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(57) ABSTRACT

A multi-core processor providing heterogeneous processor
cores and a shared cache is presented.
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CACHING FOR HETEROGENEOUS
PROCESSORS

[0001] This U.S. Patent application is a continuation of
U.S. patent application Ser. No. 14/977,929 filed Dec. 22,
2015 which is a continuation of U.S. patent application Ser.
No. 14/319,616 filed Jun. 30, 2014 which is a continuation
of U.S. patent application Ser. No. 13/766,074 filed Feb. 13,
2013 which is a continuation of U.S. patent application Ser.
No. 13/405,798 filed Feb. 27, 2012 which is a continuation
of U.S. patent application Ser. No. 12/459,683 filed Jul. 6,
2009 which is a continuation of U.S. patent application Ser.
No. 11/270,932 filed Nov. 10, 2005 which is a continuation
of U.S. patent application Ser. No. 10/993,757 filed Nov. 19,
2004. Each of the above identified applications is incorpo-
rated by reference in its entirety herein.

BACKGROUND

[0002] Modern general purpose processors often access
main memory (typically implemented as dynamic random
access memory, or “DRAM?”) through a hierarchy of one or
more caches (e.g., L1 and L2 caches). Relative to main
memory, caches (typically static random access memory, or
“SRAM?”, based) return data more quickly, but use more area
and power. Memory accesses by general purpose processors
usually display high temporal and spatial locality. Caches
capitalize on this locality by fetching data from main
memory in larger chunks than requested (spatial locality)
and holding onto the data for a period of time even after the
processor has used that data (temporal locality). This behav-
ior often allows requests to be served very rapidly from
cache, rather than more slowly from DRAM. Caches also
generally can satisfy a much higher read/write load (for
higher throughput) than main memory so previous accesses
are less likely to be queued and slow current accesses.

[0003] Computational workloads like networking and
graphics are often performed better on special purpose
processors designed specifically for the given workload.
Examples of such special purpose processors include net-
work processors and graphics accelerators. In general these
special purpose processors are placed outside of the general
purpose processor’s caching hierarchy, often on a Peripheral
Component Interconnect (PCI) or Accelerated Graphics Port
(AGP).

[0004] Memory accesses by the special purpose processor
therefore involve only main memory, not the cache of the
general purpose processor. Moving data between the general
purpose processor and the special purpose processor often
requires both a main memory write and a main memory
read, so such a transfer can proceed at only DRAM speeds.

DESCRIPTION OF DRAWINGS

[0005] FIGS. 1A-1C show an exemplary heterogeneous
multi-core processor having a bus-based shared cache archi-
tecture.

[0006] FIG. 2 shows an exemplary heterogeneous multi-
core processor having a multi-ported shared cache architec-
ture.

[0007] FIG. 3 shows an exemplary heterogeneous multi-
core processor having a switch-based shared cache archi-
tecture.
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[0008] FIG. 4 shows an exemplary heterogeneous multi-
core processor (with a shared cache) connected to a main
memory of a multi-core general purpose processor by a
bridge.

[0009] FIG. 5 shows an exemplary networking application
in which a heterogeneous multi-core processing system such
as those illustrated in FIGS. 1-4 is employed.

DETAILED DESCRIPTION

[0010] FIGS. 1A-1C show a multi-processor system 10
that includes a multi-processor 12 coupled to a main
memory 14 by a memory bus 16. The multi-processor 12
includes a cache (“shared cache”) 18 and multiple processor
“cores” (collectively, processor cores 20) that are connected
to and share the cache 18. The shared cache 18 in this figure
is intended to represent a unit that includes both cache
memory and associated control logic. The cache control
logic includes logic to map memory addresses (“cache
tags”) currently cached with their associated cache lines.
[0011] The processor cores 20 include heterogeneous
cores, that is, architecturally different processor cores (or
types of processor cores). For example, the processor cores
20 may include one or more special purpose processor cores
and/or at least one central processing unit (CPU) core.
[0012] The special purpose processor cores may include,
for example, at least one network processor unit (NPU) core
and/or a graphics engine core. In the illustrated embodiment,
the processor cores 20 include multiple NPU cores, shown
as NPU cores 22a, 22b, . . ., 22k, as well as a CPU core 24.
The NPU cores 22 may be programmble Reduced Instruc-
tion Set Computing (RISC) cores that feature hardware
support for multi-threaded operation. The NPU cores 22
may lack instructions typically found in other processors
such as integer multiplication or division or floating point
operations since these operation occur relatively infre-
quently in processing network packets. The CPU core 24
may be based on the architecture of any type of general
purpose processors, €.g., an Intel® Architecture processor
(“IA processor”) such as the Intel® Xeon™ processor, or the
Intel Pentium® 4 processor or Xscale™ processor.

