发明名称

一种可循环利用的离子液体型二氧化碳吸收剂及其制备方法

摘要

本发明提供一种可循环利用的离子液体型二氧化碳吸收剂及其制备方法。本发明的吸收剂的阳离子为多氨直链胺类物质，阴离子为有机酸酸根或无机酸酸根，其中，所述有机酸为羧酸衍生物、磺酸衍生物、磷酸衍生物以及 C3 以上的羧酸。该吸收剂的制备方法是以多氨直链胺类物质和有机酸或无机酸为原料，通过酸碱中和的方法合成的。本发明的吸收剂可以在室温或常温下以吸收 CO₂，对混合气中的 CO₂ 能够达到 75% 以上的吸收效率，并且吸收后的离子液体能够解吸，解吸率 > 99%，可以循环使用，重复利用多次后仍能保持原有的吸收量。
1. 一种可循环利用的离子液体作为二氧化碳吸收剂的应用，其特征在于：该吸收剂的阳离子为多氮直链胺类物质，阴离子为有机酸酸根，有机酸为乳酸；所述多氮直链胺类物质选自二乙烯三胺、三乙烯四胺、四乙烯五胺、多乙烯多胺、重氮氨基苯、双氮胺中的一种或多种；

制备所述吸收剂的方法包括如下步骤：

（1）使多氮直链胺类物质和有机酸在低温水浴，有溶剂或无溶剂条件下反应；

（2）将步骤（1）反应得到的物质进行纯化，即得；

在步骤（1）中，所述溶剂为甲醇、乙醇、乙腈或水，所述多氮直链胺类物质与所述有机酸的摩尔比小于 3：1；在步骤（1）中，反应过程中控制温度为 0～2℃，反应时间为 4～6 小时，纯化温度为 60～90℃；在步骤（2）纯化后的吸收剂中加入水，使得水分含量为 0 重
量%～10 重量%，其中水分含量不等于 0。
一种可循环利用的离子液体型二氧化碳吸收剂及其制备方法

技术领域

[0001] 本发明涉及一种气体吸收剂及其制备方法，具体而言，涉及一种可循环利用的离子液体型二氧化碳吸收剂及其制备方法。

背景技术

[0002] 我国是一个产煤和用煤大国，煤炭在一次能源消耗中约占70%左右，其中有80%用于直接燃烧。大量煤炭的燃烧导致我国呈现严重的煤烟型污染（包括粉尘、CO₂、SO₂等），严重制约了我国经济的可持续发展。因此，燃煤污染物的排放控制一直是能源利用和环保领域的重点研究方向。

[0003] 随着《京都议定书》（关于CO₂的减排规定）于2005年2月正式生效，CO₂排放控制在全球范围内引起广泛关注。CO₂是一种温室气体，目前部分学者的研究表明，CO₂的大量排放造成了全球气候的不断变暖，直接导致海平面的不断上升，部分低海拔地区面临被淹没的危险。同时，全球气候变暖也给世界各国带来了很多极端的天气状况，造成了粮食减产以及人民生命财产大量的损失，因此合理有效的捕集CO₂降低温室气体带来的负面影响已经迫在眉睫。目前，在CO₂的捕集方面存在的一个难题就是吸收剂的选择，所需的吸收剂既要有良好的吸收效果，又要能重复利用而不会产生吸收副产物和吸收剂的损失。传统的吸收剂由于存在蒸汽压，因此在吸收和脱附的过程中有大量吸收剂的损失，而离子液体由于具有无蒸汽压等优良的性质，作为一种CO₂吸收剂得到了广泛的研究。

[0004] 离子液体是一种有机熔盐，是由有机阳离子和无机或有机阴离子构成的、在室温或近室温下呈液态的盐。它由传统的高温熔盐演变而来，但相对于常规离子化合物来说，离子液体在室温附近很宽的温度范围内呈液态。离子液体具有很多优良的性质：液态温度范围宽，从低于或者接近室温到300°C以上，具有良好的热稳定性和化学稳定性；几乎没有蒸汽压；离子液体的结构可调，性质可控；对很多有机和无机物质都表现出良好的溶解能力，可以溶解多种气体，如CO₂、SO₂、乙烯、乙烷等。

发明内容

【0006】为了解决现有 CO₂ 吸收剂中存在的问题，本发明提供了一种可循环利用的离子液体型二氧化碳吸收剂及其制备方法，从节能减排的角度，提高了 CO₂ 的吸收效率和吸收温度，有助于有效减少温室气体的排放量。

