a2 United States Patent

Waxman et al.

US008229996B2

US 8,229,996 B2
Jul. 24,2012

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

@
(22)

(65)

(1)

(52)
(58)

ASYNCHRONOUS PROCESSING OF TASK
COMPONENTS IN CONNECTION WITH
RIGHTS MANAGEMENT SYSTEM AND THE
LIKE

Inventors: Peter Waxman, Bellevue, WA (US);
Scott Cottrille, Sammamish, WA (US);
Vladimir Yarmolenko, Duvall, WA
(US)

Assignee: Microsoft Corporation, Redmond, WA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 2307 days.

Appl. No.: 10/723,825

Filed: Nov. 26, 2003

Prior Publication Data

US 2005/0114440 A1 May 26, 2005

Int. CL.

GO6F 15/16 (2006.01)

US.CL e 709/201
Field of Classification Search 709/201
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,336,135 B1* 1/2002 Niblett et al. 709/215
6,718,361 B1* 4/2004 Basanietal. 709/201

7,353,402 B2 4/2008 Bourne et al.
7,549,060 B2 6/2009 Bourne et al.
7,891,007 B2 2/2011 Waxman et al.
2003/0041147 Al* 2/2003 vanden Oordet al. 709/227

* cited by examiner

Primary Examiner — William Goodchild
(74) Attorney, Agent, or Firm — Woodcock Washburn LLP

(57) ABSTRACT

A server receives a request and identifies a corresponding task
with core and peripheral components. The server performs
the core components and collects relevant context data. The
server returns a result to the requester based on having per-
formed the core components, and constructs a message
including the collected context data and sends same to an
asynchronous message collector. An asynchronous message
processor takes up and processes the message from the col-
lector to perform the peripheral components. Thus, the mes-
sage processor performs less-time-sensitive peripheral work
independent of the server and allows the server to attend to
more-time-sensitive core work.

30 Claims, 4 Drawing Sheets

RM SERVER 22 - RECEIVE REQUEST FROM CLIENT FOR RM
SERVICE - 301

IDENTIFY CORRESPONDING TASK TO BE PERFORMED - 303

SYNCHRONOUSLY PERFORM CORE COMPONENTS OF IDENTIFIED
TASK - 305

l COLLECT REQUEST CONTEXT DATA - 307 l

l RETURN RESULT TO REQUESTING CLIENT - 309 —'

CONSTRUCT MESSAGE W/ REQUEST CONTEXT DATA, RETURNED
RESULT - 311

SEND MESSAGE TO MESSAGE COLLECTOR 24 - 313

MESSAGE PROCESSOR 26 -TAKE UP AND PROCESS MESSAGE N
COLLECTOR 24 TO ASYNCHRONOQUSLY PERFORM PERIPHERAL
COMPONENTS OF IDENTIFIED TASK - 315

U.S. Patent Jul. 24, 2012 Sheet 1 of 4 US 8,229,996 B2

RM SERVER 22

RM SERVER 22 RM SERVER 22

RM SERVER 22 RM SERVER 22
CONTENT PACKAGE 13 LICENSE 16
RULES AND

(KD(CONTENT 12)) REQUIREMENTS

PU-BB (KD)
RM SYSTEM 10 /
EVALUATOR 20 STATE STORE 23

TRUSTED COMPONENT 18

USER'S COMPUTING DEVICE 14

Fig. 1

US 8,229,996 B2

Sheet 2 of 4

Jul. 24, 2012

U.S. Patent

02l 8indwo)

A E
05t vt Ter T B Sy
l« Aowspy osnopy | | eBesoys | | eBeic)g | | — —
6yl H / | 8cl ot}
> (s)dwon vl e LR _ V1ivd '©0dd SO0dd 'dVv
sjowsy PqAey _ Z€1 S90Yd —
3 — || OET m%a mm w %za \THLO ¢l SO
— > 1893G0 Ol JZ1 9AuQ pie
ST NvM | wepopy | :||||3L“ i /¢ AU pleH
| —
! v H ¥ geT
bsb o — T ET €ET el vivd 904dd
NV |, €Gl Lo [eleg 4/l eAlg aALQ YSIa 4/1 8AUQg ST SO0¥d
! /1 ¥4omieN ’ jeondo olsubep ysiq pieH d3HLO
!] x x £ [SISA
i J_ | | S90¥d dv
| €cl sng wajshs | _GEIso
— : ¥ — — SZL NVY
Z9T 9o | | | GGT Jejdepy 8p1 Jerdepy [Tl nun 921 soIg
sbeio}s | ! 9GT sngISOS | 1soH O8PIA Buisseo0.d el WOY
| Ze L Aows
| welsAg
|
|
VA2
10JIUO !
|

U.S. Patent Jul. 24, 2012 Sheet 3 of 4 US 8,229,996 B2

RM SERVER 22 - RECEIVE REQUEST FROM CLIENT FOR RM
SERVICE - 301

v

IDENTIFY CORRESPONDING TASK TO BE PERFORMED - 303

!

SYNCHRONOUSLY PERFORM CORE COMPONENTS OF IDENTIFIED
TASK - 305

!

COLLECT REQUEST CONTEXT DATA - 307

Y
RETURN RESULT TO REQUESTING CLIENT - 309

!

CONSTRUCT MESSAGE W/ REQUEST CONTEXT DATA, RETURNED
RESULT - 311

!