[0013] Although not shown, it may be appreciated that the
CPU core 24 may use a private cache (e.g., the private cache
may be an L1 cache and the shared cache may be an 1.2
cache) as well.

[0014] The processor cores 20 are connected to the shared
cache 18 via some type of interconnect mechanism, e.g., a
shared bus 26, as shown. Accesses by both the CPU core 24
and the NPU core 22 may be serviced from the cache 18 (if
the data is present there) very rapidly. Such an access is
called a cache hit, meaning the data is returned more quickly.
A cache hit also decreases the number of accesses to main
memory 14, increasing the rate with which other accesses
(cache misses or access from /O agents) can be serviced.
Data used by both types of processor cores 22, 24 can be
accessed very rapidly from the shared cachel8, without the
need for DRAM or even cache-to-cache transfers. Data can
be passed from one processor core (say, the NPU core 22) to
another processor core (say, the CPU core 24) through cache
reads and writes, enabling such processor cores to proceed
at a faster rate and without loading the main memory 14.
[0015] Passing of data between the two processor core
types can be accomplished with the shared cache in the
following way. The processor core with the data writes it to
cache. This same processor core informs the other processor
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core that the data is ready (e.g., through an interrupt or flag
update). The second processor core may then read the data,
pulling it directly from the shared cache 18. The data passed
between the processor cores need not be written to or read
from the main memory 14. The two types of processor cores
can, therefore, pass data in such a manner at the data rate of
the shared cache, which is often much higher than that
allowed by main memory, and without loading the main
memory with avoidable DRAM reads and writes.

[0016] The close coupling of the NPU core 22 and the
CPU core 24 allows these cores to collaborate on specific
networking algorithms (like Intrusion Detection, Firewall-
ing, Secure Sockets Layer (SSL) acceleration, for example)
in a more fine-grained manner. The shared cache allows
migration of related work (and state) from one core to
another without the use of DRAM.

[0017] Although not shown, it will be appreciated that one
or more of the NPU cores 22 could be coupled to other
resources, in particular, an interface (or interfaces) to exter-
nal network devices. Such external media devices may be
any media interface capable of transmitting and/or receiving
network traffic data, such as framing/media access control
(MAC) devices, e.g., for connecting to 10/100BaseT Ether-
net, Gigabit Ethernet, Asynchronous Transfer Mode (ATM)
or other types of networks, or interfaces for connecting to a
switch fabric. For example, in one arrangement, one net-
work device could be an Ethernet MAC device (connected
to an Ethernet network) that transmits data to or receives
data from the processor 12, and a second network device
could be a switch fabric interface to support communica-
tions to and from a switch fabric. Other NPU resources may
include, for example, control status registers (CSRs), inter-
faces to other external memories, such as packet buffer and
control memories, and scratch memory.