【0007】本发明的一个目的在于：提供一种可循环利用的离子液体型二氧化碳吸收剂；本发明的另一个目的在于：提供一种上述吸收剂的制备方法。

【0008】本发明的目的在于采用如下技术方案来实现的。

【0009】一方面，本发明提供一种可循环利用的离子液体型二氧化碳吸收剂。该吸收剂的阳离子为多氮直链胺类物质，阴离子为有机酸根或无机酸根，其中，所述有机酸为羧酸衍生物、磺酸衍生物、磺酸衍生物或 C₃ 以上的羧酸。

【0010】优选地，所述多氮直链胺类物质选自二乙烯三胺、三乙烯四胺、四乙烯五胺、多乙烯多胺、重氮氨基苯、双氯胺及其衍生物中的一种或多种。

【0011】优选地，所述有机酸为三氟乙酸、乳酸或甲基磺酸。

【0012】优选地，所述无机酸为盐酸、硝酸、磷酸、氢溴酸、氢氟酸、氟硼酸、磷酸或硫酸，优选为硫酸。

【0013】优选地，所述吸收剂还包括含量为 0 重量％～10 重量％的水分，这样可以有效降低吸收过程中的黏度。

【0014】另一方面，本发明提供一种制备上述吸收剂的方法。该方法包括如下步骤：

【0015】（1）使多氮直链胺类物质和有机酸或无机酸在低温水浴，有溶剂或者无溶剂的条件下反应；以及

【0016】（2）将步骤（1）反应得到的物质进行纯化，即得；

【0017】其中，所述有机酸为羧酸衍生物、磺酸衍生物、磺酸衍生物或 C₃ 以上的羧酸。

【0018】优选地，所述多氮直链胺类物质选自二乙烯三胺、三乙烯四胺、四乙烯五胺、多乙烯多胺、重氮氨基苯、双氯胺及其衍生物中的一种或多种。

【0019】优选地，所述有机酸为三氟乙酸、乳酸或甲基磺酸。

【0020】优选地，所述无机酸为盐酸、硝酸、磷酸、氢溴酸、氢氟酸、氟硼酸、磷酸或硫酸。

【0021】优选地，在步骤（1）中，所述溶剂为甲醇、乙醇、乙腈或水；优选为水或乙醇。

【0022】优选地，在步骤（1）中，所述多氮直链胺类物质与所述有机酸或无机酸的摩尔比小于或等于 3：1。

【0023】优选地，反应过程中控制温度为 -10 ～10℃，优选为 0 ～2℃，这避免了反应过程中剧烈放热造成溶液飞溅及副产物生成，也避免了温度过高造成合成过程中黏度过大；反应时间为 1 ～24 小时，优选为 4 ～6 小时。

【0024】优选地，在步骤（1）中，纯化温度为 0 ～200℃，控制纯化温度是为了防止离子液体分解，并能够很好的去除离子液体中残留的溶剂，纯化温度优选为 60 ～90℃。

