
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0208491 A1

US 20030208491A1

Pasquali (43) Pub. Date: Nov. 6, 2003

(54) SYSTEM AND METHOD FOR (57) ABSTRACT
FACILITATING AWINDOWS BASED -
CONTENT MANIFESTATION System and method for facilitating a windowed content
ENVIRONMENT WITHIN A WWW manifestation environment within a world wide web
BROWSER (WWW) browser client. The system and method include and

involve a server System that is configured to Serve a Software
System and associated content via an electronic data network

(75) Inventor: Sandro Pasquali, Santa Fe, NM (US) Such as the Internet and WWW. Also included and involved
Correspondence Address: is a web browser client (web browser software application)

operating within a data processing System that is coupled to
STEPTOE & JOHNSON LLP Said Server System via the electronic data network and which
1330 Connecticut Ave., NW instantiates a content manifestation environment (e.g., a
Washington, DC 20036 (US) dynamic Screen display environment within the data pro

cessing Svstem). The web browser client is operative to
(73) Assignee: Wired Solutions, LLC, Santa Fe, NM s R SRA System and the associated E. via

the Server System, to process the Software System and the
(21) Appl. No.: 10/387,371 asSociated SGN tO Eric at least one WNow object

1-1. within the content manifestation environment. The gener
(22) Filed: Mar. 14, 2003 ated window object(s) are each associated with a set of

Related U.S. Application Data controllable attributes and are configured to manifest at least
a portion of the associated content. The controllable

(63) Continuation of application No. 09/843,130, filed on attributes are configured to affect manifestation of the win
Apr. 26, 2001, now Pat. No. 6,535,882, which is a dow object(s) by the web browser client within the content
continuation of application No. 09/234,297, filed on manifestation environment. The window object(s) generated
Jan. 21, 1999, now Pat. No. 6,272.493. within the content manifestation environment may be

updated and loaded with content received via the electronic
Publication Classification data network without requiring the content manifestation

environment to be refreshed (e.g., without requiring Screen
(51) Int. Cl." ... G06F 7700 refresh operations), and in real-time without requiring user
(52) U.S. Cl. .. 707/10 intervention such as via hyper-link traversal.

108

PROCESSOR
ARRANGEMENT

DATASORAGESYSTEM

WWW BROWSER CENT

DATAOAND
FROMINTERNET
AND WWW.

APPLICAONPRGMINCLUDINGA
CONTENT RETRIEVAL MODULE, A
PROCESSING ENGINE, CONTENT

LAYOUTAND RENDERING
ROUTINES, ETC. - STORED WITHIN
DATASTORAGE SUBSYSTEM TO
BELOADED AND EXECUTED.

Patent Application Publication Nov. 6, 2003 Sheet 1 of 10 US 2003/0208491 A1

C C
DATA STORE

SVR SYSTEM

HTML DOCUMENT
INCLUDEMODFILE.JS

<OTHER INCLUDEDFILESISCRIPTS>
SVR SIDE (E.G., WINDOWDRAWING ROUTINES, ETC.)

ELECTRONICDATANETWORK
CLIENT SIDE (E.G., INTERNET, WWW)

S.
S HTML 8 OTHER CONTENT

RECEIVED FROM
SERVERSIDE OF SYSTEM

FIG. 1A

Patent Application Publication Nov. 6, 2003 Sheet 2 of 10 US 2003/0208491 A1

CONTENT STREAM, DATA, ETC.

102

PROCESSOR
ARRANGEMENT

CONTENT INCLUDING
WINDOW OBJECT
INSTRUCTIONS,
CONTENT, AND DATA,
CONTENT
STREAM DATA
DISTRIBUTED
VIA THE INTERNET

C C AND WWW.
DATA STORE

FIG. 1B

Patent Application Publication Nov. 6, 2003 Sheet 3 of 10 US 2003/0208491 A1

108

PROCESSOR
ARRANGEMENT

DATA TO AND
FROM INTERNET
AND WWW.

DATA STORAGE SYSTEM

WWW BROWSER CLENT
APPLICATION PRGM INCLUDINGA
CONTENT RETRIEVAL MODULE, A
PROCESSING ENGINE, CONTENT

LAYOUT AND RENDERING
ROUTINES, ETC. - STORED WITHIN
DATA STORAGE SUBSYSTEM TO
BELOADED AND EXECUTED.

F.G. 1C

Patent Application Publication Nov. 6, 2003 Sheet 4 of 10 US 2003/0208491 A1

MCS

118

122

FIG. 1D

Patent Application Publication

US 2003/0208491 A1 Nov. 6, 2003 Sheet 6 of 10 Patent Application Publication

SOW70Z

Patent Application Publication Nov. 6, 2003 Sheet 7 of 10 US 2003/0208491 A1

PRODUCE SERVERSIDE S
CONTENT FOR 3 - 1
DISTRIBUTION

WWW BROWSER CLIENT
DOWNLOADS FILES,

FUNCTIONS, CONTENT S3 - 2
FROM SERVERSIDE

SYSTEMS

BROWSER CONSTRUCTS
WINDOWS BASED WEB
SITE BASE ON RECEIVED S3 - 3
CONTENT ANDFILES

BROWSERMANIFESTS WEB
SITE VIEW NCME S3 - 4

THEREOF

FIG. 3

Patent Application Publication

DATABASE SETUPAND
ADMINISTRATION

HTML FILES(S)
AND RELATED
OTHER FILES

(INCLUDEDIREFERENCED
US FILES) ARE
GENERATED

AND STORED IN SERVER
SIDE SYSTEMS

HTMLAND RELATED FILES
MADEAVAILABLE FOR

SERVICE VIAELECTRONIC
DATANETWORKSUCH AS
THE INTERNET AND WWW

FIG. 4

Nov. 6, 2003 Sheet 8 of 10 US 2003/0208491 A1

S4 - 2

S4 - 3

S4 - 4

Patent Application Publication Nov. 6, 2003 Sheet 9 of 10 US 2003/0208491 A1

START S5 - 1

USER INSTANTATES WWW
BROWSER CLIENT WITHIN S5-2

PERSONAL DATAPROCESSING
SYSTEM

WWW BROWSER CLIENT PROVIDES
CONTENT MANIFESTATION

WINDOWAND ENVIRONMENT (E.G., S5-3
CONTENTRENDERING AND LAYOUT MODELS CREATED AND

MAINTAINEDLOCALLY)

USERSPECIFIES WEBSITE
FROMWHICH TO RECEIVE

CONTENT (E.G.AURLSUCHAS S5 - 4
WWWWINDOWS-WEBSITE.COM)

WWW BROWSER CLIENT
ACCESSES NETWORK

CONNECTION AND SPECIFIED WEB S5-5
SITE AND RECEIVES WINDOW CONTENT

INCLUDING WINDOW OBJECT INSTRUCTIONS
AND CONTENT STREAMS, IF ANY

WWW BROWSER CLIENT
MANIFESTSICAUSES DISPLAY OF
RECEIVED WINDOW CONTENT

HTML, ETC. S5 - 6

FIG. 5A

Patent Application Publication Nov. 6, 2003 Sheet 10 of 10 US 2003/0208491 A1

RECEIVED CONTENT PERMITS
USER TO ALTER WINDOW
STATES WITHIN CONTENT

MANIFESTATION
ENVIRONMENT OF WWW

BROWSER CLIENT WITHOUT
REQUIRING SCREEN REFRESH

(E.G., PERMITS WINDOW OBJECTMINIMIZATION, MAXIMIZArg, yovEMENT

S5 - 7

WINDOW CONTENT STREAMS
UPDATED CONTINUOUSLY AND
DYNAMICALLY (OR STATICALLY) S5-8

FIG. 5B

US 2003/0208491 A1

SYSTEMAND METHOD FOR FACILITATING A
WINDOWS BASED CONTENT MANIFESTATION
ENVIRONMENT WITHIN A WWW BROWSER

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 The present invention relates to systems and meth
ods that are used to distribute and manifest content received
via the Internet and World Wide Web (WWW). More
particularly, the present invention relates to the dynamic
manifestation of content within a WWW browser environ
ment.

0003 2. Description of the Related Art

0004) The Internet and the World Wide Web (WWW)
have significantly impacted the way people receive infor
mation, purchase goods and Services, and generally com
municate. The Internet and WWW have facilitated whole
content delivery industries that provide up-to-the-minute
delivery (and Sale) of information Such as news, weather,
Sports Scores, horoscopes, Stock and Securities information,
etc. Many companies have recognized the great "gold-rush'
nature of the Internet and have been quick to establish
web-sites where people (a.k.a. “network Surfers”) can visit
to purchase books online, to receive specialized content Such
as investment and other reports, and to Subscribe to content
delivery Services Such as “electronic' newspaperS and maga
Zines. Despite the widespread use and acceptance of the
Internet and the WWW, many industry analysts and insiders
insist that our Society has only begun to realize the advan
tages of publicly accessible network technologies and pre
dict that our lives will only be further impacted by increased
uses of the “Net.

0005. At the same time that the Internet and WWW have
become So widely used, the amount of content and infor
mation available and distributed via the same has grown
exponentially. That Volume of information has lead to Sig
nificant problems for people (network Surfers) in terms of
locating and receiving desired content. Such problems are
due in large part to the fact that while delivery technologies
and Systems have improved, the ability to organize, index,
Search, and process that content lags behind.
0006 AS Such, many companies operate what are known
as network indices and “Search engines' and corresponding
web sites. Network indices maintained at many web sites
typically Store expansive lists of links which may be entered
manually by network users or which are gathered automati
cally. Search engines, on the other hand, automatically visit
or "crawl' to network Sites to automatically peruse content
maintained thereby to build comprehensive databases (index
files) that later may be Scanned by network users through use
of keywords via what are referred to as keyword Searches.

0007. At the internet and WWW site, www.yahoo.com,
for example, network users (a.k.a. “network Surfers') may
Select topic areas from among a pre-configured hierarchical
network index tree to peruse lists of hyper-text links related
to a particular field of interest (e.g., business, Stocks, Stock
split announcements). The links found in the hierarchical
network indeX may be manually entered by network Surfers
via an appropriate "add link page, or may be entered
automatically in response to automatic crawling techniques.

Nov. 6, 2003

0008. At the Internet and WWW site, www.lycos.com,
for example, network Surfers are prompted with a dialog box
presented within their web browser screens to enter a set of
keywords. Such keywords are then submitted back to a
web-site Server computer System and used to form the basis
of an appropriate database query against pre-built databases
of indexed content. The results of Such queries are presented
in the form of exhaustive hyper-text links which a network
Surfer may select by “clicking” to cause his web browser
client application (e.g., the INTERNET EXPLORER(R) web
browser which is manufactured and marketed by
MICROSOFT CORPORATION) to traverse the same.
0009 Aside from the aforementioned problems associ
ated with actually locating content on the Internet and
WWW, the tools used to peruse that content (and, often, long
list of hyper-text links) Such as web browser client applica
tions and related Software programs are built to merely allow
one Screen-full of information to be perused at a time. For
example, once a network Surfer locates and accesses a
content Source (e.g., visits a web site containing content Such
as a list of related links, a news feed, Stock related infor
mation, etc.) he may be faced with having to constantly
refresh his web browser Screen with the “next ten links,” or
Scroll through a relatively large amount of text by using
navigation buttons, Scroll bars, browser application back and
forward buttons, etc. Such browsing of content can be time
consuming, frustrating, and often, fruitleSS.

0010 Unfortunately, currently available web browser
technologies and products do not effectively allow a network
Surfer to open a Series of Separate windows into which
Separate content Streams may cause display of correspond
ing information. That is, while an underlying operating
environment such as MICROSOFT WINDOWS 98TM may
Support multiple windows each displaying the results of a
different program, for example, web browser tools and
applications remain relatively crude in terms of their native
ability to present only Static and exhaustive amounts of text
and content in a single content review window or environ
ment (e.g., within a single web browser Screen).
0011 To combat the problems addressed above with
regard to finding and accessing content and the limitations of
the tools available to manifest the Same, Software developerS
have offered a variety of network content delivery solutions
to generally enhance the web browsing experience. For
example, developerS have long taken advantage of the
ability of web browsers to accept “plug-ins” and “helper'
applications to provide for enriched content manifestation.
Additionally, developerS have begun to provide (serve) web
content mixed with Java (and Java progeny) type code to
enhance content review. And others have created Web Sites
that cause instantiation of additional web browsers (i.e., they
cause launching of additional web browser Sessions within
an operating System) to facilitate multiple window/browser
application display of corresponding Separate content
StreamS.

