache 18 includes shared cache translation logic (SC-TL) 40 
to support handling of requests (and, more specifically, 
command set features) from the different processor core 
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types in an appropriate way. The shared cache translation 
logic 40 is a Superset of the logic needed to support each 
processor core type. The shared cache translation logic 40 
may further include bus arbitration logic to prioritize bus 
access by processor core type. Even in the latter example 
(shown in FIG. 1C), there may be some issues that need to 
be reconciled closer to the cores themselves. For example, in 
CPU applications a cache typically uses addresses to deter 
mine memory type, but in NPU applications the cache may 
be instructed as to memory type by the NPU command. 
Also, the processor cores may require Support for encoding 
transactions with a core identifier. 

0020. As mentioned earlier, other core-to-cache intercon 
nect mechanisms are possible. For example, and as shown in 
FIG. 2, the cache 18 may be a multi-ported cache with a port 
for each core, or a single port for each processor core type. 
Thus, in the case of the NPU 22 and CPU 24 cores, and as 
shown in the figure, the NPU cores 20a, 20b. . . . , 20k 
connect to a port 50 of a first port type (shown as “type A') 
and the CPU core 24 uses a port 52 of a second port type 
(shown as “type B). Although port 50 is shown as a shared 
port, it will be appreciated that each NPU core could be 
connected to a respective port 50 over a separate channel. In 
this approach, the type of core generating an access request 
would be known by the port through which the request was 
received. In a multi-ported architecture Such as this, the 
ports of each type (that is, ports Supporting the different 
processor core types) may be “tuned for the traffic patterns 
and other characteristics or features (such as commands, 
sizes, alignments and so forth) of those different processor 
core types. For example, NPU cores are bandwidth sensitive 
whereas CPU cores are more latency sensitive. Data 
returned by the cache for NPU requests may be batched on 
return to optimize through-put for fixed overhead. The 
tuning may take into account the types of transactions to be 
performed by a specific core type. Certain types of cores 
may perform mostly reads (e.g., graphics engines) while 
other core types may perform a more balanced mix of reads 
and writes. 