[0018] In contrast with conventional systems, in which the
special purpose processors are on separate silicon and are
placed on the 1/O connectors of a general purpose processor
(e.g., host) system, the core(s) of the multi-processor 12 are
integrated onto the same die as the CPU core 24 and,
potentially, cache 18. Such integration allows the heteroge-
neous cores the opportunity to more efficiently share data as
they are placed behind a common cache. Thus, in one
embodiment, as illustrated in the figures, the processor
cores, cache and interconnect reside on a single chip.
Alternatively, the processor cores 20, cache 18 and inter-
connect 26 may be implemented as separate chips in a
multi-chip package. In yet another alternative embodiment,
the processor cores 20, cache 18, and interconnect 26 may
be implemented as a combination of chip and board design.
[0019] FIGS. 1B-1C show further details of the bus-based
cache architecture, according to exemplary embodiments. In
FIG. 1B, each of the NPU cores 22 includes NPU core
translation logic (NPU-TL) 30 and the CPU core 24 includes
CPU core translation logic (CPU-TL) 32. The translation
logic 30, 32 translates core-specific memory transactions
(such as reads and writes) into core-independent memory
transactions that will appear on the bus 26 and that are
comprehended by the shared cache 18 without regard for the
type of core that initiated them. In FIG. 1C, much or all of
the burden of dealing with characteristics of core-specific
transactions shifts to the shared cache 18. Thus, the shared
cache 18 includes shared cache translation logic (SC-TL) 40
to support handling of requests (and, more specifically,
command set features) from the different processor core
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types in an appropriate way. The shared cache translation
logic 40 is a superset of the logic needed to support each
processor core type. The shared cache translation logic 40
may further include bus arbitration logic to prioritize bus
access by processor core type. Even in the latter example
(shown in FIG. 1C), there may be some issues that need to
be reconciled closer to the cores themselves. For example, in
CPU applications a cache typically uses addresses to deter-
mine memory type, but in NPU applications the cache may
be instructed as to memory type by the NPU command.
Also, the processor cores may require support for encoding
transactions with a core identifier.

[0020] As mentioned earlier, other core-to-cache intercon-
nect mechanisms are possible. For example, and as shown in
FIG. 2, the cache 18 may be a multi-ported cache with a port
for each core, or a single port for each processor core type.
Thus, in the case of the NPU 22 and CPU 24 cores, and as
shown in the figure, the NPU cores 20qa, 205, . . . , 20k
connect to a port 50 of a first port type (shown as “type A”)
and the CPU core 24 uses a port 52 of a second port type
(shown as “type B”). Although port 50 is shown as a shared
port, it will be appreciated that each NPU core could be
connected to a respective port 50 over a separate channel. In
this approach, the type of core generating an access request
would be known by the port through which the request was
received. In a multi-ported architecture such as this, the
ports of each type (that is, ports supporting the different
processor core types) may be “tuned” for the traffic patterns
and other characteristics or features (such as commands,
sizes, alignments and so forth) of those different processor
core types. For example, NPU cores are bandwidth sensitive
whereas CPU cores are more latency sensitive. Data
returned by the cache for NPU requests may be batched on
return to optimize through-put for fixed overhead. The
tuning may take into account the types of transactions to be
performed by a specific core type. Certain types of cores
may perform mostly reads (e.g., graphics engines) while
other core types may perform a more balanced mix of reads
and writes.

[0021] FIG. 3 shows yet another interconnect approach.
With this approach each of the cores is connected to the
shared cache 18 by a switch 60 (e.g., a crossbar switch, as
shown). The translation logic could be implemented in any
one of the ways described above with respect to the bus-
based approach.

[0022] Although not shown, the individual cores may
include logic to support interrupts or flags for core-to-core
signaling. Such inter-core signaling may be used when one
core, such as the NPU core 22, has transferred work (e.g., in
the form of packet data, pointers, state and so forth) to the
shared cache 18 and needs to signal to a second core, such
as the CPU core 24, that the work is available to be operated
on by the second core.

