O 01/80045 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 October 2001 (25.10.2001)

(10) International Publication Number

WO 01/80045 A2

(51) International Patent Classification’: GO6F 17/00

(21) International Application Number: PCT/GB01/01745

(22) International Filing Date: 17 April 2001 (17.04.2001)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

0009487.0 17 April 2000 (17.04.2000) GB

(71) Applicant (for all designated States except US): APAMA,
INC. [US/US]; 142 North Milpitas Blvd., Suite 382, Mil-
pitas, CA 95035 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): NELSON, Giles
[GB/GB]; c/o Apama (UK) Limited, 17 Millers Yard,
Mill Lane, Cambridge, CB2 1RQ (GB). BATES, John
[GB/GB]; c¢/o Apama (UK) Limited, 17 Millers Yard, Mill
Lane, Cambridge, CB2 1RQ (GB).

(74) Agent: REES, Alexander, Ellison; Urquhart-Dykes &
Lord, 30 Welbeck Street, London W1G 8ER (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, ™™, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD OF EVALUATING QUERIES AGAINST RECEIVED EVENT INFORMATION

Set of Partial Evaluations “The System"
for each Temporal Query /
) - 3A
7 ol
\ Register
Events Set of Temporal Queries Ouer/es
Use
//“' —_— @ i
Send This Event to a} \
Queres to which ths o
relevant An Completed
Queries are
Signaled to User
Update any Relevant 3D
Partial Evaluators
/.
1/

e

(57) Abstract: Queries are evaluated against received event information and notifications that events specified in the queries have
occurred are generated by following the steps of; recording the number of queries; receiving an item of event information; comparing
the received item of event information with the queries; and generating a notification if the item of event information matches the
query. Normally a series of items of event information will be received and these are compared sequentially with the queries. Each
query can be arbitrarily complex comprising a plurality of sub-queries each requiring a different item or items of event information

to be matched.

WO 01/80045 PCT/GB01/01745

1

Method of Evaluating Queries Against Received Event Information

There is a general demand for services which will notify a user when specified
events occur. One specific commercial demand for such services is in relation to the
stock market, where it is possible to make significant profits by responding to events
quicker than other players in the market even where there is general agreement as to the
best action to be taken.

In the past, automated systems have been proposed to allow users to identify
particular events of interest. The system is then provided with relevant data regarding
events taking place in real time. When the events which the system has been provided
with are identified as matching the criteria set by users, the users are notified that this has
occurred.

Such automated systems have operated in the past by taking conventional
database management systems and employing them to generate event notifications.

Database management systems have been employed because they are designed
to store and sort through large quantities of data. The way these systems operate is that
when a query is received from a user the database management system sorts through the
database to see whether the query can be answered by the stored data. In the past it has
been proposed to apply such a database management system to automatic notification
generation by storing the received event information in a database and searching the
database for each of the queries. When the search through the database identifies event
information matching a query a notification is generated.

There are a number of problems with this approach which arise because the data

held in the database changes continuously as events are received. Firstly, because the

WO 01/80045 PCT/GB01/01745

2

data held in the database is continually and unpredictably changing, it is necessary to
repeatedly search through the database for each query until the query is resolved. The
repeated searching through the database for each query is very demanding of system
resources. As a result, as the database of events and the number of queries for which
notifications may be required increases it becomes increasingly difficult to ensure that
notifications are sent out quickly.

Also, all of the received event information must be stored in the database before
it can be sorted through, making further demands on system resources.

Further, conventional database sysfems are not an effective method of resolving
time based or temporal queries. That is, a conventional database system can answer a
query whether two or more events have occurred but cannot easily answer a query
whether two or more events have occurred in a specific sequence or within a time frame.
Although the time based information required to allow such temporal queries to be
answered can be stored in a database, it must be stored for all events because the content
of registered queries, is not known when the events are stored in the database. This
requirement to store time data for all events stored in the database further increases the
size of the database and the time and system resources required to make searches.

Finally, because events may be the subject of time based queries, all events
stored in the database must be retained for a sufficient time to allow all time based
queries to expire. This period cannot be predetermined before queries are made, so it is
necessary to either set an arbitrary limit on how long data will be held in the database or
store all data indefinitely so that a very large amount of redundant data must be retained

in and checked by the database. Clearly both of these alternatives are undesirable.

WO 01/80045 PCT/GB01/01745

3

This invention was made in attempt to provide a method and apparatus for
generating notifications overcoming this problem, at least in part.

This invention provides a method of evaluating queries against received event
information and generating notification that events specified in the queries have occurred
comprising the following steps;

recording a number of queries;

receiving an item of event information;

comparing the received item of event information with the queries; and

generating a notification if the item of event information matches the query.

Embodiments of the invention will now be described by way of example only
with reference to the accompanying diagrammatic figures, in which:

Figure 1 shows the general structure of a system employed in the invention;

Figure 2 is the explanatory diagram showing operation of the system of Figure 1;

Figures 3a to 3d show notations used to define data structures in the subsequent
figures;

Figure 4 shows an overall top level view of the data structure of a system
according to the invention;

Figﬁre 5 is a explanatory diagram showing the method of operation of the
invention;

Figure 6 is a further explanatory diagram showing the operation of the method of
Figure 5;

Figure 7a shows a data structure used to represent event classes in the structure

of Figure 4,

WO 01/80045 PCT/GB01/01745

4

Figure 7b shows a data structure used to represent the parameters of an event
class held in the data structure of Figure 7;

Figure 8 shows a data structure used to represent an instance of a specific event
class held in the data structure of Figure 7;

Figure 9 shows a data structure used to represent the parameters of an event
within the data structure of Figure 8;

Figure 10a shows a data structure used to represent a query in the data structure
of Figure 4,

Figure 10b shows a data structure used to represent a variable in the data
structure of figure 10a;

Figure 11 shows a data structure representing a query state forming a part of the
data structure of Figure 10a;

Figure 12 shows a timer data structure forming a part of the data structure of
Figure 11;

Figure 13 shows a data structure representing variables forming a part of the data
structure of Figu‘ré "IOa;

Figure 14 shows a data structure representing a partial evaluation for use in the
data structure of Figure 4; and

Figure 15 shows a timer listing data structure forming a part of the data structure
of Figure 14.

Referring to Figure 1 the general operation of the system according to the

invention is shown diagrammatically.

WO 01/80045 PCT/GB01/01745

5

The query registration and notification system 1 is supplied with queries by users
and monitors information about events which have occurred. When events occur which
match a query, a notification that the query has been completed is signalled to the
appropriate user.

In the system according to the present invention the queries sent by users are
registered and recorded as a set of queries 2. When the occurrence of events is reported
to the system 1 the events are examined to see which, if any, of the queries held in the set
of queries 2 the event is relevant to.

If any event is relevant to one of the queries in the set of queries 2, the event may
allow a simple query to be immediately evaluated and completed. In this case, a
notification that the query has been evaluated is signalled to the user.

A query can comprise a number of parts, each of which can be an event or a
query, such queries forming parts of other queries are termed sub-queries herein.