0012. An exemplary web site that seeks to ease content
location (Searching) and which attempts to enrich content
manifestation is one maintained at www.mynetscape.com.
Such an exemplary web site has become known as a "portal
site' where network Surfers can visit, receive content from
a variety of Sources (e.g., news, financial feeds, etc.), and
Search the web through use of a Search engine like or similar

US 2003/0208491 A1

to those discussed above. Moreover, at the mynetscape.com
portal Site as viewed through a web browser, a network
Surfer is presented with a set of pseudo-windows corre
sponding to a set of content feeds and/or information
requests (e.g., Such as web content Search templates pro
vided in accordance HTML instructions driven by computer
graphic interface (CGI) scripts written in the PERL scripting
language, etc.). Such content feeds are referred to at the
mynetscape.com web site as “channels' to draw a parallel to
television like Stations that may be Selected or viewed and
even turned OFF. The pseudo-windows are drawn within a
web browser Screen and manifestation environment using
HTML and javaScript to appear like tile-type operating
System windows which may be customized (changed in
terms of the content that is displayed therein), maximized,
minimized, and removed. For example, a “Stocks' channel
(pseudo-window) may be perused for information related to
certain Securities markets and a headline news channel
(pseudo-window) may be perused for news story highlight,
etc. In each case, a channel (pseudo-window) has certain
related controls which may be used to minimize, maximize,
and remove the channel from view.

0013 Although the mynetscape.com web site goes a long
way to provide a multi-panel Visual display of multiple
content Sources to attempt to facilitate easier location and
review of content, it does not go far enough to deliver true
window functionality like that offered within underlying
operating Systems. For example, unlike a true window object
that dynamically displayS content in an operating System
context, a pseudo-window drawn within a network Surfer's
web browser is merely a Screen Section that appears to
loaded with content. And that content that is drawn within a
pseudo window is Static and does not change after rendering
by a web browser. In other words, all pseudo-windows
rendered by a web browser are, in actuality, merely graphi
cally-bordered Screen Sections within a web browser content
manifestation window that Statically display content and
which must be completely re-drawn (along with all other
pseudo-windows) each time a user-selectable Screen-related
operation/event occurs within a web browser Screen (e.g.,
Such when a Single pseudo-window minimization operation
is requested by a user upon the occurrence of an appropriate
mouse-click event). AS Such, the pseudo-window function
ality provided by the mynetscape.com web site and all
Similar type web sites are not capable of providing truly
controllable windows within a single unframed web browser
content manifestation environment which can display
dynamic content Such as live Video, updated Stock tickers,
motion video, etc.
0.014 Thus, there exists a need to provide new and
improved Systems and methods to facilitate a windowed
content manifestation environment within a web browser
application. Such Systems and methods must allow effective
and efficient implementation of web sites without requiring
Internet and WWW infrastructures and standards to change.
To be viable, network Surfers must be able to access a web
Site to Seamlessly take advantage of Such new and improved
Systems and methods without being required to obtain or
upgrade their personal computing environments, applica
tions, or Systems.

SUMMARY OF THE INVENTION

0.015 The present invention solves the above-described
problems associated with providing access to network con

Nov. 6, 2003

tent and with manifesting the same to enhance network
(world wide web-WWW) use. In so doing, the present
invention achieves certain benefits not heretofore realized
with prior technologies to acceSS and manifest content. For
example, network Surfers now can use conventional web
browser technologies and Software applications to access a
portal web site that delivers content in a format that is
consistent with other Software platforms that operate within
a users personal data processing System. Furthermore, by
providing a true windowing environment within the con
straints of the Internet's infrastructure will allow content
providers (e.g., web site operators) to incorporate the present
invention to further enrich their sites and enhance the web
usage experience. And, because a web browser content
manifestation environment may now be made to manifest
real content delivery windows without having to refresh a
Screen image each time a window is controlled, content
providers and web site advertisers can cause active adver
tisements to be displayed and changed within a particular
window without requiring a user to click a hyper-text link to
purposefully access an additional web site. AS Such, both
users and content providers alike will benefit from the
present invention's new and improved content delivery
model.

0016. Accordingly, the present invention solves the
aforementioned problems to deliver the above-described
benefits by providing new and improved Systems and meth
ods for facilitating a windowed content manifestation envi
ronment within a world wide web (WWW) browser client.
The system and method include and involve a server System
that is configured to Serve a Software System and associated
content via an electronic data network Such as the Internet
and WWW. Also included and involved is a web browser
client (web browser Software application) operating within a
data processing System that is coupled to the Server System
via the electronic data network and which instantiates a
content manifestation environment (e.g., a dynamic Screen
display environment within the data processing System). The
web browser client is operative to receive the software
System and the associated content via the Server System, to
process the Software System and the associated content to
produce at least one window object within the content
manifestation environment. The generated window object(s)
are each associated with a set of controllable attributes and
are configured to manifest at least a portion of the associated
content. The controllable attributes are configured to affect
manifestation of the window object(s) by the web browser
client within the content manifestation environment. The
window object(s) generated within the content manifestation
environment may be updated and loaded with content in
real-time and without user-intervention (e.g., Such as user
clicks on hyper-links, etc.) received via the electronic data
network without requiring the content manifestation envi
ronment to be refreshed (e.g., without requiring Screen
refresh operations).

BRIEF DESCRIPTION OF THE DRAWINGS

0017. The present invention is described in detail below
with reference to the following drawing figures, of which:
0018 FIG. 1A is a diagram of a system in which a world
wide web (WWW) browser client will realize a windows
based content manifestation environment in accordance with
a preferred embodiment of the present invention;

US 2003/0208491 A1

0.019 FIG. 1B is a block diagram of a server computing
System of the kind that may be used to Serve content via the
Internet and WWW in accordance with a preferred embodi
ment of the present invention;

0020 FIG. 1C is a block diagram of a client computing
System that can now realize a windows based content
manifestation environment provided in accordance with a
preferred embodiment of the present invention;

0021 FIG. 1D is diagram of a window module provided
in accordance with a preferred embodiment of the present
invention;

0022 FIG. 2A is screen image that depicts a window
based content manifestation environment and, in particular,
one that facilitates content manifestation within tiled win
dow objects according to a preferred embodiment of the
present invention;

0023 FIG. 2B is a screen image that depicts a windows
based content manifestation environment and, in particular,
one that facilitates content manifestation within draggable
window objects according to a preferred embodiment of the
present invention;

0024 FIG. 3 is a flowchart that generally depicts the
proceSS Steps that are carried out to facilitate a windowed
content manifestation environment within a WWW browser
client according to a preferred embodiment of the present
invention;

0025 FIG. 4 is a flowchart that illustrates the operations
performed within the system depicted in FIG. 1 to facilitate
generation and Storage of files within the Server System
depicted in FIG. 1 to enable a windowed content manifes
tation environment to be generated within a WWW browser
client according to a preferred embodiment of the present
invention;

0026 FIG. 5A is a flowchart that illustrates content
delivery and processing operations that are performed within
the system depicted in FIG. 1 to facilitate a windowed
content manifestation environment within a WWW browser
client according to a preferred embodiment of the present
invention; and

0027 FIG. 5B is the conclusion flowchart to the flow
chart started in FIG. 5A.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0028. The present invention is now discussed in detail
with reference to the drawing figures that were briefly
described above. Unless otherwise Specified, like parts,
Systems, and processes are referred to with like reference
numerals.

0029 Glossary

0030 The following terms are used within the instant
patent document to illustrate and define the novel features of
the present invention. Accordingly, reference should be had
to this Glossary for definitions of terms that are used to
provide enabling disclosure related to the present inven
tion's Systems and methods for facilitating a windows based
content manifestation environment within a WWW browser.

Nov. 6, 2003

0031. The terms that are capitalized below bear the
following meanings.

0032 Content is any form of digital data stream that may
be Supplied or Sent to a computing System Such as a personal
computer.

0033. The WWW is the world wide web and its associ
ated protocols and related technologies which may be
accessed via the Internet.

0034) A WWW browser client is a software application
that is operative to receive and process content to produce a
corresponding output (e.g., to manifest text and images
within a browser window displayed on a monitor device,
etc.).
0035 An Electronic Data Network is any type of network
environment from which at least one coupled computer or
computing System is configured to receive content Such as
HTML and related WWW content and to process the same
to produce an appropriate output. An exemplary electronic
data network is the Internet along with the WWW.
0036) A window object is a Module or a Layer.
0037. A Layer is a WWW browser content display sec
tion produced within a content manifestation environment
(CME) including, but not limited to, any object within an
HTML document that may be Scaled, dragged, or otherwise
operated upon such as an IMG object, a SPAN object, a DIV
object, a form element, etc. and which may be associated
with program logic such as within a script, etc. A layer has
its own properties including, but not limited to, a name, etc.
within an HTML rendition model such as those defined by
DHTML standards. Additionally, a layer acts independently
of other content within a particular HTML document.

0038 ACME is a controllable WWW browser content
display window provided by a WWW browser. For example,
a CME is viewed as a dynamic window in which WWW
content is normally displayed.

0039) A Module (also referred to herein as a Window
Module) is a layer having (1) a control Section, and (2) a
related content display Section which may be manifested
within a CME. A module may be recursively referenced in
that a particular module provided in accordance with the
present invention may include other modules. In other
words, the present invention makes it possible to have
window objects within window objects.

0040. A DMOD is a draggable module much like a
draggable type window provided within an operating System
environment.

0041 ATMOD is a tiled module much like a tiled type
window provided within an operating System environment.

0042 A Fixed Screen Region or FSR is an area of a
Screen environment Such as within a CME in which content
may flow based on Module operations, Java applet control,
etc.

0043 A Fixed Layer or FL is a layer having the same
behavior as a FSR.

0044 A Content Manifestation Layer or CML is a pop-up
type layer much like a pop-up dialog box that can manifest

US 2003/0208491 A1

content based on operations occurring within a Module (e.g.,
hyper-link traversal and/or occurrence of another event,
etc.).
0.045 Module Controls or MCs control objects such as
objects associated with Screen icons that react to events (e.g.,
mouse clicks, mouse-overs, double-clicks, etc.) and which
control attributes of a module (e.g., minimization, maximi
zation, closure, resizing, etc.). The icons associated with
Such control objects will appear in a control Section of a
module.

0046) The aforementioned and defined terms may be
made plural in the text found below (e.g., “DMODs”).

STRUCTURAL ASPECTS OF THE PRESENT
INVENTION

0047 Referring now to FIG. 1A, depicted therein is a
System in which a windowed content manifestation envi
ronment (CME) may be facilitated in accordance with a
preferred embodiment of the present invention. In particular,
a system 100 includes a server system 102 such as a web
server, an associated data store 104 which may form part of
Server System 102 and/or be part of a separate data Storage
facility Such as one including multiple disk arrays and the
like. Stored within data store 104 are HTML documents and
other associated files (discussed in detail below with regard
to FIGS. 3, 4, 5A, and 5B). Such files are generated in
accordance with the present invention to facilitate a win
dows based content manifestation environment on or within
network clients such as WWW browsers that may be used to
download the Same and to display content therein. Structures
102, 104, and 106, are maintained at a server side as
indicated by the dashed line delineating the Server Side and
the client side parts of system 100.
0048. At a client side (e.g., within a client environment
Such as within a personal computing System,) a client System
108 is outfitted with appropriate network client software to
access an electronic data network (e.g., the Internet and the
World Wide Web) to couple to server side system SVR
System 102. Accordingly, client system 108 is configured to
access and download HTML documents Such as HTML
documents and other related files 106 which may be gener
ated and stored in data store 104.

0049. It is the HTML documents and the related files as
discussed herein which facilitate a windows based content
manifestation environment within a client System Such as
within client system 108.
0050. The connection of client system 108 to server side
SVR system 102 including the electronic data network (e.g.,
the Internet and World Wide Web) will be immediately
understood by those skilled in the art. Accordingly, it should
be noted that client system 108 may be coupled with SVR
System 102 via the electronic data network Such as through
a dedicated network connection, a dial-up network connec
tion or any other network connection that facilitates the
transmission of HTML and other related files in accordance
with the present invention. In particular, client system 108
may be coupled to server side server system 102 such as via
a dial-up connection through an Internet Service provider
which facilitates TCP/IP communications, etc.
0051 Alternatively, client system 108 may be operated
by loading a local version of a Software package provided in

Nov. 6, 2003

accordance with the present invention. Such a Software
package may include HTML and Scripts which are provided
in accordance with the present invention (FIG. 4) such as
via local media (e.g., CD-ROM, etc.) to facilitate a windows
based CME within a WWW browser client and which are
configured to cause the WWW browser client to access a
network site (e.g., a web site, etc.) to download a windows
definition (e.g., a file or set of files that initialize a set of
modules that are displayed within a windows based CME).
A file which can define and initializes a set of modules (e.g.,
window modules) within a WWW browser client is shown
below with regard to a corresponding discussion of FIG. 4
(e.g., see below for a discussion of the file named mod
ule Setup.js).
0.052 Referring now to FIG. 1B, depicted therein is a
block diagram of server system SVR 102 as depicted in
FIG. 1. In particular, SVR system 102 includes a processor
arrangement 108, data Store 104 as an integral component
system thereof, and an I/O system 110 which supports
network communications. In FIG. 1B, data store 104 is
shown as being part of SVR system 102, but the present
invention is not so restricted as illustrated in FIG. 1A. SVR
System 102 may be implemented using a network Server
computing System Such as one manufactured and marketed
by SUN MICROSYSTEMS, INC. (e.g., the SUN SPARC
1000 computing System). Any computing System that facili
tates service of web related documents (e.g., HTML docu
ments, javascript files, etc.) via a network connection Such
as via the Internet and World Wide Web may be used in
implementing the present invention.
0053 Content streams and data such as news feeds, stock
information, which may be provided by third party providers
are input via I/O systems 110 and processed within SVR
system 102 to provide web side content to users located on
the client side shown within system 100 (FIG. 1A). Accord
ingly, content including window object instructions, content,
data, and content Stream data are distributed via an elec
tronic data network Such as the Internet and World Wide
Web to client system such as client system 108 (FIG. 1A).
0054) Referring now to FIG. 1C, depicted therein is a
block diagram of client system 108 as depicted in FIG.1. In
particular, client System 108 is a personal computing System
that has a processor arrangement 112, a data Storage Sub
system 114 such as a local disk array, and I/O facilities 116
Such as a modem or other network coupling unit Such as an
network interface card, etc. Client system 108 is configured
to operate in accordance with an operating System Such as
MICROSOFT WINDOWS 98 which is manufactured and
marketed by MICROSOFT CORPORATION and which
may be operated in accordance with a network client appli
cation Such as Internet Explorer version 4.x, Netscape
Communicator 4.x, etc. Accordingly, content retrieval mod
ules and Software routines contained therein which form part
of a network client as mentioned above, which may be
Stored in data Storage Sub System as part of a network client
application program. Accordingly, a processing engine of
Such a network client application will also be Stored in data
Storage Subsystem So that processor arrangement 112 may
retrieve the Same and proceSS accordingly.
0055 Data and content which is sent to and received
from the Internet and World Wide Web Such as from SVR
system 102 (FIG. 1B) may be processed through I/O system
116 in a conventional manner.