SEND MESSAGE TO MESSAGE COLLECTOR 24 - 313

Y
MESSAGE PROCESSOR 26 -TAKE UP AND PROCESS MESSAGE IN

COLLECTOR 24 TO ASYNCHRONOUSLY PERFORM PERIPHERAL
COMPONENTS OF IDENTIFIED TASK - 315

FIG. 3

U.S. Patent

Jul. 24, 2012

Sheet 4 of 4

COLLECTOR 24

RM SERVER 22

'

MESSAGE
PROCESSOR 26

COLLECTOR 24

y

MESSAGE
PROCESSOR 26

RM SERVER 22

!

COLLECTOR 24

y

COLLECTOR 24

FORWARDING
SERVER 28

!

MESSAGE
PROCESSOR 26

COLLECTOR 24

y

MESSAGE
PROCESSOR 26

US 8,229,996 B2

US 8,229,996 B2

1
ASYNCHRONOUS PROCESSING OF TASK
COMPONENTS IN CONNECTION WITH
RIGHTS MANAGEMENT SYSTEM AND THE
LIKE

TECHNICAL FIELD

The present invention relates to an architecture and method
for asynchronously processing task components in connec-
tion with a rights management system. More particularly, the
present invention relates to such an architecture and method
whereby a rights management server processes core task
components and forwards peripheral task components else-
where for later processing.

BACKGROUND OF THE INVENTION

As is known, and referring now to FIG. 1, a rights manage-
ment (RM) and enforcement system is highly desirable in
connection with digital content 12 such as digital audio, digi-
tal video, digital text, digital data, digital multimedia, etc.,
where such digital content 12 is to be distributed to users.
Upon being received by the user, such user renders or ‘plays’
the digital content with the aid of an appropriate rendering
device such as a media player on a personal computer 14, a
portable playback device or the like.

Typically, a content owner distributing such digital content
12 wishes to restrict what the user can do with such distrib-
uted digital content 12. For example, the content owner may
wish to restrict the user from copying and re-distributing such
content 12 to a second user, or may wish to allow distributed
digital content 12 to be played only a limited number of times,
only for a certain total time, only on a certain type of machine,
only on a certain type of media player, only by a certain type
of user, etc.

However, after distribution has occurred, such content
owner has very little if any control over the digital content 12.
An RM system 10, then, allows the controlled rendering or
playing of arbitrary forms of digital content 12, where such
control is flexible and definable by the content owner of such
digital content. Typically, content 12 is distributed to the user
in the form of a package 13 by way of any appropriate distri-
bution channel. The digital content package 13 as distributed
may include the digital content 12 encrypted with a symmet-
ric encryption/decryption key (KD), (i.e., (KD(CON-
TENT))), as well as other information identifying the content,
how to acquire a license for such content, etc.

The trust-based RM system 10 allows an owner of digital
content 12 to specify rules that must be satisfied before such
digital content 12 is allowed to be rendered. Such rules can
include the aforementioned requirements and/or others, and
may be embodied within a digital license 16 that the user/
user’s computing device 14 (hereinafter, such terms are inter-
changeable unless circumstances require otherwise) must
obtain from the content owner or an agent thereof, or such
rules may already be attached to the content 12. Such license
16 may for example include the decryption key (KD) for
decrypting the digital content 12, perhaps encrypted accord-
ing to another key decryptable by the user’s computing device
or other playback device. Because the content 12 can only be
rendered in accordance with the rules in the license 16, then,
the content 12 may be freely distributed.

The content owner for a piece of digital content 12 would
prefer not to distribute the content 12 to the user unless such
owner can trust that the user will abide by the rules specified
by such content owner in the license 16 or elsewhere. Prefer-
ably, then, the user’s computing device 14 or other playback

20

25

30

35

40

45

50

55

60

65

2

device is provided with a trusted component or mechanism 18
that will not render the digital content 12 except according to
such rules.

The trusted component 18 typically has an evaluator 20
that reviews the rules, and determines based on the reviewed
rules whether the requesting user has the right to render the
requested digital content 12 in the manner sought, among
other things. As should be understood, the evaluator 20 is
trusted in the DRM system 10 to carry out the wishes of the
owner of the digital content 12 according to the rules, and the
user should not be able to easily alter such trusted component
18 and/or the evaluator 20 for any purpose, nefarious or
otherwise.

As should be understood, the rules for rendering the con-
tent 12 can specify whether the user has rights to so render
based on any of several factors, including who the user is,
where the user is located, what type of computing device 14 or
other playback device the user is using, what rendering appli-
cation is calling the RM system 10, the date, the time, etc. In
addition, the rules may limit rendering to a pre-determined
number of plays, or pre-determined play time, for example.

The rules may be specified according to any appropriate
language and syntax. For example, the language may simply
specify attributes and values that must be satisfied (DATE
must be later than X, e.g.), or may require the performance of
functions according to a specified script (IF DATE greater
than X, THEN DO . . . e.g.).

Upon the evaluator 20 determining that the user satisfies
the rules, the digital content 12 can then be rendered. In
particular, to render the content 12, the decryption key (KD)
is obtained from a pre-defined source and is applied to (KD
(CONTENT)) from the content package 13 to result in the
actual content 12, and the actual content 12 is then in fact
rendered.

Oftentimes, the RM system 10 extends from the computing
device 14 to one or more RM servers 22 that provide infor-
mation, elements, and services in connection with the trusted
component 18 and other RM elements on the computing
device 14. For example, the trusted component 18 itself may
be obtained from one such RM server 22, while licenses 16
may be obtained from another RM server 22, and content 12
may be protected with the aid of another RM server 22.
Moreover, such one or more RM servers 22 may be employed
to enroll users and/or computing devices 14 into the RM
system 10, perhaps by way of issuance of a certificate or the
like, or may be employed to give certain users special pub-
lishing rights, again perhaps by way of issuance of a certifi-
cate or the like.