For more complex queries multiple events may be required to allow a query to
be evaluated, and where this occurs the partially evaluated query is held in a set of partial
evaluations 3 to await complete evaluation of the query.

Each of the queries may have a number of partial e\;aluations awaiting final
evaluation. The set of partial evaluations 3 for each query is held in a separate list 3a, 3b,
3¢, 3d etc. These partial evaluations awaiting resolution are referred to as partial
evaluations threads herein.

When events are notified to the system 1, as well as the event being examined to

determine which of the queries held in the set of queries 2 the event is relevant to, the

WO 01/80045 PCT/GB01/01745

6

event is also examined to determine which of the partial evaluation threads held in the
sets of partial evaluations 3 for each query the event is relevant to.

If the event allows the partial evaluation thread to be resolved, again the user is
notified that the entire query has been resolved. Alternatively, if the event only allows a
further partial evaluation of the query, the partial evaluation threads themselves generate
further partial evaluation threads corresponding to the new partially resolved status of the
quéry.

In principle, the queries registered by the users may be of arbitrary complexity
requiring an arbitrary number of events to be resolved so that the number of partial
evaluation threads derived from each registered query may be arbitrarily large.

A query may be a temporal query having a time based element which can be a
requirement that an event or events take place by a set time, or that events take place in a
particular sequence or within a set time of another event or events or both. Prior art
database based systems have particular difficulties with handling such temporal queries as
explained above.

Note that when a query is partially resolved by the received event so that a
partial evaluation thread is generated the original query remains in the set of queries 2
allowing further partial evaluation threads to be generated from the original query if
necessitated by further received events. The same applies to the partial evaluation threads
themselves, so that each partial evaluation thread can produce é further generation of
partial evaluation threads while itself continuing to persist as a partial evaluation thread.

When it is decided that received events match the criteria set by the query the

query is regarded as having been matched. It should be noted that the criteria set by the

WO 01/80045 PCT/GB01/01745

7
query may be that events specify variables or values falling within particular ranges or
having a particular relationship so that matching of queries by received event information
should not be regarded as requiring that variables in the event information are actually
equal to variable values set in the query.

A simple example of this arrangement for a temporal query would be if a user
registered a query instructing that they be notified if the event B followed the event A
within a specified period. This query would be passed to the system 1 and placed in the
set of queries 2. When event A was reported to the system 1 this query would produce a
partial evaluation thread that A had occurred and that the occurrence of B is awaited by a
specified time. In the event that event A is reported as occurring multiple times each
occurrence would generate a separate partial evaluation thread awaiting the occurrence of
event B by a different time. When the event B is reported to the system 1 within the set
time limit after reporting of an event A the appropriate one of the partial evaluation
threads will generate a notification that the temporal query has been evaluated.

It is possible that such an arrangement could result in a plurality of the partial
evaluation threads derived from a single registered temporal query being fully evaluated
by the same event, in this case reporting of event B within the specified period of
multiple reports of event A. The same problem could arise for both temporal and non-
temporal queries if queries including OR statements are supported by the system. When
this occurs the system 1 may send multiple notifications or only a single notification as
desired. The issue of single or multiple notifications may be set by the system 1 or may

be an option set by the user.

WO 01/80045 PCT/GB01/01745

8

Where only a single notification is sent, it will normally be most useful for
temporal queries to send notification of the first full evaluation, in the example the
earliest occurrence of A followed by B within the specified time, but other criteria could
be used to decide this. This could be a pre-set parameter of the system or an option which
can be set by the user.

The system 1 may be arranged to delete queries and all of the partial evaluation
tﬁeads they have generated immediately one of the partial evaluation threads is
successfully evaluated and a notification sent so that the user is notified only the first time
the query is successively evaluated. Alternatively, the query and its partial evaluation
threads may be left in place so that the system notifies the user each time the query is
successfully evaluated until the user instructs that the query be de-registered.

It will be understood that the above process of partial evaluation thread generation
can be repeated as necessary for more complex queries.

In principle, any event can be made the subject of queries to be registered in the
system so that the field of queries for which notifications can be generated is in principle
unlimited. However, in practice it will normally be necessary for a system to be limited
to queries in a particular defined field or fields can be supplied to the system to allow the
queries to be accurately evaluated.

The key difference between the system according to the invention and previously
known systems is that in the system according to the invention the registered queries are
stored and are operated on by received events to see whether the events are relevant to the

queries. This is the reverse approach to known database based systems where the

WO 01/80045 PCT/GB01/01745

9

received events are stored and are then operated on with the queries to see if the queries
are relevant to the events.

Accordingly, the system according to the present invention is optimised to deal
with queries about future events in contrast to a conventional database based system
which is optimised to deal with questions about past events.

This different approach allows a system according to the invention to operate
much more efficiently and effectively than prior art database management system based
approaches and allows the problems encountered in such prior art database management
system based approaches to be overcome.

Firstly, it is only necessary to operate on thg stored queries once with each item of
received event information. As a result, the repeated searching through a database of
events for each query which is necessary in the prior art is unnecessary so that the system
resources required are greatly reduced. As a result, it is much easier to ensure that
notifications of answered queries are sent out quickly.

Also, there is no requirement to store received event information once it has been
checked against the stored queries and appropriate notification of resolved or answered
queries generated. This greatly reduces the amount of information which must be stored
because it is only necessary to store unresolved queries whereas in prior art database
based systems it is necessary to store both the unresolved queries and the received event
information. Further, it will almost always be the case in practice in a prior art database
based system that the cumulative amount of event information stored will be much
greater than the amount of registered queries. Accordingly, the reduction in information

storage requirements in practical systems will be very large. Also, because the demand in

WO 01/80045 PCT/GB01/01745

10

terms of system resources of checking information against stored information is
dependent on the amount of stored information, the time taken to check each received
event against the registered queries in a system according to the invention will in practice
be less than checking a query against the stored event information in a prior art database
based system.

Further, the system according to the invention is far more efficient for dealing
with time based queries than the prior art database based systems because resolution of
time based queries in the present invention only requires the ability to retain time limited
partial evaluation threads until their set time periods expire whereas prior art database
systems require that all events together with appropriate time information be retained
indefinitely.

In order for a user to register a query, the user must specify what event or events
the system 1 should look for and how the user should be contacted when the query has
been satisfied. Optionally, where appropriate, the user should define the time period over
which the system should look for events.

As explained above, it is essential that the method by which the user is to be
notified that a query has been completed or resolved is defined. However, in many
applications a preferred method of notification can be assumed to be used as a default
method of notification in the absence of specific instructions from the user to use a
different method of notification.

For simplicity, in the examples it will be assumed that all notifications are sent by

e-mail to a user defined e-mail address in order to allow other aspects of the invention to

WO 01/80045 PCT/GB01/01745

11

be clearly understood. However, it should be understood that any other method of
notification could be used if desired.

Users send queries, which may be temporal queries to the system and the queries
are registered within the system 1. As events are notified to the system the events are
used to evaluate the queries. When the received events satisfy the requirements of a
query, one or more notifications regarding the completed query are sent to the relevant
users.