US 2003/0208491 A1

0056 Referring now to FIG. 1D, depicted therein is a
diagram of a window module provided in accordance with
a preferred embodiment of the present invention. In particu
lar, window module or module 118 includes a control section
120 and a contend display section 122. Module 118 may be
either a DMOD or a TMOD depending on particular design
parameters. Preferably, however, module 118 is a DMOD to
act like any other window Such as those within a windows
based operating System desktop environment.

0057 Within control section 120, MCs 124 are included
to allow a user to cause associated events to occur. For
example, MCS 124 include objects and associated icons to
allow a user to receive help (i.e., Such as through the “”
icon), to minimize module 118 (i.e., via the down-arrow
icon) much like windows are minimized within a windows
based operating System, to maximize module 118 (i.e., via
the up-arrow icon) much like windows are maximized
within a windows based operating System, and to close
module 118 via the “X” icon much like windows are closed
within a windows based operating System.

0058. The operation of any of the MCs 124 shown within
control section 120 need not have a global effect on the
entirety of the CME in which module 118 is displayed. That
is, there is no requirement that operation of any of the MCS
124 will cause a screen refresh within a WWW browser
CME. Such screen refreshes were common in prior web
environments as an entire WWW browser CME (or at least
a framed section thereof was refreshed (re-loaded with
content, etc.) each time a user selected or operated a link
(e.g., a hyper-text link provided by a Search engine to
retrieve additional content such as “10-more links”).
0059 Content such as that received via an electronic data
network, from a local hard disk, etc., may be displayed
within content display section 122 of module 118. Accord
ingly, any type of content may be manifested within module
118. For example, Static content like or similar to Straight
HTML content (e.g., text, graphics, etc.) may be manifested,
while dynamic content Such as from a content feed (e.g., a
news fee, a stock ticker feed, etc.) may also be displayed
and/or manifested. Accordingly, module 118 may act as a
mini-CME within a WWW browser client CME and, in
particular, much like a conventional window within a win
dows based operating System. Because module 118 may be
a DMOD, a user may now freely move content display/
manifestation windows within his browser's CME much like
he does with program windows when Viewing an operating
system desktop environment (e.g., the WINDOWS 98TMTM
desktop environment).
0060. To facilitate easy display of content within content
display section 122 of module 118, scroll controls 126 may
be shown within a scroll bar 128. Scrolls controls 126 are
provided when content extends beyond the vertical size of
content display Section 122 and may be used in a conven
tional manner. For example, Scroll controls like or similar to
Scroll bars may be implemented using constructs within a
WWW browser client Such as in MICROSOFTTM INTER
NET EXPLORERTM (IETM) V4.x. That is, IE V.4.x supports
an “overflow:auto” CSS (cascading style sheet) property
which applies to facilitate Scroll bars, etc. in the context of
the present invention to allow management of content that
extends beyond a bottom edge of a visible area of a Selected
module.

Nov. 6, 2003

0061. In the context of the present invention and, in
particular, with specific regard to FIG. 1D, manifestation of
content is a broader concept than Simple Screen display; to
the contrary, manifestation includes the causation of output
generation that may start with operations within content
display section 122 of module 118. For example, a hyper
link may be displayed within content display Section 122 to
invite a user click to cause Sound to be manifested, etc.
0062 Furthermore, because content display section 122
may dynamically display content Such as from a feed or
Stream, users can now be presented with dynamic windows
without having to traverse additional hypertext links, etc.
And, Since no user intervention is required to dynamically
display/manifest content within content display Section 122
a browser's CME becomes a dynamic and content-rich
environment completely different from currently available
Static browsers. In essence, modules provided in accordance
with the present invention and those similar to module 118
create a new WWW browser client application program that
facilitates a novel, content-rich web experience.
0063. The programming constructs and algorithms to
achieve the functionality provided by module 118 within the
context of the present invention are described in detail below
with regard to FIGS. 3, 4, 5A, and 5B.
0064. Referring now to FIG. 2A, depicted therein is a
Screen image of a content manifestation environment (CME)
that has been configured to manifest content within tiled
window objects in accordance with a preferred embodiment
of the present invention. In particular, Screen image 200 is
that of a WWW browser client screen and, in particular, the
CME thereof. Screen image 200 includes a set of TMOD
type window modules 202 arranged in table fashion. A set of
web site (environment) controls 210 are provided to control
the appearance and operation of a web site provided in
accordance with the present invention (e.g., the web site
with URL www.windows-website.com). Each window mod
ule 202 includes a control section 240 and a content display
section 242 which may either be minimized or maximized in
accordance with the present preferred embodiment and as
was described above with regard to FIG. 1D.
0065. Each control section of a particular window mod
ule 202, includes module control icons (MCs) which corre
spond to associated control logic for providing help, window
minimization, window maximization, window cancellation
or closure, etc. The programs and logic necessary to build
the objects and structures shown with in screen image 200
are illustrated with regard to the flowchart shown in FIG. 4,
which is described below. The number and nature of MCs is
not limited to those shown in screen image 200. To the
contrary, any number of module controls (MCs) and related
functions may be included within the present invention to
facilitate any type of desired window control operation Such
as those shown in FIG. 1D. For example, the present
invention also contemplates the implementation of further
Specialized controls Such as quick content delivery, content
Source changes, etc. In Such cases, appropriate icons may be
developed and included within a particular modules control
Section 240.

0.066 Referring now to FIG. 2B, depicted therein is
another screen image of a Www.browser client CME which
has been configured via the present invention to provide a
windows based content manifestation environment in which

US 2003/0208491 A1

DMOD type window modules may be freely moved within
the Same. In particular, the windows based content mani
festation environment shown in Screen image 201 includes
a DMOD 203 (e.g., a travel related content window), a
DMOD 204 (a dynamic news feed display window), a
content display layer 208 (e.g., a FL, a CML, etc.), and a set
of web site controls 210 (e.g., navigation buttons) which
correspond to particular code functions which may control
the manifestation of content (including window modules)
within the CME maintained by a WWW browser in accor
dance with the preferred embodiment of the present inven
tion.

0067. In FIG.2B, content display layer 208 may be a FL,
FSR, or CML. In any case, content display layer 208 may be
provided to manifest content not destined for manifestation
within a particular module. In particular, if an FL or FSR is
used, a Static, alwayS Visible window may be positioned
within a WWW browser CME for content display. Alterna
tively, if a CML is used, the same may be provided to pop-up
(much like a dialog box popS up in an operating System
Screen environment when an error condition is realized)
whenever content not destined for manifestation within a
particular window module is to be presented. When a CML
is used, the same may be draggable, etc. within a WWW
browser CME much like a DMOD. In any case, a FL, FSR,
or CML may be used to facilitate manifestation of content
that would otherwise not be destined for window module
manifestation. For example, content display layer 208 is
manifesting text type content that may be displayed as a
result of a hyper link traversal that occurred within DMOD
2O3.

0068. As shown in FIGS. 2A and 2B, each module
(whether tiled or draggable in accordance with the present
invention) includes a control Section 240 and a content
display Section 242. The remaining Structural aspects of the
modules shown in FIG. 2B are the same as those shown in
FIG. 2A, and therefore a detailed description is omitted for
purposes of brevity.

CREATION AND OPERATION OF A
WINDOWED CONTENT MANIFESTATION
ENVIRONMENT WITHIN AWEB BROWSER
OPERATIONAL ASPECTS OF THE PRESENT

INVENTION

0069. Referring now to FIG. 3, depicted therein is a
general process flow chart that illustrates the operations
performed and/or related to the structures described above
with regard to FIGS. 1A-2B to generate content and related
programs to facilitate a windows based content manifesta
tion environment (CME) and the downloading of the same
to a network client Such as a WWW browser client. The
WWW browser client will manifest a CME that facilitates
window module functionality according to the present
invention. In particular, processing Starts at Step S3-1 where
Server Side perSonnel and Systems are used to generate and
produce server side content including HTML and related
files (e.g., javascript files, etc.) and which store the same on
Server Side data Storage facilities for distribution via an
electronic data network Such as the Internet and World Wide
Web.

0070 Next, at step S3-2, a WWW browser client loads all
files and functions and content Stored with in Server Side
Systems after requesting the same via an electronic data
network.

Nov. 6, 2003

0071 Next, a WWW browser constructs a web site view
within a CME thereof based on the received content, HTML,
and other related files (e.g., javascript files, etc.). In particu
lar, the received content, HTML, and other related files
instruct the WWW browser client to manifest a windows
based CME therein.

0072 At step S3-4, the WWW browser client will mani
fest the web site view in its CME to allow a user to operate
upon received content within a windows based environment
much like a windowed environment or Shell of an operating
system (e.g., much like the WINDOWS 95, 98, NT, UNIX
X-WINDOWS environment- WINDOWS, 95, 98, and NT
are trademarks of and which may be registered to
MICROSOFT CORPORATION, UNIX is a trademark of
AT&T CORPORATION).
0073 Processing ends at step S3-5.
0074 The general process flow described above in regard
to FIG. 3, is now described in further detail by specifically
illustrating the aforementioned proceSS Steps with reference
to FIGS. 4, 5A, and 5B.

0075). In particular, FIG. 4 depicts flowchart that illus
trates a process for defining and Storing a Software package
to be served to clients to realize windows based CMEs
therein in accordance with the present invention. In particu
lar, processing Starts at Step S4-1 and immediately proceeds
to step S4-2.

0076. At step S4-2, database setup and administrative
operations are carried out to produce appropriate database
Structures at an appropriate Server Side System Such as at
server SVR system 102. Preferably, an administrator will
create an SQL (Structured query language) type database
table such as by using MYSQL V.4.0. Such a database table
Stores data about respective window modules. The following
Script may be used to generate, output, and initialize Such a
database structure. Those skilled in the art will immediately
understand the following code Script. In particular, the SQL
instructions listed below place data into the generated table
to correspond to window modules that will ultimately form
the basis of respective windows to be provided and visually
displayed within a CME in accordance with the present
invention. The fields/columns defined within the table are
Self-explanatory and do warrant further discussion here. For
example, the column "Xposition' defines a Screen position
for a window module to be drawn within a CME.

MySQL dump 4.0

Host: localhost Database: ENVIRONMENT
#-------------------------------------

Table structure for table MODULES

CREATE TABLE MODULES (
Priority tinyint(2),
Name varchar(20) DEFAULT “NOT NULL,
Open tinyint.(1) DEFAULTO,
Maximized tinyint.(1) DEFAULTO,
Xposition tinyint.(1) DEFAULTO,
Yposition tinyint.(1) DEFAULTO,
Height smallint(4),
Width smallint(4),
PRIMARY KEY (Name)

US 2003/0208491 A1

-continued

);
Dumping data for table MODULES
INSERT INTO MODULES VALUES (2, MODchat,1,1,0,0,0,0);
INSERT INTO MODULES VALUES (1, MODnews’,1,1,0,0,0,0);
INSERT INTO MODULES VALUES (3, MODhomepage,1,1,0,0,0,0);
INSERT INTO MODULES VALUES (O, MODtravel,1,1,0,0,0,0);
INSERT INTO MODULES VALUES (4, MODstocks,1,1,0,0,0,0);
INSERT INTO MODULES VALUES (5, MODemail,1,1,0,0,0,0);
INSERT INTO MODULES VALUES (6, MODsearch,1,1,0,0,0,0);

0077. The above-listed “INSERT" statements are used to
fill the generated database with window module names, etc.
to form the basis of an initial set of windows that are
ultimately displayed in a windowed CME in accordance
with the present invention.
0078 Next, processing proceeds to step S4-3. At step
S4-3, HTML files and related files (e.g., included and
referenced javaScript files, etc.) are generated and stored

<html><head><title></title>
<script language="Javascript's
var MO = new Array();
var STORED = new Array();
var thisKey = * :
ff handles form submission
function submitForm(thisName)

var PRIORITYSTRING = * :
& 2. war modName = * :

Nov. 6, 2003

within server Side data storage facility (e.g., data store
104-FIG. 1). Exemplary programs to carry such operations
are provided immediately below:

0079 For example, the following script may be generated
within a software development environment known as PHP3
(Personal Home Page V.3.0) which is a freeware software
package under constant development which may be used to
create an HTML-based graphical user interface (GUI) data
base administration utility which may be used within a
server-side WWW browser client to facilitate window mod
ule attribute Setting and adjustment and corresponding data
base operations. Such attributes correspond to column val
ues stored within the database table illustrated and described
above. Accordingly, after using PHP3, the following HTML
script language may be loaded into a WWW browser client
to permit user adjustment of window module attributes (e.g.,
Vertical and horizontal CME positions, priority, position,
etc.). Those familiar with HTML will immediately under
Stand the following markup instructions.