0021 FIG. 3 shows yet another interconnect approach. 
With this approach each of the cores is connected to the 
shared cache 18 by a switch 60 (e.g., a crossbar switch, as 
shown). The translation logic could be implemented in any 
one of the ways described above with respect to the bus 
based approach. 
0022. Although not shown, the individual cores may 
include logic to Support interrupts or flags for core-to-core 
signaling. Such inter-core signaling may be used when one 
core, such as the NPU core 22, has transferred work (e.g., in 
the form of packet data, pointers, state and so forth) to the 
shared cache 18 and needs to signal to a second core. Such 
as the CPU core 24, that the work is available to be operated 
on by the second core. 
0023 The processor 12 may participate as a unit in a 
cache coherent access to a main memory with one or more 
other processor/cache combinations, as shown in FIG. 4. 
Turning to FIG. 4, a system 70 includes the processor 12 
now connected to a main memory 72 by a bridge 74. The 
main memory 72 is shared by a general purpose processor 
(GPP)76, which is also connected to the bridge 74. The GPP 
76 includes one or more CPU cores 78 behind a common (or 
shared) cache 80. The caches and bridge structure operates 
in a manner that ensures all of the caches are kept coherent. 
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0024. The bridge 74 may be implemented to allow the 
cores of the processor 12 and the cores of GPP 76 to 
reference the main memory as well as the shared cache of 
the other processor with their own native access protocols. 
The shared cache organization enables the heterogeneous 
processor cores of the processor 12 to access the shared 
cache 18 in their native mode of operation, but with no 
impact resulting from other processor types (such as the 
CPU cores 78 of GPP 76) utilizing different protocols to 
access the shared cache 18. In one example implementation 
based on an IXA-based NPU core 22 and IA-based CPU 
core 78, the NPU core 22 may access the shared cache 18 via 
IXA protocols (such as Command Push/Pull bus protocols) 
and view the shared cache as another memory resource 
while external access to the shared cache 18 by one of the 
CPU cores 78 via the bridge 74 may be performed using IA 
cache access and coherency mechanisms. As noted earlier, 
the heterogeneous cores of the processor 12 are able to fully 
access the shared cache 18 using their native (and different) 
access protocols. Data can be passed from a core in one 
processor to a core in the other processor in a cache-to-cache 
transfer. This can be accomplished with lower latency and 
higher bandwidth than the alternative, a main memory write 
by one processor and a main memory read by the other, and 
does not load the main memory. 
0025. An example transfer is as follows. A CPU core 78 
sends a read request to shared cache 80, which detects a 
cache miss and directs the read request to the bridge 74. The 
bridge 74 sends the read request to the shared cache 18, 
which contains a copy of the requested data. The shared 
cache 18 returns the requested data to the shared cache 80 
via the bridge 74. In an alternative scenario, the bridge 74 
may send the read request to both the shared cache 18 and 
the main memory 72, and decide which data copy to use 
based on the response from the shared cache 18. 
0026. The shared cache mechanism may support different 
cache policies and features, such as cache line alignment, 
cacheability and cache line locking. Cache line alignment 
converts a memory transaction that affects more than one 
shared cache cache line to multiple memory accesses that 
each fall within a single cache line. Cacheability of data 
involved in a memory transfer may be determined based on 
instruction type (e.g., an instruction that specifies a non 
cached transaction) and/or based on memory type, e.g., as 
specified in a Memory Type Range Register (MTTR). With 
this feature at least one of the heterogeneous processor 
cores, e.g., the NPU core, is capable of generating reads and 
writes to the main memory 14 that bypass the shared cache 
16 in the event of a cache miss. Cache line locking refers to 
the locking of individual cache lines by a core. With the 
cache line locking feature at least one of the heterogeneous 
processor cores can lock a portion (e.g., a single cache line, 
multiple cache lines, or all cache lines) of the shared cache 
lines for use as a private memory, possibly to extend local 
resources (such as scratch memory) already available to the 
core(s), or for extended private modification. By locking 
one. Some or all of the cache lines, a core can utilize the 
locked memory space as extended local memory, while the 
cores continue coherent operation on any remaining portion 
of the shared cache. When only one of the heterogeneous 
processor cores is actively using the shared cache, that 
processor core receives the full benefit of the entire shared 
cache—effectively using the chip area to maximize perfor 
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mance. This cache locking may be implemented in the same 
manner as locking for atomic operations, e.g., using a cache 
line lock status field. 