In order to allow queries to be evaluated it is necessary that the queries define the
events and event related parameters in a manner compatible with the format in which
events are notified to a system. Clearly it is not possible for a query to be meaningfully
evaluated if it relates to events of a type not reported to the system or specifies event
parameters which are not supplied to the system. Accordingly, although as noted above
the structure of the queries may be arbitrarily complex it is essential that the content of
the queries relates only to events and event related parameters which are provided to and
so supported by the system.

In order to allow this the parameters which may be associated with each event
must be defined so that queries based on these parameters can be registered and
evaluated.

It will normally be advantageous to sort events into a number of defined classes
with the parameters associated with each class being defined. For example, the event
class stock price could be defined as the event of a change in a stock price and the

associated parameters would be the identity of the stock and the new stock price.

WO 01/80045 PCT/GB01/01745

12

It will be appreciated that the possible parameters and the types of parameters
making up an event will vary depending upon the type of event. By defining similar
events as being part of an event class, the event class can be used to define the relevant
parameters and their forms so that only the relevant parameters need to be set out in the
information defining the event. The parameters defined for an event are typically of the
types string, integer, real and date but the parameters could also be defined using any
other types of data if desired.

In a system notifying users of events significant for stock prices a typical class of
event would be the latest stock price of a particular stock and the event could be coded as
stockprice (symbol string, price flow) where "stockprice" defines the class of event, the
symbol string is the stock or company name and the price flow is figures giving the
current stock value, for example:

StockPrice (‘Big Co’, 90.56)

would report that the price of Big Co's stock had just changed to 90.56.

Alternatively, the latest stock price of a particular stock could be coded as stock
price (symbol string, price flow, date) where "stockprice" defines the class of event, the
symbol string is the stock or company name, the price flow is figures giving the current
stock value and the date gives the time at which the change occurred.

In both cases the stock or company name parameter is string type data and the
price flow parameter is real data. In the second example the date parameter is date type
data.

Similarly, when a user registers a query the query must specify to the system the

event types and events which the system should look for and optionally what time period

WO 01/80045 PCT/GB01/01745

13

they should be looked for over together with the method by which user is to be notified if
the query is satisfied.

Thus, a query consists of a specification of which event or events to look for and
may set a time interval between different ones of these events and/or a time limit for the
query. If no time limit is set, the query may simply be continued until it is satisfied or de-
registered and one of these options will normally be the default setting for the system.
Where queries refer to more than one event they may define the temporal order of the
events and/or the time interval.

Queries can be as complex as required. One simple example of a temporal query
would be a query such as:

egl- StockPrice (‘'BAY", price) -

Newsltem ('BAY', headline) < 20.0
this query is named egl and would tell the system to look for an event of the type
stockprice, that is a stock price change, for the company BAY and after this event has
been received, to look for an event of the type newsitem, that is a news item, referring to
the company BAY in the headline, the newsitem being received within twenty seconds of
the stockprice event being received. If all of these conditions apply the query will be
satisfied and the user notified.

This example shows one event following another event as the query. This
example could itself be used as part of a sub-query of another query. There is no limit on
the complexity of the queries and due to the arrangement of the inventive system even

highly complex queries can be efficiently and quickly resolved.

WO 01/80045 PCT/GB01/01745

14

In this example the query egl is looking for a specified stockprice event followed
by a specified newsitem event in which the notification of these events to the system
occurs within a set time interval.

Using the times at which are events notified to the system as a basis for temporal
queries is a simpler option than using the times at which the events actually occurred.
This is because it is then not necessary to include any information regarding the time at
which the event occurred in the event notification. In systems dealing with some types of
events it may be desirable for users registering queries to base their queries on the actual
time at which events occurred rather than the time at which the events were reported to
the system. In general, the significance of the actual time of occurrence of an event as
opposed to the time of reporting will become greater as the normal length of time
required for an event to be reported after occurrence and the variability in this reporting
time increases.

However, in many cases, such as stock prices, the time taken for information to be
received by the system after the events occur will be very short and have little variability.
For example stock prices are reported from exchanges very quickly after they occur and
are then disseminated effectively instantaneously by electronic media. Further, in this
specific field, it is expected that the increasing use of computerised share dealing systems
to operate the exchanges will result in changes in shareprice being disseminated
effectively instantaneously as they occur.

The above stockprice examples assume that the stockprice event is a change in
price at a specified stock exchange and that the price information is always given in the

same currency. In some systems this will be sufficient, but in practice it will often be

WO 01/80045 PCT/GB01/01745

15

desirable to either have a number of event classes corresponding to stock prices at
different exchanges so that stockprice events in those classes are always at those
exchanges and give prices consistently in the relevant local currency. Alternatively, the
parameters associated with each stockprice event could be expanded to identify the
exchange at which the stockprice change has occurred. If necessary a further parameter
identifying the currency used could be included, but normally it is expected that all
stockprice changes at a specific exchange will be given consistently in a single currency.

An additional reason for basing temporal queries on the time at which events are
reported to the system rather than the time which the events occurred, for some types of
query, is that many existing information sources which could be used to provide event
notification to a system do not identify the time at which events occurred. Again, an
example is stockprice data feeds which normally report changes in stockprice as a series
of stock price change events one after another but provide only information identifying
the stock and its new price. Of course, in this case the exchange at which the stockprice
change has occurred is implied by the source.

A similar situation exists in many other fields of information where existing
information sources provide information regarding changes or other events as soon as
possible and as close to real time as possible, but do not identify when the events reported
actually took place.

Clearly, where data sources of this type are to be used to provide the event data to
the system, temporal queries will have to be based upon the time of reporting events to
the system because information regarding the time at which the events actually occurred

is not available.

WO 01/80045 PCT/GB01/01745

16

A selection of the main options for composing queries includes, but is not limited
to, the following:

One event or sub-query following another,

An event or sub-query following another with correlation in the parameters of the
two events or sub-queries,

An event or sub-query following another without specified intervening events,

An event or sub-query or another event or sub-query occurring,

An event or sub-query occurring within a specified time window,

An event or sub-query not occurring within a specified time window.

A more complex example of a query would be:

eg2 " StockPrice (Name, Price) ™

StockPrice (Name, Price +> 5%) < 600-0
This query is named eg2 and would look for an event of the class stockprice reporting a
change in the price of any stock to any value and would capture the relevant name and
stock price. If this stockprice event was followed by another stockprice event for the
same stock name in which the share price had risen by more than 5%, within six hundred
seconds (ten minutes), the query would be satisfied and the user notified.

A further example of a more complex query would be:

eg3 ™ StockPrice(Name, Price) > Newsitem (Name, Headline) < 300-0

This query is named eg3 and would look for an event of the class stockprice reporting a
change in the price of any stock to any value and would capture the relevant stock name.

If this stockprice was followed by a news event referring to the same stock name in the

WO 01/80045 PCT/GB01/01745

17
headline within three hundred seconds (five minutes), the query would be satisfied and
the user notified.

As shown by the above examples the parameter values employed by later parts
of a query can be based upon parameters identified and captured in earlier parts of the query.

Another factor which must be defined in composing a query is whether or not the
items in the query can give rise to multiple partially resolved queries or evaluation threads.
In‘ the above examples an arrow is used to identify events which are to be looked for after
other events have occurred.