If go through all modules and grab the priority value; build it
// into a string and send it to that form's PRIORITYSTRING hidden field.
for(x=0; x <= high Priority; x++)

modName = MOx:
PRIORITYSTRING += (modName + = +

document.forms modName priority.value.toString());
if (x = high Priority) { PRIORITYSTRING += '-';

If update the hidden PRIORITYSTRING value
document.forms thisName. PRIORITYSTRING.value = PRIORITYSTRING:

If submit the form
document.forms thisName...submit();

function storeValue(this Value, thisForm, this.Item)
{

If store the value in any window that gets focus;
If used to replace bad entries or switch priorities
thisKey = (thisForm + this.Item);
STOREDI thisKey = this Value;

return;

function checkInput(this Value, thisForm, this Item)
{

// check that object flags are either 1 or 'O'
ff if an error, inform and replace with old value and return

if (((this Value = 0) &&. (this Value = 1)) (this Value.length > 1))
{

// alert the error and replace original value
alert("The only acceptable values are “1” or “0”);
thisKey = (thisForm + this Item);
document thisForm this.Item value = STOREDIthisKey:

return;

function checkPriority (this Value, thisPosition)
{

f:
* this will first check if the number is in range (0-high Priority)
* or if it is an invalid string -- if either, inform of error and reset old

US 2003/0208491 A1

-continued

value;

if value is ok, search through all the priority fields and find the field
that contains the value current field is being set to, and set THAT field
to the stored value for the current field (ie. switch the values)

*/
this Value -= 0; if turn it into a number

thisKey = (MOI thisPosition + priority);
If check value and alert if error
if((this Value < 0) (this Value > high Priority) (parseInt(this value) =

alert("That value is Out of range, or contains illegal characters.\nplease enter a
numeric value between 0 and + high Priority + ...);

document MOI thisPosition priority.value = STOREDI thisKey:

this Value))

else II go through and find value matching current, and switch them
{

for(x=0; x <= high Priority; x++)
{

if(x == thisPosition) { continue; } // skip current value
if (document MOx-priority.value == this Value)

{
ff if a match is found, Switch the values and exit
document MOx-priority.value = STOREDI thisKey:

break;

If lose any whitespace, prepended Zeros
this Value = parseInt(this Value);

ff realize the corrected value
document MOI thisPosition priority.value = this Value;

return;
}

</scripts
</head>
<body>
<center

<table cellpadding=4 cellspacing=O border=1 width=700>
<tra €tde
<font face="verdana.arial,helvetica size=2
The following is all information relating to module objects. Change the order they appear
in simply by changing the priority number. A change in one number will automatically
switch the rest of the list to accomodate -- e. if I switch 1 to 2, the item with
priority 2 will now be switched to 1.
<ps Use only ones(1) or Zeros(O) in the property values.<p>
CHANGING THESE VALUES WILL CHANGE THE DATABASE IMMEDIATELY, BUT THE NEW VALUES WILL ONLY
SHOW UP IN THE ACTUAL SITE LAYOUT AFTER THE NEW **generated files/module setup.js** FILE
IS GENERATED. font color=#ff00OO>IT WILL, HOT IMMEDIATELY CHANGE THE LAYOUT-s/fonts.
<?b></fonts
</td.<?tric &?table>

<?php
include (“fusr/www/htdocs/shared/shared.php3);
SFONT SET = “afont face=\"verdana,arial,helvetica\' size=2>\n';
SJSCRIPT = “<script language=\"Javascript\'>'':
If get all module data and order it by priority
SMOD QUERY = dbase long(“ENVIRONMENT,"select * from MODULES order by Priority ASC'):
SFIELD NAMES = mysql list fields(“ENVIRONMENT,"MODULES); If the field names result index
SNUMBER FIELDS = mysql num fields(SFIELD NAMES); // how many fields (PROPERTIES)
SMODULE COUNT = 0; // counter to keep track of form position
while(ScurrentModule = mysql fetch array(SMOD QUERY)) // go through the current module
data

If get current module name
$thisName = ScurrentModule"Name:

$thisPriority = ScurrentModule"Priority:
echo"<form name=\" .SthisName.“\' action=\"write module changes.php3\"

method=\"post\'>'':
If stores priority string on submit
echo"<input type=\"hidden\" name=\" PRIORITYSTRING\” value=\"\">'':
If stores the module name that data should be attributed to
echo"<input type=\"hidden\' name=\"sentModule\ value=\".$thisName."\">\n';

echo"<table cellpadding=6 cellspacing=O border=1s <treatd valign=top
bgcolor=#fofofos\n";

Nov. 6, 2003

US 2003/0208491 A1

-continued

echoSFONT SET;
echo “afont color=#OOOOffs\n':

echo strToUpper($thisName)."</fonts.<p>'':
echo “Priority: <input type=text size=2 name=\"priority\'

value=\" .Sthis Priority.“\' onFocus=\"storeValue(this.value, “...SthisName.
onChange=\"checkPriority (this.value, “.SMODULE COUNT.”) \">
'':

echo “affont></tds-ta valign=top bgcolor=#dOdOdO>'':
echoSFONT SET;
If now go through all fields displaying property names and values;
// skipping first 4 fields: Priority. Name,Open, Maximized since

Nov. 6, 2003

priority) \'

// Priority is already displayed, Name can’t be changed, and Open & & Maximized
// are set by environment

for($thisField = 4: $thisField < SNUMBER FIELDS; SthisField++)

$fieldName = mysql field name(SFIELD NAMES,SthisField);
$fieldValue = ScurrentModuleSthisField:

// write the properties by name(field) and value (row value for field)
echo $fieldName.": <input type=text size=5 name=\".$fieldName.“\

SMODULE COUNT++:

align=centers\n';
echo"<input type=\“button\" onClick = \"submitForm(".$thisName.”) i”

echo SJSCRIPT“MOI".(SMODULE COUNT -1). = “...SthisName.” :</scripts”:

echo SJSCRIPT“var high Priority = “.(SMODULE COUNT -1).”:</scripts”:

0080. Once a database table is generated to store window
module properties and the like, and after the above-listed
Script is generated and run to allow GUI manipulation of
window module attributes Stored within the generated data
base table which is Stored at a Server Side System Such as
within SVR system 102 (FIG. 1), for example, PHP3 may
again be used to automatically generate an outputjavaScript

file which forms the basis of a Software package that
Subsequently may be downloaded to network users for
processing within their WWW browser clients to facilitate a
windows based CME therein in accordance with the present
invention. A sample PHP3 script to automate javascript file
generation is listed below. Those skilled in the art of web
type programming will immediately recognize the nature of
the PHP3 script language listed below.

f: 8 + 8
* generated files/module setup.php3 *
: :

* This script is used to create all of the window modules which *
* will be used by the interface. It is working on the ENVIRONMENT *
* database, within the table MODULES. It will output all of the *
* necessary javascript to store all the module names in MODULE NAMES, *
* all module objects in MODULES mod O...mod n), and set all *
* the necessary propertiess in each object. In short, this
* generates the .js file (generated files/module setup.js) which
* provides layout and content information for all of the modules. *
:: */

include (“fusr/www/htdocs/shared/shared.php3');
// set the file pointer
$thisFile = fopen("/usr/www/htdocs/generated files/module setup.js, “w”);
ff write the initial setup jscript
SoutFile = “var MODULE NAMES = new Array();\n”:
SoutFile = “var MODULES = new Array();\n\n":
ff this is the constructor
Soutfile = “function layerObject(name)\n';

Soutfile = “ this.Name = name:\n:

SMODULE COUNT = 0; If will increment and use as key for MODULE NAMES
If get all module data and order it by priority
SMOD QUERY = dbase long(“ENVIRONMENT,"select * from MODULES order by Priority ASC'):

US 2003/0208491 A1
10

-continued

Nov. 6, 2003

SFIELD NAMES = mysql list fields(“ENVIRONMENT, “MODULES); If the field names result index
SNUMBER FIELDS = mysql num fields(SFIELD NAMES); // how many fields(PROPERTIES)
If go through the current module data
// write the properties, and fill the Text value
while (ScurrentModule = mysql fetch array (SMOD QUERY))

{
If get the current module name
$thisName = ScurrentModule"Name';

ff write to MODULE NAMES
SoutFile= (“MODULE NAMES“.SMODULE COUNT = “...SthisName.” :\n");
ff write code to create module object

SoutFile= (“MODULES: “...SthisName.” = new layerObject(“...SthisName.”):\n");
If now go through all fields and, using those as property names, set
// object properties for MODULES In.currentField = currentFieldSetting

for($thisField = 2; SthisField < SNUMBER FIELDS; SthisField++)
{

// write the properties by name(field) and value (row value for field)
SoutElle =

(“MODULES: “...SthisName.” “...mysql field name (SFIELD NAMES, SthisField).” =
“.ScurrentModule Sthis Field.”:\n");

f:
am now going to fill the text field;
to do this, we first read in the html file as a
string; then we simply attribute that string to
the Text property of the current object;
the html files are named the same as the module + .txt

* and are in the /HTML directory
*/
SHTML = “:
SHTMLpath = “fusr/www/htdocs/HTML?”:
SHTML = SHTMLpath. SthisName."...txt":
St = fopen(SHTML,"r);
$filecontents = fread(Stt, filesize(SHTML));
Sfilecontents = ereg replace("\n”, “.Sfilecontents);
$filecontents = ereg replace(“ ”, “\ ,Sfilecontents);
SoutFile = “MODULES: “...SthisName. Text = “.Sfilecontents. ::
felose(St);

SMODULE COUNT++:

:

// write the total module count (1 higher on base O)
SoutFile = (\nvar TOTAL MODULE COUNT = “.SMODULE COUNT :\n\n");
If now establish any prototype values
Soutfile = “layerObject.prototype.column = 0:\n';
Soutfile = “layerObject.prototype. Row =0;\n';
If the file (module setup.js);
fputs ($thisFile, SoutEile);
SoutEile = * :

FCLOSE(STHISFILE);

0081. The emphasized “include” statement found in the
listing/file presented above refers to another Script listing/file
named “shared.php3.” Such a file includes standard library
functions used by PHP to generate output files in accordance

with the present invention. Shared.php3 is listed below.
Those familiar with PHP will immediately understand the
functions presented in shared.php3 after carefully reviewing
the same.

requires: - errormsg- > a string containing an error message, to be
attached to the string "An error has occurred: ”
and sent to an alert dialog box. Be sure to
call this function from inside the <head> or
<body> of the document.

returns: echoes the javascript to alert the user of the error, and
then resets the browser history to the previous page.

US 2003/0208491 A1
11

-continued

requires: - address - > a valid email address; if no email address
is specified, mail will be sent to the
administrator, set in Saddress;

subject -> an optional subject line. Default = “Inone
message -> the body of the message. All messages will

have date and time information attached to
the bottom of the message.

returns: Nothing.

dbase long (dbase, sqlquery);
- return the result index of a dbase request

requires: - d.base -> string containing a valid mysql database;
sqlquery -> string containing a valid sql request;

returns: integer -> he result index of the query, which t

can then be “fetched from as you please.

dbase(dbase, sqlquery, read/write);
- read or write to a single field in a specified dbase.

requires: - dbase -> string containing a valid mysql database;
- sqlquery -> string containing a valid

sql request (ie. select name from testable where id="l);
- read/write -> one of “read or “write: if set to “read

(ie. if your request is a SELECT which returns
some value) the function will return a string
containing that value. If set to “write', function
returns a boolean success/failure flag. If not
set, defaults to “read.

returns: string -> either the result on a read, or the success flag
on write. Note that this function returns a single
field value on read. If you are seeking multiple
results, use dbase long(). If the request fails,
the function will return "error.

get file(path, html flag);
- Reads the specified file and returns all
contents as a string.

requires: - path -> the full path to the file, including
the file name, ie. “/files/new/my file.txt:

- html flag-> optional flag: if included (ie. set to “html), all
newlines are replaced with “abr>' html tags.

returns: string -> each line (concatenated) of indicated file is returned
as a string.