Further, and as seen in FIG. 1, each RM server 22 that
interfaces with a computing device 14 of a user may in turn
interface with another RM server 22, perhaps to be enrolled
into the RM system 10 once again perhaps by way ofissuance
of'a certificate or the like. In short, it is to be appreciated that
averitable constellation of RM servers 22 can be employed in
the RM system 10 to effectuate functions for such RM system
10 including those set forth above and others. An example of
an RM system 10 employing such RM servers 22 is set forth
in U.S. patent application Ser. Nos. 10/185,527, 10/185,278,
and 10/185,511, each filed Jun. 28, 2002 and incorporated by
reference in its entirety.

In general, and as should be appreciated, each RM server
22 in operation receives a request from a client such as a
trusted component 18 on a computing device 14, another RM
server 22, or the like, and in response to the request performs
a task and then returns a result to the requesting client. Of
course, the client request can vary from RM server 22 to RM
server 22, or can be one of multiple types of client request

US 8,229,996 B2

3

directed to and handled by a particular RM server 22, or the
like. As was alluded to above, and as should also be appreci-
ated, typical tasks performed by an RM server 22 in response
to a client request can include but are not limited to licensing,
certification, activation, enrollment, publishing, and the like.

The task corresponding to any particular client request can
and likely does have multiple task components. For example,
aclient request for a license 16 could result in a licensing task
with components including parsing, request validation,
policy validation, directory cross-referencing, business logic,
billing, subscription maintenance, surveillance, logging, and
the like. Significantly, such task components can be divided
into core task components that must be completed before a
decision is made on whether to honor the request, and periph-
eral task components that can be completed after a decision is
made on whether to honor the request. For example, and with
regard to the aforementioned client request for a license 16,
parsing, request validation, policy validation, directory cross-
referencing, and business logic could be core components of
such request, and billing, subscription maintenance, surveil-
lance, and logging could be peripheral components of such
request.

In the context of an especially active environment, it can be
the case that an engaged RM server 22 having to respond to
multiple requests cannot do so in a reasonable period of time
due to the number of corresponding task components that
must be performed and/or the amount of time necessary to
perform such task components. Likewise, in the context of
any environment active or inactive, it can be the case that an
engaged RM server 22 having to respond to a single request
likewise cannot do so in a reasonable period of time due to the
number of corresponding task components that must be per-
formed and/or the amount of time necessary to perform such
task components.

Accordingly, a need exists for an architecture and method
that allows an RM server 22 to perform core task components
relating to a request in a synchronous manner and to adjourn
peripheral task components relating to the request to be per-
formed elsewhere in an asynchronous manner. More particu-
lar, a need exists for such an architecture and method that
allows the RM server 22 to perform the core task components
prior to responding to the request and to pass the peripheral
task components to one or more queues to be taken up prior to
or after the request has been responded to as circumstances
allow.

SUMMARY OF THE INVENTION

The aforementioned needs are satisfied at least in part by
the present invention in which a method is disclosed for a
computer server to respond to a request from a client. The
server receives the request from the client and identifies a task
corresponding to the request. The identified task includes a
set of core task components and a set of peripheral task
components, where the core task components include task
components that must be completed before a decisionis made
on whether to honor the request, and the peripheral task
components include task components that can be completed
after a decision is made on whether to honor the request.

The server responds to the request by performing the core
task components of the identified task, and also collecting
request context data relevant to the request and the identified
task. The server returns a result to the requesting client based
on having performed the core task components of the identi-
fied task, and constructs a message to include the collected
request context data and the returned results and sends the
constructed message to an asynchronous message collector.

20

25

30

35

40

45

50

55

60

65

4

An asynchronous message processor takes up and processes
the message from the collector to perform one or more periph-
eral task components of the identified task based on the mes-
sage. Thus, the message processor performs less-time-sensi-
tive peripheral work independent of the server and allows the
server to attend to more-time-sensitive core work.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed
description of the embodiments of the present invention, will
be better understood when read in conjunction with the
appended drawings. For the purpose of illustrating the inven-
tion, there are shown in the drawings embodiments which are
presently preferred. As should be understood, however, the
invention is not limited to the precise arrangements and
instrumentalities shown. In the drawings:

FIG. 1 is a block diagram showing an enforcement archi-
tecture of an example of a trust-based system, including an
RM server performing RM services for a requesting client at
a computing device.

FIG. 2 is a block diagram representing a general purpose
computer system in which aspects of the present invention
and/or portions thereof may be incorporated;

FIG. 3 is a flow diagram showing key steps performed by
the RM server of FIG. 1 in receiving and responding to a
request from the client; and

FIGS. 4 and 5 are block diagrams showing variations of
architectures of message processors receiving messages from
the RM server of FIG. 1, where the RM server performs core
task components associated with the received request and the
message processor performs peripheral task components
associated with the received request.

DETAILED DESCRIPTION OF THE INVENTION

Computer Environment

FIG. 1 and the following discussion are intended to provide
a brief general description of a suitable computing environ-
ment in which the present invention and/or portions thereof
may be implemented. Although not required, the invention is
described in the general context of computer-executable
instructions, such as program modules, being executed by a
computer, such as a client workstation or a server. Generally,
program modules include routines, programs, objects, com-
ponents, data structures and the like that perform particular
tasks or implement particular abstract data types. Moreover, it
should be appreciated that the invention and/or portions
thereof may be practiced with other computer system con-
figurations, including hand-held devices, multi-processor
systems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe com-
puters and the like. The invention may also be practiced in
distributed computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed computing envi-
ronment, program modules may be located in both local and
remote memory storage devices.