It will be understood that a query comprising only a single item which is fulfilled
by notification of a single event cannot give rise to multiple partial evaluations because it
will automatically always be entirely fulfilled if the relevant event occurs.

Where queries include multiple sub-queries it is necessary to identify whether
the sub-queries are able to give rise to multiple partial evaluations or evaluation threads
or not. Those sub-queries which are able to give rise to multiple evaluation threads are
identified as spawning and those that are not are identified as non-spawning.

An example of a query identifying spawning and non-spawning sub-queries is

shown below:
eg4 => StockPrice (‘(BAY", Price) ™ Newsitem (BAY", Headline) < 20.0
This query is named eg4 and is similar to previous example egl. The notation of

a single arrow to identify a non-spawning sub-query and a double arrow to identify a

spawning sub-query has been employed.

WO 01/80045 PCT/GB01/01745

18

The first sub-query of query eg4 is spawning because each occurrence of a
stockprice event showing a change in the stock BAY will generate a separate evaluation
thread or partial evaluation awaiting reporting of a newsitem event within 20 seconds.
However, the second sub-query of identification of the newsitem identifying BAY in the
headline within 20 seconds is non-spawning, because of an event fulfilling this sub-query
will allow evaluation of the entire query.

It should be realised that the identification of a sub-query as spawning or non-
spawning is under the control of the user specifying the query and the effect of specifying
different sub-queries in a query as being spawning or non-spawning can be significant.

For example, consider the queries below:

eg5 => StockPrice (Name, Price) ™ Newsitem (Name, Headline) < 20.0

egb ~ StockPrice (Name, Price) => Newsitem (Name, Headline) < 20.0

The queries eg5 and eg6 employ the same sub-queries as example eg3 given above.

In the query eg$5 the first sub-query, the stockprice change, is spawning while the
second sub-query regarding the subsequent news item event is non-spawning. In the query
eg6 this is reversed so that the first sub-query regarding the stock price event is
non-spawning while the second query regarding the newsitem event is spawning.

Using query eg5, each time a stockprice event is received a new partial
evaluation thread will be set up awaiting receipt of a news item identifying the stock
named in the stockprice event in its headline. Because the stockprice event sub-query is

spawning this sub-query will remain in place generating a new partial evaluation thread

WO 01/80045 PCT/GB01/01745

19

awaiting notification of a newsitem identifying the stock name from the new stock price
event. When a newsitem matching any of the partial evaluation threads for different
stock names is received the query is resolved because the newsitem sub-query is non-
spawning and the entire query including any unresolved partial evaluation threads will be
removed.

The results of query eg6 are very different. Using query eg6, once a stock price
event is received a single partial evaluation thread will be created looking for a newsitem,
identifying the stock name from the stockprice event in the headline. Because the
stockprice sub-query is non-spawning only a single partial evaluation thread will be
generated based on the first stockprice event received. Subsequently, when a newsitem
event identifying the stock name in its headline is received this partial evaluation thread
will be resolved. However, because the newsitem sub-query is identified as spawning,
when the newsitem is received a new partial evaluation thread will be created and
immediately completed and evaluated. The newsitem sub-query is spawning so the
original partial evaluation thread awaiting receipt of the newsitem event will not be
deleted and the query as a whole will not be regarded as resolved. Accordingly, the query
eg6 will result in notification of all subsequent newsitems regarding the stock name
identified in the stockprice event.

As has been illustrated by these examples the identification of a sub-query of a
query as being spawning or non-spawning is not a simple matter of logical analysis of the
sub-queries making up the query but is set by the user depending upon the information
the query is intended to provide and can have considerable effect on the information

provided. It will be understood from the above example comparing eg5 and eg6 that

WO 01/80045 PCT/GB01/01745

20

queries made up of identical sub-queries in the same order can produce very different
information depending upon which of the sub-queries are identified as spawning and
which are not.

As has been noted above, a query comprising only a single sub-query which will
be fully evaluated by receipt of a single event meeting the sub-query criteria does not
nqed to be identified as spawning or non-spawning. In practice a user may wish to have a
quéry retained on the system indefinitely or for a set time regardless of whether or not the
query is evaluated. This can be carried out by providing some management or override
function in the system identifying such queries as requiring immediate reinstatement in
the system after they have been evaluated or requiring that these queries not be removed
from the system when they are evaluated. A more elegant solution to this problem is to
avoid removal of these queries by appropriate identification of the queries as being
spawning so that the query cannot be completely resolved and subsequently deleted, for
example as discussed with reference to query eg6. This approach avoids the need for any
dedicated management software to identify and retain queries which should not be
deleted upon evaluation. In this case of a query comprising only a single query which
will be fully evaluated by a single relevant event, removal of this query from the system
on evaluation can be prevented simply by specifying it as a spawning query rather than a
non-spawning query.

It will be understood from the above discussion, that in order for the system to
operate it must not only register queries from users but must also maintain a record of
partially fulfilled queries or partial evaluation threads to see whether the queries are

completely fulfilled.

WO 01/80045 PCT/GB01/01745

21

From the point of view of the user the system appears as a temporal query engine
10 as shown in Figure 2. The temporal query engine 10 receives inputs from users to
register queries of interest and de-register queries that are no longer of interest and is
supplied with event information regarding events which have occurred. The temporal
query engine 10 compares the received event information with registered queries and
generates notifications to users that registered queries have been fulfilled.

The operation of the temporal query engine 10 according to the invention is able
to provide the desired service by storing the registered queries in data structures and
manipulating the data structures according to algorithms as events are received in order to
allow the desired notifications to be produced.

In order to allow the services provided by the temporal query engine 10 to be
extended if necessary the témporal query engine 10 can have new event type definitions
supplied to it to allow queries regarding new event types to be registered and fulfilled.

Dealing first with the required data structures, there are four main notations used
herein to define the data structures and these are shown graphically in Figures 3a to 3d.
These notations used to graphically show the data structures are used in the other figures.

The main class of first data structure is a typed element. A typed element is the
inclusion of a data structure of a type already defined elsewhere. Basic types of data
structures such as string, integer, real and date data will usually be defined with their
normal attributes and other types of data may be defined as needed.

The notation used to represent typed elements is represented graphically in Figure

3a.

WO 01/80045 PCT/GB01/01745

22

The second main class of data structure are references. A reference data structure
is a reference to a data structure defined elsewhere.

The notation used to represent a reference data structure is represented graphically
in Figure 3b.

The third main class of data structure is a collection type structure. The collection
type data structure aggregates several elements of different classes as a new
class. The individual elements aggregated in the collection type data structure can
themselves be different classes, for example fyped elements, references or lists and the
new class of data structure formed by the collection of data structure can itself be a typed
element, a reference or list.

Figure 3¢ shows the notation used to represent a collection type data structure. As
an example, CType is shown made up of three data structure elements, a typed element of
type Type 1 with name Name 1, a reference to a typed element of the type Type 2 with
name Name 2 and a typed element of type Type 3 with name Name 3. Any of the
elements making up a collection type data structure can be accessed by name at any time.

The fourth main class of data structure is a list type structure. A list type date
structure aggregates several elements of the same type.