*/
III/III/III/III//
ff erroneous () f/
III/III/III/III//
function erroneous (Serrormsg)

{
SerrorString = “An error has occurred: ';
echo "<script language=\"Javascript\'>\n';
echo “alert ("...SerrorString.Serrormsg.):\n';
echo "self.history.go(-1);\n';
echo “3/scripts\n';
exit;

f/III/III/III//
ff mail it () f/
f/III/III/III//
function mail it (Saddress,SSubject = "none'.Smessage)

{
Saddress = (Saddress) Saddress : “hhbubrisGhotmail.com':
Smessage =\n--\n".date(“M d Y,

h: i:s”);
mail (Saddress, $subject, Smessage);

f/III/III/III/IIIf
If dbase long() f/
f/III/III/III/IIIf
function dbase long ($dbase, $sql query)

{

Nov. 6, 2003

US 2003/0208491 A1

-continued

mysql connect ();
$this result = mysql db query(Sdbase.S.sql query);
return ($this result);
mysql close();

III/III/III./
// dbase() ||
III/III/III./
function dbase(Sdbase.S.sql query,Sread write= "read')

{
mysql connect () ;
$this result = mysql db query(Sdbase,&sql query);

12
Nov. 6, 2003

Sreturn value = (Sread write == “read)? Gmysql result($this result,0, 0):
$this result ;

return ((Sreturn value) Sreturn value: "error) ;
mysql close();

III/III/III/IIIf
If get file() f/
III/III/III/IIIf
function get file($this path,&htmled = “ ”)

{
if (file exists ($this path))

{
$this file = fopen (Sthis path,"r');
$this stuff = ltrim (fread($this file, filesize($this path)));
fclose($this file) ;
return ((Shtmled)? ereg replace(“\n',"
Sthis stuff): Sthis stuff);

0082. As noted above, the output javascript file that
forms the basis of a Software package and a corresponding
windows based CME in accordance with the present inven
tion is generated after executing the instructions listed in the
Scripts shown immediately above. Such outputjavaScript file
(referred to herein as a "javascript file containing window
module setup routines') may be downloaded along with
other web site Source files to client Systems and, in particu
lar, to WWW browser clients via an electronic data network
such as the Internet and WWW. Alternatively, the other web
Site Source files may be maintained locally within client
Systems which, at appropriate times, access an electronic
data network (e.g., the Internet and WWW, an intranet, or
other networking environment, etc.) or local Storage devices
to receive the javaScript file containing window module
Setup routines. Accordingly, the present invention contem
plates the provisioning of a generalized windows based
interface within a WWW browser client which may be

particularlized based on a single file (e.g., the javascript file
containing window module setup routines, etc.) for given
computing and data processing environments. That is, the
present invention now allows web site developerS and
operators, for example, to create dynamic content manifes
tation environments easily and without having to endlessly
generate new content delivery interfaces to appear dynamic.

0083. In any case, the output javascript file along with
Such other web site source files will instruct Such a WWW
browser client to produce a windowed CME in accordance
with the present invention. A Sample output javaScript file
that may be generated and stored on a server (e.g., on SVR
system 102-FIG. 1) and downloaded to a WWW browser
client is listed below. Those skilled in the art of web
programming and, in particular, javaScript coding will
immediately understand the same.

/* WINDOW MODULE SETUP ROUTINES (ESTABLISHES PARAMETERS FOR NEW WINDOWS WITHIN A CME). */
var MODULE NAMES = new Array();
var MODULES = new Array ();
function layerObject (name)

this.Name = name:

MODULE NAMESO = MODtravel:
MODULES MODtravel = new layerObject (MODtravel);
MODULES MODtravel'Open = 0;
MODULES MODtravel.Maximized = 1;
MODULES MODtravel.Xposition = 0;
MODULES MODtravel.Yposition = 0;
MODULES MODtravel.Height = 200;
MODULES MODtravel.Width = 400;

US 2003/0208491 A1

-continued

Nov. 6, 2003

name=lycos value=ye Lycos, <input type=hidden name=yahoo value=ye Yahoo, <input
type=hidden name=look value=ys LookSmart, <input type=hidden name=mining value=ys The
Mining Co., <p>Search Forz/font>:<input type=text width=40
name=texts <input type=button name=search value=Search
onClick="top.fetchFile(\'http://pavlov.apollo-ent.com/cgi-bin/nph
search?search=Search&altavista=yGinfoseek=y\);"></forms:
var TOTAL MODULE COUNT = 7;
layerObject prototype.Column = 0;
LAYEROBJECT PROTOTYPE.ROW = 0;

0084. As noted above, the generated javascript file con
taining window module Setup routines may be processed by
a WWW browser client along with other related web site
Source files to produce a windowed web site environment
within a CME of the WWW browser client and one into
which other content feeds (news feeds, Stock fees, etc.) may
be manifested.

0085. The above-referenced other related web site source
files that are generated and Stored within Server Side data
Storage facilities are to be configured in accordance with the
present invention to reference the window module defini
tions maintained within the above-described generated java
Script file. Exemplary files to facilitate Such a windows
based content manifestation environment are next described
to illustrate their interaction with the above-described java
Script file that contains window module Setup routines.
Those skilled in the art and, in particular, those skilled in
web site design and implementation and object oriented
programming techniques will readily understand the con
Structs and functions defined in the following code listingS/
Scripts/files after careful review of the same.

0.086. In particular, the following listings relate to files
which are described in detail below and which are named:

0.087 index.html

0088 interface main.html
0089 mainnew.html
0090 var declarations.js
0091 gen functions.js
0092 preloader.js

0.093 nav buttons.js
0094) module draw.js
0.095 resize.js

0096 pop functions.js
0097 pops.js

0098 positioning functions.js

0099 index.html
0100. The following index.html listing/file initially loads
a set of referenced objects including other HTML and
javaScript routines. One Such javaScript file that is loaded is
referred to as "module setup.js.” That file is the generated
javaScript file that contains window module Setup routines.

<html><head><title>welcome to WINDOW-WEBSITE.com&ftitle>
<script language="javascript's </scripts
<script language="Javascript src="var declarations.js'></scripts
<script language=''Javascript'
src="generated files/module setup.js'></scripts
<script language="Javascript src="gen functions.js'></scripts
<script language="Javascript src="preloader.js'></scripts
<script language="Javascript src="nav buttons.js'></scripts
<script language="Javascript src="pops.js'></scripts
<script language="Javascript src="module draw.js'></scripts
</head>
<frameset rows="*,0’ framespacing=0 frameborder=0 frameborder="no'
border=0>

<frame src="interface main.html name="MAIN marginheight=0
marginwidth=0 noresize border=0>
<frame src="dummy.html name="DUMMY marginheight=0

marginwidth=0
border=0 noresize scrolling=nos
</framesets
</html>

0101 interface main.html
0102) The following interface main.html listing/file may
be included to check WWW browser versions. That is, the
following HTML file may be used to check browser com
pliance with HTML standards associated with version 4 type
browsers (e.g., NETSCAPE COMMUNICATOR 4.x,
MICROSOFT INTERNET EXPLORER 4.x, etc.).

&HEADs
<TITLEssfTITLE
<script language="Javascript's
self.location.href= (top.IS4) mainNew.html: mainOld.html;
</scripts
</HEAD
BODYs

</BODYs
</HTML

0103) The following main New.html listing/file causes
WWW browser client layout of an initial set of window
modules (as defined within module setup.js-discussed
above) within the WWW browser client's CME (i.e., causes
display of windows within a browser's Screen window, etc.).

US 2003/0208491 A1
16

-continued

* general environment variable setup
:

*/
var NS = (navigator.appName == "Netscape') 21:0; // netscape?
var IE = (navigator.appName == “Microsoft Internet Explorer) 21:0; // explorer?
var N4 = (document.layers); // netscape 4+ 2
var IE4 = (document..all); // explorer 4+ 2
var IS4 = (N4 || IE4); // 4th gen browser?
var FILEOPEN = 0; // whether file open
var ZINDEX = 0; // set variously throught operations on layers
var SIZEABLE CLASS = SIZEABLE: If the CLASS name of sizeable images
var MODULE MIN X = 200; If the minimum width of a scalable layer
var MODULE MIN Y = 36; If the maximum width of a scalable layer
If the following are visiblity settings for netscape and explorer, where
// NVIO element = netscape hide, NVI1 element = net;
// EVIO element = netscape show, EV1 element = explorer show;
If used by showHide() in positioning functions.js;
var NV = new Array(hide, show);
var EV = new Array(hidden, visible);
//linkSet = “; // this is for navigator to cheat the link disappearance in an object
var SCREEN VERTICAL OFFSET = 40; if allowances for vert borders && browser buttons
var SCREEN HORIZONTAL OFFSET = 20; If allowances for scroll
var SCREEN TOP OFFSET = 100; // pixels taken up by the simple logo, buttons, etc.
var DEFAULT SCREEN WIDTH = 800 - SCREEN HORIZONTAL OFFSET; // if old browser, this is
default
var SCREEN X = (IS4) screen.availWidth - SCREEN HORIZONTAL OFFSET:
DEFAULT SCREEN WIDTH;
var SCREEN Y = (IS4) screen.availHeight - SCREEN VERTICAL OFFSET : * :
var SPACER = “dummy.gif: If a transparent 2x2 gif that resides in DEFAULT IMAGE PATH
If html tags
var LINEBREAK =
:
var PARAGRAPH = <ps:
var NEWLINE = \n;
var TABLE STANDARD = <table cellpadding=2 cellspacing=O border=0 width=100%>:
var TABLE TR = <trs:
var TABLE TD = <td valign=tops:
var TABLE TD BLACK = <td bgcolor=#000000 valign=tops:
var TABLE CLOSE TR = <?trs:
var TABLE CLOSE TD = </tde:
var TABLE CLOSE = <?table>:
var TABLE CLOSE TABLE = </tdes?tres/table>:
var OPEN MOD = ; // set to module wrapper start tag; set when drawing modules
var CLOSE MOD = </SPANs:
var CLEAR STATUS = status=\\; return true:; if clears status line
war CLEAR STATUS FULL = (onMouseOver='status=\\; return true:

sy % onMouseOut="status=\\; return true:); // complete commands for status clearing
f: 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 888
* standard module layout information *
* stuff like info on module buttons, :
* cellpadding, how many modules per *
* row, etc. :

var IS DRAGGABLE = 0; // boolean on environment; 0=not draggable
// the number of modules per row;
If note how a width of less than DEFAULT SCREEN WIDTH will only get 2 rows
var MODULES PER ROW = (SCREEN X < DEFAULT SCREEN WIDTH) 22:3:
var DEFAULT MODULE WIDTH = 25;
var DEFAULT MODULE BGCOLOR = '#foff0; If default bgcolor for all layers
var DEFAULT MODULE BACKGROUND = (MODULE IMAGE PATH + “default background.gif);
var MODULE FONT = ();
var MODULE CLOSE FONT = (</fonts);
var MODULE CELL SPACING = 4; if the value of cellspacing in layout table
var MODULE CELL PADDING = 0; if the value of cellpadding in layout table

:::

** ENTER THE IMAGES TO BE LOADED HERE MAKE SURE YOU ::::::

** INCREMENT LOAD STRING PROPERLY AND BE CAREFUL WITH THE * *
** SPECIAL CHARACTERS AND COMMAS ::::::
:::::: ::::::

** all preloaded images are stored in PRELOADED IMAGES ::::::
:::

var LOAD STRING = new Array(); // init
// SAMPLE || LOAD STRING n = '-theseimages/, *.tif, firstimagename, secondimagename

LOAD STRINGO = MOD news, MOD email,MOD chat,MOD homepage.MOD travel:

Nov. 6, 2003

US 2003/0208491 A1 Nov. 6, 2003
17

-continued

f:
* There are some simple rules to follow when adding LOAD STRING(s):
:

* 1. Try and keep distinct bunches of images on one line.
* 2. Good to establish path & & extension at start of string that
* will persist through whole string.
* 3. Use names that make sense.
:

* Path is persistent, so once it is set that is the path that will be
* assumed until the path is changed. Signify a path command with a tilde (~).
* NOTE: DEFAULT IS images?, so you don't have to set this if images? is the path;
:

* Image type works in the same way. Signify current image type with an ampersand ().
* NOTE: DEFAULT IS .gif, so you don't have to specify if.gif is proper extension;
* ALSO: if you do change the extension, don't forget the period -ie. *.jpg:
:

* Simply list the images according to the format laid out. Remember that the filename
* is determined by the name in the list in this way:
:

* If my string is “IMAGE BLUE.IMAGE RED the images that must exist (ie. will be
* requested by the function) will be
IMAGE BLUE O, IMAGE BLUE 1,IMAGE RED 0,IMAGE RED 1:
* O will be the default(not on) image; 1 will be the active(on) image on

rollower.
:

If these are the items within the popup (4th gen only)
var POP ITEMS = new Array(personalize, contact, help, info);
var POP WIDTH = 96; // width of pop-up graphics
var POP HEIGHT = 18; // height of pop-up graphics

0106 gen functions.js functions defined in the listings contained within this Section
- of the instant patent document. For example, the function

0107 The following gen functions.js listing/file contains getName(. . .) is used to obtain a window module's name
general functions that are referenced and used by the other from System variables.

s var fullFile = * :
var this MOD = * :
var objREF = :
var M = * :
var OBJ = * :
f:
* flip Image()
* does image flipping based on PRELOADED array set in preloader.js
*/

function flipImage(thismage,this.State)
{

status = thismage + - + this.State;

f:
* setVisibility.()
* goes through all objects and sets their visibility
*/

function setVisibility.()
{

for(x=0; x < MODULE NAMES..length; x++)
{

if(getModuleInfo(open, MODULE NAMES x))
{

top.frames OshowHide(MODULE NAMESx,0);

return;

f:
* getName(module name)
* returns the real name of the module in CAPS
:

US 2003/0208491 A1 Nov. 6, 2003
18

-continued

function getName(name)
{

var nn = name.Substring(3,name.length);
return (nn.toUpperCase());

f:
* popAlert(string)
* simply pops an alert containing string
:

*/
function popAlert(sendThis)

{
alert(sendThis);

makeSpacer(width.height)
call this to place a spacer graphic (ie. a transparent image that
is set by the width & & height values specified.