[0023] The processor 12 may participate as a unit in a
cache coherent access to a main memory with one or more
other processor/cache combinations, as shown in FIG. 4.
Turning to FIG. 4, a system 70 includes the processor 12
now connected to a main memory 72 by a bridge 74. The
main memory 72 is shared by a general purpose processor
(GPP) 76, which is also connected to the bridge 74. The GPP
76 includes one or more CPU cores 78 behind a common (or
shared) cache 80. The caches and bridge structure operates
in a manner that ensures all of the caches are kept coherent.
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[0024] The bridge 74 may be implemented to allow the
cores of the processor 12 and the cores of GPP 76 to
reference the main memory as well as the shared cache of
the other processor with their own native access protocols.
The shared cache organization enables the heterogeneous
processor cores of the processor 12 to access the shared
cache 18 in their native mode of operation, but with no
impact resulting from other processor types (such as the
CPU cores 78 of GPP 76) utilizing different protocols to
access the shared cache 18. In one example implementation
based on an IXA-based NPU core 22 and IA-based CPU
core 78, the NPU core 22 may access the shared cache 18 via
IXA protocols (such as Command Push/Pull bus protocols)
and view the shared cache as another memory resource
while external access to the shared cache 18 by one of the
CPU cores 78 via the bridge 74 may be performed using [A
cache access and coherency mechanisms. As noted earlier,
the heterogeneous cores of the processor 12 are able to fully
access the shared cache 18 using their native (and different)
access protocols. Data can be passed from a core in one
processor to a core in the other processor in a cache-to-cache
transfer. This can be accomplished with lower latency and
higher bandwidth than the alternative, a main memory write
by one processor and a main memory read by the other, and
does not load the main memory.

[0025] An example transfer is as follows. A CPU core 78
sends a read request to shared cache 80, which detects a
cache miss and directs the read request to the bridge 74. The
bridge 74 sends the read request to the shared cache 18,
which contains a copy of the requested data. The shared
cache 18 returns the requested data to the shared cache 80
via the bridge 74. In an alternative scenario, the bridge 74
may send the read request to both the shared cache 18 and
the main memory 72, and decide which data copy to use
based on the response from the shared cache 18.

[0026] The shared cache mechanism may support different
cache policies and features, such as cache line alignment,
cacheability and cache line locking. Cache line alignment
converts a memory transaction that affects more than one
shared cache cache line to multiple memory accesses that
each fall within a single cache line. Cacheability of data
involved in a memory transfer may be determined based on
instruction type (e.g., an instruction that specifies a non-
cached transaction) and/or based on memory type, e.g., as
specified in a Memory Type Range Register (MTTR). With
this feature at least one of the heterogeneous processor
cores, e.g., the NPU core, is capable of generating reads and
writes to the main memory 14 that bypass the shared cache
16 in the event of a cache miss. Cache line locking refers to
the locking of individual cache lines by a core. With the
cache line locking feature at least one of the heterogeneous
processor cores can lock a portion (e.g., a single cache line,
multiple cache lines, or all cache lines) of the shared cache
lines for use as a private memory, possibly to extend local
resources (such as scratch memory) already available to the
core(s), or for extended private modification. By locking
one, some or all of the cache lines, a core can utilize the
locked memory space as extended local memory, while the
cores continue coherent operation on any remaining portion
of the shared cache. When only one of the heterogeneous
processor cores is actively using the shared cache, that
processor core receives the full benefit of the entire shared
cache—effectively using the chip area to maximize perfor-
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mance. This cache locking may be implemented in the same
manner as locking for atomic operations, e.g., using a cache
line lock status field.

[0027] The utilization of one or more of these (and pos-
sibly other) techniques may be driven, at least in part, by the
selection of core types. For example, some special purpose
processors, such as network processors, include reads and
writes to/from memory that the programmer knows to have
very poor temporal and spatial locality The same may be
true for some accesses by the general purpose processor. To
improve the efficiency of these accesses, therefore, it may be
desirable to provide memory read and write commands that
do not result in cache activities. In other words, data is not
placed in the cache, and does not evict other data already in
the cache. Accesses that the programmer knows will not hit
cache can be routed around that cache, increasing the cache
hit rate for other accesses. Also, different core types may
support different data fetch/transfer sizes, some of which
may not be cache line aligned. CPU cores such as an A core
typically generate requests that fall within a single cache
line, while an NPU such as an IXA network processor may
have the capability to generate requests of arbitrary size and
that may span multiple cache lines.