Figure 3d shows a graphical representation of the notation used to describe a list
type data structure having a number of elements of type LType, the list type data structure
having the name LName to allow it to be identified, for example if it is included in a

collection type data structure.

WO 01/80045 PCT/GB01/01745

23

The list type data structure maintains the order of the elements placed in it and
new elements can be inserted at any desired position in the list. The elements held in the
list can be accessed at any time.

The overall top level view of the data structure of the temporal query engine 10 is
illustrated in Figure 4. This data structure can be viewed as comprising a plurality of
event queues each of which is a list type data structure formed by a number of similar
elements.

In order to allow the temporal query engine to receive events from event sources
and receive queries for registration from clients and to report matches of events against
registered queries to the clients a number of queues are required. These can conveniently
be provided by list type data structures.

Please note that the terms temporal query and temporal query engine used below
refer to the possibility that some queries may include time based or temporal elements,
and are not intended to imply that all the queries must include a time based element.

An incoming event queue 11 contains a list of events that have been received by
the temporal query engine 10 but have not yet been checked for matches against
registered queries. Receipt of event information from external sources is asynchronous
with the internal operations of the temporal query engine 10 and the rate in which events
will be reported to the temporal query engine 10 is variable and unpredictable.
Accordingly, it is inevitable that information regarding new events will sometimes be
received before previously received events have been processed for matches against

registered queries, so a temporary storage queue for new events is necessary.

WO 01/80045 PCT/GB01/01745

24

A sub-query event queue 12 is required because, as explained above, some queries
are made up of a number of smaller components or sub-queries which need to be
evaluated in parallel. The results of evaluating the sub-queries can be conveniently
treated as events to be matched against the queries of which they are a part. The
internally generated events resulting from matches of events to sub-queries are stored in
the sub-query event queue 12.

Many queries are time dependent. In these queries, when an event matching a part
of the query occurs a timer is set and then at a later time after a specified interval the
timer will expire. When timers are set they are stored in a pending timers queue 13 until
they expire. The pending times queue 13 can be examined by evaluation threads to
determine whether an expired timer exists which is relevant to them.

When the timers held in the pending timers queue 13 expire the expired timers are
stored in an expired timers queue 14. The expired timers queue 14 can be examined by
evaluation threads to determine whether an expired timer exists which is relevant to them.

When a set of events, which may be one event or a plurality of events, occurs
which matches a registered query the relevant client must be notified. This is carried out
by placing a call-back entry in a call-back queue 15 whenever a set of events occurs
which matches a registered query. The temporal query engine 10 sends out notifications
to clients in response to the call-back instructions in the call-back queue 15. Again, the
rate at which queries are matched is variable and unpredictable, so some means to store
notifications not yet completed is essential.

The actual queries registered by clients, but not their component sub-queries are

held in a top level temporal query list 16. Use of the top level temporal query list 16

WO 01/80045 PCT/GB01/01745

25

allows fast access to the actual registered queries, so enabling the de-registering of
queries which are no longer of interest to be quickly carried out. The queries held in the
top level temporal query queue 16 are of course the only queries that cause entries to be
made in the call-back queue 15 and notifications to be issued when they are matched by
received events.

As explained above, actual temporal queries registered by clients will often
comprise a plurality of sub-queries and these sub-queries are themselves temporal queries
in their own right. All of the temporal queries, that is both the actual queries registered
by clients and the sub-queries forming parts of these actual queries are held in an all
temporal queries queue 17.

An evaluation thread index list 18 holds a list of the names of all of the event
classes that the temporal queries currently held in the temporal queries queue 17 are
looking for. Reference to the evaluation thread index instead of individually checking all
of the temporal queries allows received events to be quickly identified as being of
interest, and so requiring further action, or not. This allows faster processing of incoming
events to be carried out and so enhances system performance.

A known event classes list 26 holds a list of all of the event classes being notified
to and able to be processed by the system. Only event classes held in known event
classes list 26 can be used in queries, and queries containing events not in this list are not
accepted for registration. The known event classes list 26 is a static list which is not
altered by the system in operation. However, the contents of the known event classes list

26 can be amended by the system operator as required to offer the desired services.

WO 01/80045 PCT/GB01/01745

26 7

The way in which the top level data structure shown in Fi gure 4 is employed to
carry out the functions of the temporal query engine 10 is shown in Figure 5 which shows
the ways in which data passes through the system and Figure 6 which shows the hierarchy
of the data structures.

The operation of the temporal query engine 10 will now be described with
reference to Figures 5 and 6. The incoming events from the incoming event queue 11,
internal events produced by evaluation of sub-queries held in the sub-query event queue
12 and expired timer events held in expired timer queue 14 are all passed to an event
consumer device 20 which identifies the class and appropriate method of dealing with the
events and sends the events in turn to an index look-up means 21.

An event class manager 27 is used to add or remove event classes which the event
consumer device 20 is able to handle. Events and queries relating to event classes not
identified by the event consumer device 20 will not be processed.

A temporal query manager 22 is provided with instructions to register or de-
register queries by users. The temporal query manager 22 determines which new queries,
sub-queries and call backs need to be added to or deleted from the call back queue 15, top
level temporal query queue 16, temporal query queue 17 and evaluation thread index 18
and provides instructions to the index look-up means 21.

The index look-up means 21 adds and deletes call backs, queries and partial
evaluation threads as demanded by the temporal query manager 22.

Further, the index look-up means 21 operates on the stored queries and sub-
queries and their partial evaluation threads with the events supplied from the event

consumer device 20 and identifies those queries, sub-queries and evaluation threads

WO 01/80045 PCT/GB01/01745

27

which are fulfilled partially or fully by the events. Advance means 23 then advances the
relevant evaluation threads. Where the events result in a partial fulfilment of a sub-query
or a further partial fulfilment of the partial evaluation thread new partial evaluation
threads are generated by the advance means 23 and placed in the appropriate queues and
lists and any new timers are placed in the pending timer queue 13. The existing sub-
queries or partial evaluation threads may then be removed or not, depending whether the
relevant sub-query is non-spawning or spawning respectively. Where the evaluation
threads matched by the received events completely fulfil a temporal query the advance
means 23 places a call-back instruction in the call-back queue 15 so that an appropriate
notification can be sent to the relevant user, and the temporal query may be removed.

As timers in the pending timer queue 13 expire, they are automatically transferred
to the expired timer queue 14.

As illustrated in Figure 6 the hierarchy of the data structures within the temporal
query engine 10 is that the temporal query system operating within the temporal query
engine 10 maintains lists of temporal queries 17. The lists of temporal queries 17 are
static and are set up when the queries are submitted. The static lists of temporal queries
17 give rise to dynamic partial evaluation threads 25 which are moved from one partial
evaluation state to another when events matching their requirements are received until the
partial evaluation threads are fully satisfied. The temporal query system also maintains
the static list 26 of event classes which records all of the event classes being received and

their parameters, which can be referenced in registered queries.

WO 01/80045 PCT/GB01/01745

28

Although the various elements of the system defined could be provided by
dedicated hardware, they will usually be carried out by appropriate software on a
computer.