*/
function makeSpacer(thisWidth,this.Height)

{
var this.Spacer = :
this.Spacer = (<img src=" + DEFAULT IMAGE PATH + SPACER + width = +

thisWidth + height = + this Height + >);
return (this Spacer);

f:
* getModuleInfo(propertyName,MODname)
* returns boolean reflecting the truth of propertyName in MODname
:

*/
function getModuleInfopropertyName,MODname)

{
if(propertyName == 'open) { return(MODULESMODname).Open == 1); }

if(propertyName == maximized) { return (MODULESIMODname. Maximized == 1);

f:
* fetchFile(thisFilename, module name)
* loads an external file;
* if a 4th gen browser, switches layer without
* page refreshing.

function fetchFile(thisFilename.md)
{

fullFile = (“fetchFile.php3?fileName=' + thisFilename);
if(IS4) // if not 4th gen, nothing for now

{
top.frames O.location.href= fullFile;
return;

if(IIS DRAGGABLE) // if we arent loading into module window

top.frames Oscroll (0,0); // reset to top
if(thisFilename) // if no thisFilename, then hiding

{
(N4) top.frames O.document.output.visibility = hide :

top.frames O.documentall.Eoutput.style.visibility = hidden;
top.FILEOPEN = 0; // flag no file
return;

if(N4)
{

top.frames O.document.output.visibility = show:
top.frames O.document.output.src = fullFile;

else

top.frames O.document.all.loaderstyle.visibility =
visible:

top.frames O.document.all.EOutput.style.visibility =
visible:

top.frames O.documentall.EOutput.src = fullFile;

top.FILEOPEN = 1; II flag open file

US 2003/0208491 A1
19

-continued

else // if a draggable interface, load into sent module window.

// wrap output in a holding table -formatting reasons only
thisFilename = (<table cellpadding=2 cellspacing=0

border=0><trictd valign=tops + thisFilename + TABLE CLOSE TABLE);
frames O.documentallmdinnerHTML = (doControllBar(md,1) +

thisFilename);

0108 preloader.js
0109 The following preloader.js listing/file is a general
purpose image pre-loader routine that Stores rollover
image information for various buttons, etc. within a win
dows based CME provided in accordance with the present
invention.

f:
* preloader

loads all rollover images. Will load based on a filenameboolean idea, ie.
image 0.image 1 is base image (no rollover), and rollover image (image on).

reads the array LOAD STRING in var delarations.js and preloads all the indicated
images as per above.

ps essess
* <<<<<<<<<<<<<<< IMPORTANT sessssssssssssssss
:

* ALL OF THE INFORMATION RELATING TO WHICH IMAGES WILL BE LOADED,
* ALONG WITH INSTRUCTIONS ON HOW TO DO FILL LOAD STRING ARE FOUND IN
* THE INCLUDED FILE var declarations.js;
:

* DO NOT MODIFY THIS FILE

if(document.images) if only runs on browsers that support image object
{
var currentPosition = 0; // pointer to current position in current LOAD STRING;
var currentCharacter = ; // keeps current character (char at currentPosition);
var currentLoadString = 0; if which string we are on;
var preloadTrack = 0; if keep track of how many elements are to be preloaded;
var currentExtension = .gif; // default; can be altered in strings;
var currentPath = DEFAULT IMAGE PATH; // default; can be altered in strings;
var firstCharacter = ; // will be the first character in string when preloading
war currentElement = ; // will be used to store the active element in PRELOAD;
var currentImageLocation = * : If the src for PRELOADED IMAGES array;
var PRELOADED IMAGES = new Array(); // will be what image calls will reference;
ff will be multidimensional
(PRELOADED IMAGES name on/off);
var OnoffTrack = 0; If used to flip between on/off image values when preloading:
var PRELOADED = new Array();
// store the length of total LOAD STRING(s)
var numberOfLoadStrings = LOAD STRING.length;

f:
* the following construct will go through all LOAD STRING(s) and split out on
* commas. What we will end up with is PRELOADED filled with all distinct
* elements contained in the various LOAD STRING(s). These are either path sets,
* or image extensions sets, or image names to preload (most often image names).
:

* These will then be sorted through, targeted, and sourced.
:

*/
for(currentLoadString=0; currentLoadString < numberOfLoadStrings; currentLoadString++)

PRELOADEDpreloadTrack = ; // initialize so we can build the string
If determine the length of the current string
var currentString Length = LOAD STRINGcurrentLoadString-length;

:

Nov. 6, 2003

US 2003/0208491 A1
20

-continued

for(currentPosition=0; currentPosition < currentString Length; currentPosition++)

If start splitting up the strings by commas;
If (would use split(), but that is not backwards-compatible)

If get the current character
currentCharacter = LOAD STRINGcurrentLoadString charat(currentPosition);

ff check if this is a comma;
// if it is, increment the key index for PRELOADED to store new element.
if(currentCharacter == ,)

preloadTrack----,
PRELOADEDpreloadTrack) = * :

else // if it isn't a comma, continue to build the element string.

PRELOADED preloadTrack += currentCharacter;

// since the last key in PRELOADED does not end with a comma, if we don't
ff increment the key the next image name will be appended to last key

value

f:
* now go through all elements and preload.

* will store in PRELOADED IMAGES name on/off
:

*/
for(xx=0; xx < PRELOADED.length: XX++)

preloadTrack----,

If get the current element
currentElement = PRELOADEDxx;

If get the first character of the element;
If essentially checking for ()|(-)

firstCharacter = currentElement.charat(0);
if(firstcharacter == ~) If path switch?

{
ff if path, then get the full path minus first character
currentPath = currentElement. Substring(1,currentElement.length);

else if(firstCharacter == **) // extension switch?

currentFxtension =
currentElement.Substring(1,currentElement.length);

else

* now build the preloaded array;
* get currentPath + currentElement + on/off setting +

f:

currentBxtension
* and attribute that image to

PRELOADED IMAGES currentElement (O1).src
*/

PRELOADED IMAGES currentElement = new Array();
for(onoffTrack = 0; onoffTrack <= 1; onoffTrack++)

currentImageLocation = (currentPath + currentElement
& + + onoffTrack + currentExtension);

PRELOADED IMAGES currentElementonoffTrack = new
Image();

PRELOADED IMAGES currentElementonoffTracksrc =
currentImageLocation;

If turn this on to watch preloading
information as it is being stored;

// alert(currentElement + OnoffTrack + --
+ currentImageLocation);

If end document.images check

Nov. 6, 2003

US 2003/0208491 A1 Nov. 6, 2003
21

0110 nav buttons.js
0111) The following nav buttons.js listing/file creates
navigation buttons which may be used to control general
aspects of a web site that is windowS based in accordance
with the present invention and which may be take the form
of the set of environment controls 210 shown in FIG. 2A.

f:
* header section info

* defines the default help/change/info buttons used in navButtons()
*/

var NAV HELP = (<img src=
NAV BUTTONS PATH + help.gif hspace=1 border=0><?as);
var NAV CHANGE = (<img src=
NAV. BUTTONS PATH + change.gif hspace=1 border=0></as);
var NAV INFO = (<img src=
NAV BUTTONS PATH + info.gif hspace=1 border=0><?as);
function navButtons()

var tempName = * :
war finalNavs = :

--

--

--

var maxNavButtons = 12; // max buttons per row (including numCien Buttons)
final Navs += (NAV CHANGE + NAV HELP + NAV INFO); // add in general nav functions
If go through all modules and set their buttons
for(x=0; x < MODULE NAMES..length; x++)

if(((x % maxNavButtons) == 0) && (x = 0)) // break row if more than 12

finalNavs += </tdd <?tro-treatd align=right valign=top>;
}

tempName = MODULE NAMES x:
If establish mouseOut and mouseOver strings;
If sends top.flipImage(imagename, state, frame);
If (image name, on or off, which frame it is located in)
var mCVER = (top.flipImage(\' + tempName + \,,1,0); return true;);

var mCUT = (top.flipImage(\' + tempName + \,,1,0); return true;);
var realName = getName(tempName); // used for ALT

// write the image and href info
finalNavs += (<a href="javascript:handle Module(\'show\,\ + tempName +

\")" onMouseOver='' - mC)VER - onMouseOut='' - moT -- * >

<img src=" + NAV BUTTONS PATH
+ tempName + O.gif border=0 name="
+ '></as);

+ tempName + Nav’ hspace=1 alt="OPEN + realName

finalNavs +=
:
ff write output
finalNavs += <img src="images/blackbit.gif width=100 height=20

name="navTexts.
:
return (final Navs);

function navFunctions(thisFunc)

alert(this Func);
return;

0112 module draw.js

0113. The following module draw.js listing/file is used to
cause rendering and layout of window modules (windows)
within a WWW browser client CME by content rendering
and layout modules of the Same.

US 2003/0208491 A1
22

f: 8 + 3 + 3 +
* VARIOUS ROUTINES AND FUNCTIONS TO HANDLE THE DRAWING OF MODULES *
* AND STORING MODULE OBJECT INFORMATION :

var currentName = ; // used when initializing table contents
var currentContent = ; // string that is built to output to modules
var numberOfModules.InColumn = 0; if set when writing column data
var styleSet = : If set when using draggable interface; empty if not
var containerSize = * : If set when setting containing table
var controlbarOut = ; // set by doControllBar() to contain control bar info 4 modules
var IS DRAGGABLE = (IE4) 21:0;
f:
* simply get the number of modules per row, and
* initialize columnTrack first dim;
* 2nd dimension incremented and filled later.
:

*/
var columniTrack = new Array(); // array to hold column contents
for(x=0; x < MODULES PER ROW: x++) || < since numMod’s starts counting at 1

columniTrackx = new Array();

var currentColumn = 0; if initialize column we are writing to
f: 8 + 3 + 3 +
* The following goes through all the object names and sorts them :
* into columns based on TOTAL MODULE COUNT :
* We end up with columniTrack column numberOfModules InColumn *
8 : */

for(var currentObject=0; currentObject < TOTAL MODULE COUNT currentObject++)
{

currentName = MODULE NAMES currentObject; // get latest module name
if(currentObject && (currentObject % MODULES PER ROW) == 0).)

{
ff this runs whenever max column is reached;

// if at end (%MODULES PER ROW), reset to 0
currentColumn = 0;

f* The following handles the array indexing when adding a new
* module to a column. First it checks to see if any modules
* have been added to the column (undefined if not); if there
are existing modules, simply set numberOfModules.InColumn to
the length of the array (which is 1 higher than last index),
and that becomes the array index for the new entry;
if not, then set the index to Zero(0))
*/

numberOfModules.InColumn = (columniTrackcurrentColumn IOI) 2
columniTrackcurrentColumn-length : 0;

ff store the module name
columniTrackcurrentColumn numberOfModules InColumn = currentName:

If set the module's Column property
MODULES currentName.Column = currentColumn;
// set the module’s Row property
MODULES currentName. Row = numberOfModules.InColumn:

currentColumn-+: If keeping track of which column we are in

f:
* this loop will tell you final layout information;
* enable it to receive (in alerts) a column-by-column list of
* the object names that have been sorted into those columns
* on initialization (into columnTrack):
* ie. O:O MOD news: 0:1 MOD news: ... 3:2 MOD whatever;
:

Good point to check what's going on in case of bugs.

for(y=0; y < MODULES PER ROW: y++)
{

for(z=0; z < columniTracky-length; Z++)

alert(y + : + z + = + columniTracky ZI);

*/
function drawModules InTables()

{
// NOTE THAT THESE TABLE SETUP DEFINITIONS ONLY APPLY TO

Nov. 6, 2003

US 2003/0208491 A1 Nov. 6, 2003
23

-continued

// TILED VERSION: DRAGGABLE VERSION SETS ITS OWN CONTAINER LATER VIA var styleSet
var tableSetup = (<table cellpadding= + MODULE CELL PADDING + cellspacing= +

MODULE CELL SPACING + width=100% border=0>);
// initial(the left and right tables) TD setup
var initTD = (<td valign=top width=+ DEFAULT MODULE WIDTH + “%>);

// fat(center) TD setup
var fatTD = (<td valign=top>);
var moduleString = ; // clear it
with(top.frames O.document) i? set ref to main window for output

{
If set the holding table;

If draggable interface sets size to about 90%;
If regular goes 100%

moduleString = (IS DRAGGABLE) : (tableSetup + TABLE TR);
writeln(modulestring); modulestring = ;