0027. The utilization of one or more of these (and pos 
sibly other) techniques may be driven, at least in part, by the 
selection of core types. For example, Some special purpose 
processors, such as network processors, include reads and 
writes to/from memory that the programmer knows to have 
very poor temporal and spatial locality The same may be 
true for Some accesses by the general purpose processor. To 
improve the efficiency of these accesses, therefore, it may be 
desirable to provide memory read and write commands that 
do not result in cache activities. In other words, data is not 
placed in the cache, and does not evict other data already in 
the cache. Accesses that the programmer knows will not hit 
cache can be routed around that cache, increasing the cache 
hit rate for other accesses. Also, different core types may 
support different data fetch/transfer sizes, some of which 
may not be cache line aligned. CPU cores such as an IA core 
typically generate requests that fall within a single cache 
line, while an NPU such as an IXA network processor may 
have the capability to generate requests of arbitrary size and 
that may span multiple cache lines. 
0028. The shared cache architecture described herein 
allows two different types of processors to be placed behind 
the same cache. Such an architecture is likely to be required 
for high performance on workloads like graphics, streaming 
media and networking as design trends head towards multi 
core processors. In networking applications, for example, it 
is possible to bring packet processing and general purpose 
processing closer together for optimal, high-throughput 
communication between packet processing elements of a 
network processor and the control and/or content processing 
of general purpose processors. For example, as shown in 
FIG. 5, a distributed processing platform 100 includes a 
collection of blades 102a-102m and line cards 104a-104n 
interconnected by a backplane 106, e.g., a Switch fabric (as 
shown). The switch fabric, for example, may conform to 
Common Switch Interface (CSIX) or other fabric technolo 
gies such as HyperTransport, Infiniband, Peripheral Com 
ponent Interconnect (PCI), Packet-Over-SONET, RapidIO, 
and/or Universal Test and Operations PHY Interface for 
ATM (UTOPIA). 
0029. The line card is where line termination and I/O 
processing occurs. It may include processing in the data 
plane (packet processing) as well as control plane processing 
to handle the management of policies for execution in the 
data plane. The blades 102a-102m may include: control 
blades to handle control plane functions not distributed to 
line cards; control blades to perform system management 
functions such as driver enumeration, route table manage 
ment, global table management, network address translation 
and messaging to a control blade; applications and service 
blades; and content processing. In a network infrastructure, 
content processing may be used to handle intensive content 
based processing outside the capabilities of the standard line 
card applications including voice processing, encryption 
offload and intrusion-detection where performance demands 
are high. 
0030. At least one of the line cards, e.g., line card 104a, 
is a specialized line card that is implemented based on the 
architecture of heterogeneous multi-core system 10 (or 
system 70), to more tightly couple the processing intelli 
gence of CPU cores to the more specialized capabilities of 
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NPU cores. The line card 104a includes media interfaces 
(MI) 108 to handle communications over network connec 
tions. Each media interface 108 is connected to a system 10 
(or 70). In this implementation, one system is used as an 
ingress processor and the other system is used as an egress 
processor, although a single system could also be used. Each 
system 10 (or 70) is coupled to the switch fabric 106 via a 
switch fabric interface (SFI) 110. Alternatively, or in addi 
tion, other applications based on the multi-processor sys 
tems 10, 70 could be employed by the distributed processing 
platform 100. Depending on the configuration of blades and 
line cards, the distributed processing platform 100 could 
implement a Switching device (e.g., Switch or router), a 
server, a datacenter or other type of equipment. 
0031. Other embodiments are within the scope of the 
following claims. 
What is claimed is: 
1. A system on a chip (SoC) comprising: 
a plurality of cores on a single semiconductor chip; 
a shared cache on the single semiconductor chip, the 

shared cache to be shared by two or more of the 
plurality of cores on the single semiconductor chip and 
also to be shared with one or more processing units of 
an external processing device having a different 
instruction processing architecture from the plurality of 
cores; and 

an interconnect interface on the single semiconductor 
chip, the interconnect interface to couple an external 
cache on the external processing device to the shared 
cache, wherein the shared cache and the external cache 
are to be kept coherent. 
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2. The SoC as in claim 1 wherein the interconnect 
interface is a switch fabric interconnect (SFI) interface. 

3. The SoC as in claim 1 wherein the interconnect 
interface is a Peripheral Component Interconnect (PCI) 
interface. 

4. The SoC as in claim 1 wherein the interconnect 
interface is a symmetric multiprocessing (SMP) intercon 
nect interface. 

5. The SoC as in claim 1 wherein the interconnect 
interface is a Common Switch Interface (CSIX). 

6. The SoC as in claim 1 wherein the interconnect 
interface is a Hypertransport interface. 

7. The SoC as in claim 1 wherein the interconnect 
interface is an Infiniband interface. 

8. The SoC as in claim 1 wherein the interconnect 
interface is a Packet-Over-SONET interface. 

9. The SoC as in claim 1 wherein the interconnect 
interface is a RapidIO interface. 

10. The SoC as in claim 1 wherein the interconnect 
interface is a Universal Test and Operations PHY Interface 
for ATM (UTOPIA). 

11. The SoC as in claim 1 wherein the external processing 
device comprises one or more special purpose processing 
units. 

12. The SoC as in claim 1 wherein the external processing 
device comprises one or more accelerator devices. 

13. The SoC as in claim 3 wherein the accelerator devices 
are integrated on a line card. 

k k k k k 