The data structure used to represent event classes is shown in Figure 7a.

Each event class has a name consisting of a string of characters and a list of
parameters. The list of parameters is made up by a list of EventClassParam data
structures.

An EventClassParam data structure is represented graphically in Figure 7b. The
EventClassParam data structure encodes the name and data type of a parameter. The
parameters may be of any type supported by the system, for example string, integer, real,
date or boolean type.

Actual events, which can be of any class, are represented by the data structure
shown in Figure 8.

Each event is an event instance that has associated with it the name of the class of
event it belongs to. The parameters of the event must also be represented, in this case by
a field list containing each parameter. In the field list each parameter is represented by a
data structure EvInstanceField shown in Figure 9.

The EvInstanceField data structure consists of the field type and name together
with a current value. The field type can be any one supported by the system, for example
variable, literal or operator.

Where the event instance represents an incoming event reported to the temporal

query engine 10 all of the fields will have actual values.

WO 01/80045 PCT/GB01/01745

29

A similar data structure can be used to provide event templates in which the fields
can be variables for wild card matching or comparison values with a comparison operator
such as =, > etc.

Every query which is submitted to the system must have associated with it a data
structure in order to allow the query to be considered.

The data structure associated with each query is TQuery as shown in Figure 10a.

TQuery 30 is a static structure which is created when a query is submitted and
registered and is only destroyed when the query is de-registered, either on a user
instruction or when the query has been evaluated.

The evaluation of a query may cause sub-queries to be formed which enable
evaluation of parts of the overall query and each of these sub-queries will also have the
TQuery structure.

The TQuery structure contains the name of the event class created by the temporal
query itself, in the example T. The temporal query is defined as creating an event class so
that the temporal query can be used as an event class in other temporal queries. This is
necessary, because as explained above, the TQuery structures is used for user registered
temporal queries and sub-queries.

TQuery 30 contains a list of states 31 tha’t the query may enter. It also holds a list
of variables 32 that the evaluation of the query will require.

TQuery 30 also holds a list of evaluation threads 33. This lists the partial
evaluation threads that have been derived from the query and are currently active and

processing the query. TQuery also contains a list of sub-queries 34 which holds a listing

WO 01/80045 PCT/GB01/01745

30

of any sub-queries generated by the query. The listed sub-queries will themselves be data
structures of the type TQuery.

TQuery 30 may also hold a reference 35 to the parent of the query if TQuery 30 is
itself a sub-query. If TQuery 30 is not a sub-query no parent query will be identified.

Finally, TQuery 30 contains a reference count field which stores as an integer the
number of parent queries, if any, which are interested in the query or sub-query
represented by TQuery 30.

If TQuery 30 is itself a top level query, that is an actual query registered by a
client, the reference count will always be one or more because TQuery 30 will in this case
be a parent query interested in itself. The reference count could be more than one because
it is possible that as well as being a top level query TQuery 30 could also be a sub-query
of other queries.

If TQuery 30 is a sub-query the reference count records how many parent threads
are currently in the state for which the sub-query TQuery 30 is relevant. If this reference
count falls to zero then all evaluation threads for this particular TQuery are killed. If the
count then rises above zero a thread must be created in a start state.

That is, if a number of user registered queries are or incorporate the same query or
sub-query the query or sub-query is only held in the system once and all of the higher
level queries or sub-queries incorporating it are identified. This improves the efficiency
of the system by reducing duplication.

The list of variables 32 is made up of data structures QueryVariable as shown in

Figure 10a.

WO 01/80045 PCT/GB01/01745

31

The QueryVariable data structure represents a single variable and identifies the
name and type of the variable.

The list of states 31 of each TQuery structure 30 contains a list of states 31 that
the query may enter. Each of the states the query may enter is defined by a query state
structure Q state 37 which contains information relevant to the temporal query.

The Q state 37 structure is shown in Figure 11. Each Q state 37 statically
represents one part of a partial evaluation, that is, one state of a query. Firstly, the Q state
37 contains a Boolean spawning status identifier 38 which tells the system whether the
state is spawning or non-spawning. As explained above, if the state is spawning this
means that many partial evaluations can exist in this state at one time. If a state is non-
spawning a maximum of one partial evaluation may exist.

Q state 37 contains a list of acceptables 39 which is a list of event instances. Each
of the event instances in the list of acceptables has the event instance format shown in
Figure 8 and identifies events that the system is looking for. If an event corresponding to
an event instance listed in the acceptables list is identified by the system, the partial
evaluation presented by the Q state 37 accepts successfully and the next Q state is
entered. A rejections list 40 similarly comprises a list of event instances but will cause
the evaluation to reject. If an event instance contained in the rejections list is identified
by the system the partial evaluation represented by the Q state is terminated.

Finally, the Q state 37 structure comprises three timer lists, a timer re-setter list

41, timer windows list 42 and timer beyond list 43.

WO 01/80045 PCT/GB01/01745

32

The timer lists are required because when a query enters the state represented by
the Q state 37 data structure there may be some time limits on the evaluation of particular
events.

There are three basic types of these time limits and these are stored in the three
timer lists 41, 42 and 43 respectively. The three types of timers are as follows.

The first type of timer are Resetter timers. If the relevant event occurs while the
timer is running, the timer is reset and the Q state 37 remains in its current state. If the
timer reaches its limit without the relevant event occurring the Q state 37 enters the next
Q state. Resetter timers are held in the timer resetters list 41.

The second type of timer are windows timers. If the relevant event occurs while
the timer is running the Q state 37 moves to the next Q state. However, if the timer
expires without the event occurring the event is no longer relevant and the evaluation
rejects so that the partial evaluation represented by the Q state 37 is terminated.
Windows timers are held in the timer windows list 42.

The third type of timer are beyond timers. If the relevant event occurs before the
timer expires the evaluation rejects and the partial evaluation represented by the Q state
37 is terminated. If the timer expires without the relevant event occurring the Q state 37
accepts successfully and the next Q state is entered. Beyond timers are stored in the timer
beyonds list 43.

It is preferred and simplest to have three separate timer lists for the three separate
types of timer. However, it would be possible to have all of the currently running timers
for a Q state 37 held in a single list and have the timers themselves identify the type of

action to be taken when they expire.

WO 01/80045 PCT/GB01/01745

33

In this application expiry of a timer is referred to. In practice timers can be set to
count down to zero or up or down to a particular value as convenient.

In order to allow temporal queries to be supported by the system it is necessary
that the Q state structure 37 contains a timer list or lists such as timer lists 41 to 43.
However, since some queries and sub-queries will not be temporal queries, that is will not
be based on the time related criteria, some Q states will not have any timers held in some
or any of these lists. It should be noted that the requirement for the sub-query events to
take place in a particular sequence within a query is automatically catered for by the
structure of partial evaluation threads because the partial evaluation threads relating to
subsequent events in a query do not exist until they have been generated in response to
identification of all of the previous events in the query. Accordingly, the timers arei only
required to handle temporal queries specifying time limits or periods and not to deal with
sequence of events.

In Figure 12 the timer structure 44 is shown. The timer structure 44 is used to
encode any of the timers found in any of the three lists 41 to 43.