If go column by column and list all items in that column
for(var thisColumn=0; thisColumn < MODULES PER ROW; thisColumn++)

// following does the <tdd </tdd functions based on which
If column were on...if draggable interface, this is
If ignored just as above

if(IIS DRAGGABLE)

If if one of the columns on the ends
if(thisColumn == 0) || (thisColumn == (MODULES PER ROW -1)))

else if if one of the central columns

writeln(fatTD);

If now go down the current column and write all the modules
ff in order for that column

for(var thisKey=0; thisKey < columniTrack this Column-length; thisKey++)

// NOTE: currentName is being reused here
currentName = columnTrack thisColumn thisKey:

If gets the objects Text value (a string containing all

writeln(initTD);

content)
If and builds it into the string. then writes to screen.

writeln(getModulecontents(currentName) + NEWLINE + NEWLINE);
If clear them up so we don't have it sitting around in

memory
currentContent = :
controlbarCut = :

If close the current column if not draggable
if(IIS DRAGGABLE) { writeln(TABLE CLOSE TD) };

If close the holding table if this is not a draggable interface
moduleString += (IS DRAGGABLE) : (TABLE CLOSE TR + TABLE CLOSE +

NEWLINE);
writeln(moduleString);

& 2. moduleString = :

return;

f: 8 + 8
* end drawModules InTables() standard layout function *
8 : */

f: 8 + 8
* end module container setup functions :

f: 8 + 8
* getModuleContents (module name)
* Constructs the entire contents for a module:
* when called, it constructs a string (currentContent)
and returns it;
the same for floating or fixed modules, since
it is only the positioning of the holding
table that changes, not the layout :

function getModule(Contents(thisName)

US 2003/0208491 A1 Nov. 6, 2003
24

-continued

// this turns off further ouput in tiled version
if(IIS DRAGGABLE)

if (!getModuleInfoCopen,thisName)) { return (); }

If set the proper container for draggable items
if(IS DRAGGABLE && top.IE4)

{
styleSet = 'STYLE=\"position:absolute; top: + MODULES thisName.Yposition + :

left: + MODULES thisName.Xposition + ; overflow:auto; border: 3 solid black;
background:#ff0f0:\' :

OPEN MOD = (<SPAN ID=* + thisName + + styleSet + 's');
currentContent += (NEWLINE + OPEN MOD); II set the div ID

If start the border table for non-draggable interface;
If essentially a relative table with cellpadding of 2 to create
// a 2 pixel black border around the content of the module
if(IIS DRAGGABLE)

currentContent += (TABLE STANDARD + TABLE TR + TABLE TD BLACK);

If run the function to create the control bar for modules
currentContent += (doControllBar(thisName));
f:

* now checking if module is minimized or maximized;
* if window isn't maximized, just return the header-bar table;
* only for non-draggable, tiled version
*/

if(IIS DRAGGABLE)
{

if(getModuleInfo(maximized,thisName)) // end if not maximized
{

If add a spacer to separate this module from any below it;
// close holding table first

currentContent += (TABLE CLOSE TABLE +
makeSpacer(100,MODULE CELL SPACING) + LINEBREAK+ CLOSE MOD);

return (currentContent);

// now set the nested table that will output the content
currentContent += (TABLE STANDARD + TABLE TR + -td bgcolor= +

DEFAULT MODULE BGCOLOR + 2 + NEWLINE);
f: 8 +

* BEGIN THE MODULE CONTENTS HTML OUTPUT HERE *
::

*/
currentContent += MODULE FONT if standard font set

f: 8 + 888
* inserting the contents of this objects Text string, which is :
* the entire html code for that module, is an object variable :
8 * : */

currentContent += (MODULES thisNameText);
If close the nested content table
currentContent += (MODULE CLOSE FONT + TABLE CLOSE TABLE + NEWLINE);
if(IIS DRAGGABLE) i? close the border table for tiled version

currentContent += TABLE CLOSE TABLE:

If close the MODULE
currentContent += (CLOSE MOD + NEWLINE);
If add a spacer to separate this module from any below it

currentContent += (makeSpacer(100,MODULE CELL SPACING) + LINEBREAK);
If return the whole module contents
return (currentContent);

f: 8 + 8
* the function that appends to currentContent all information for the *
* control bar on top of modules (ie. the black bar with the title :
* and navigation buttons on top of the modules); if called on its :
* Own, you can output currentContent and get its results :

function doControllBar(barName)

controlbarCut = ; if make sure its clear
controlbarOut += (<table cellpadding=0 cellspacing=O border=0 width=100%s +

US 2003/0208491 A1 Nov. 6, 2003
26

-continued

// exit if isn't a proper MODULE layer a sizeable image
if((elementID.tagName = 'SPAN) &&. (elementID.className = top. SIZEABLE CLASS))

return;

dir = getDirection (elementID);
if (dir == ") return;
theobject = new Object(); // setup up a namespace
theobject.elementID = elementID;
theobject.dir = dir;
theobject grabX = window.event.clientX;
theobject.graby = window.event.clientY:
theobject,width = elementID.offsetWidth:
theobject.height = elementID.offsetHeight;
theobject.left = elementID.offsetLeft;
theobject.top = elementID.offsetTop;
window.event.returnValue = false;
window.event.cancel Bubble = true:

function doUp()

if (theobject = null) i? clear any existing object

function doMove()

theobject = null;

xMin = top.MODULE MIN X:
yMin = top.MODULE MIN Y:

elementID = event.srcElement:
cursorType = “: If set default
if(elementID.tagName == SPAN)

{
cursorType = getDirection (elementID); II get direction info
ff set cursor

if(cursorType == “”) { cursorType = “default: }
else cursorType += *-resize; If the resize direction

elementID.style.cursor = cursorType: If set the cursor
f/Dragging starts here

if(theobject = null) // if there is still an active object

If check if we're mousing over the currently open module (ie. lastModule);
f, also check if this is a valid module:

ff if so, don't change z-index; if new module, then update Z-index
if(((theobject.elementID.id l= lastModule) (lastModule)) &&.

(theobject.elementID.id = .))

setzIndex(theobject.elementID.id);
lastModule = theobject.elementID.id; // store current

if (dirindexOf("e") = -1)
{

theobject.elementID.style.width = Math.max(xMin, theobject,width +
window.event.clientX -theobject.grabx);

if (dir.indexOf(“s') = -1)
{

theobject.elementID.style.height = Math.max(yMin, theobject...height
+ window.event.clientY -theobject.graby);

if (dirindexOf(“w”) = -1)
{

theobject.elementID.style.left = Math.min (theobject.left +
window.event.clientX - theobject. grabx, theobject.left + theobject,width - xMin);

theobject.elementID.style.width = Math.max(xMin, theobject,width -
window.event.clientX + theobject. grabX);

If checking for n resize && cutting off sizing past top header
if((dir.indexOf(“n”) = -1) && (window.event.clientY >

top.SCREEN TOP OFFSET))
{

theobject.elementID.style.top = Math.min (theobject.top +
window.event.clientY - theobject graby, theobject. top + theobject.height - yMin);

US 2003/0208491 A1

-continued

Nov. 6, 2003
27

theobject.elementID.style.height = Math.max(yMin, theobject...height
- window.event.clientY + theobject.graby);

window.event.return Value = false;
window.event.cancel Bubble = true:

0116. The listings/files discussed above include various
files which are used to create and allow manipulation of
pop-up window modules and layers. Two main listingS/files
(javaScript files) that are used to deliver Such functionality:
popS.js and pop functions.js. Such javascript files are
included in main New.html which was discussed above.
Additionally, a function contained in the dédjS javaScript
file (discussed above) handles an initial doubleclick opera
tion that initiates a pop-up window module, layer, etc.
("pop-ups). That additional function is referred to as “pop
Menu().”
0117. In creating a pop-up, a content layer is first created
to contain buttons which link to various functions/options/
services (e.g., MCs) within a windows based web site which
is manifested within a CME. The content of the first pop-up
layer, are labels like INFO, CONTACT, PERSONAL
IZE. The pop-up layer is actually created by calling a
function contained in the pop.js file. In particular, the dopop(
) function is executed. The doPop() function is called from
mainNew.html in the following manner: document.writen
(top.doPop()). Once doPop() executes, all the necessary
HTML to draw the aforementioned buttons and handle
mouse type clicks associated with the buttons within the
pop-up window is created.
0118. The CSS properties of the created pop-up are set in
the following way: #popper position:absolute; width:96;

Z-index: 101; visibility:hidden;}. Such an instruction initial
izes the pop-up layer and Sets its visibility to hidden-e.g.,
the layer is invisible initially.

0119) The second step is the handling of the layer. This
entails dealing with users clicking on the generated control
buttons (e.g., MCs). Button clicks are handled by the func
tions outlined in pop functions.js. In particular, a function
“checkPopper()” is called by another function “popMenu.(
)” to retrieve all information concerning where the user has
clicked on a web page within the active CME and where to
display the pop-up. Once checkPopper() has run, popMenu
then makes the pop-up visible and positions it in the proper
place based on the variables Set by checkPopper().
0120) The second function in the javascript file pop func
tions.js is “checkHide()”. Function checkHide() is called by
the engage() function in the déd.js javaScript file. Function
engage() is activated whenever a user performs a single
click on a windows based web site presented within an
active CME. The first thing done by engage() is to execute
function checkHide(). Function checkHide() checks the
position of the click if the click is outside the box bounded
by the pop-up layer, the pop-up is hidden and Vice-versa.

0121 Based on the foregoing comments, the following
paragraphs discuss the listings/files for pop functions.js,
popS.js, and positioning functions.jS.

var eButt = : If set to mousebutton value (left, right)
var eName = * : If set to name of element (image) clicked on
war eX = ; if the mouse X
war eY = * : If the mouse Y
var eScrollTop = 0; // vertical scroll offset
popRef= : If set to popper's document reference
var has Appeared = 0; If flagged when popper open/closed
var edgeFactor = 40; // pop-up offset from bottom/right edge
var popWidth = top. POP WIDTH; // width of pop-up buttons
If determine pop-up height (== element height number of elements)
var popHeight = top.POP HEIGHT * top.POP ITEMS.length;

* These functions handle the pop-up;
* are called on window events - specifically
* doubleclick (

*/
function checkHide(e)

if(top.IE4) { e = window.event; }
checkPopper(e);
if(top.N4 && (has.Appeared == 1)) // check position for netcape

if ((eX < popRefleft) ||
(eX > popRefleft + popWidth)
(eY < popReftop)|

(eY > popReftop + popHeight))

popRefvisibility = (top.IE4) hidden : “hide; // hide layer

US 2003/0208491 A1 Nov. 6, 2003
29

-continued

var MODcolumniMAX = 0;
var currRowTemp = 0;
war eee = * :
If getRef(rname)
If returns a browser specific module reference
function getRef (rname)

If simply reloads the interface;
If used for non-draggable interface changes
function pageRefresh ()

return (top.IE4) document.all Irname.style : document.layersrname);

self.location.href= main New.html:
return;

If function that handles hide/show of modules in draggable environment.
If usese top...EV array to give browser specific settings
function showilide (mname, type, procedure)

{
eee = getRet(mname); // get obj ref

eee.visibility = (top.IE4) top...EV type: top.Nvtype: If set it based on type(0/1)
if (procedure = sizing)

{
eee-pixelTop = 110;
eee-pixel Left = 10;

If function to reposition modules in column (tiled) format;
If only runs on tiled environment;
// sends a module to either the top or bottom of the stack
ff based on direction.
function reposition(this MOD, direction)

{
MODcolumn = top.MODULES thisMoD). Column; // current column
MODcolumnMAX = top.columnTrackMODcolumn. length - 1; // max row
currRow = top.MODULESI this MOD. Row; // current row
limiter = (direction == 1)? MODcolumnMAX: 0; if set target position (bottom or

top)
dirpointer = (direction == 1)? 1 : -1; II set direction (down or up)

if(currRow = limiter) || don’t run if already at limit
{

II begin shifting modules
while(currRow = limiter)

{
If get next position

var nextRow = currRow + dirpointer;
If set new displaced columniTrack names
top. columnTrack MODcolumn currRowl =

top. columnTrack MODcolunm nextRow:
// reset Row property of moved MOD
top . MODULES top.columnTrack MODcolumn currRow. Row = currRow;
currRow += dirPointer; // set next position and move on.