As shown in FIG. 2, an exemplary general purpose com-
puting system includes a conventional personal computer 120
or the like, including a processing unit 121, a system memory
122, and a system bus 123 that couples various system com-
ponents including the system memory to the processing unit
121. The system bus 123 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory includes read-only

US 8,229,996 B2

5

memory (ROM) 124 and random access memory (RAM)
125. A basic input/output system 126 (BIOS), containing the
basic routines that help to transfer information between ele-
ments within the personal computer 120, such as during start-
up, is stored in ROM 124.

The personal computer 120 may further include a hard disk
drive 127 for reading from and writing to a hard disk (not
shown), a magnetic disk drive 128 for reading from or writing
to a removable magnetic disk 129, and an optical disk drive
130 for reading from or writing to a removable optical disk
131 such as a CD-ROM or other optical media. The hard disk
drive 127, magnetic disk drive 128, and optical disk drive 130
are connected to the system bus 123 by a hard disk drive
interface 132, a magnetic disk drive interface 133, and an
optical drive interface 134, respectively. The drives and their
associated computer-readable media provide non-volatile
storage of computer readable instructions, data structures,
program modules and other data for the personal computer
120.

Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 129, and a
removable optical disk 131, it should be appreciated that other
types of computer readable media which can store data that is
accessible by a computer may also be used in the exemplary
operating environment. Such other types of media include a
magnetic cassette, a flash memory card, a digital video disk,
a Bernoulli cartridge, a random access memory (RAM), a
read-only memory (ROM), and the like.

A number of program modules may be stored on the hard
disk, magnetic disk 129, optical disk 131, ROM 124 or RAM
125, including an operating system 135, one or more appli-
cation programs 136, other program modules 137 and pro-
gram data 138. A user may enter commands and information
into the personal computer 120 through input devices such as
a keyboard 140 and pointing device 142. Other input devices
(not shown) may include a microphone, joystick, game pad,
satellite disk, scanner, or the like. These and other input
devices are often connected to the processing unit 121
through a serial port interface 146 that is coupled to the
system bus, but may be connected by other interfaces, such as
a parallel port, game port, or universal serial bus (USB). A
monitor 147 or other type of display device is also connected
to the system bus 123 via an interface, such as a video adapter
148. In addition to the monitor 147, a personal computer
typically includes other peripheral output devices (not
shown), such as speakers and printers. The exemplary system
of FIG. 2 also includes a host adapter 155, a Small Computer
System Interface (SCSI) bus 156, and an external storage
device 162 connected to the SCSI bus 156.

The personal computer 120 may operate in a networked
environment using logical connections to one or more remote
computers, such as a remote computer 149. The remote com-
puter 149 may be another personal computer, a server, a
router, a network PC, a peer device or other common network
node, and typically includes many or all of the elements
described above relative to the personal computer 120,
although only a memory storage device 150 has been illus-
trated in FIG. 2. The logical connections depicted in FIG. 2
include a local area network (LAN) 151 and a wide area
network (WAN) 152. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets, and the Internet.

When used in a LAN networking environment, the per-
sonal computer 120 is connected to the LAN 151 through a
network interface or adapter 153. When used in a WAN net-
working environment, the personal computer 120 typically
includes a modem 154 or other means for establishing com-

20

25

30

35

40

45

50

55

60

65

6

munications over the wide area network 152, such as the
Internet. The modem 154, which may be internal or external,
is connected to the system bus 123 via the serial port interface
146. In a networked environment, program modules depicted
relative to the personal computer 120, or portions thereof,
may be stored in the remote memory storage device. It will be
appreciated that the network connections shown are exem-
plary and other means of establishing a communications link
between the computers may be used.

Asynchronously Processing Peripheral Task Components

In the present invention, an RM server 22 in operation
receives a request from a client such as a trusted component
18 on a computing device 14, and in response to the request
performs a task and then returns a result to the requesting
client. The client request and the corresponding task can be
any client request and task without departing from the spirit
and scope of the present invention. For example, such tasks
can include but are not limited to licensing, certification,
activation, enrollment, publishing, and the like. As may be
appreciated, such client requests and tasks are known or
should be apparent to the relevant public and therefore need
not be set forth herein in any detail.

Presumably, each has multiple task components, each of
which can be any component without departing from the
spirit and scope of the present invention. For example, such
components can include but are not limited to parsing, request
validation, policy validation, directory cross-referencing,
business logic, billing, subscription maintenance, surveil-
lance, logging, and the like. As may be appreciated, such
components are known or should be apparent to the relevant
public and therefore need not be set forth herein in any detail.

In one embodiment of the present invention, the compo-
nents of a task are divided into core task components that
must be completed before a decision is made on whether to
honor the request, and peripheral task components that can be
completed after a decision is made on whether to honor the
request. Such division can be made on any appropriate basis
without departing from the spirit and scope of the present
invention. For example, core components could include those
that are absolutely necessary to be performed prior to
responding to the corresponding request, perhaps other low-
bandwidth tasks that should not adversely impact response
time, and perhaps other tasks that for policy reasons are to be
performed only by the RM server 22, while peripheral com-
ponents are all other task components.