The timer structure contains integer values 45 and 46 for the number of seconds
and microseconds respectively before the timer activities. The timer structure 44 also
includes an event instance identifier 47 which specifies whether activation of the timer
causes the Q state it is attached to to be reset or expire.

When the timer 44 is first brought into existence it immediately begins counting
towards the integer value in seconds and microseconds contained in the timer. It will be

realised that the value may be set in microseconds only or any other time values such as

WO 01/80045 PCT/GB01/01745

34

milliseconds or seconds only if desired, but it has been found convenient to count in
microseconds and seconds in practice.

When the said time value is reached the timer activates. When the timer activates,
if the reset or expire identifier 47 is set to reset the timer causes its parent Q state to be
terminated similarly to the identification of a rejection event. This corresponds to a sub-
query specifying that an event should occur by a particular time or within a time period
after another event.

If the timer is identified as expire, activation of the timer causes the parent Q state
to accept successfully and move on to the next Q state similarly to identification of an
event instance being looked for by the Q state. This corresponds to a sub-query in which
it is specified that an event should not occur before a particular time or within a time limit
after another event.

As noted above events may refer to parameters of the event which may be
variable. The simple data structure used to represent the variables is shown in Figure 13.
The variable structure 49 simply holds the variable name 50, the variable data type 62 and
the variable value 51. The variable name will always be of the data type string. The
variable data type identifies the data type of the variable and the variable value is the
current value. The variable can be any data type such as integer, real, string or date for
example.

One example of a variable which would be the string data type would be a stock
name, which would have the name stock name, the type string and a value of the stock

name.

WO 01/80045 PCT/GB01/01745

35

Partial evaluation threads are represented by the structure Evalthread 52 shown in
Figure 14. This structure Evalthread holds a reference 53 to its parent query. This parent
query is a query having a TQuery structure shown in Figure 10 and may itself be a sub-
query of further queries or sub-queries.

The Evalthread 52 also contains a reference 54 to a QState structure which holds
information about the current state of the partial evaluation thread.

The Evalthread structure 52 further includes a variables list 55 listing variables
which have been instantiated, that is captured from reported events or other sub-queries,
during evaluation and a path list 56 which contains a record of the evaluation path leading
to the partial evaluation thread structure 52. That is, a record of the events which have
been processed so far to arrive at the current status of the partial evaluation thread.

Finally, the Evalthread structure 52 contains a currently set timer list 57 which
lists timers relevant to the partial evaluation thread which is currently active. The
currently set timers list 57 contains TimerQElem structures which are shown in Figure
15. The TimerQElem structure 58 holds an active timer for a particular evaluation thread
52.

The TimerQElem 58 includes a reference 59 to the evaluation thread for which the
timer is operating and a reference 60 to how long the timer should last for and the event
instance starting the timer. Lastly, an indicator 61 indicates whether the timer has expired
yet or not.

When the timer is created the TimerQElem 58 is placed in the current set timers
queue for the evaluation thread. Where multiple timers are operating the TimerQElem

elements 58 are placed in time order.

WO 01/80045 PCT/GB01/01745

36

As discussed above a commonly preferred method of notification is by e-mail.
Other methods of notification could be used including normal mail, voicemail,
notification to a mobile telephone or pager, notification by facsimile or the sending of
notifications to a web page.

As discussed above the invention is applicable to any field in which events are to
be matched or queried, but it is expected that the following fields will be particularly
useful.

Financial analysis, for example detecting when a positive news article in a
business sector is followed by a corresponding rise in stock price. This information is
used rapidly to allow traders to act on it. Events here include stockprice changes and
news reports.

Gambling analysis tools, for example detecting when the odds in a horserace
change following publication of a news article on the race. Events here include odds
changes and news reports.

Location and context awareness systems, where the events include the locations of
physical objects. Such physical objects may be electronically tagged persons, animals or
vehicles. For example where persons in a building have electronic tags it is possible to
react to events such as when two particular persons are together.

Similarly, if persons or vehicles are tagged they could be sent information
regarding events relevant to their location such as the availability of parking spaces.

Supply chain management, for example stock of weather dependent goods such as
rain wear or salad, the events would be stock levels and weather.

Logistics, events here would include transport slot availability and price.

WO 01/80045 PCT/GB01/01745

37

It will be realised that the above description is only one example of how the
invention can be carried out. It will be understood that there are other methods of
carrying out the invention and that the skilled person will be able to change many of the
details given above without leaving the scope of the invention which is defined by the

appended claims.

WO 01/80045 PCT/GB01/01745

38

Claims

L. A method of evaluating queries against received event information and generating

notification that events specified in the queries have occurred comprising the following

steps;
recording a number of queries;
receiving an item of event information;
comparing the received item of event information with the queries; and
generating a notification if the item of event information matches the query.
2. A method according to claim 1, in which a series of items of event information are

received and these are compared sequentially with the queries.

3. A method according to claim 1 or claim 2, in which each query can comprise a
plurality of sub-queries each requiring a different item or items of event information to be

matched.

4. A method according to claim 3, in which each query can specify a boolean logical

relationship between the items of event information.

S. A method according to claim 3 or claim 4, in which each query can specify a

temporal relationship between the items of event information.

WO 01/80045 PCT/GB01/01745

39

6. A method according to claim 5 in which each query can specify the sequence of

items of event information.

7. A method according to claim 5 or claim 6 in which each query can specify that an
item of event information must occur in a set time period after another item of event

information.

8. A method according to any one of claims 3 to 7 in which each query can specify
that an item of event information must not occur in a set time period after another item of

event information.

9. A method according to any one of claims S to 8 in which each query can specify
that items of event information must occur in a particular sequence without the

intervening occurrence of another item of event information.

10. A method according to any one of claims 3 to 9 in which a query can specify that
a variable be taken from one item of event information by one sub-query and be used as a

criteria for comparing further items of event information with a subsequent sub-query.

11. A method according to claim 10, in which a query can specify that the criteria
used for comparing further items of event information with said subsequent sub-query is

that the further items of event information include variables having a specified

WO 01/80045 PCT/GB01/01745

40

relationship with said variable taken from said one item of event information by said one

sub-query.

12. A method according to any one of claims 3 to 11, in which a query can specify a
plurality of options and the matching of any one of the options is regarded as matching

the query.

13. A method according to any one of claims 3 to 12, in which a sub-query can
specify that an item of event information occurs or does not occur in a set time period

after a previous sub-query is matched.

14. A method according to any one of claims 3 to 12 in which a sub-query can be set
to be non-spawning, in which only a first occurrence of a specified event is used to
progress to a subsequent sub-query, or spawning, in which case each occurrence of a
specified event is used to progress to a subsequent sub-query and the resulting multiple

progressions to the subsequent sub-query are separately evaluated.

15. A method according to any preceding claim in which the events are stock price

changes and news events.

16. A method according to any one of claims 1 to 14, in which the events include

location information for physical objects.

WO 01/80045 PCT/GB01/01745

41

17. A method according to claim 16, in which the objects are electronically tagged

persons, animals or vehicles.

18. A method according to claim 17 in which the events also include information

relevant to the current location of the object.