【0025】优选地，可以在步骤（2）纯化后的吸收剂中加入水，使得水分含量为 0 重量％～10 重量％。

【0026】本发明的吸收剂可以用于吸收烟气中的 CO₂。本发明的吸收剂在室温下一般为液
态，部分为固态，可以在湿温或者高温情况下吸收 CO₂，吸收温度范围为 0 ～ 200℃，优选为 100 ～ 130℃。该吸收剂可以在 0.01 ～ 10 小时，温度 100 ～ 130℃下速率达到吸收平衡，吸
收量随着阳离子多氮链状胺类物质上未被中和的氨基数量的增加而进一步增加，部分吸收
剂的 CO₂ 吸收最高量能达到质量比 15% 以上。该吸收剂可以在吸收饱和后通过加热、减压
的方式对吸收的 CO₂ 进行解吸，解吸温度为 130 ～ 160℃，解吸时间为 0.5 ～ 5 小时，解吸率
＞ 99%，解以后的吸收剂仍能够实现循环使用，多次循环后仍能保持原有吸收量。
[0027] 与现有技术相比，本发明的离子液体型二氧化碳吸收剂吸收和解吸 CO₂ 气体的优点如下：
[0028] 本发明的吸收剂稳定性更高，Gao 等 [H. X. Gao, B. X. Han, J. C. Li, T. Jiang,
相同阳离子的离子液体，甲酸作为阴离子比三氟乙酸、乳酸、甲基磺酸等的分解温度低很多，
由此可见，本发明合成的离子液体分解温度高于甲酸作为阴离子的离子液体，更有利于
离子液体在高温下吸收烟气中的 CO₂，避免了离子液体的分解。
[0029] 本发明的吸收剂在常压下对 CO₂ 有很高的吸收量，即使在高温条件下也能产生很
好的吸收效果，远远大于现有的离子液体吸收剂的吸收量；
[0030] 本发明的吸收剂离子液体中存在少量的水分（小于 10%），不仅不影响离子液体
对 CO₂ 的吸收性能，而且能降低离子液体的黏度；
[0031] 本发明的吸收剂在高温下吸收 CO₂ 吸收温度接近烟气排放温度，避免了烟气降温
吸收后再加热消耗所产生的能源消耗，节约了能源；
[0032] 本发明的吸收剂吸收 CO₂ 后通过加热和减压的方式可以将吸收的 CO₂ 排放出来，对
CO₂ 进行富集，为 CO₂ 的进一步利用打下了基础；
[0033] 本发明的吸收剂可以循环使用，通过多次循环后仍能保持原有的吸收效果；
[0034] 本发明的制备方法工艺简单，条件温和，合成时间短，原料简单，具体地，本发明的
离子液体型 CO₂ 吸收剂制备简单，通过简单的酸碱中和就能制备，单位质量的 CO₂ 吸收量高，
部分吸收剂能达到质量比 15% 以上的 CO₂ 吸收量，并且在高温情况下仍能保持很好的吸收
效果。另外针对离子液体吸收 CO₂ 后黏度增大的情况，我们给吸收剂中添加少量的水分（小
于 10%），在吸收过程中离子液体的黏度很小，不影响传输性能和吸收性能。