[0028] The shared cache architecture described herein
allows two different types of processors to be placed behind
the same cache. Such an architecture is likely to be required
for high performance on workloads like graphics, streaming
media and networking as design trends head towards multi-
core processors. In networking applications, for example, it
is possible to bring packet processing and general purpose
processing closer together for optimal, high-throughput
communication between packet processing elements of a
network processor and the control and/or content processing
of general purpose processors. For example, as shown in
FIG. 5, a distributed processing platform 100 includes a
collection of blades 1024-102m and line cards 104a-104n
interconnected by a backplane 106, e.g., a switch fabric (as
shown). The switch fabric, for example, may conform to
Common Switch Interface (CSIX) or other fabric technolo-
gies such as HyperTransport, Infiniband, Peripheral Com-
ponent Interconnect (PCI), Packet-Over-SONET, RapidlO,
and/or Universal Test and Operations PHY Interface for
ATM (UTOPIA).

[0029] The line card is where line termination and I/O
processing occurs. It may include processing in the data
plane (packet processing) as well as control plane processing
to handle the management of policies for execution in the
data plane. The blades 102a-102m may include: control
blades to handle control plane functions not distributed to
line cards; control blades to perform system management
functions such as driver enumeration, route table manage-
ment, global table management, network address translation
and messaging to a control blade; applications and service
blades; and content processing. In a network infrastructure,
content processing may be used to handle intensive content-
based processing outside the capabilities of the standard line
card applications including voice processing, encryption
offload and intrusion-detection where performance demands
are high.

[0030] At least one of the line cards, e.g., line card 104a,
is a specialized line card that is implemented based on the
architecture of heterogeneous multi-core system 10 (or
system 70), to more tightly couple the processing intelli-
gence of CPU cores to the more specialized capabilities of
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NPU cores. The line card 1044 includes media interfaces
(MI) 108 to handle communications over network connec-
tions. Each media interface 108 is connected to a system 10
(or 70). In this implementation, one system is used as an
ingress processor and the other system is used as an egress
processor, although a single system could also be used. Each
system 10 (or 70) is coupled to the switch fabric 106 via a
switch fabric interface (SFI) 110. Alternatively, or in addi-
tion, other applications based on the multi-processor sys-
tems 10, 70 could be employed by the distributed processing
platform 100. Depending on the configuration of blades and
line cards, the distributed processing platform 100 could
implement a switching device (e.g., switch or router), a
server, a datacenter or other type of equipment.

[0031] Other embodiments are within the scope of the
following claims.

What is claimed is:

1. A system on a chip (SoC) comprising:

a plurality of cores on a single semiconductor chip;

a shared cache on the single semiconductor chip, the
shared cache to be shared by two or more of the
plurality of cores on the single semiconductor chip and
also to be shared with one or more processing units of
an external processing device having a different
instruction processing architecture from the plurality of
cores; and

an interconnect interface on the single semiconductor
chip, the interconnect interface to couple an external
cache on the external processing device to the shared
cache, wherein the shared cache and the external cache
are to be kept coherent.
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2. The SoC as in claim 1 wherein the interconnect
interface is a switch fabric interconnect (SFI) interface.

3. The SoC as in claim 1 wherein the interconnect
interface is a Peripheral Component Interconnect (PCI)
interface.

4. The SoC as in claim 1 wherein the interconnect
interface is a symmetric multiprocessing (SMP) intercon-
nect interface.

5. The SoC as in claim 1 wherein the interconnect
interface is a Common Switch Interface (CSIX).

6. The SoC as in claim 1 wherein the interconnect
interface is a Hypertransport interface.

7. The SoC as in claim 1 wherein the interconnect
interface is an Infiniband interface.

8. The SoC as in claim 1 wherein the interconnect
interface is a Packet-Over-SONET interface.

9. The SoC as in claim 1 wherein the interconnect
interface is a RapidlO interface.

10. The SoC as in claim 1 wherein the interconnect
interface is a Universal Test and Operations PHY Interface
for ATM (UTOPIA).

11. The SoC as in claim 1 wherein the external processing
device comprises one or more special purpose processing
units.

12. The SoC as in claim 1 wherein the external processing
device comprises one or more accelerator devices.

13. The SoC as in claim 3 wherein the accelerator devices
are integrated on a line card.
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