Put another way, core components could include those that
are to be performed by the RM server 22 synchronously with
regard to responding to the request, while peripheral compo-
nents could include those that can be performed by another
element asynchronously with regard to responding to the
request. As should be appreciated, asynchronous processing
in the RM server 22 addresses the problem of performing
time-consuming operations as a result of normal rights man-
agement request processing, especially when such time-con-
suming operations are not critical to the primary function of
generating a response to a request. Such asynchronous pro-
cessing of peripheral task components in connection with the
RM server 22 leaves the RM server 22 to perform the core task
components synchronously and thereby process client
requests more quickly. Thus, the non-critical peripheral task
components are removed as an impediment from such quick
client request processing.

In one embodiment of the present invention, and with
reference to FIG. 3, the RM server 22 receives a request from
a client for an RM service (step 301) and identifies the cor-
responding task that is to be performed in response thereto
(step 303). Presumably, and again, for the identified task a set

US 8,229,996 B2

7

of core task components and a set of peripheral task compo-
nents have been in turn identified, and thus the RM server
responds to the request by in particular performing the iden-
tified core components of the identified task corresponding to
the client request (step 305). Notably, in doing so, the RM
server 22 collects request context data from multiple sources,
including input parameters on the request, server configura-
tion data, policy from various sources, and algorithmic data
generated as a result of processing all of the aforementioned
sources (step 307). Thereafter, the RM server 22 returns a
result to the requesting client as appropriate based on having
performed the core task components (step 309).

In one embodiment of the present invention, the request
context data is collected and organized according to a pre-
defined schema such as that set forth below in the Appendix.
Accordingly, and as should be appreciated, the data can be
interpreted according to the schema by one or more recipients
thereof as will be set forth in more detail below. Such schema
may be any appropriate schema without departing from the
spirit and scope of the present invention. For example, such
schema can be proprietary in nature if all recipients are within
the same organization, or can be based on a standard if recipi-
ents are inter-organizational in nature. Also, in one embodi-
ment of the present invention, the RM server 22 collects the
request context data according to pre-defined logic such that
the request context data is relevant to the identified task and
the identified and performed core task components.

Significantly, along with returning the result to the request-
ing client, the RM server 22 constructs a message to include
the collected request context data and the returned results
(step 311). As should be appreciated, such a message will be
the basis for other elements to perform the peripheral com-
ponents of the task corresponding to the client request. In one
embodiment of the present invention, the RM server 22 then
sends such message to one or more asynchronous message
collectors 24 (step 313), each of which is essentially a queue
or other redistribution point from which each message therein
is taken up in turn. As may be appreciated, the schema of the
message and the protocol for sending such message may be
any appropriate schema and protocol without departing from
the spirit and scope of the present invention, such as that set
forth below in the Appendix, although it is to be appreciated
that the protocol in particular should be a reliable message
technology protocol to ensure delivery of the message to the
one or more collectors.

Each type of request to an RM server 22 generates a mes-
sage with a different type of collected request context therein.
For example, a licensing request may result in a message with
properties A, B and C while an enrollment request may result
in a message with properties B, D and E. As should be appre-
ciated, the nature of the request determines the context
therein. Thus, all requests of a single type should result in a
message having a single type of context therein, although of
course the data of such context differs from message to mes-
sage.

Each message collector 24 again is essentially a queue
from which each message therein is taken up in turn. Thus,
each message collector 24 stores each received message from
each of one or more RM servers 22 until the received mes-
sages can be taken up, processed and removed from the col-
lector 24. In one embodiment of the present invention, each
message in a collector 24 is taken up and processed by an
associated message processor 26 (step 315). As may be appre-
ciated, each collector 24 may have a single message processor
26 associated therewith or may have a cluster of such message
processors 26 associated therewith, and each message pro-
cessor 26 may likewise have one or more collectors 24 asso-

20

25

30

35

40

45

50

55

60

65

8

ciated therewith. Thus, any appropriate arrangement of col-
lectors 24 and message processors 26 may be employed
without departing from the spirit and scope of the present
invention.

As should be appreciated, each message processor 26 is
responsible for removing a message from a collector 24,
parsing the message, and performing one or more peripheral
task components based on the contents of the message.
Examples of such performed peripheral components include
logging the contents of the message to a database for intel-
lectual property tracking within an enterprise, billing an
account for content rights purchased, beginning a subscrip-
tion notification cycle for content rights purchased, notifying
an external content surveillance company that rights to a
piece of content have been assigned so that the surveillance
company can begin monitoring for leaks of such content, and
the like. As should be appreciated, and again, such peripheral
components are in the nature of actions that need to be per-
formed in connection with a client request, but not necessarily
before the RM server 22 returns a result in connection with
such client request.

Remembering that the RM server 22 collected the request
context data according to pre-defined logic such that the
request context data is relevant to the identified task and the
identified and performed core task components, it is to be
appreciated that in one embodiment of the present invention
the request context data as set forth by the RM server 22
defines the peripheral task components performed by the
message processor 26, presuming of course that the message
processor 26 is in fact capable of performing such peripheral
task components. Thus, if the message includes data relevant
to peripheral task components A, B, and D and does not
include data relevant to peripheral task component C, the
message collector 26 will perform peripheral task compo-
nents A, B, and D only, and will not perform peripheral task
component C.