19. A method according to any one of claims 1 to 14, in which the events are

gambling odds and related news items.

20. A method according to any one of claims 1 to 14, in which the events are product

inventories and weather.

21. A method according to any one of claims 1 to 14, in which the events are prices

and availability of goods and services.

22. A method according to any preceding claim in which generated notifications are

sent by e-mail.

23. A method according to any one of Claims 1 to 21in which generated notifications

are sent by mobile telephone or pager.

24, A method according to any one of Claims 1 to 21in which generated notifications

are sent by facsimile. o

PCT/GB01/01745
WO 01/80045

42

25. A method according to any one of Claims 1 to 21in which generated notifications

are sent by voicemail.

26. A method according to any one of Claims 1 to 21in which generated notifications

are sent by postal mail.

27. A method according to any one of Claims 1 to 21in which generated notifications

are sent to a web page.

28. Apparatus for carrying out a method according to any preceding claim.

WO 01/80045 PCT/GB01/01745

1/10

Set of Partial Evaluations — "The System"
for each Temporal Query /

-~ 34

7
\\ Register
Events Set of Temporal Queries Queries

. L35 iUser
\ —

Send This Event to a»
Events ! | Queries b whioh this \ L

Events

v
|

~30
Any Completed

relevant
ueries are
Signaled to User
Update any Relevant| =D
y Partial Evaluators
1/
, / FIG. 1

104

NewEventType

Temporal
@n‘ g Query
Engine

RegisterQuery

DeregisterQuery

FIG. 2

1745
WO 01/80045 PCT/GIE’(')'Ié() ZUU

49

2/10
Type Elem_name Type Elem _name
Typed element with name Reference to an element
Elem_name of this type
FIG. 34 FlG. 3B

\\\\\E\T}\@\ \\\N [Name

NN N N
N ypel NameT LType
N lype?2 Name?
lype3 Name3
RIS NN
Collection type CTtype Lists of elements of type LType

——

FIG. 3C FIG. 3D)

SUBSTITUTE SHEET (RULE 26)

WO 01/80045

3/10

Toomn |

AT

\\\

-~
~\
/

i /ncom/ngEventOueue

%7,

Event
Instance

N NN

NN

S

W

b-query EventQueue

)

EvalThread

AU

207

<

/////,’//////

ExpiredTimersQueue

%

(TimerQ >
N

e
]

PendingTimersQueue

i h

< TimerQ

7

2

NSANNNNN

o
]

CallbackQueue

200

v

T,

Iy

C EvalThread

>
J

opLevel Tempora/Quer/es

70

7

< TQuery

NN

7%

=
)

All _TemporalQueries

TQuery >

SANNNN

NN

i)

®
]

" E va/uatlonThread/ndex

20,000

EvalThread

i)

i

N
D
)

\ AR RIS

" Know_Event Classes

ik

Event Class

),

%

AN

FIG. 4

PCT/GB01/01745

PCT/GB01/01745
4/10

WO 01/80045

suoneat|ddy

S Dl /\ /\

oA0WBYH aA0WBY
ppY opy

sabeueyy
SSBI

cc

spealy) Wang
hmo.%:\m_m
£z uiyorepy
speall] .
[BAB JUBASO. JaLUNSU0Y)

80UBADY jJuang

B ananb
Jauun
paJidxg
3 ananb
g BRIzl .
onanb
Jauun]
Buipuay 7

anenb g, ananb
Syaeqjlen o Wang

burobing -1 Aranbgng Buiwoauy

WO 01/80045 PCT/GB01/01745

9/10

{/25

Evenz‘_c/asil coe
26

|
L

i e
)
FIG. 6

EvalThrea

SUBSTITUTE SHEET (RULE 26)

WO 01/80045

6/

10

ANANNNNNNNNNNNN AN

Event Class

7

NN N NN §
String Name \
SRINNNEN N

my

_rriiaS
Parameters \\

EventClassParam

7

NANNNANNNNNN NN\

FIG. 74

ntC/assParam \\

N
Eve
N

NN NN

FieldType T

String | FieldName

N

N
FIG. 7B

PCT/GB01/01745

N N NN
Event Instance
NN AN

Event Class

Class

TOrOrrrrrrrrrrrrEE)

N

i)

Field

<Ev/n’stanceFiﬂ>

0

\N\N\N\\N

AN N NN\

FIG. 8
N\ N N
EvinstanceFiell . N\
& I
\ FieldType T
\
§ String | FieldName
N\
\' Data |CurrentValue

A\ ANNNNN

NAN\N NNNANNNN

FIG. 9

WO 01/80045 PCT/GB01/01745

7/10

30 — TQL\Iny 8 \
= N SANNNANANNNNNN
Event Class T §
37\§ = SANANANNNRNY %

\\ States
N QState > \
32‘§- > Var/a\b/ez\ \\
N\ \

QueryVariable

AATARININIININRNSY
EvaluationThreads

EvalThread

T SN
Sub-Queries

7

33

7

2% 000

00

34—

TQuery

22020

NN ' N NN
TQuery |ParentQuery

NN AR
- teaer Reference
Intege Count

R

FIG. 10A

O T s
QueryVariable
RN NN
String Varname
eI eI, I,

FieldType T
T

FIG. 10B

35—

-

36—

77

7
7

WO 01/80045

8/10

37 AAAELRTANNERANA RN AR AN AN RSN
St
368~ E\\ 7\\ O a\ge\\ \\\\\§
oolean awnin
20— AL HETTTTTRTET g \\\g %
§- Acceptables
N\ < Event /nsianiei> §
40~\ = S \\\
§ He/eoz‘/ons K\
§ <?vent /nstan:e> §
47~§~ SN
T/mer _resetters
N N
§ < Timer _> §
\ /mer windows
\ < Timer > §
43~§ = : S b\\ d\ N \\
\ imer_beyonds ~
§ Timer §
\ N \\\FIE\ﬂ\ \\\\\
NN N
Timer §
7 AR RN RN N
\ Integer | seconds \
46— M. N
% integer microsecond&
47 T T R
t Inst
N el e

FIG. 12

PCT/GB01/01745

WO 01/80045

9/10

NN R
49. Variab/e_lnstanoe\ N
50 R T S
String Varname
62 e errIrerr e E
[FieldType T \
51 N TS
. Data |CurrentValue
M. NN
FIG. 13
22 ~ Fvallhead . N\
53— I T \\
\“ TQuery |ParentQuery
— NI
o4 " (QState |CurrentState
55\% N Dr' b\/ S\\\\\\
- ariable
§ Variable Instance §
\ — \
. IR \\\\\\
\~ Path \
N\ \
\ Event \§
57“% Current/}:SetTimers §
\
\ TimerQElem \
\ NN N

FIG. 14

PCT/GB01/01745

WO 01/80045 PCT/GB01/01745

10/10

58 S S R SR SN
limerQElem N\\
T E TErEh N

NN

N
EvalThread | ThisThread N\
N

R \\\§
Timer Wh/chEvenz‘s

N :\\\2\\ \\'\ﬂ\\\\ N

%

591

60~

67+

)

Boolean | Expired
AN
FIG. 15

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