// set sent MOD to limiter position
top.columnTrack MODcolumn limiter = this MOD;

// now reset the Row property of sent MOD
top.MODULEStopcolumnTrackMODcolumn limiter. Row = limiter;

return;

function handleModule (thisACTION, MOD)

ff if a draggable interface, on any action related to a module
ff make sure that module is on top
if (top. IS DRAGGABLE)

setz.Index(MOD);

else if only run this for non draggable environment
{

If clear any loaded content (fetchfie with no values clears)
top.fetchFile();

var MM = top.MODULESIMOD. Maximized;
var OO = top.MODULESMOD Open;

if(thisACTION == reduce) && MM) || minimize

US 2003/0208491 A1

-continued

top.MODULESIMOD.Maximized = 0;
reposition(MOD, 1);
pageRefresh();
if((thisACTION == expand) && MM) // maximize

{
top.MODOLESIMOD.Maximized = 1;

// reposition (MOD, O)

30
Nov. 6, 2003

pageRefresh();

insaction == close) // close
{ top.MODULESMOD Open = 0;

if(top.IS DRAGGABLE) // if a draggable layer, don’t refresh just hide

{ showHide(MOD,0);

else pageRefresh (); }

if((thisACTION == "show) && OO) // open (also sets to maximized on open)

If set module object settings
top.MODULESMOD Open = 1;

top.MODULESIMOD. Maximized = 1;
if(top.IS DRAGGABLE) // if a draggable layer, don’t refresh just show

reposition(MOD,0); // update the column listings

{
showHide(MOD,1);

else
{

pageRefresh();

0.124 Referring again to FIG. 4, processing proceeds
after step S4-3 to step S4-4. At step S4-4, HTML and other
related files are made available for Service via an electronic
data network Such as the Internet and World Wide Web. In
particular, the javaScript file containing window module
Setup routines (module setup.js as described above) along
with the other files and functions listed above are made
available for service from a server side system such as SVR
system 102 to any number of client systems like or similar
to client system 108. The service of files via the Internet and
WWW such as via a WEBSERVER software package will
be immediately understood by those skilled in the art.
0.125 Processing ends at step S4-6.
0126 Referring now to FIGS. 5A and 5B, depicted
therein is a flowchart that illustrates a process to facilitate
window type operations within a WWW browser client
CME. In particular, processing Starts at Step S5-1 and
immediately proceeds to step S5-2.
0127. At step S5-2, a user may start a WWW browser
client within a personal data processing System Such as
within system 108. That is, a WWW browser client is loaded
into a processing Space within a personal data processing
System and executed accordingly.
0128. Next, the WWW browser client provides a CME
environment within a browser display window and Starts
appropriate content rendering and layout models.
0129. Next, at step S5-4, the user specifies a WWW web

Site uniform resource locator (URL-e.g., http://www.win
dows-website.com) from which to receive content (e.g.,
www.windows-website.com).

0130. Next, at step S5-5, the WWW browser client
accesses a network connection and the Specified web site
and receives windowed content including object instructions
and content Streams (e.g., Such as those from news fees,
Stock feeds, other dynamic Source, etc.) or related URLs, if
any.

0131) Next, at step S5-6, the WWW browser client mani
fests and causes display of received window content, HTML
etc. Such as via dynamic (changing) display within a par
ticular window module. Alternatively, depending on the
implementation of a windows based CME that is actually
developed and implemented in accordance with the present
invention, content Such as that received via a content Stream
may be displayed in an FSR, a layer, etc. within a CME.
0132) Processing proceeds at the top of FIG. 5B.
0.133 At step S5-7, the user is permitted to alter window
module States (e.g., Size of a window, position of a window,
minimization, maximization, etc.) within a CME of a WWW
browser client without necessarily requiring Screen refresh
(e.g., is permitted to affect window module minimization,
maximization, movement, resizing, etc.).
0134) Next, at step S5-8, window content streams may be
updated So that dynamic content may be displayed within
window modules provided by the present invention.
0135) Processing ends at step S5-9.
0.136 Thus, having fully described the present invention
by way of example with reference to attached drawing
figures, it will be readily appreciated that many changes and

US 2003/0208491 A1

modifications may be made to the invention and to any of the
exemplary embodiments shown and/or described herein
without departing from the Spirit or Scope of the invention,
which is defined in the appended claims.
What is claimed is:

1. A System for facilitating a windowed content manifes
tation environment within a web browser, comprising:

a Server System configured to transmit a Software System
and associated content via an electronic data network;
and

a web browser client operating within a data processing
System that is coupled to Said Server System via the
electronic data network and having a content manifes
tation environment, Said web browser client operative
to receive Said Software System and Said asSociated
content via Said Server System, to proceSS Said Software
System and Said associated content to produce at least
one window object within Said content manifestation
environment, Said at least one window object associ
ated with a set of controllable attributes and configured
to manifest at least a portion of Said associated content
therein, Said controllable attributes configured to affect
manifestation of Said at least one window object by Said
web browser client within said content manifestation
environment.

2. The System according to claim 1, wherein Said at least
one window object executes within said web browser client
which operates within Said data processing System.

3. The System according to claim 1, wherein Said at least
one window object is derived based on instructions pro
cessed by said web browser client.

4. The System according to claim 1, wherein Said asSoci
ated content includes at least one address of a network
content Source that is configured to download information to
Said data processing System via Said electronic data network,
Said information to be manifested within Said at least one
window within Said content manifestation environment.

5. The System according to claim 1, wherein Said asSoci
ated content includes at least one address of a network
content Source that is configured to download information to
Said data processing System via Said electronic data network,
Said information to be dynamically and continuously mani
fested within said at least one window object within said
content manifestation environment.

6. The System according to claim 1, wherein Said asSoci
ated content includes at least one address of a network
content Source that is configured to download information to
Said data processing System via Said electronic data network,
Said information to be dynamically and continuously mani
fested within said at least one window object within said
content manifestation environment without requiring Said
content manifestation environment to be refreshed within
said web browser client.

7. The System according to claim 1, wherein Said con
trollable attributes associated with said at least one window
object permit Said at least one window object to be moved
within Said content manifestation environment.

8. The System according to claim 1, wherein Said con
trollable attributes associated with said at least one window
object permit Said at least one window object to be resized
within Said content manifestation environment.

9. The System according to claim 1, wherein Said con
trollable attributes associated with said at least one window

Nov. 6, 2003

object permit said at least one window object to be mini
mized within Said content manifestation environment.

10. The System according to claim 1, wherein Said con
trollable attributes associated with said at least one window
object permit said at least one window object to be maxi
mized within Said content manifestation environment.

11. The System according to claim 1, wherein the elec
tronic data network is the Internet.

12. The System according to claim 1, wherein Said at least
one window object is a tiled window object.

13. The System according to claim 1, wherein Said at least
one window object is a draggable window object.

14. A network client configured to operate within a data
processing System and to receive content from a remote
Server System to facilitate a windowed content manifestation
environment, comprising:

a content retrieval module configured to receive content
from a network Server System via an electronic data
network, and

a processing engine coupled to Said content retrieval
module configured to operate a content manifestation
environment within the data processing System, to
process Said content to produce at least one window
object within Said content manifestation environment,
Said at least one window object configured to manifest
at least a portion of Said content therein.

15. The network client according to claim 14, wherein
Said processing engine being further configured to process
Said content to produce a control Section and a content
display Section within said at least one window object, Said
content display Section configured to at least a portion of
Said content therein, Said control Section including a set of
controls corresponding to a Set of attributes which operate to
affect manifestation of Said at least one window object and
at least a portion of Said content within Said content display
Section.

16. The network client according to claim 14, wherein
Said content retrieval module and Said processing engine are
implemented as Sets of computer Software objects.

17. The network client according to claim 14, wherein
Said content manifestation environment generated by Said
processing engine is a WWW browser window.

18. The network client according to claim 14, wherein
Said content retrieval module is configured to receive Said
content via the Internet.

19. A method for facilitating a windowed content mani
festation environment within a web browser, comprising the
Steps of

transmitting a Software System and associated content via
an electronic data network from a Server System;

operating a web browser client within a data processing
System that is coupled to Said Server System at least in
part via Said electronic data network;

initiating a content manifestation environment within Said
web browser client;

receiving Said Software System and Said associated con
tent via Said Server System;

processing Said Software System and Said associated con
tent to produce at least one window object within Said
content manifestation environment, Said at least one
window object associated with a set of controllable

US 2003/0208491 A1

attributes and configured to manifest at least a portion
of Said associated content therein, Said controllable
attributes configured to affect manifestation of Said at
least one window object by said web browser client
within Said content manifestation environment.

20. The method according to claim 19, wherein said at
least one window object executes within said web browser
client which operates within Said data processing System.

21. The method according to claim 19, wherein said at
least one window object is derived based on instructions
processed by said web browser client.

22. The method according to claim 19, wherein said
asSociated content includes at least one address of a network
content Source that is configured to download information to
Said data processing System via Said electronic data network,
Said information to be manifested within Said at least one
window object within Said content manifestation environ
ment.

23. The method according to claim 19, wherein said
asSociated content includes at least one address of a network
content Source that is configured to download information to
Said data processing System via Said electronic data network,
Said information to be dynamically and continuously mani
fested within said at least one window object within said
content manifestation environment.

24. The method according to claim 19, wherein said
asSociated content includes at least one address of a network
content Source that is configured to download information to
Said data processing System via Said electronic data network,
Said information to be dynamically and continuously mani
fested within said at least one window object within said
content manifestation environment without requiring Said
content manifestation environment to be refreshed within
said web browser client.

25. The method according to claim 19, wherein said
controllable attributes associated with Said at least one
window object permit Said at least one window object to be
moved within Said content manifestation environment.

26. The method according to claim 19, wherein said
controllable attributes associated with Said at least one
window object permit Said at least one window object to be
resized within Said content manifestation environment.

27. The method according to claim 19, wherein said
controllable attributes associated with Said at least one
window object permit Said at least one window object to be
minimized within Said content manifestation environment.

28. The method according to claim 19, wherein said
controllable attributes associated with Said at least one
window object permitting Said at least one window object to
be maximized within Said content manifestation environ
ment.

29. The method according to claim 19, wherein said
electronic data network is the Internet.

30. A network client configured to operate within a data
processing System and to receive content from a remote
Server System to facilitate a windowed content manifestation
environment therein, comprising:

a content retrieval module configured to receive content
from a network Server System via an electronic data
network, and

a processing engine coupled to Said content retrieval
module configured to instantiate a content manifesta
tion environment within the data processing System, to

32
Nov. 6, 2003

process Said content to produce at least one window
object within Said content manifestation environment,
Said at least one window object associated with a set of
controllable attributes and configured to manifest at
least a portion of Said associated content therein, Said
controllable attributes configured to affect manifesta
tion of said at least one window object by said the
network client within Said content manifestation envi
rOnment.

31. The network client according to claim 30, wherein
Said at least one window object executes within the network
client.

32. The network client according to claim 30, wherein
Said at least one window object is derived based on instruc
tions processed by Said processing engine.

33. The network client according to claim 30, wherein
Said asSociated content includes at least one address of a
network content Source that is configured to download
information to Said data processing System via Said elec
tronic data network, Said information to be manifested
within Said at least one window within Said content mani
festation environment.

34. The network client according to claim 30, wherein
Said asSociated content includes at least one address of a
network content Source that is configured to download
information to Said data processing System via Said elec
tronic data network, Said information to be dynamically and
continuously manifested within Said at least one window
object within Said content manifestation environment.

35. The network client according to claim 30, wherein
said associated content includes at least one address of a
network content Source that is configured to download
information to Said data processing System via Said elec
tronic data network, Said information to be dynamically and
continuously manifested within Said at least one window
object within Said content manifestation environment with
out requiring Said content manifestation environment to be
refreshed within the network client.

36. The network client according to claim 30, wherein
Said controllable attributes associated with Said at least one
window object permit Said at least one window object to be
moved within Said content manifestation environment.

37. The network client according to claim 30, wherein
Said controllable attributes associated with Said at least one
window object permit Said at least one window object to be
resized within Said content manifestation environment.

38. The network client according to claim 30, wherein
Said controllable attributes associated with Said at least one
window object permit Said at least one window object to be
minimized within Said content manifestation environment.

39. The network client according to claim 30, wherein
Said controllable attributes associated with Said at least one
window object permit Said at least one window object to be
maximized within Said content manifestation environment.

40. A Software system configured to be downloaded by a
network Server System to a client System via an electronic
data network and to control the operation of the network
clients, comprising:

an instruction package including instructions be pro
cessed by a web browser client running within the
client System and to control Said web browser client to
generate a windowed content manifestation environ
ment therein and to produce at least one window object
within Said content manifestation environment, Said at

US 2003/0208491 A1

least one window object associated with a set of
controllable attributes and configured to manifest con
tent therein, Said controllable attributes configured to
affect manifestation of Said at least one window object
by said web browser client within said content mani
festation environment.

41. The software system according to claim 40, wherein
Said instruction package controls Said web browser client to
allow a content Stream received by the client System via the
electronic data network to be manifested within Said at least
one window object within Said content manifestation envi
ronment without causing Said content manifestation envi
ronment to be refreshed.

42. The Software System according to claim 40, wherein
Said instruction package controls Said web browser client to
allow a content Stream received by Said client System via the
electronic data network to be manifested within Said at least
one window object within Said content manifestation envi
ronment without causing Said content manifestation envi
ronment to be refreshed.

33
Nov. 6, 2003

43. The Software system according to claim 40, wherein
Said content manifestation environment corresponds to a
Screen environment maintained by Said client System.

44. The Software system according to claim 40, wherein
Said instructions are hyper-text mark-up language instruc
tions (HTML).

45. The Software system according to claim 40, wherein
Said instructions are JAVAScript instructions.

46. The Software system according to claim 40, wherein
Said instruction package is received by Said client System
and the web browser client after the web browser client
accesses a web site via the electronic data network, Said web
Site Serving Said instruction package.

47. The Software system according to claim 40, wherein
Said instruction package is intended to be served to Said
client System via the Internet.