As should be appreciated, and in one embodiment of the
present invention, each message processor 26 implements
one or more peripheral task components, simple or complex,
and consumes from a collector 24 an asynchronously sent
message. Thus, each message processor 24 off-loads work
from an RM server 22 and allows such RM server 22 to attend
to more critical core task components, thus extending the
value of such RM server 22. Especially for processing that
involves high latency or high computational expenses, each
message processor 26 provides a benefit by performing such
processing apart from the processing that must be performed
quickly by the RM server 22. In contrast with the RM server
22, then, the message processor 26 can take as long as nec-
essary.

Significantly, inasmuch as the RM server 22 need not wait
for a message processor 26 to process a message, the RM
server 22 performs processing independent of such message
processor 26. Accordingly, the message processor 26 need
not inform the RM server 22 when a message has been pro-
cessed, although feedback to the RM server 22 may be pro-
vided as needed or as advisable.

Note, though, that as the client request handling rate for an
RM server 22 increases, so too does the asynchronous mes-
sage rate from the RM server 22 increase. Thus, load balanc-
ing of asynchronous messages from an RM server 22 may be
necessary. As seen in FIG. 5, such load balancing may be
accomplished by a forwarding server 28 that receives mes-
sages from the RM server 24, that manages a plurality of
message processors 26, and that distributes incoming mes-
sages to such message processors 26 according to a load
balancing algorithm. As maybe appreciated, in such scenario,

US 8,229,996 B2

9

each of each message processor 26 and the forwarding server
28 may have a corresponding collector 24 from which
received messages are queued and then taken up. Such load
balancing may also be accomplished by the RM server 22
itself, in which case such RM server must have knowledge of
the network of message processors 26 and perform the same
load balancing algorithm as part of determining the location
to send the message.

Note further that each message processor 26 may be an
all-purpose processor capable of performing any necessary
peripheral task component based on the message received, or
may be a specific processor defined to handle one or more
specific peripheral task components only and not any other
peripheral task components. In the latter case, it may be
necessary that the RM server 22 forward each message to a
specific message processor 26 or cluster thereof based on the
peripheral task components required to be performed, or that
a forwarding server 28 such as that shown in FIG. 5 like-wise
pre-screen each message prior to forwarding same to a spe-
cific message processor 26 or cluster thereof based on the
peripheral task components required to be performed.

Also in the latter case, it may be necessary that the RM
server 22 forward multiple copies of each message to multiple
specific message processors 26 or clusters thereof based on
the peripheral task components required to be performed, or
that a forwarding server 28 such as that shown in FIG. 5
like-wise pre-screen each message prior to forwarding mul-
tiple copies of same to multiple specific message processor 26
or clusters thereof based on the peripheral task components
required to be performed. Thus, if the message included infor-
mation relating to peripheral task components A, B, C, and D
it may be the case that a copy of such message would be
delivered to each of a first message processor 26 that handles
peripheral component A, a second message processor 26 that
handles both peripheral components B and C, and a third
message processor 26 that handles peripheral component D.
Presumably, each message processor 26 or cluster thereof
would include specific logic that handles only the corre-
sponding peripheral component thereof as relating to the
received message and not any other peripheral components.

Note that it may be the case that a message as sent from an
RM server 22 to a collector 24 or from a forwarding server 28
to a collector 24 may be encrypted, especially in the case
where the transmission path is not secure, where the message
is sent between organizations, or any situation where the
message may have sensitive information therein that could be
exposed to a nefarious entity. If so, the sender of the message
and the receiver thereof presumably share a secret such as a
symmetric key or access to a public key, and have function-
ality necessary to encrypt/decrypt the message as necessary.

If exposure of the message is not a concern, but message
integrity is in fact a concern, it may be the case that the
message is digitally signed based on the content thereof and a
secret shared between the sender of the message and the
receiver thereof. Thus, and as should be appreciated, alter-
ation of the message causes the digital signature to fail to
verify. Again, such shared secret may be a symmetric key or
access to a public key, such that the receiver of the message
can apply the secret to the signature to confirm that the mes-
sage has not been altered, and the sender and receiver each
have functionality necessary to sign/verify the message as
necessary.

Note that in a message processor 26, forwarding server 28,
or the like taking up a message from a collector 24 as at step
315, the message is presumed by the collector 24 to be
handled and is therefore deleted from the collector 24. How-
ever, it can be the case that for one reason or another the

20

25

30

35

40

45

50

55

60

65

10

message taker fails to in fact handle the message. For
example, the message taker may fail, or may decide that it
cannot in fact handle the message. In such case, the message
is placed back into the taken-from collector 24 for taking at a
later time by the original message taker or by another message
taker. Accordingly, the message is not lost and the peripheral
task components associated therewith are in fact performed at
some point.

Note, though, that other failed message processing
schemes may be employed without departing from the spirit
and scope of the present invention, provided of course that
each message is not redundantly processed. For example, in
addition to placing a failed message back into the collector 24
from whence such message came, the failed message could
instead be placed into a failed message collector 24, another
collector, or into storage for later processing.

CONCLUSION

The present invention may be practiced with regard to any
particular arrangement of RM servers 22, collectors 24, mes-
sage processors 26, forwarding servers 28, and the like.
Accordingly, the present invention is to be interpreted to
encompass any system wherein an RM server 22 or the like
performs core task components in connection with a client
request and forwards peripheral task components elsewhere
to be performed asynchronously.

The programming necessary to effectuate the processes
performed in connection with the present invention is rela-
tively straight-forward and should be apparent to the relevant
programming public. Accordingly, such programming is not
attached hereto. Any particular programming, then, may be
employed to effectuate the present invention without depart-
ing from the spirit and scope thereof.