具体实施方式
[0035] 下面将结合实施例对本发明提供的新型吸收剂的合成及其吸收性能作进一步详细
的说明，但并不因此而限制本发明。
[0036] 实施例 1
[0037] 取一定量三乙烯四胺加入到三口烧瓶中，把搅拌用磁子放入三口瓶中，同时加入
水作为溶剂。将三口烧瓶放入到水浴锅中，设定水温为 0 摄氏度，打开磁力搅拌。将乳酸称
重后放入到常压蒸馏中，三乙烯四胺与乳酸的摩尔比为 1:1，把常压蒸馏放置在三口烧瓶
上，打开常压蒸馏，让乳酸缓缓加入到三乙烯四胺中，同时将温度稳定控制在 0 摄氏度，滴
加完成后反应 4 小时。将混合液在 70 摄氏度下通过减压旋蒸的方式脱除其中的水分，得到
的液体再在真空箱中 80 摄氏度恒温 24 小时脱水，得到三乙烯四胺乳酸盐离子液体。
[0038] 取一定量三乙烯四胺乳酸盐加入到吸收装置中，维持吸收装置温度为 120 摄氏
度，将常压纯 CO₂气体通入吸收装置，吸收 5 小时后吸收平衡，三烯四胺乳酸盐的质量吸
收量为 0.15g CO₂/g 吸收剂。将吸收平衡的吸收液放入脱附头中，控制脱附头的温度 130 摄
氏度，在搅拌和压力小于 0.01MPa 条件下，2 小时后离子液体脱附完成。离子液体重新用来
吸收，仍能达到原有的吸收效果。
[0039] 实施例 2
[0040] 取一定量三乙烯四胺加入到三口烧瓶中，把搅拌用磁子放入三口瓶中，同时加入
乙醇作为溶剂。将三口烧瓶放入到水浴锅中，设定水温为 0 摄氏度，打开磁力搅拌。将乳酸
称重后放入到常压漏斗中，三乙烯四胺与乳酸的摩尔比为 1 : 2, 把常压漏斗放置在三口烧
瓶上，打开常压漏斗，让乳酸缓缓加入到三乙烯四胺中，同时将温度稳定控制在 0 摄氏度，
滴加完成后反应 6 小时。将混合液在 70 摄氏度下通过减压旋蒸的方式脱除其中的溶剂，得
到的液体再在真空烘箱中 80 摄氏度恒温 24 小时脱溶剂，得到三乙烯四胺二乳酸盐离子液
体。
[0041] 取一定量三乙烯四胺二乳酸盐加入到吸收装置中，维持吸收装置温度为 110 摄
氏度，将纯 CO₂气体通入吸收装置，吸收 4 小时后吸收平衡，三乙烯四胺二乳酸盐的质量吸
收量为 0.07g CO₂/g 吸收剂。将吸收平衡的吸收液放入脱附头中，控制脱附头的温度 140 摄
氏度，在搅拌和压力小于 0.01MPa 条件下，2 小时后离子液体脱附完成。离子液体重新用来
吸收，仍能达到原有的吸收效果。
[0042] 实施例 3
[0043] 取一定量三乙烯四胺加入到三口烧瓶中，把搅拌用磁子放入三口瓶中，同时加入
水作为溶剂。将三口烧瓶放入到水浴锅中，设定水温为 10 摄氏度，打开磁力搅拌。将三氯
乙酸称重后放入到常压漏斗中，三乙烯四胺与三氯乙酸的摩尔比为 1 : 1, 把常压漏斗放置
在三口烧瓶上，打开常压漏斗，让三氯乙酸缓缓加入到三乙烯四胺中，同时将温度稳定控制
在 10 摄氏度，滴加完成后反应 4 小时。将混合液在 70 摄氏度下通过减压旋蒸的方式脱除
其中的溶剂，得到的液体再在真空烘箱中 80 摄氏度恒温 24 小时脱除溶剂，得到三乙烯四胺
三氯乙酸盐离子液体。
[0044] 取一定量三乙烯四胺三氯乙酸盐加入到吸收装置中，维持吸收装置温度为 110 摄
氏度，将纯 CO₂气体通入吸收装置，吸收 4 小时后吸收平衡，三乙烯四胺三氯乙酸盐的质量
吸收量为 0.15g CO₂/g 吸收剂。将吸收平衡的吸收液放入脱附头中，控制脱附头的温度 150
摄氏度，在搅拌和压力小于 0.01MPa 条件下，1 小时后离子液体脱附完成。离子液体重新用来
吸收，仍能达到原有的吸收效果。
[0045] 实施例 4
[0046] 取一定量二乙烯三胺加入到三口烧瓶中，把搅拌用磁子放入三口瓶中，同时加入
甲醇作为溶剂。将三口烧瓶放入到水浴锅中，设定水温为 0 摄氏度，打开磁力搅拌。将三氯
乙酸称重后放入到常压漏斗中，二乙烯三胺与三氯乙酸的摩尔比为 1 : 1, 把常压漏斗放置
在三口烧瓶上，打开常压漏斗，让三氯乙酸缓缓加入到二乙烯三胺中，同时将温度稳定控制
在 0 摄氏度，滴加完成后反应 4 小时。将混合液在 70 摄氏度下通过减压旋蒸的方式脱除其
中的溶剂，得到的液体再在真空烘箱中 80 摄氏度恒温 24 小时脱水，得到二乙烯三胺三氯乙
酸盐离子液体。
[0047] 取一定量二乙烯三胺三氯乙酸盐加入到吸收装置中，维持吸收装置温度为 100 摄
氏度，将纯 CO₂气体通入吸收装置，吸收 6 小时后吸收平衡，三乙烯四胺三氯乙酸盐的质量
吸收量为 0.14g CO₂/g 吸收剂。将吸收平衡的吸收液放入脱附釜中，控制脱附釜的温度 140
摄氏度，在搅拌和压力小于 0.01MPa 条件下，2 小时后离子液体脱附完成，并得到高纯度的
CO₂。离子液体重新用来吸收，仍能达到原有的吸收效果。
[0048] 实施例 5
[0049] 取一定量三乙烯四胺加入到三口烧瓶中，把搅拌用磁子放入三口瓶中，同时加入
水作为溶剂。将三口烧瓶放入到水浴锅中，设定水温为 0 摄氏度，打开磁力搅拌。将乳酸称
重后放入到常压漏斗中，三乙烯四胺与乳酸的摩尔比为 1 ： 1，把常压漏斗放置在三口烧瓶
上，打开常压漏斗，让乳酸缓缓加入到三乙烯四胺中，同时将温度稳定控制在 0 摄氏度，滴
加完成后反应 4 小时。将混合液在 70 摄氏度下通过减压旋蒸的方式脱除其中的部分水分，
得到水分含量为 6% 的离子液体吸剂。
[0050] 取一定量的上述吸剂加入到吸收装置中，维持吸收装置温度为 110 摄氏度，将
氯气中含有体积比 25% 的 CO₂气体通入吸收装置，吸收 3 小时后吸收平衡，离子液体三乙烯
四胺乳酸盐的质量吸收量为 0.13g CO₂/g 吸收剂。将吸收平衡的吸收液放入脱附釜中，控制
脱附釜的温度 140 摄氏度，在搅拌和压力小于 0.01MPa 条件下，2 小时后离子液体脱附完成，
得到高纯度的 CO₂和少量的水，并能自动分离。离子液体重新用来吸收，仍能达到原有的吸
收效果。
[0051] 实施例 6
[0052] 取一定量三乙烯四胺加入到三口烧瓶中，把搅拌用磁子放入三口瓶中，同时加入
水作为溶剂。将三口烧瓶放入到水浴锅中，设定水温为 0 摄氏度，打开磁力搅拌。将酸称
重后放入到常压漏斗中，三乙烯四胺与酸的摩尔比为 1 ： 1，把常压漏斗放置在三口烧瓶
上，打开常压漏斗，让酸缓缓加入到三乙烯四胺中，同时将温度稳定控制在 0 摄氏度，滴
加完成后反应 4 小时。将混合液在 70 摄氏度下通过减压旋蒸的方式脱除其中的部分水分，
得到水分含量为 10% 的离子液体吸剂。
[0053] 取一定量的上述吸剂加入到吸收装置中，维持吸收装置温度为 110 摄氏度，将
纯 CO₂气体通入吸收装置，吸收 3 小时后吸收平衡，离子液体三乙烯四胺酸盐的质量吸收
量为 0.17g CO₂/g 吸收剂。将吸收平衡的吸收液放入脱附釜中，控制脱附釜的温度 140 摄
氏度，在搅拌和压力小于 0.01MPa 条件下，2 小时后离子液体脱附完成，得到高纯度的 CO₂和
少量的水，并能自动分离。离子液体重新用来吸收，仍能达到原有的吸收效果。
[0054] 实施例 7
[0055] 取一定量三乙烯四胺加入到三口烧瓶中，把搅拌用磁子放入三口瓶中，同时加入
水作为溶剂。将三口烧瓶放入到水浴锅中，设定水温为 0 摄氏度，打开磁力搅拌。将酸称
重后放入到常压漏斗中，三乙烯四胺与酸的摩尔比为 1 ： 1，把常压漏斗放置在三口烧瓶
上，打开常压漏斗，让酸缓缓加入到三乙烯四胺中，同时将温度稳定控制在 0 摄氏度，滴
加完成后反应 4 小时。将混合液在 70 摄氏度下通过减压旋蒸的方式脱除其中的部分水分，
得到水分含量为 10% 的离子液体吸剂。
[0056] 取一定量的上述吸剂加入到吸收装置中，维持吸收装置温度为 110 摄氏度，将
纯 CO₂气体通入吸收装置，吸收 3 小时后吸收平衡，离子液体三乙烯四胺酸盐的质量吸收
量为 0.17g CO₂/g 吸收剂。将吸收平衡的吸收液放入脱附釜中，控制脱附釜的温度 140 摄
氏度，在搅拌和压力小于 0.01MPa 条件下，2 小时后离子液体脱离完成，得到高纯度的 \(\text{CO}_2 \) 和少量的水，并能自动分离。离子液体重新利用吸收，仍能达到原有的吸收效果。