In the foregoing description, it can be seen that the present
invention comprises a new and useful architecture and
method that allows an RM server 22 to perform core task
components relating to a request in a synchronous manner
and to adjourn peripheral task components relating to the
request to be performed by a message processor 26 in an
asynchronous manner. Thus, the RM server 22 performs the
core task components prior to responding to the correspond-
ing client request, and passes the peripheral task components
to one or more collectors 24 to be taken up by a message
processor 26 prior to or after the request has been responded
to as circumstances allow.

It should be appreciated that changes could be made to the
embodiments described above without departing from the
inventive concepts thereof. It should be understood, there-
fore, that this invention is not limited to the particular embodi-
ments disclosed, but it is intended to cover modifications
within the spirit and scope of the present invention as defined
by the appended claims.

APPENDIX

Schema of Asynchronous Message and Data Therein
Following is typical data that is put into a message:

i LogID

s_ HostMachineName
dt_ RequestTime
s_RequestPath
s_RequestType
s_RequestUserAddress

Unique ID for this logging record
Server that generated this record
Date & time of request

URL path of request

Type of request

IP address of client

US 8,229,996 B2

11

-continued

s_ RequestUserAgent
s__AuthenticatedState
s__SecureConnectionState
s__AuthenticatedId

s_ ReceivedXtML
s_IssuedXrML

User agent header of client

Is request Authenticated

Is connection SSL protected

ID of authenticated user

XrML received from client
XML License issued in request

s_Metadata Metadata
s_ SuccessOrFailure “Success” or “Failure”
s_ ErrorInformation Any error data

Additionally, there could be additional values depending
on the request type.

For Licensing request type:

GroupldentityCertificate

Groupldentities

IssuancelLicense

ApplicationData

SSILCertificate

For Publish request type:

GroupldentityCertificate

For Certification request type:

UserEmail Address

UserSID

For Activation request type:

HardwareID

For Enrollment request type:

Revocation Information

X5091Information

For Subenrollment request type:

EnrolleeServerInformation

EnrolleeCertificatePublicKey

Data is placed into the message in namespace-name-value

triplets such as:

Namespace(“Tungsten™)

Property Name(“Requestid™)

Values(“{7563411
¢7c3b855d660}0.17%)

Namespace(“Tungsten™)

Property Name(“Requestis Authenticated™)

Values(“False™)

Namespace(“Tungsten™)

Property Name(“RequestIsSecureConnection™)

Values(“False™)

Namespace(“Tungsten™)

Property Name(“RequestPath”)

Values(“/Tungsten/Server.asmx/GetLicensorCertificate™)

Namespace(“Tungsten™)

Property Name(“RequestUserAgent™)

Values(“Mozilla/4.0 (compatible; MSIE 6.0; Windows NT
5.1; Q312461; NET CLR 1.0.2914; NET CLR
1.0.3427)”)

Namespace(“Tungsten™)

Property Name(“RequestUserAddress™)

Values(*127.0.0.17)

c-58b5-45ec-84b3-

The invention claimed is:

1. A method comprising:

a server receiving a request from a client;

the server identifying a task corresponding to the request,
the identified task including a set of core task compo-
nents and a set of peripheral task components,

the core task components identified on the basis of time
available to the server for responding to a plurality of
requests;

the server responding to the request by performing the core
task components of the identified task;

20

25

30

35

40

45

55

60

12

the server collecting request context data relevant to the
request and the identified task;

the server returning a result to the requesting client based
on having performed the core task components of the
identified task;

the server constructing a message to include the collected
request context data and the returned results;

the server sending the constructed message to an asynchro-
nous message collector;

the server sending the constructed message to a first asyn-
chronous message collector;

a forwarding server taking up the message from the first
collector and forwarding same to one of a plurality of
second asynchronous message collector based on a load
balancing algorithm, each second collector having an
asynchronous message processor associated therewith;
and

the asynchronous message processor associated with the
sent-to second collector taking up and processing the
message therefrom to perform one or more peripheral
task components of the identified task based on the mes-
sage.

2. The method of claim 1, wherein the request is a request
for a license and the set of core components comprises a
request validation.

3. The method of claim 2, wherein the set of core compo-
nents further comprises parsing, and policy validation, and
wherein the set of peripheral task components comprises
billing and subscription maintenance.

4. The method of claim 1 further comprising the asynchro-
nous message processor taking up and processing the mes-
sage from the collector to perform one or more peripheral task
components of the identified task based on the message.

5. The method of claim 1 further comprising the server
identifying the task corresponding to the request, the identi-
fied task including core task components including task com-
ponents identified as relatively low-bandwidth tasks that do
not adversely impact response time.

6. The method of claim 1 further comprising the server
identifying the task corresponding to the request, the identi-
fied task including peripheral task components including task
components identified as relatively high-bandwidth tasks that
could adversely impact response time.

7. The method of claim 1 further comprising the server
collecting the request context data and organizing same
according to a pre-defined schema recognizable to each mes-
sage processor.

8. The method of claim 1 further comprising the server
sending the constructed message to the asynchronous mes-
sage collector according to a reliable message technology
protocol to ensure delivery of the message to the collector.

9. The method of claim 1 further comprising one of a
plurality of message processors associated with the collector
taking up and processing the message from the collector.

10. The method of claim 1 further comprising the server
collecting request context data defining the peripheral task
components to be performed by the message processor, the
message processor taking up and processing the message
from the collector to perform the peripheral task components
defined by the collected request context data of the message.

11. The method of claim 1 further comprising:

the server sending the constructed message to one of a
plurality of asynchronous message collectors, each col-
lector having an asynchronous message processor asso-
ciated therewith;

the asynchronous message processor associated with the
sent-to collector taking up and processing the message

US 8,229,996 B2

13

therefrom to perform one or more peripheral task com-
ponents of the identified task based on the message.

12. The method of claim 1 further comprising:

the server sending the constructed message to a plurality of
asynchronous message collectors, each collector having
an asynchronous message processor associated there-
with;

the asynchronous message processor associated with each
sent-to collector taking up and processing the message
therefrom to perform one or more peripheral task com-
ponents of the identified task based on the message.

13. The method of claim 1 further comprising:

the server encrypting the constructed message and sending
the encrypted message to the asynchronous message
collector;

the asynchronous message processor taking up and
decrypting the message from the collector and process-
ing the decrypted message.

14. The method of claim 1 further comprising:

the server signing the constructed message and sending the
signed message to the asynchronous message collector;

the asynchronous message processor taking up and verify-
ing the signed message from the collector and process-
ing the verified message.

15. The method of claim 1, wherein the method is for a
rights management (RM) server in an RM system to respond
to a request for an RM service from an RM client.

16. A computer-readable storage medium, wherein the
storage medium is not a signal, the storage medium having
stored thereon computer-executable instructions for perform-
ing operations comprising:

a server receiving a request from a client;

the server identifying a task corresponding to the request,
the identified task including a set of core task compo-
nents and a set of peripheral task components,

the core task components identified on the basis of time
available to the server for responding to a plurality of
requests;

the server responding to the request by performing the core
task components of the identified task;

the server collecting request context data relevant to the
request and the identified task;

the server returning a result to the requesting client based
on having performed the core task components of the
identified task;

the server constructing a message to include the collected
request context data and the returned results;

the server sending the constructed message to an asynchro-
nous message collector;

the server sending the constructed message to a first asyn-
chronous message collector;

a forwarding server taking up the message from the first
collector and forwarding same to one of a plurality of
second asynchronous message collector based on a load
balancing algorithm, each second collector having an
asynchronous message processor associated therewith;

the asynchronous message processor associated with the
sent-to second collector taking up and processing the
message therefrom to perform one or more peripheral
task components of the identified task based on the mes-
sage.

17. The storage medium of claim 16, wherein the opera-
tions further comprise the asynchronous message processor
taking up and processing the message from the collector to
perform one or more peripheral task components of the iden-
tified task based on the message.

20

25

30

35

40

45

55

60

65

14

18. The storage medium of claim 16, wherein the server
collects request context data including input parameters on
the request, and data generated as a result of performing the
core task components of the identified task.

19. The storage medium of claim 16, wherein the opera-
tions further comprise the server identifying the task corre-
sponding to the request, the identified task including core task
components including task components identified as neces-
sary to be performed prior to responding to the corresponding
request.

20. The storage medium of claim 16, wherein the opera-
tions further comprise the server identifying the task corre-
sponding to the request, the identified task including core task
components including task components identified as rela-
tively low-bandwidth tasks that do not adversely impact
response time.

21. The storage medium of claim 16, wherein the opera-
tions further comprise the server identifying the task corre-
sponding to the request, the identified task including periph-
eral task components including task components identified as
relatively high-bandwidth tasks that could adversely impact
response time.

22. The storage medium of claim 16, wherein the opera-
tions further comprise the server collecting the request con-
text data and organizing same according to a pre-defined
schema recognizable to each message processor.

23. The storage medium of claim 16, wherein the opera-
tions further comprise the server sending the constructed
message to the asynchronous message collector according to
a reliable message technology protocol to ensure delivery of
the message to the collector.

24. The storage medium of claim 16, wherein the opera-
tions further comprise one of a plurality of message proces-
sors associated with the collector taking up and processing
the message from the collector.

25. The storage medium of claim 16, wherein the opera-
tions further comprise the server collecting request context
data defining the peripheral task components to be performed
by the message processor, and the message processor taking
up and processing the message from the collector to perform
the peripheral task components defined by the collected
request context data of the message.

26. The storage medium of claim 16, wherein the opera-
tions further comprise:

the server sending the constructed message to one of a
plurality of asynchronous message collectors, each col-
lector having an asynchronous message processor asso-
ciated therewith;

the asynchronous message processor associated with the
sent-to collector taking up and processing the message
therefrom to perform one or more peripheral task com-
ponents of the identified task based on the message.

27. The storage medium of claim 16, wherein the opera-
tions further comprise:

the server sending the constructed message to a plurality of
asynchronous message collectors, each collector having
an asynchronous message processor associated there-
with;

the asynchronous message processor associated with each
sent-to collector taking up and processing the message
therefrom to perform one or more peripheral task com-
ponents of the identified task based on the message.

US 8,229,996 B2

15

28. The storage medium of claim 16, wherein the opera-
tions further comprise:
the server encrypting the constructed message and sending
the encrypted message to the asynchronous message
collector;

the asynchronous message processor taking up and
decrypting the message from the collector and process-
ing the decrypted message.

29. The storage medium of claim 16, wherein the opera-
tions further comprise:

5

16

the server signing the constructed message and sending the
signed message to the asynchronous message collector;

the asynchronous message processor taking up and verify-
ing the signed message from the collector and process-
ing the verified message.

30. The storage medium of claim 16, wherein the opera-
tions are for a rights management (RM) server in an RM
system to respond to a request for an RM service from an RM
client.