【0057】实施例 8

【0058】取一定量三乙烯四胺加入到三口烧瓶中，把搅拌用磁子放入三口瓶中，同时加入水作为溶剂。将三口烧瓶放入到水浴锅中，设定水温为 0 摄氏度，打开磁力搅拌。将甲基磺酸称量后放入到常压漏斗中，三乙烯四胺与甲基磺酸的摩尔比为 1 : 1，把常压漏斗放置在三口烧瓶上，打开常压漏斗，让甲基磺酸缓缓加入到三乙烯四胺中，同时将温度稳定控制在 0 摄氏度，滴加完成后反应 6 小时。将混合液在 70 摄氏度下通过减压蒸馏的方式脱除其中的水分，得到水分含量为 8% 的离子液体吸收剂。

【0059】取一定量的上述吸收剂加入到吸收装置中，维持吸收装置温度为 110 摄氏度，将纯 \(\text{CO}_2 \) 气体通入吸收装置，吸收 3 小时后吸收平衡，离子液体三乙烯四胺甲基磺酸盐的质量吸收量为 0.13g \(\text{CO}_2/\text{g} \) 吸收剂。将吸收平衡的吸收液放入脱附釜中，控制脱附釜的温度 140 摄氏度，在搅拌和压力小于 0.01MPa 条件下，2 小时后离子液体脱附完成，得到高纯度的 \(\text{CO}_2 \) 和少量的水，并能自动分离。离子液体重新利用吸收，仍能达到原有的吸收效果。